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Abstract

In the area of process mining, efficient conformance checking is a hot topic. Several process mining vendors are in the process of
implementing conformance checking in their tools to allow the user to check how well a model fits an event log. Current approaches
for conformance checking are monolithic and compute exact fitness values but this may take excessive time. Alternatively, one can
use a decomposition approach, which runs much faster but does not always compute an exact fitness value.

This paper introduces a recomposition approach that takes the best of both: it returns the exact fitness value by using the de-
composition approach in an iterative manner. Results show that similar speedups can be obtained as by using the decomposition
approach, but now the exact fitness value is guaranteed. Even better, this approach supports a configurable time bound: “Give me
the best fitness estimation you can find within 10 minutes.” In such a case, the approach returns an interval that contains the exact
fitness value. If such an interval is sufficiently narrow, there is no need to spend unnecessary time to compute the exact value.
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1. Introduction

Process mining is a relatively young research discipline that
sits between Business Process Management (BPM) and Data
Science [1]. Traditionally, BPM focuses on process models
and the design, execution, control, measurement and optimiza-
tion of business processes rather than dealing with the gener-
ated event data [2]. On the other hand, data-oriented analysis
such as data mining and machine learning looks at particular
decisions or patterns and normally does not consider end-to-
end processes [3]. By adapting data oriented analysis tech-
niques to improving processes, process mining is the missing
link between the two disciplines. More and more event data are
made available with the increase use of information systems
[4]. Information systems such as ERP (Enterprise Resource
Planning) systems (SAP, Oracle, etc) and BPM (Business Pro-
cess Management) systems (Pegasystems, Bizagi, Appian, IBM
BPM, etc) support processes in different organizations. Event
data from the event logs of information systems can be ordered
to describe instances of the underlying process such that each
event can be related to an activity and belongs to a particular
case of the process. In essence, these event logs can be seen as
“footprints” left behind by the execution of the process. Process
mining uses these event logs as a starting point to “discover,
monitor and improve real processes” [3].
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There are three main areas in process mining [3]. Firstly, pro-
cess discovery takes an event log and produces a model through
different discovery algorithms. Secondly, conformance check-
ing compares an existing process model with an event log of
the same process. Thirdly, enhancement extends and improves
an existing process model using information from the recorded
event logs. In this paper we focus on conformance checking.
There are many reasons for performing conformance checking.
For example, it is related to the auditing and compliance of
business processes [3]. In businesses, certain boundaries on
how thing should be done are set by different stakeholders, e.g.
managers, government and others. Audits are carried out to as-
certain that these boundaries are being enforced, whether they
are laws set by the government or company procedures decided
by top level management. By facilitating the comparison of
the executed events observed in real-life and the established
rules for process execution, it is clear that conformance check-
ing in process mining can support and help to automate audits
[5, 6, 7]. On the other hand, the company may also want to
know whether the set procedures are meeting the requirements
of reality. By identifying deviations between the event log and
the process model, conformance checking can help with pro-
cess re-design and modification of the BPM lifecycle [2]. Fi-
nally, conformance checking is also a key actor at the other pro-
cess mining areas. For example, conformance checking is used
to compare existing discovery algorithms [8], to recommend
discovery techniques [9], or to be incorporated as a part of the
discovery method [10, 11, 12].

Conformance checking has become a topic of extreme in-
terest, not only academic but also commercially, where sev-
eral process mining commercial tools such as Celonis and Lana
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Labs have recently incorporated preliminary conformance anal-
ysis. There are several existing conformance checking tech-
niques [13], but most of the recent works use alignment-based
approaches due to their robustness and detailed view on devi-
ations [14, 15, 16, 13, 17]. Unlike previous approaches based
on token-game heuristics [18], alignment-based conformance
provides an optimal analysis on the conformance. In essence,
alignment-based conformance checking aligns the events of a
particular case with the closest matching path permitted by the
process model. These alignments give an evaluation of the over-
all conformance between the observed events (the reality) and
the process model. Moreover, deviations between the observed
behavior and the modeled behavior can be pinpointed at the
level of events, e.g., the identification of a particular activity
that is required by the process model but is missing from the
actual execution of the process. This conformance information
is later used to improve the process model to be a more faithful
representation of the reality (e.g., to be used for simulation), or
to take specific actions over the execution of the process (e.g.,
extra security measures to avoid protocol violations in a hospi-
tal [19]).

The volume of data continues to grow and events logs are
becoming larger as signified by the term “Big Data” [4, 20].
This has raised the need to make alignment-based conformance
checking more scalable, i.e., information systems are recording
more event data and are supporting larger and more complex
processes. For example, Boeing jet engines can produce ten ter-
abytes of operational information every thirty minutes and Wal-
mart is logging one million customer transactions per hour [21].
Case studies of process mining in organizations have raised
various challenges with respect to the performance of existing
alignment-based conformance checking techniques when they
are applied to larger and more complex processes. Process min-
ing commercial tools also suffer from this limitation, or directly
apply shortcuts and best-effort strategies, losing the optimally
guarantee of the alignments. One of the most promising re-
search lines is to decompose alignment problems. Rather than
aligning the overall process and the overall event log, the two
are decomposed into subprocesses and sublogs, and alignment
is performed on these smaller subcomponents. If a deviation is
found at one of the subcomponents, then it is clear that there
is a deviation in the overall component. Otherwise, the overall
process and the overall log are perfectly fitting. As such, align-
ment problems can be decomposed and distributed over a net-
work of computers. Experimental results based on large scale
applications of decomposition techniques have shown signifi-
cant improvements in performance, especially in computation
time [22].

Existing decomposition techniques have tackled the original
problem in two different ways. One is the computation of con-
formance at the decomposed subcomponents level [22, 23, 24],
where instead of solving the overall problem, it focuses on iden-
tifying local conformance issues at individual subcomponents.
The other is the approximation of the overall conformance be-
tween the process and the log, such as pseudo-alignments [25]
or approximate alignments [26]. This means that there is still
a gap in the application of decomposition techniques for the

exact overall conformance between a process and a log. This
paper covers this gap by proposing an approach to turn opti-
mal decomposed pseudo-alignments into optimal proper align-
ments. This approach creates a full circle approach for decom-
posed alignment (‘there and back again’), and makes it possible
to solve alignment-based conformance problems that current
techniques cannot handle. Importantly, our approach can bal-
ance quality and computation time. For example, in the experi-
mental section of the paper, we demonstrate our approach on a
real-life dataset (BPIC2012) for which the existing state-of-the-
art monolithic conformance checking approach is not feasible
while our proposed approach can compute an almost perfect
approximation of the overall conformance in reasonable time,
obtaining information about the specific problems of the model.

As such, we extend the applicability of decomposition tech-
niques by computing the overall conformance of a process and
a log. This means that performance gains from decomposition
techniques can be obtained whilst retaining the quality of the
result in reflecting the overall conformance. As the main con-
tributions of the paper:

• We formalize new properties in decompositions of pro-
cesses and logs. These properties will later extend the
conditions under which decomposition techniques can be
applied to compute the overall conformance (Section 3.1).

• We also present a new conformance metric to facilitate the
aggregation of conformance results from subcomponents
to an overall conformance result (Section 3.2).

• Applying the formalized properties and the new confor-
mance metric, we show the conditions under which con-
formance results from subcomponents can be aggregated.
These conditions relax the current perfect fitness require-
ment and permit aggregation in the presence of deviations
between the process and the log (Section 3.3 and Sec-
tion 3.4).

• With the new aggregation conditions, we present a novel
decomposed conformance checking method – recompos-
ing conformance – to compute the overall conformance
between a process and a log (Section 4).

• Sometimes, exactness is not the top priority. We also mod-
ify the exact recomposing conformance method to com-
pute an interval as an approximation of the overall fitness
between a process and a log (Section 5).

• The two methods are implemented as one configurable
conformance checking approach. The performance gains
from the proposed methods are demonstrated through ex-
tensive experimental results using both synthetic and real-
life datasets (Section 6).

2. Preliminaries

This section introduces basic concepts related to process
models, event logs, and their conformance.
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2.1. Basic notation

Definition 1 (Multisets). Let X be a set, a multiset of X is a
mapping M : X → N. B(X) denotes the set of all multisets over
X. Let M and M′ be multisets of X. M contains M′, denoted
M ≥ M′, if and only if ∀x∈X M(x) ≥ M′(x). The union of M and
M′ is denoted M + M′, and is defined by ∀x∈X(M + M′)(x) =

M(x)+M′(x). The difference between M and M′ is denoted M−
M′ and is defined by ∀x∈X(M−M′)(x) = (M(x)−M′(x)) max 0.

Note that (M−M′)+ M′ = M only holds if M ≥ M′. For sets
X and X′ such that X′ ⊆ X, we consider every set X′ to be an
element of B(X), where ∀x∈X′X′(x) = 1 and ∀x∈X\X′X′(x) = 0.

Definition 2 (Projection on sequences and multisets). Let X be
a set, let X′ ⊆ X be a subset of X, let σ ∈ X∗ be a sequence
of X, and let M ∈ B(X) be a bag of X. With σ�X′ we denote
the projection of σ on X′, e.g. 〈x, x, y, y, y, z〉 �{x,z}= 〈x, x, z〉.
with M �X′ we denote the projection of M on X′, e.g. [x2, y3,
z]�{x,z}= [x2, z].

Definition 3 (Function domains and ranges). Let f ∈ X 9 X′

be a (partial) function. With dom( f ) ⊆ X we denote the set of
elements from X that are mapped onto some value in X′ by f .
With rng( f ) ⊆ X′ we denote the set of elements in X′ that are
mapped onto by some value in X, i.e., rng( f ) = { f (x) | x ∈
dom( f )}.

Definition 4 (Functions on sequences and multisets). Let f ∈
X 9 X′ be a (partial) function, let σ ∈ X∗ be a sequence of
X, and let M ∈ B(X) be a bag of X. With f (σ) we denote the
application of f on all elements in σ, e.g., if dom( f ) = {x, z},
then f (〈x, x, y, y, y, z〉 = 〈 f (x), f (x), f (z)〉. With f (M) we denote
the application of f on all elements in M, e.g., if dom( f ) = {x,
z}, then f ([x2, y3, z]) = [ f (x), f (x), f (z)].

2.2. Petri nets

As previously mentioned, processes are depicted using pro-
cess models. There are many different process modeling lan-
guages, e.g., the Business Process Modeling Notation (BPMN),
Event-Driven Process Chains (EPCs), Unified Modeling Lan-
guage (UML) Activity diagrams, Yet Another Workflow Lan-
guage (YAWL) and others [2]. In this paper, we use Petri nets
to present our ideas [27], as this is the most often-used process
modeling notation in process mining. We stress that process
models denoted using Petri nets can be translated to models us-
ing other process modeling languages and that the presented
ideas can be adapted for other process modeling languages.

Definition 5 (Petri net). A Petri net is a tuple N = (P,T, F)
with P the set of places, T the set of transitions, P ∩ T = ∅

and F = (P × T ) ∪ (T × P) the set of arcs, which is sometimes
referred to as the flow relation.

Places are typically visualized by circles, whereas transitions
are typically visualized by squares (or rectangles). Consider the
Petri net N1 = (P1,T1, F1) in Figure 1. N1 has the set of places
P1 = {p1, p2, . . . , p19}, the set of transitions T1 = {t1, t2, . . . , t18}

and the set of arcs F1 = {(p1, t1), (t1, p2), . . . , (t18, p19)}.

The state of a Petri net is called a marking, and corresponds
to a multiset of places. A marking is typically visualized by
putting as many so-called tokens (black dots) at a place as the
place occurs in the marking. For example, a possible marking
of the net N1 is [p2, p3

2] which is visualized by one token at
place p2 and two tokens at place p3.

Definition 6 (Marking). Let N = (P,T, F) be a Petri net. A
marking M is a multiset of places, i.e. M ∈ B(P)

Let N = (P,T, F) be a Petri net. For a node n ∈ P ∪ T (a
place or a transition), •n = {n′ | (n′, n) ∈ F} denotes the set of
input nodes and n• = {n′ | (n, n′) ∈ F} denotes the set of output
nodes.

A transition t ∈ T is enabled by a marking M if and only
if each of its input places •t contains at least one token in M,
that is, if and only if M ≥ •t. An enabled transition may fire
by removing one token from each of the input places •t and
producing one token at each of the output places t•. The firing of
an enabled transition t in marking M is denoted as (N,M)[t〉(N,
M′), where M′ = (M − •t) + t• is the resulting new marking.

A marking M′ is reachable from a marking M if and only if
there is a sequence of transitions σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ such
that ∀0≤i<n(N,Mi)[ti+1〉(N,Mi+1) with M0 = M and Mn = M′.
For example, (N1, [p1])[σ〉(N1, [p2, p17]) with the sequenceσ =

〈t1, t4, t7, t8, t11, t12, t15〉 at the Petri net N1 in Figure 1.

Definition 7 (Labeled Petri net). A labeled Petri net N = (P,T,
F, l) is a Petri net (P,T, F) with labeling function l ∈ T 9 UA

where UA is some universe of activity labels. Let σv = 〈a1, a2,
. . . , an〉 ∈ U∗A be a sequence of activities. (N,M)[σv B (N,M′)
if and only if there is a sequence σ ∈ T ∗ such that (N,M)[σ〉(N,
M′) and l(σ) = σv.

A transition t is called invisible if and only if it is not mapped
to any activity label by the labeling function, that is, if and only
if t < dom(l). Otherwise, transition t is visible and corresponds
to an observable activity a = l(t).

Consider the labeled Petri net N1 = (P1,T1, F1, l1) in Fig-
ure 1. It has a labeling function l1 that maps transition t1 onto
activity label a, t2 onto b, etc. Note that t10 < dom(l1), hence
this transition is a silent transition.

(N1, [p1])[σvB(N1, [p19]) for the sequenceσv = 〈a, c, f ,m, d,
g, h, j, k, n, p, q〉 since (N1, [p1])[σ〉(N1, [p19]) with σ = 〈t1, t3,
t6, t10, t14, t4, t7, t8, t11, t12, t15, t17, t18〉 and l1(σ) = σv. Note that
since t10 is not mapped to any activity label, it is not observable
in σv.

In the context of process mining, the focus is mainly on pro-
cesses with an initial state and a well-defined final state. For the
net N1, we are interested in complete firing sequences, starting
from marking [p1] and ending at marking [p19]. The notion of
a system net is defined to include the initial and final marking.

Definition 8 (System net). A system net is a triplet SN = (N, I,
O) where N = (P,T, F, l) is a labeled Petri net, I ∈ B(P) is the
initial marking, and O ∈ B(P) is the final marking. USN is the
universe of system nets.

The net SN1 = (N1, I1,O1) in Figure 1 is a system net. It
has an initial marking I1 = [p1] and a final marking O1 = [p19].
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a = start bank transfer

b = open overseas bank form

c = open local bank form

d = start verification

e = enter oversea bank code

f = enter local bank code

g = enter sender account

h = enter receiver account

i = foreign currency conversion

j = verify sender account

k = verify receiver account

l = update oversea bank form

m = update local bank form

n = complete verification

o = redo bank transfer

p = finish bank transfer

q = send bank transfer

Figure 1: Running example: The system net SN1 that contains the (labeled) Petri net N1

This system net models a bank transfer process in which a client
makes a bank transfer from one account (sender account) to
another account (receiver account). The receiver account can
be of a local bank or an overseas bank.

Consider the visible sequence σv = 〈a, b, e, i, l, d, g, h, j, k, n,
p, q〉. This sequence describes the activities that are executed
for a bank transfer to an overseas bank account. It is initiated
with activity a (start bank transfer) and is ended with activ-
ity q (send bank transfer). For an overseas bank transfer, the
bank employee has to open a new overseas bank form, enter the
overseas bank code, convert the transfer amount into the foreign
currency and fill in the bank form with the converted amount.
The bank employee also has to verify both the sender and re-
ceiver account before making the transfer. The completion of
the bank form and the account verification can be done con-
currently as shown in SN1. In σv, the bank form is completed
(〈 . . . , b, e, i, l, . . .〉) before the account verification (〈 . . . , d, g, h,
j, k, . . .〉).

Definition 9 (System net notations). Let SN = (N, I,O) ∈ USN

be a system net with N = (P,T, F, l).

• Tv(SN) = dom(l) is the set of visible transitions in SN.

• Av(SN) = rng(l) is the set of corresponding observable
activities in SN.

• T u
v (SN) = {t ∈ Tv(SN) | ∀t′∈Tv(SN)l(t) = l(t′)⇒ t = t′} is the

set of unique visible transitions in SN (such that no other
transition has the same visible label).

• Au
v(SN) = {l(t) | t ∈ T u

v (SN)} is the set of corresponding
unique observable activities in SN.

For a given system net, the set of visible traces starting from
marking I to marking O is projected onto observable activities
yields set φ(SN).

Definition 10 (Traces). Let SN = (N, I,O) ∈ USN be a system
net. φ(SN) = {σv | (N, I)[σv B (N,O)} is the set of visible
traces starting in marking I and ending in marking O. φ f (SN) =

{σ | (N, I)[σ〉(N,O)} is the corresponding set of complete firing
sequences.

For the system net SN1 in Figure 1, φ(SN1) = {〈a, b,
e, i, l, d, g, j, h, k, n, p, q〉, 〈a, c, f ,m, d, g, j, h, k, n, p, q〉, . . . } and
φ f (SN1) = {〈t1, t2, t5, t9, t13, t4, t7, t11, t8, t12, t15, t17, t18〉, 〈t1, t3,
t6, t10, t14, t4, t7, t11, t8, t12, t15, t17, t18〉, . . . }. Due to the loop in-
volving transition t16 there is an infinite number of visible traces
and complete firing sequences.

The union of two system nets is defined for composing and
decomposing of process models.

Definition 11 (Union of nets). Let SN = (N, I,O) ∈ USN with
N = (P,T, F, l) and SN′ = (N′, I′,O′) ∈ USN with N′ = (P′,T ′,
F′, l′) be two system nets.

• l′′ ∈ (T ∪ T ′) 9 UA with dom(l′′) = dom(l) ∪ dom(l′),
l′′(t) = l(t) if t ∈ dom(l), and l′′(t) = l′(t) if t ∈ dom(l′) \
dom(l) is the union of l and l′.

• N ∪N′ = (P∪ P′,T ∪ T ′, F ∪ F′, l′′) is the union of N and
N′.

• SN ∪ SN′ = (N ∪N′, I + I′,O + O′) is the union of systems
nets SN and SN′.
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2.3. Event logs
Event logs serve as the starting point for process mining. An

event log is a multiset of traces. Each trace describes a par-
ticular case, i.e., a process instance, in terms of the activities
executed.

Definition 12 (Trace, Event log). Let A ⊆ UA be a set of activ-
ities. A trace σ ∈ A∗ is a sequence of activities. An event log
L ∈ B(A∗) is a multiset of traces.

In this simple definition of an event log, an event refers to
just an activity. Often event logs store additional information
about events such as resources, timestamps or additional data
elements recorded with the event log. In this article, we abstract
from such information, but the results presented can easily be
extended to event logs containing additional information.

L1 = [σ1 = 〈a, b, e, i, l, d, g, j, h, k, n, p, q〉20,

σ2 = 〈a, c, f ,m, d, g, j, k, h, n, p, q〉5,

σ3 = 〈a, e, i, l, d, g, j, h, k, n, p, q〉5]

L2 = [σ4 = 〈a, c, f ,m, d, g, j, h, k, n, p, q〉20,

σ5 = 〈a, b, e, i, l, d, j, g, h, k, n, p, q〉5,

σ6 = 〈a, b, e, i, l, d, g, h, n, j, k, p, q〉5]

Figure 2: Running example: Event logs L1 and L2

Consider the event logs L1 and L2 in Figure 2. Both event
logs have three distinct traces. L1 contains 30 traces, with 20
σ1 traces, 5 σ2 traces and 5 σ3 traces. L2 contains 30 traces
with 20 σ4 traces, 5 σ5 traces and 5 σ6 traces. Note that an
event log is a multiset of traces as a distinct trace (like σ1) can
occur multiple times.

The projection function �X as introduced earlier also directly
applies to event logs. For example, consider the event log L1
in Figure 1, L1 �{a,b,e}= [〈a, b, e〉20, 〈a〉5, 〈a, e〉5] and L1 �{a,b}=
[〈a, b〉20, 〈a〉10]. For a log L3 = [〈〉] with an empty trace, the
projection L3 �{a,b,e}= [〈〉] returns a log with an empty trace.
These projected event logs are referred to as sublogs and the
traces in sublogs are referred to as subtrace.

2.4. Alignment-based conformance checking
The main idea of conformance checking is to compare the

observed behavior of an event log L ∈ B(A∗) with the modeled
behavior of the related model, i.e. the related system net SN =

(N, I,O).
There are four commonly accepted quality dimensions for

comparing a model and a log: (1) fitness, (2) precision, (3) sim-
plicity and (4) generalization [28]. A model has good fitness if
it can mimic the behaviour of the event log. Yet a fitting model
is not necessarily a good model. For example, a “flower model”
(a model that has only transitions and no places to constrain the
behavior) is able to replay all the traces in the event log and al-
lows sequences that are not seen in the event log. Such a model

does not contain any knowledge on the process other than its
activities and is unlikely to be of much use. A model is precise
if it does not allow “too much” behaviour. A model that lacks
precision is underfitting. On the other hand, a model that does
not allow any behaviour other than the traces in the the event
log is unlikely to be a good model. An event log often does
not contain all the possible runs of the process. Generalization
means that a model should not be overfitting. Lastly, the sim-
plicity dimension refers to Occam’s Razor; a model should be
as simple as possible. In the remainder, we will focus on fit-
ness. However, the ideas presented are also applicable to the
other quality dimensions, e.g. precision by counting escaping
arcs [17] and generalization [15].
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Figure 3: Alignments for event log L1

In alignment-based conformance checking, fitness is mea-
sured by alignments between the traces in the event log and the
visible traces of the process model. Consider the alignments
of the three traces in the event log L1 in Figure 3. For each
alignment, the top row corresponds to the trace in the event log,
the middle row corresponds to the visible trace in the models,
whereas the bottom row corresponds to the corresponding firing
sequence in the model.

If an activity in the model cannot be mimicked by an activity
in the log, then a � (“no step”) appears in the top row. Simi-
larly, if an activity in the log cannot be mimicked by an activity
in the model, then a � (“no step”) appears in the bottom row.
Note that we use the symbol τ as the surrogate activity label for
invisible transitions.

For example, the fourth column of γ2 indicates that the net
SN1 has fired transition t10, which is an invisible transition, and
that the log trace σ2 could not mimic this firing. The ninth
column indicates that the the activity k was performed in the
log trace σ2, but that the net SN1 could not mimic this. These
columns containing� point to deviations between model and
log.

A move is a pair (a,m) where the first element a refers to
the activity in the log and the second element m refers to the
transition in the net.
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Definition 13 (Legal moves). Let L ∈ B(A∗) be an event log
and let SN = (N, I,O) ∈ USN be a system net with N = (P,T,
F, l). ALM = {(a, (a, t)) | a ∈ A ∧ t ∈ T ∧ l(t) = a} ∪ {(�,
(a, t)) | a ∈ A ∧ t ∈ T ∧ l(t) = a} ∪ {(�, (τ, t)) | a ∈ A ∧ t ∈
T ∧ t < dom(l)}∪{(a,�) | a ∈ A} is the set of legal moves. The
function α ∈ ALM → A ∪ {τ} provides the activity (possibly τ)
associated with a move: for all t ∈ T and a ∈ A, α(a, (a, t)) = a,
α(�, (a, t)) = a, α(�, (τ, t)) = τ, and α(a,�) = a.

An alignment is a sequence of legal moves. This means that,
after removing all� symbols, the top row corresponds to a log
trace and the bottom row corresponds to a firing sequence in the
net from marking I to marking O. The middle row corresponds
to a visible trace after also removing all τ symbols.

Definition 14 (Alignment). Let L ∈ B(A∗) be an event log with
A ⊆ UA , let σL ∈ L be a log trace and σM ∈ φ f (SN) a com-
plete firing sequence of system net SN. An alignment of σL and
σM is a sequence γ ∈ A∗LM such that the projection on the first
element (ignoring any �) yields σL and the projection on the
last element (ignoring any�) yields σM .
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Figure 4: Alternative alignment for trace σ2

Given a log trace and a model, there could be multiple or infi-
nite number of alignments. Consider trace σ2 in event log L1 in
Figure 2. One possible alignment is γ2 at Figure 3 while another
could be γ′2 at Figure 4. It is clear that γ2 is a better alignment
as it better matches the log trace with the model trace. In gen-
eral, costs can be assigned to different types of moves so that an
optimal alignment with the lowest costs can be computed.

Definition 15 (Cost of alignment). The cost function δ ∈
ALM → Q assigns costs to legal moves. The cost of an align-
ment γ ∈ A∗LM is the sum of all costs: δ(γ) =

∑
(a,m)∈γ δ(a,m).

Moves where the log and the model agree have no costs, i.e.
δ(a, (a, t)) = 0 for all a ∈ A. A move in the model also has
no costs if the transition is invisible, i.e. δ(�, (τ, t)) = 0 if
t < dom(l). A move in the model has a cost of δ(�, (a, t)) > 0
if l(t) = a and a ∈ A. Similarly, a move in the log has a cost of
δ(a,�) > 0. In this paper, we assume a standard cost function
δ1 that assigns unit costs: δ1(a, (a, t)) = 0, δ1(�, (τ, t)) = 0 and
δ1(�, (a, t)) = δ1(a, (�, t)) = 1 for all a ∈ A. For example,
δ1(γ1) = δ1(γ4) = 0, δ1(γ2) = δ1(γ5) = δ1(γ6) = 2 and δ1(γ3) =

1.

Definition 16 (Optimal alignment). Let L ∈ B(A∗) be an event
log with A ⊆ UA and let SN ∈ USN be a system net with
φ(SN) , ∅.

• For σL ∈ L, an alignment γ between σL and a complete
firing sequence of the system net σM ∈ φ f (SN) is optimal
if the associated misalignment costs are lower or equal to
the costs of any other possible alignment γ′.

• λ(σL, SN) ∈ A∗ → A∗LM is a deterministic mapping that
assigns any log trace σL to an optimal alignment.
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Figure 5: Alignments for event log L2

Consider the system net SN1 in Figure 1 and the event logs L1
and L2 in Figure 2. The alignments γ1, γ2, and γ3 in Figure 3 are
possible optimal alignments for the traces in L1 and their cor-
responding firing sequences in the system net SN1. The align-
ments γ4, γ5, and γ6 in Figure 5 are possible optimal alignments
for the traces in L2 and their corresponding firing sequences in
the same system net.

With an optimal alignment γ between σL and SN, we can
quantify fitness by comparing its associated misalignment costs
with the costs of a default alignment.

Definition 17 (Fitness metric). Let L ∈ B(A∗) be an event
log and let SN = (N, I,O) ∈ USN be a system net with
N = (P,T, F, l). Let lτ ∈ T → A be such that lτ(t) = l(t)
if t ∈ dom(l) and lτ(t) = τ if t < dom(l). Let σL ∈ L be
a log trace. Let moveM(SN) = minσM∈φ f (SN)

∑
t∈σM

δ(�, (lτ(t),
t)) be the minimal costs of an alignment between an empty log
trace and a complete firing sequence of the system net. Let
moveL(σL) =

∑
a∈σL

δ(a,�) be the costs of an alignment be-
tween σL and an empty model trace.

fit(σL, SN, δ) = 1 −
δ(λ(σL, SN))

moveM(SN) + moveL(σL)

The fitness of the event log L is computed as follows:

fit(L, SN, δ) = 1 −
∑
σL∈L δ(λ(σL, SN))

|L| × moveM(SN) +
∑
σL∈L moveL(σL)

This is a relative fitness metric presented in many confor-
mance related papers [16, 14, 15]. The metric normalizes the
misalignment costs associated to γ by the costs of the extreme
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case, a default alignment where all the steps in the log trace are
aligned as log moves and all the steps of the minimum model
trace are aligned as model moves. Using an optimal alignment
γ = λ(σL, SN), the fitness metric computes a value between 0
and 1. A trace that perfectly fits the system net would yield a
fitness value of 1 and a trace that does not fit the system net at
all would yield a fitness value of 0.

Consider the trace σ3 in Figure 2 and the net SN1 in Fig-
ure 1. Assuming that the optimal alignment γ3 = λ(σ3, SN1)
in Figure 3 is used, the fitness of σ3 and SN1 is fit(σ3, SN1,
δ1) = 1− 1

12+12 = 23
24 ≈ 0.958. The fitness of the event log L1 and

SN1 is fit(L1, SN1, δ1) = 1 − 0×20+2×5+1×5
12×30+13×20+12×5+12×5 = 1 − 15

740 =
145
148 ≈ 0.980. Recall that the cost function δ as a function is
defined for multisets. This means that the cost function δ is ap-
plied to a trace σ multiple times if there are multiple cases with
the trace σ.

3. Total border agreement and decomposing exact fitness

Alignment-based conformance checking can be time con-
suming. This is because the time needed for computing con-
formance and optimal alignments is heavily influenced by the
size of the net and the log, as well as by the complexity of the
underlying process. One of the ways to tackle this limitation
is through decomposition techniques. The alignment problem
can be decomposed by splitting the overall net and the overall
log into subcomponents (subnets and sublogs) and then solv-
ing this set of smaller problems. Under the assumption that the
complexity of the alignment algorithm is significantly worse
than linear, solving multiple small alignment problems is often
faster than solving one large alignment problem. In addition,
the set of decomposed alignment problems can be distributed
over a network of computer nodes to further reduce computa-
tion time.

However, existing decomposition techniques have limited
applicability in computing the overall conformance between the
net and the log at the alignment level, i.e., computing confor-
mance using optimal alignments between the net and log traces.
Following the decomposition of the overall net and the overall
log, existing decomposition techniques only guarantee that the
aggregation of conformance results from subcomponents will
reflect the exact overall conformance if there is perfect fitness
between the net and the log [24]. This has led to the focus
on using decomposition to identify problematic sections of the
process.

As previously mentioned, there are many scenarios where
the precise alignments or costs are required. This motivates
our work on extending the conditions under which the confor-
mance results from subcomponents can be aggregated to reflect
the exact overall conformance. In this section, we present the
core ideas that will extend the applicability of decomposition
techniques in computing the overall conformance. These ideas
will be later used in two novel alignment-based conformance
checking methods to compute an exact or an interval overall
conformance result.

3.1. Border activities

In [24] the author presented the concept of valid decompo-
sition of a Petri net. A decomposition of a Petri net is valid
if each place and invisible transition resides in just one subnet.
Moreover, if there are multiple transitions with the same label,
they should reside in the same subnet. Only unique visible tran-
sitions can be shared among different subnets.

Definition 18 (Valid decomposition [24]). Let SN ∈ US N be
a system net with labeling function l. D = {SN1, SN2, . . . ,
SNn} ⊆ USN is a valid decomposition if and only if the following
properties are fulfilled:

• SN i = (N i, Ii,Oi) is a system net with N i = (Pi,T i, F i, li)
for all 1 ≤ i ≤ n.

• li = l�T i for all 1 ≤ i ≤ n.

• Pi ∩ P j = ∅ for all 1 ≤ i < j ≤ n.

• T i ∩ T j ⊆ T u
v (SN) for all 1 ≤ i < j ≤ n.

• SN =
⋃

1≤i≤n SN i.

D(SN) is the set of all valid decompositions of SN.

For example, the decomposition D1 in Figure 6 is a valid
decomposition of the system net SN1, that is, D1 ∈ D(SN1).
The system nets in D1 are referred to as the subnets of SN1.

Given a valid decomposition, an activity may be shared by
multiple subnets. We define these activities as the border ac-
tivities of the decomposition. This overlapping property will
be used later as a common ground between subcomponents in
order to obtain an overall result from local results.

Definition 19 (Border activities). Let SN = (N, I,O) ∈ USN

be a system net with N = (P,T, F, l). Let D = {SN1, SN2, . . . ,
SNn} ∈ D(SN) be a valid decomposition of SN. For all 1 ≤
i ≤ n, SN i = (N i, Ii,Oi,) is a subnet with N i = (Pi,T i, F i,
li). Ab(D) = {l(t) | ∃1≤i< j≤n t ∈ T i ∩ T j} is the set of border
activities of the valid decomposition D.

For an activity a ∈ rng(l), SNb(a,D) = {SN i | SN i ∈ D ∧ a ∈
Av(SN i)} is the set of subnets that contain a as an observable
activity.

Due to the properties of a valid decomposition, a border
activity can only be an activity that has a unique label, i.e.,
Ab(D) ⊆ Au

v(SN). For example, the valid decomposition D1
in Figure 6 has the set of border activities of {a, b, c, d, l,m, n, o,
p}.

In addition, non-unique activities will appear in precisely one
subnet, i.e., for all a ∈ Av(SN) \ Au

v(SN) it holds that |SNb(a,
D)| = 1. On the other hand, unique activities may appear in
multiple subnets, i.e., for all a ∈ Au

v(SN) it holds that |SNb(a,
D)| ≥ 1. Border activities are unique activities that appear in
multiple subnets, i.e., for all a ∈ Ab(D) it holds that |SNb(a,
D)| > 1.

For example with the valid decomposition D1 in Figure 6,
SNb(a,D1) = {SN1

1, SN2
1, SN3

1} as the border activity a is shared
by the subnets SN1

1, SN2
1 and SN3

1.
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event log L1 and the valid decomposition D1 in Figure 6

3.2. Decomposed Fitness

Let us consider trace σ3 = 〈a, e, i, l, d, g, j, h, k, n, p, q〉 and
the system net SN1 in Figure 1. Under a decomposition, the
optimal subalignments γ1

3, . . . , γ
9
3 can be obtained by first pro-

jecting σ3 onto the subnets SN1
1, . . . , SN9

1 in Figure 6 and later
aligning each subtrace with the corresponding subnet as shown
in Figure 7.
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Figure 8: Subalignments between the trace σ1 = 〈a, b, e, i, l, d, g, j, h, k, n, p, q〉
in event log L1 and valid decomposition D1 in Figure 6

All moves in alignments γ1
3, γ3

3, γ6
3, γ7

3, γ8
3 and γ9

3 are syn-
chronized. Alignment γ5

3 is an empty alignment. Alignments
γ2

3 and γ4
3 both have a model move involving transition t2 with

the label b. Similarly, optimal subalignments for the traces σ1
and σ2 are shown in Figures 8 and 9 respectively.

A naive approach to aggregate the results per subcomponent,
would be to sum up all the misalignment costs of the subalign-
ments under the standard cost function. For γ1

3, γ
2
3, . . . , γ

9
3, we
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Figure 9: Subalignments between the trace σ2 = 〈a, c, f ,m, d, g, j, k, h, n, p, q〉
in event log L1 and valid decomposition D1 in Figure 6

would get a total of 2. However the misalignment costs as-
sociated to the optimal overall alignment γ3 is 1 as shown in
Figure 3. The wrong result is produced because border activ-
ities appear in multiple subnets and therefore moves involving
these transitions will be counted multiple times when their as-
sociated costs are simply aggregated. We would like the result
computed using γ1

3, . . . , γ
9
3 to equal the optimal cost computed

using a overall alignment such as γ3. Hence, we use the adapted
cost function presented in [24], to avoid counting moves that in-
volve border activities multiple times.

Definition 20 (Adapted cost function [24]). Let D = {SN1, SN2,
. . . , SNn} ∈ D(SN) be a valid decomposition of some system
net SN and δ ∈ ALM → Q a cost function. The adapted cost
function δD ∈ ALM → Q for decomposition D is defined as
follows:

δD(a,m) =

 δ(a,m)
|SNb(α(a,m),D)| if α(a,m) , τ;
δ(a,m) otherwise.

The costs of each legal move is divided by the number of
subnets in which the corresponding activity may appear, for ex-
ample, δD(a,�) =

δ(a,�)
|SNb(a,D)| . This avoids counting misalign-

ment costs of the same legal move multiple times. For exam-
ple, consider the set of subalignments γ1

3, . . . , γ
9
3 in Figure 7,

|SNb(b,D1)| = |{SN2
1, SN4

1}| and |SNb(d,D1)| = |{SN3
1, SN6

1}|.
For the adapted standard cost function δD1 , δD1 (�, (b, t2)) = 1

2
and δD1 (d, (d, t4)) = 0. The aggregated cost of γ1

3, . . . , γ
9
3 is 1,
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i.e. identical to the costs of the overall optimal alignment γ3 as
shown in Figure 3.

Having defined the adapted cost function, the fitness values
associated with the optimal subalignments per sublog and sub-
net can then be aggregated. This gives a decomposed fitness
metric.

Definition 21 (Decomposed fitness metric). Let L ∈ B(A∗) be
an event log and let SN = (N, I,O) ∈ USN be a system net with
N = (P,T, F, l).

Let D = {SN1, SN2, . . . , SNn} ∈ D(SN) be a valid decompo-
sition of SN. For all 1 ≤ i ≤ n, SN i = (N i, Ii,Oi) is a subnet
with an observable activity set Ai

v = Av(SN i).
For a log trace σL ∈ L, σi

L = σL�Ai
v

is the projection of σL

on the activity set of subnet SN i.

fitD(σL, SN, δ) = 1 −
∑

i∈{1,...,n} δD(λ(σi
L, SN i))

moveM(SN) + moveL(σL)

For an event log L, its decomposed fitness metric is computed
as follows:

fitD(L, SN, δ) = 1 −
∑
σL∈L
∑

i∈{1,...,n} δD(λ(σi
L, SN i))

|L| × moveM(SN) +
∑
σL∈L moveL(σL)

In the decomposed fitness metric, the misalignment costs of
each subalignment are first aggregated using the adapted cost
function. Afterwards, the total is normalized using the same
value as the undecomposed relative fitness metric so that both
metric values are normalized in the same manner.

Let us consider again the trace σ3 = 〈a, e, i, l, d, g, j, h, k, n,
p, q〉 and the valid decomposition D1 in Figure 6. Assuming
that for SN1

1, . . . , SN9
1, λ gives the subalignments γ1

3, . . . , γ
9
3 as

shown in Figure 7. The decomposed fitness metric between the
trace and the subnets is computed as fitD1

(σ3, SN1, δ1) = 23
24 ≈

0.958. This is identical to the fitness value for the overall trace
and the overall net.

Similarly, the formula can be applied to the log. Let the three
subalignments shown in Figure 8, Figure 9 and Figure 7 be the
optimal subalignments that correspond to the traces σ1, σ2 and
σ3. The decomposed fitness value of the event log L1 and SN1

is fitD1
(L1, SN1, δ1) = 1 − 0×20+2×5+( 1

2 + 1
2 )×5

12×30+13×20+12×5+12×5 = 145
148 ≈ 0.980.

This is again identical to the fitness value for the overall log
and the overall net. As such, the approach has decomposed
the conformance checking problem whilst providing a confor-
mance value for the overall log and net as output. However, this
is not always the case, and cannot be generalized for the gen-
eral case but only for cases satisfying specific properties. These
properties relate to alignment moves corresponding to border
activities.

3.3. Total border agreement

As mentioned earlier, the decomposed fitness does not al-
ways match the overall fitness metric in the general case. That
is because the legal moves involving a particular activity may
differ from one subnet to another. Let us consider the trace
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Figure 10: Subalignments between the trace σ6 = 〈a, b, e, i, l, d, g, h, n, j, k, p,
q〉 in event log L2 and valid decomposition D1 in Figure 6

σ6 = 〈a, b, e, i, l, d, g, h, n, j, k, p, q〉 and the valid decomposi-
tion D1 in Figure 6. A set of optimal subalignments between
the trace and the subnets is shown in Figure 10. According to
the system net SN1 in Figure 1, transition t15 with label n is to
be executed after transitions t11 with label j and t12 with label k;
in the trace σ6, t15 is executed before t11 and t12. This results in
a log move of activity n at the fourth position and a model move
of transition t15 with label n at the seventh position of alignment
γ6

6.
As activities j and k are not present in the subnet SN8

1, the
move in the log and the move in the model are synchronized
for transition n at alignment γ8

6. Therefore, the moves involv-
ing border activity n are not identical between subalignments
γ6

6 and γ8
6; the moves involving border activity n in the two sub-

alignments are not in agreement. In this case, the decomposed
fitness metric would not result in a value that is equal to the
fitness value of the overall log and the overall net.

To compute the exact fitness value, a specific property must
be satisfied: sequences of moves involving the same border ac-
tivity have to be in agreement across all subalignments. We
define that property as border agreement of subalignments and
we formalize it as follows:

Definition 22 (Border agreement). Let L ∈ B(A∗) be an event
log and let SN = (N, I,O) ∈ USN be a system net with N = (P,
T, F, l).

Let D = {SN1, SN2, . . . , SNn} ∈ D(SN) be a valid decompo-
sition of SN. For all 1 ≤ i ≤ n, SN i = (N i, Ii,Oi) is a subnet
with an observable activity set Ai

v = Av(SN i).
For a border activity a ∈ Ab(D), let aLM = {(a, (a, t)), (�, (a,

t)), (a,�)} be the set of legal moves for activity a, where t ∈ T
such that l(t) = a.

Let SN i ∈ SNb(a,D) be a subnet that has the border activity
a. For a log trace σL ∈ L, σi

L = σL�Ai
v

is the projection of σL on
the activity set of SN i. γi ∈ A∗LM denotes an optimal alignment
between the sublog trace σi

L and some complete firing sequence
of a subnet σi

M ∈ φ f (SN i).
For all subnets SN i ∈ D and the respective projected sub-

traces σi
L, γ1, . . . , γn are their decomposed alignments. γ1, . . . ,

γn are under border agreement on a border activity a ∈ Ab(D)
if, and only if, γi�aLM = γ j�aLM , for all SN i, SN j ∈ SNb(a,D).

The subalignments of a log trace σL ∈ L are under total bor-
der agreement (t.b.a.) if, and only if, there is border agreement
on all the border activities in γ1, . . . , γn where the border agree-
ment on each border activity is achieved one by one following
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the order of their occurrences across γ1, . . . , γn. This means
border agreement is achieved starting with the first occurring
border activity in subnet SN i ∈ D which contains the initial
marking I of net SN.

Given the properties of a sequence, there is border agreement
if the following three conditions are satisfied:

1. γi�aLM has an equal number of moves as γ j�aLM .
2. γi�aLM has the same move types as γ j�aLM , i.e. if γi�aLM has

one log move, then γ j�aLM must also have one log move.
3. The order of moves in γi�aLM and γ j�aLM are the same.

Note that if the subalignment γi is empty then the projection
of the subalignment will also be an empty sequence.

For example, there is total border agreement between the
valid decomposition D1 in Figure 6 and the log trace σ3 = 〈a,
e, i, l, d, g, j, h, k, n, p, q〉. As shown by the corresponding sub-
alignments in Figure 7, all the moves corresponding to each
border activity are under border agreement.

On the other hand, the subalignments of the trace σ6 = 〈a, b,
e, i, l, d, g, h, n, j, k, p, q〉 are not under total border agreement.
The moves involving border activity n in subalignment γ6

6 is a
log move followed by a model move which does not “agree”
with the synchronous move in subalignment γ8

6.

3.4. Properties of decomposed fitness

We now formalize the properties of the decomposed fitness
metric with consideration to the border agreements of subalign-
ments, i.e., if the total border agreement is not satisfied, the de-
composed fitness metric corresponds only with an upper bound
of the overall metric; when the total border agreement is satis-
fied, the decomposed fitness matches exactly the overall fitness.
This results will be used in Sections 4 and 5 as part of the pro-
posed conformance methods.

We first show that the metric is an upper bound to the fitness
metric computed using the full alignment between the overall
log and model. The proof is based on Theorem 3 in the earlier
paper [24].

Theorem 1 (Upper bound for decomposed fitness metric). Let
L ∈ B(A∗) be an event log and let SN = (N, I,O) ∈ USN be a
system net with N = (P,T, F, l). Let σL ∈ L be a log trace.

Let D = {SN1, SN2, . . . , SNn} ∈ D(SN) be a valid decompo-
sition of SN.

fit(σL, SN, δ) ≤ fitD(σL, SN, δ)

For the log L,

fit(L, SN, δ) ≤ fitD(L, SN, δ)

Proof. Theorem 3 in [24] proves that the sum of the misalign-
ment costs associated with subalignments of the traces in a log,
once discounted by the number of subnets that share the ac-
tivities related to the moves, represents a lower bound on the
misalignment costs of the overall log and net. This is due to
the possible local improvements at each subalignment. Since a
lower misalignment cost yields a higher fitness value (perfect

fitness equals to 1), the decomposed fitness metric is an upper
bound to the trace fitness metric and the decomposed log fitness
metric is an upper bound to the log fitness metric.

Consider again the set of subalignments γ1
6, . . . , γ

9
6 as shown

in Figure 10. Due to the local improvement with activity n at
subalignment γ8

6, the decomposed fitness value computed us-
ing this set of subalignments is higher than the fitness value of
the one computed with the overall alignment under the fitness

metric: fitD1
(σ6, SN1, δ1) = 1 −

1
2 + 1

2
12+13 = 24

25 = 0.96 > fit(σ6,

SN1, δ1) = 1 − 1+1
12+13 = 23

25 = 0.92.
Consider the sets of subalignments for the traces, σ4, σ5, σ6

in the log L2 at Figure A.26, A.27, and 10. Due to the local im-
provement with activity n at subalignment γ8

6, the decomposed
log fitness value is higher than the log fitness value: fitD1

(L,
SN1, δ1) ≈ 0.979 > fit(L, SN1, δ1) ≈ 0.973.

However, under total border agreement, we can prove that the
decomposed fitness value from the set of subalignments cor-
responds to the exact fitness value computed with the overall
alignment. This applies to the decomposed log fitness value as
well. We extend the properties of the decomposed fitness met-
ric to include the capability of computing a conformance result
that corresponds to an exact overall fitness value regardless of
the conformance level.

Theorem 2 (Exact value for decomposed fitness metric under
total border agreement). Let L ∈ B(A∗) be an event log and
let σL ∈ L be a log trace. Let SN = (N, I,O) ∈ USN be a
system net and let D = {SN1, SN2, . . . , SNn} ∈ D(SN) be a valid
decomposition of SN. For all 1 ≤ i ≤ n, SN i = (N i, Ii,Oi) is
a subnet with an observable activity set Ai

v = Av(SN i). σ1
L, . . . ,

σn
L are the subtraces from the projection of σL onto the activity

sets of SN1, . . . , SNn such that σi
L = σL �Ai

v
. γi is an optimal

subalignment between σi
L and some complete firing sequence

of the corresponding subnet σi
M ∈ φ f (SN i).

Let γ1, . . . , γn be the set of subalignments and let them be
under total border agreement. The decomposed fitness metric
computed using this set of subalignments equals the relative
fitness metric computed with the overall alignment between σL

and SN:

fit(σL, SN, δ) = fitD(σL, SN, δ)

For the log L, if for all the log traces in L, their correspond-
ing set of subalignments is under total border agreement,

fit(L, SN, δ) = fitD(L, SN, δ)

Proof. The paper [25] presents a stitching function that merges
a set of subalignments into an optimal alignment if all the legal
moves from the subalignments can be stitched together with-
out conflict and a trace pseudo-alignment otherwise. We prove
by contradiction that under total border agreement, the set γ1,
. . . , γn can always be stitched together as an optimal alignment
without conflict.

Suppose that γ1, . . . , γn is a set of subalignments and are un-
der total border agreement but cannot be stitched together with-
out conflict. First we note that the set of subalignments are
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comprised of only legal moves and therefore it must be that
there is a stitching conflict for particular moves between the
subalignments.

Let (al,m) ∈ ALM be a move involved in the first conflict
as γ1, . . . , γn are being stitched together. As for a conflict we
need another move, and hence another subnet, we know that
|SNb(α(al,m),D)| > 1. Therefore, the activity α(al,m) must be
a border activity. Under total border agreement, all subalign-
ments for this activity are the same across all subalignments.
Therefore, there cannot be a conflict.

Furthermore, since border agreement is achieved according
to the occurrence order of the border activities across the sub-
alignments, γ1, . . . , γn can be stitched together without occur-
ring any conflicts.

As a result, γ1, . . . , γn can always be merged into an op-
timal alignment between σ and a complete firing sequence
σM ∈ φ f (SN). With the merged optimal alignment γ, the
sum of misalignment costs associated with γ1, . . . , γn under the
adapted cost function equals the misalignment cost of γ. There-
fore, the decomposed fitness value with γ1, . . . , γn equals the
fitness value with γ.

The decomposed log fitness metric compares the sum of the
misalignment costs from the sets of subalignments with the sum
of the worst-case scenario costs for all the log traces. Since
the set of subalignments corresponding to each log trace is un-
der total border agreement, all sets of subalignments can be
merged into optimal alignments. This means that the sum of
the misalignment costs under the adapted cost function equals
the sum of optimal misalignment costs associated with all the
log traces. The decomposed log fitness value equals the log
fitness value.

As previously shown, the event log L1 has the exact same
value under both the decomposed fitness metric and the unde-
composed fitness metric at about 0.980.

We now propose two novel alignment-based conformance
checking methods that use the results from Theorem 1 and 2.

4. Recomposing method for exact decomposed fitness

As previously mentioned, the main contribution of this pa-
per is to make decomposition techniques more applicable in
computing the overall conformance between a net and log. We
now use the border properties formalized in the last section in
a novel method to compute the overall conformance between a
net and a log: recomposing conformance.

Similar to many existing decomposition techniques, the net
is decomposed into subnets by activities and the log is projected
onto the subnets to create sublogs. Alignment is then performed
on each pair of subnet and sublog. Each of the sublogs can
be analyzed in parallel, and together with the reduced size and
complexity of the net, the approach obtains a significant per-
formance gain in time [22, 23, 29, 30, 31]. Following the per
subcomponent computation, the results are aggregated if there
was agreement on the border. Otherwise, some disagreeing

subnets are “recomposed” to get a more coarse-grained decom-
position of the net, in which the disagreeing subnets have be-
come a single subnet. As a result they cannot disagree anymore.
Traces whose conformance results disagreed on the border pre-
viously are recomputed under the new decomposition. This it-
erative process is repeated until completion. Figure 11 shows
an overview of the summarized method. In this paper, we apply
this approach to decompose the relative fitness metric, but note
that it can be extended to the other dimensions in conformance
as well.

4.1. Decomposed fitness metric
As illustrated in Figure 11, the first step of the approach is to

decompose the system net. This enables the performance gain
in the conformance checking process. The decomposition of the
system net has to fulfill the properties of a valid decomposition,
first defined in [24].

Following the initial decomposition, the log is projected onto
the subnets of the decomposition to get the sublogs for align-
ment.

The alignment of subnets and sublogs and the computation
of the decomposed fitness metric are marked as step two and
three of the algorithm in Figure 11. Decomposed fitness val-
ues of subalignments computed under total border agreement
are recorded. Afterwards, their associated traces are taken out
of the process and are marked as completed. As for the re-
maining traces, we resolve their border agreement problems by
selectively “recomposing” subnets by their matching border ac-
tivities on which they disagree.

4.2. Subnet recomposition
As illustrated in step five in Figure 11, the existing set of

subnets are recomposed as a new set of subnets. Recomposing
subnets by their matching border activities resolves any border
agreement problems associated with the recomposed border ac-
tivities as it ceases to be shared between multiple subnets. “Re-
composition” can be done on single or multiple border activi-
ties and different selection criteria can be used to select the bor-
der activities. For example, recomposing the subnets by multi-
ple border activities is likely to resolve more border agreement
problems than if the subnets were to be recomposed on only
one border activity. However, there would be less performance
gain under the multiple border activities selection approach as
the resulting subnets would be larger and more complex.

For the sake of simplicity, in this paper we consider select-
ing the single activity that has the highest number of border
agreement problems. This selection criteria resolves the most
problematic border activity at each recomposition. Following
the valid decomposition in Figure 6, for event log L2, there is a
border agreement issue with trace σ6 = 〈a, b, e, i, l, d, g, h, n, j,
k, p, q〉 on activity n. At the recomposition, activity n is identi-
fied and selected since it is the activity with the highest number
of border agreement issues as shown in Figure 12. Retrieval
of all the subnets that have the selected border activity is done
by the shared function defined in Definition 19. These subnets
are then merged, after which the set of recomposed subnets is a
new valid decomposition of the system net.
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Figure 11: Overview of the exact decomposed conformance metric

t1 t2 t3 t13 t14 t15t4 t17t16

0 0 0 0 0 50 00

Figure 12: Vector showing the number of border agreement problems at each
border activity for event log L2

Theorem 3 (Recomposition results in valid decomposition).
Let SN = (N, I,O) ∈ USN be a system net with N = (P,T, F, l).
Let D = {SN1, SN2, . . . , SNn} ∈ D(SN) be a valid decomposi-
tion of SN.

Let a ∈ Ab(D) be a border activity that is shared between
|SNb(a,D)| subnets in D. Recomposing SN1, SN2, . . . , SNn on
border activity a joins all the subnets in SNb(a,D) on the ac-
tivity a. Following the recomposition, which leads to a new de-
composition D′, |SNb(a,D′)| = 1 and a < Ab(D′) i.e., a ceases
to be a border activity.

Let A′ ⊆ Ab(D) be a subset of the border activities of D. Let
D′ be the recomposition of D on A′, i.e., decomposition D′ is
recomposed on all activities a ∈ A′.

D′ ∈ USN i.e., D′ is a valid decomposition of SN.

Proof. Recomposing SN1, SN2, . . . , SNn on a particular border
activity a ∈ A′ joins the set of subnets SNb(a,D) on activity a
into one single subnet SN+ =

⋃
SNb(a,D). SN+ has the same

set of edges as SNb(a,D) has. Therefore, D′ = (D \ SNb(a,

D)) ∪ {SN+} is a partitioning of the edges in SN. Given that
there was no creation of a new transition or a new place in the
recomposition to SN+, it follows trivially that D′ is a valid de-
composition. The recomposition on any remaining border ac-
tivities a′ ∈ A′ \ {a} can be done in the same manner, and hence
also yields a valid decomposition.

4.3. Iterative conformance checking

With the new valid decomposition from the recomposed sub-
nets, traces whose subalignments have had border agreement
problems can be rechecked. Specifically, the set of traces are
projected onto the new valid decomposition to form a new
sublog which then repeats the steps of conformance checking
and decomposed fitness metric computation with the decom-
position. Recomposition and conformance checking can be re-
peated until the decomposed fitness metric of all traces are com-
puted under total border agreement.

At completion, the set of alignments and the decomposed fit-
ness value of the log are returned as output. This fitness value
corresponds to the exact fitness value of the overall log and
overall net.

While it can be crucial to have an exact fitness value of the
overall log and net, in some scenarios an interval value may
suffice. This is addressed in the next section.
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Figure 13: Overview of the interval decomposed conformance metric

5. Recomposing method for interval decomposed fitness

In some conformance checking scenarios, it may be sufficient
to have an interval fitness value of the overall log and the over-
all net. For example, in the selection of candidates of genetic
algorithms for the creation of a new generation of models, an in-
terval value of each candidate model might already be sufficient
to decide whether or not it should be kept. In addition, not re-
quiring an exact fitness value can increase performance gain as
there can potentially be less iterations of the recomposition and
checking steps. Moreover, we note that while recomposition
guarantees that any border agreement problems at the merged
border activities will be gone in the next conformance checking
iteration, new border agreement problems may arise at other
border activities which had no problems previously. Lastly, it
is possible that there are a few traces whose decomposed fit-
ness value cannot be computed under total border agreement
for many iterations or unless the overall trace and the overall
net are used. As shown in Figure 13, the exact decomposed
conformance algorithm is modified to compute an interval de-
composed fitness value.

5.1. Interval decomposed fitness conformance
As proven in Theorem 1, the decomposed fitness metric is

an upper bound to the fitness metric of the overall log and the
overall net. Using this property, an interval can be computed
such that the fitness value of the overall log and the overall net
is within the interval.

Definition 23 (Decomposed fitness interval). Let L ∈ B(A∗) be
an event log and let SN = (N, I,O) ∈ USN be a system net with
N = (P,T, F, l). Let σL ∈ L be a log trace.

Let D = {SN1, SN2, . . . , SNn} ∈ D(SN) be a valid decompo-
sition of SN.

fitint
D (σL, SN, δ) = [fitlow

D (σL, SN, δ), fitD(σL, SN, δ)]

fitlow
D (σL, SN, δ) defines the lower bound of the decomposed

fitness interval such that it equals the decomposed fitness metric
if the optimal subalignments γ1, . . . , γn (where γi = λ(σi

L, SN i))
are under total border agreement (t.b.a.):

costD(σL, SN, δ) =


∑

i∈{1,...,n} δD(λ(σi
L, SN i)) if under t.b.a.;

moveM(SN) + moveL(σL) otherwise.

fitlow
D (σL, SN, δ) = 1 −

costD(σL, SN, δ)
moveM(SN) + moveL(σL)

The decomposed fitness interval of the event log L is com-
puted as follows:

fitint
D (L, SN, δ) = [fitlow

D (L, SN, δ), fitD(L, SN, δ)],

fitlow
D (L, SN, δ) = 1 −

∑
σL∈L costD(σL, SN, δ)

|L| × moveM(SN) +
∑
σL∈L moveL(σL)
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Consider the subalignments for the trace σ6 = 〈a, b, e, i, l,
d, g, h, n, j, k, p, q〉 in Figure 10. Due to the border agreement
problem with activity n, the decomposed fitness interval for
the trace is fitint

D1
(σ6, SN1, δ1) ≈ [0, 0.962]. The decomposed

fitness interval for event log L2 is computed as fitint
D1

(L2, SN1,
δ1) ≈ [0.815, 0.979]. We note that for both the trace σ6 and
the log L2, their fitness values are within the respective in-
tervals: fit(σ6, SN1, δ1) = 0.923 ∈ [0, 0.962] and fit(L2, SN1,
δ1) = 0.973 ∈ [0.815, 0.979].

Theorem 4 (Overall is within the interval). Let L ∈ B(A∗) be
an event log and let SN = (N, I,O) ∈ USN be a system net with
N = (P,T, F, l).

Let D = {SN1, SN2, . . . , SNn} ∈ D(SN) be a valid decompo-
sition of SN. For all 1 ≤ i ≤ n, SN i = (N i, Ii,Oi) is a subnet
with an observable activity set Ai

v = Av(SN i).
For a log trace σL ∈ L, σi

L = σL�Ai is the projection of σL on
the activity set of subnet SN i.

fit(σL, SN, δ) ∈ fitint
D (σL, SN, δ)

For log L,

fit(L, SN, δ) ∈ fitint
D (L, SN, δ)

Proof. We prove the theorems by cases.
For SN1, . . . , SNn, let γ1, . . . , γn be the optimal subalign-

ments where γi = λ(σi
L, SN i) is the optimal subalignment of

σi
L and SN i. There are two cases.
Case 1: γ1, . . . , γn are under total border agreement
fitint

D (σL, SN, δ) = [fitD(σL, SN, δ), fitD(σL, SN, δ)]. By Theo-
rem 2, the fitness of the overall trace and net equals the decom-
posed fitness metric. Hence the overall fitness value is within
the interval.

Case 2: γ1, . . . , γn are not under total border agreement
fitint

D (σL, SN, δ) = [0, fitD(σL, SN, δ)]. As shown in Theorem
1, the decomposed fitness metric computes an upper bound of
the fitness value for the overall trace and net. Furthermore, the
lowest fitness value of a trace with respect to the system net is
0. Hence the overall fitness value is within the interval.

For the decomposed log fitness interval, the upper bound of
the interval is the decomposed log fitness which has been shown
to be an upper bound to the exact overall log fitness in Theo-
rem 1. The lower bound of the interval uses the total misalign-
ment costs of the subalignments under the adapted cost function
if there is total border agreement. Otherwise, it defaults to the
worst-case scenario cost. Theorem 2 proved that the exact mis-
alignment cost is obtained if the set of subalignments is under
total border agreement. This means that the sum of misalign-
ment cost is an upper bound to the overall misalignment costs
and therefore the lower bound of the decomposed log fitness
interval is a lower bound to the exact overall log fitness value.
Hence, the exact overall log fitness is within the decomposed
log fitness interval.

As previously shown, the fitness value for the log L2, fit(L2,
SN1, δ1) ≈ 0.973 is within its decomposed fitness interval

fitint
D1

(L2, SN1, δ1) ≈ [0.815, 0.979]. To compute the interval de-
composed metric, traces are exempted from the computation of
an exact decomposed fitness value through trace reject and ter-
mination conditions.

5.2. Trace reject and termination conditions
As previously mentioned, it is possible that there are a few

problematic traces which cannot be checked within a short time.
As such, trace reject and termination conditions can be used to
configure the balance between result quality and computation
time.

Let L ∈ B(A∗) be an event log and let SN = (N, I,O) ∈ USN

be a system net with N = (P,T, F, l). Let D = {SN1, SN2, . . . ,
SNn} ∈ D(SN) be a valid decomposition of SN. For all 1 ≤ i ≤
n, SN i = (N i, Ii,Oi) is a subnet with an observable activity set
Ai

v = Av(SN i).
For a log trace σL ∈ L, σi

L = σL �Ai is the projection of
σL on the activity set of subnet SN i. For 1 ≤ i ≤ n, γi is a
subalignment between subnet SN i and subtrace σi

L. γ1, . . . , γn

is the set of subalignments corresponding to σL.
Following the computation of the decomposed fitness metric

in step three of Figure 13, traces that are computed under to-
tal border agreement are added to the accepted traces multiset
C ∈ B(A∗) such that L ≥ C. Due to the number of border agree-
ment issues or alignment time, traces that are not computed un-
der total border agreement may be added to the rejected traces
multiset R ∈ B(A∗) such that L ≥ R. Otherwise, traces are
added to the to-be-aligned multiset B ∈ B(A∗) such that L ≥ B.
Let the recomposition algorithm be at its kth iteration.

For trace σL, if its corresponding set of subalignments γ1,
. . . , γn is not under total border agreement, the trace is added to
multiset R if,

• the number of border agreement issues of subalignments
γ1, . . . , γn is greater than the given threshold x ∈ N, i.e.,
|{a ∈ Ab(D) | ∃1≤i< j≤n γ

i�{a}, γ j�{a}}| > x.

• The time spent on aligning a subtrace σi
L with a subnet SN i

is higher than the given threshold y ∈ Q, e.g. a threshold
of y = 1 millisecond per subalignment.

A rejected trace σ′L ∈ {σL ∈ L | R(σL) > 0} is not checked in
future iterations. The criteria for the trace reject conditions can
be adjusted to reflect the trade-off between result quality and
computation time. A decomposed fitness interval is computed
if ∃σL∈LR(σL) > 0, i.e., at least one trace is rejected.

At the end of each iteration, termination conditions are ex-
amined to decide whether to proceed to the next iteration of
the algorithm. If termination conditions are met, the decom-
posed fitness interval fitint

D (L, SN, δ) is returned. These termina-
tion conditions are defined on the log level. The termination
conditions are as follows:

• All log traces have been either aligned under total border
agreement or have been rejected, i.e., C + R = L.

• Surpassing the overall time threshold z ∈ Q for confor-
mance checking, e.g., if more than z = 1 minute is needed
in the conformance checking process.
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• Having aligned a target percentage of traces 0 ≤ v ≤ 1 in
the log under total border agreement, i.e.,

∑
σL∈L C(σL)∑
σL∈L L(σL) ≥ v.

For example, if more than v = 0.9 = 90% of the traces in
the event log have been aligned under total border agree-
ment.

• The overall fitness interval value 0 ≤ w ≤ 1 is narrow
enough, i.e., fitD(L, SN, δ) − fitlow

SN (D, L, δ) ≤ w. For exam-
ple, if the interval range is less than w = 0.1.

• The maximum number of iterations m ∈ N is reached, i.e.,
k ≥ m. For example, if k = 100 iterations have been done.

As illustrated in Figure 13, if the termination conditions are met
in step four, the algorithm terminates and returns a decomposed
fitness interval value fitint

D (L, SN, δ) and the alignments of traces
whose decomposed fitness value had been computed under total
border agreement.

6. Implementation and Evaluation

We have implemented the proposed conformance checking
framework, and evaluated it on both artificial and real-life
datasets. Our evaluations demonstrate the following main con-
tributions:

1. Recomposing conformance checking enables replays of
model-log pairs that were previously not feasible under
the monolithic approach. This increases the applicability
of alignment-based conformance checking.

2. Logs associated to large models can take a tremendous
amount of time to replay under the current monolithic ap-
proach. For these logs, the proposed recomposition strat-
egy can lead to significant performance gains, speeding up
the conformance checking process. The significant perfor-
mance gains are present both in noiseless and noisy sce-
narios.

3. Recomposing conformance checking allows configurable
approximations of conformance through interval fitness
values. The computation time of interval fitness values is
often shorter than the needed time for exact fitness values
under both the monolithic and recomposition approach.
This means that end users can get an idea of the confor-
mance level within shorter times, or whenever there is a
hard time constraint.

The section is structured as follows: First, we discuss the
implementation details, the characteristics of the datasets used
in the experiments, and the general conditions applied on the
experimentation. Second, the exact fitness computation and the
resulting speed-ups and improvement in the feasability are eval-
uated in detail, in both noiseless and noisy scenarios. Third, we
illustrate the improvement in the feasibility of the alignment-
based approach for different time-constrained scenarios using
the recomposition strategy, and the effect of the time limits in
the interval narrowing. Finally, the applicability of the approach
for real-life scenarios is shown.

Figure 14: Resulting alignments for deviation diagnosis

Figure 15: Dialog for Replay using Recomposition

6.1. Implementation, datasets, and evaluations
The presented recomposing conformance checking frame-

work has been implemented as the Replay with Recomposition
plugin in the DecomposedReplayer package of ProM6.71 [32].
ProM is an extensible framework that supports a wide vari-
ety of Process Mining techniques in the form of plug-ins. It
is platform independent as it is implemented in Java, and can
be downloaded free of charge.2 Figure 15 shows a dialog box
of the plugin at which the user can configure different values
for the parameters introduced in the previous section, and Fig-
ure 14 shows the conformance analysis overview for one of the
datasets tested. The implementation allows for the setting of all
the parameters defined in the paper, and to manually select an
initial decomposition for the approach (including the maximal
decomposition if desired).

The experiments were conducted including a wide-range of
different datasets to represent the variability of possible sce-
narios. The datasets used include both synthetically generated
datasets (represented as PX), and a real-life dataset (represented
as BPIC2012). The process models of the synthetic datasets

1At this moment, ProM6.7 has not been officially released, consequently,
ProM6.7beta was used instead. However, no significant differences are to be
expected.

2http://www.promtools.org/
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were randomly generated using the PLG2 tool [33], and they
include large processes containing combinations of all the most
common workflow patterns, such as XOR, AND, loops, or in-
visible transitions. Logs were generated from the models using
simulation, and different operations were applied to emulate
different plausible noise scenarios: no noise, noise by remov-
ing events and noise by swapping. This is explained in detail
in Section 6.3. The numeration of the datasets is related with
the creation timestamp and has no relation with any property
of the processes such as number of activities or arcs. Each log
has 1000 cases. Following the Open Data Science principles,
the datasets are open and publicly available.3 The experimen-
tal evaluation also include a real-life dataset – based on the real
case BPIC2012 [34] – to illustrate the applicability and benefits
of the proposed approach for real cases. Details on the dataset
are presented in Section 6.5, and the models and logs used are
also publicly available.

The evaluations are performed on a desktop with two pro-
cessors Intel E5-2470, 8 Cores, 2.3 Ghz, 32 GB RAM, running
Linux 2.6.32 and using a 64-bit version of Java 7 where 6GB of
RAM was allocated to the Java VM. Note that the approach can
be distributed over a network of computers, but for the reported
experiments, we only used one computing node. Each experi-
ment was conducted 3 times and we report the average since no
significant difference was found between the runs.

Table 1: MaxRecomposing configuration

Parameters MaxRecomposing

GlobalDurationThreshold 3600 seconds
LocalDurationThreshold 80 seconds
RelativeIntervalThreshold 100%
AbsoluteIntervalThreshold 0
MaxConflictThreshold 100
AlignmentPercentageThreshold 100%
MaxIterationThreshold 200

In the evaluations, we experimented with different configu-
rations adjusting the termination thresholds. The configuration
with all the parameter values adjusted to the maximum will be
identified as the MaxRecomposing configuration as shown in
Table 1. For the sake of generality, this is the configuration
shown in the results unless it is stated otherwise. Moreover, a
Hide and Reduce projection strategy was used from the three
net projection strategies proposed in [35]. Net projection is
used to decompose the overall net into subnets.

As previously explained, the recomposition approach is in-
stantiated with an initial decomposition. Different strategies
can be used to decompose a model into subcomponents, e.g.,
maximal decomposition [24], SESE-based decomposition [22],
passage-based decomposition [36], or cluster-based decompo-
sition [37]. For the sake of simplicity, the experiments use a

3DOI will be requested after the acceptance of the manuscript. Meanwhile,
the datasets can be temporarily accessed in http://www.jorgemunozgama.

com/data/uploads/ds/isci17dataset.zip.

manual decomposition where the decompositions are manually
decided through visual inspection of the model. As shown in
Figure 16, the partitions follow closely to a SESE-based de-
composition [22]. As such, the initial decomposition is done
without previous knowledge of the locations where there are
conformance issues. This is the default decomposition method
unless stated otherwise.

6.2. Exact fitness in noiseless scenarios

We first experimented with the simplest scenario where the
model and log are perfectly fitting. In this section we present
conformance checking results for logs without noise (“no-
noise” logs). The goals of this section are:

• To compare the feasibility of the recomposition approach
with the existing monolithic approach.

• To compare and analyze computation times of replays un-
der both approaches.

The synthetic process models and “no-noise” logs generated
by the PLG2 tool are used in the experiments. “no-noise” logs
are perfectly fitting with the corresponding models. This means
that all the behaviour observed in the log can be matched to
the behaviour modeled by the model so that the log can be re-
played perfectly on the model and the fitness value equals to
1. We note that this is the least computationally intensive of
all possible scenarios since the alignment algorithm can always
match a log trace with a corresponding model trace as an align-
ment of solely synchronous moves. This means that the itera-
tive process of the recomposition approach does not occur for
the replays of these model-log pairs because moves associated
with border transitions are always synchronous moves and in
agreement.

There are 15 model-log pairs and for each dataset we con-
duct two experiments using the recomposition approach and
the monolithic approach respectively. For each experiment, a
1 hour time limit is set such that replays which are still running
after the time limit are stopped and deemed infeasible. Other
than the replay feasibility, fitness, time, and speedup, we also
report the number of activities (|A|) in the models and the aver-
age trace lengths (|σ|) of the logs.

The results are presented in Table 2. We first note that the
results from feasible replays are, as expected, all equal to 1,
i.e., both approaches reported the conformance of the datasets
correctly. Replay is feasible for all datasets under both ap-
proaches. Figure 17 compares the computation times of the
monolithic replays with the computation times of the recom-
posing replays on a logarithmic scale. The figure shows that
there is a clear performance gain in time across all datasets un-
der the recomposition approach. The speedup factor per dataset
is presented in Figure 18 where we see that it ranges from 2.5×
to 35.1×. A 2.0× speedup factor means that the recomposi-
tion approach is twice as fast as the monolithic approach and
a 10.0× speedup factor means that the recomposition approach
is ten times faster. Furthermore, speedup factors with respect
to the average trace length of the log is shown in Figure 19.

16



Figure 16: Initial manual decomposition of model P297 where border transitions are coloured in green
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Figure 17: Feasible computation times for synthethic logs without noise
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proach for synthetic logs without noise
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Table 2: Replay feasibility and computation times for synthetic logs without noise

Dataset Monolithic Recomposition

Name Source Noise |A| |σ| Feasible Fitness Time (s) Feasible Fitness Time (s) Speedup

P241-L36 synth no 117 95 3 1 398 3 1 21 18.6
P246-L9 synth no 137 77 3 1 250 3 1 23 11.1
P272-L30 synth no 201 101 3 1 645 3 1 26 24.4
P275-L0 synth no 101 77 3 1 167 3 1 23 7.2
P284-L33 synth no 170 102 3 1 891 3 1 30 29.6
P285-L12 synth no 140 46 3 1 103 3 1 22 4.6
P291-L21 synth no 170 90 3 1 904 3 1 26 35.1
P297-L6 synth no 125 59 3 1 236 3 1 22 10.6
P307-L27 synth no 193 22 3 1 57 3 1 23 2.5
P313-L24 synth no 185 20 3 1 68 3 1 23 3.0
P347-L39 synth no 212 60 3 1 280 3 1 26 10.6
P381-L3 synth no 111 73 3 1 95 3 1 26 3.7
P383-L15 synth no 150 108 3 1 193 3 1 23 8.3
P430-L18 synth no 160 104 3 1 291 3 1 24 12.1
P436-L45 synth no 230 35 3 1 109 3 1 24 4.5
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Figure 19: Speedup from recomposition approach in relation to average trace
length for synthethic logs without noise

We can observe that datasets with longer average trace lengths
generally have greater speedup factors.

In terms of feasibility, both approaches have the same per-
formance as they were able to complete all replays. However,
the results show a significant improvement in computation time
using the recomposition approach. As shown in the paper [22],
the speedup results from the decomposition of the alignment
problem itself and the trace groupings formed by the decom-
position. Smaller components usually take significantly less
time to replay than large components such that replaying sev-
eral subcomponents of a decomposition is faster than replay-
ing the original component. Furthermore, distinct traces can
share identical subsections. Trace groupings from decomposi-
tion can be these subsections such that the previously distinct
traces become trace groupings where some are identical. Since
alignments are not recomputed for the same trace, the amount

of alignment is reduced.
In conclusion, replay is feasible under both approaches

within the 1 hour time limit. However, the recomposition ap-
proach results in faster computation times for all datasets. In
real-life cases, it is likely that the observed and modeled be-
haviour are not perfectly fitting. Therefore, further experiments
are conducted using logs with noise, i.e., the log is not perfectly
fitting with the model.

6.3. Exact fitness in noisy scenarios

In this section we present conformance checking results for
logs with noise. This means that there are discrepancies be-
tween the modeled and observed behaviour such that the fitness
value is less than 1. Similar to the previous section, the goals of
this section are:

• To compare the feasibility of the proposed recomposition
approach with the existing monolithic approach.

• To compare and analyze computation times of replays un-
der both approaches.

For the sake of comparison, the processes and models are
the same as the previous section, but noise is included into the
logs at their generation. To test the performance of the two
approaches at detecting different types of deviations, we ex-
perimented with two noise types by including them into two
separate logs. This means that each model is associated with
two “noisy” logs. Each noise type mimics a specific scenario
where there is a mismatch between modeled and observed be-
haviour. The characteristics of the noise types and the process
of generating these “noisy” logs can be summarized as follows:

• MissingTrace noise is where a trace has a probability of
missing a part of its head, tail and/or episode, i.e., removed
noise. The noise is included into the log by log generation
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using the PLG2 tool. The specific configuration used for
the log generation is shown in Table 3 (we refer to [33] for
a detailed explanation of each parameter).

• Swapped noise is where two events in a trace can be in-
verted. This noise type mimics the scenario where the pro-
cess has a specific location where deviation always occurs.
We generate a log with Swapped noise by swapping two
activities at a specific location in the model before gener-
ating a noiseless log using the modified model. The point
of deviation is randomly chosen but it is ensured that cases
always pass through this location.

Table 3: PLG2 log generation configurations for MissingTrace dataset

Parameters MissingTrace

Number of traces 1000
Integer data object error probability 0%
Integer data object error delta 0
String data object error probability 0%
Change activity name probability 0%
Trace missing head probability 0.1%
Head max size 2
Trace missing tail probability 0.1%
Tail max size 2
Trace missing episode probability 0.1%
Episode max size 2
Perturbed event order probability 0%
Doubled event probability 0%
Alien event probability 0%

There are 30 model-log pairs and for each dataset we con-
duct two experiments using the recomposition approach and the
monolithic approach. At each experiment, a 1 hour time limit is
set such that replays which are still running after the time limit
are stopped and deemed infeasible. Other than the replay fea-
sibility, fitness, time, and speedup, we also report the number
of transitions in the models and the average trace lengths of the
logs.

Table 4 presents the results. On the whole, monolithic re-
play was not feasible for 1 model-log pair (P284-L48) due to
the 1 hour time limit. At the time column, the infeasible re-
play is marked with “ot”. Figure 20 compares the computa-
tion times of monolithic replays and recomposing replays for
logs with MissingTrace noise and Swapped noise. Computation
times are shown on a logarithmic scale at both figures. There
are clear performance gains from adopting the recomposition
approach. Figure 21 shows the speedup factors for logs with
MissingTrace noise and the speedups for logs with Swapped
noise. As previously explained, a 2.0× speedup means that the
recomposition approach is twice as fast as the monolithic ap-
proach and a 10.0× speedup means that it is 10× faster. We
observe that speedups from the recomposition approach range
from 1.3× to at least 85.5×. For the particular model-log pair
P275-L52, computation time was reduced by a factor 26.6 from
17.5 minutes (1052 seconds) under the monolithic approach to
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Figure 20: Feasible computation times for synthethic logs with MissingTrace
noise (top) and Swapped noise (bottom) (infeasible replays are shown using a
dashed pattern instead of a solid fill)

39 seconds under the recomposition approach. Speedup factors
in relation to the average trace length of logs with MissingTrace
noise and Swapped noise are shown in Figure 22. We can ob-
serve that in general logs with longer average trace lengths have
greater speedup factors.

In terms of feasibility, the recomposition approach outper-
forms the monolithic approach in replaying logs with Missing-
Trace or Swapped noise as the monolithic approach was infeasi-
ble for 1 model-log pair while the recomposition approach was
feasible for all datasets. More importantly, for these model-log
pairs, the recomposition approach was able to compute their
exact fitness values in very little time (less than 2 minutes).

The positive relationship between average trace lengths and
speedups reflects the advantage of the recomposition approach.
Logs with long average trace lengths tend to be associated with
models of complex structure. As previously explained, the
decomposition of a complex component into several decom-
posed subcomponents reduces replay time significantly. How-
ever, current techniques only guarantee that conformance re-
sults from decomposed subcomponents can be aggregated to
an overall result if the model and log are perfectly fitting. By
formalizing border activities and border agreement, we relax
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Table 4: Replay feasibility and computation times for synthetic logs with MissingTrace and Swapped noise

Dataset Monolithic Recomposition

Name Source Noise |A| |σ| Feasible Fitness Time (s) Feasible Fitness Time (s) Speedup

P241-L37 synth miss 117 94 3 0.999 395 3 0.999 34 11.5
P241-L50 synth swap 117 95 3 0.989 374 3 0.989 26 14.4
P246-L10 synth miss 137 77 3 0.998 265 3 0.998 31 8.6
P246-L49 synth swap 137 77 3 0.987 257 3 0.987 28 9.1
P272-L31 synth miss 201 101 3 0.999 685 3 0.999 81 8.4
P272-L62 synth swap 201 101 3 0.989 626 3 0.989 40 15.6
P275-L1 synth miss 101 73 3 0.998 168 3 0.998 36 4.6
P275-L52 synth swap 101 74 3 0.984 1052 3 0.984 39 26.6
P284-L34 synth miss 170 106 3 0.998 1147 3 0.998 61 18.7
P284-L48 synth swap 170 106 7 ot 3 0.997 42 > 85.5
P285-L13 synth miss 140 46 3 0.997 112 3 0.997 32 3.5
P285-L56 synth swap 140 48 3 0.947 202 3 0.947 29 7.0
P291-L22 synth miss 170 90 3 0.999 935 3 0.999 46 20.3
P291-L51 synth swap 170 91 3 0.989 913 3 0.989 35 25.9
P297-L7 synth miss 125 59 3 0.998 228 3 0.998 31 7.5
P297-L55 synth swap 125 60 3 0.982 241 3 0.982 30 8.0
P307-L28 synth miss 193 22 3 0.994 65 3 0.994 52 1.3
P307-L53 synth swap 193 23 3 0.996 66 3 0.996 27 2.4
P313-L25 synth miss 185 20 3 0.993 71 3 0.993 29 2.4
P313-L59 synth swap 185 20 3 0.986 67 3 0.986 28 2.4
P347-L40 synth miss 212 60 3 0.998 298 3 0.998 54 5.5
P347-L58 synth swap 212 59 3 0.996 292 3 0.996 40 7.3
P381-L4 synth miss 111 73 3 0.998 112 3 0.998 28 3.9
P381-L63 synth swap 111 74 3 0.985 90 3 0.985 28 3.2
P383-L16 synth miss 150 106 3 0.999 224 3 0.999 31 7.1
P383-L61 synth swap 150 111 3 0.979 795 3 0.979 43 18.7
P430-L19 synth miss 160 104 3 0.999 293 3 0.999 46 6.4
P430-L57 synth swap 160 104 3 0.997 306 3 0.997 30 10.0
P436-L46 synth miss 230 35 3 0.996 120 3 0.996 68 1.8
P436-L54 synth swap 230 35 3 0.982 107 3 0.982 35 3.0

the strict requirement for perfect fitness and allow the aggre-
gation of results from decomposed subcomponents even when
there are mismatches between the model and log. This means
that the recomposition approach gets the performance gains
from decomposition and the resulting exact fitness result would
correspond to the fitness value that one would get using the
monolithic approach. The increasing speedups as average trace
length increases demonstrate the said performance gains from
decomposition despite the presence of noise in the log. This
is further supported by observing the minimal effect that the
average trace length has on the computation time of the recom-
posing replays.

In conclusion, these experiments empirically show the poten-
tial performance gains of the recomposition approach. As the
results illustrate, this new approach not only increases replay
feasibility, but also results in significant performance gains for
datasets that are feasible under both recomposition and mono-
lithic approaches.

6.4. Feasibility and interval narrowing time constrained sce-
narios

One important contribution of the recomposition approach
is to allow configurable approximations of the overall confor-
mance between the model and log such that it is not necessary
to align all the traces in the log with the model. As previously
mentioned, fitness approximations by fitness interval values can
further reduce computation times and alleviate replay feasibil-
ity problems with specific log traces or sections of the model.
As time is often the principle concern for alignment-based con-
formance checking, this section focuses on the effects of time
as a hard constraint on the monolithic and recomposition ap-
proaches. There are two main goals in this section:

• To show how to compare the feasibility of the recomposi-
tion approach using the monolithic approach. We identify
cases where the recomposition approach can provide ei-
ther an exact or an interval fitness value while monolithic
replay is infeasible.

• To analyze the effects of time on the narrowing of the fit-
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Figure 21: Speedup factors from recomposition approach over monolithic ap-
proach for synthetic logs with MissingTrace noise (top) and Swapped noise
(bottom) (infeasible replays are shown using a dashed pattern instead of a solid
fill)

ness intervals.

For the sake of comparison, the experiments are conducted
using the same synthetic models and generated logs from the
experiments of the previous section. As explained, each model
has two associated “noisy” logs; the no-noise logs are excluded
from these experiments. For each model-log pair, we conduct
three experiments, each constrained by a different time limit on
the overall alignment time. This is done by varying the value
of the GlobalDurationThreshold parameter. Experiments are
conducted with the GlobalDurationThreshold values of 1, 5 and
10 minutes.

For the results, in the case of the monolithic approach, an ex-
act fitness value is provided if replay is feasible and it is marked
with a cross otherwise. For the recomposition approach, since it
defaults to approximation if an exact value cannot be computed,
either an exact fitness value or a fitness interval is given.

Table 5 shows the results of the experiments. For the ex-
periments with a 1 minute time constraint, monolithic replay is
not feasible for any dataset. The recomposition approach can
compute an exact fitness value for 27 model-log pairs and fit-
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Figure 22: Speedup from recomposition approach in relation to average trace
length for synthethic logs with MissingTrace noise (top) and Swapped noise
(bottom)

ness interval values for the remaining 3 model-log pairs. For
the fitness interval results, the interval range varies from 0.008
(P284-L34) to 0.027 (P272-L31). For the experiments with a
5 minute time constraint, monolithic replay is feasible for 19
model-log pairs. The recomposition approach can compute an
exact fitness value for all 30 model-log pairs. For the exper-
iments with a 10 minute time constraint, monolithic replay is
feasible for 22 model-log pairs. The recomposition approach
can compute an exact fitness value for all 30 model-log pairs.
Previous experiments (cf. Section 6.3) have shown that the re-
play of 1 model-log pair cannot be finished within one hour
under the monolithic approach.

In terms of feasibility, the results show that the recomposi-
tion approach can give an exact fitness value for more model-
log pairs than the monolithic approach under all three time con-
straints. For the shortest 1 minute constraint, the recomposi-
tion approach can give an exact fitness value for almost all of
the datasets while monolithic replay was not feasible for any
dataset. Other than feasibility, the fitness interval results com-
puted by the recomposition approach show that the exact fitness
values (as shown in Table 4) are always within the interval.

In conclusion, the recomposition approach outperforms the
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Table 5: Time-constrained conformance analysis on synthetic logs with noise of dataset using manual initial decomposition

Dataset Time constraint on overall alignment time (min)
1’ 5’ 10’

Name |A| |σ| Monolithic Recomposition Monolithic Recomposition Monolithic Recomposition

P241-L37 117 94 7 0.999 7 0.999 0.999 0.999
P241-L50 117 95 7 0.989 7 0.989 0.989 0.989
P246-L10 137 77 7 0.998 0.998 0.998 0.998 0.998
P246-L49 137 77 7 0.987 0.987 0.987 0.987 0.987
P272-L31 201 101 7 0.972-0.999 7 0.999 7 0.999
P272-L62 201 101 7 0.989 7 0.989 7 0.989
P275-L1 101 73 7 0.998 0.998 0.998 0.998 0.998
P275-L52 101 74 7 0.984 7 0.984 7 0.984
P284-L34 170 106 7 0.990-0.998 7 0.998 7 0.998
P284-L48 170 106 7 0.997 7 0.997 7 0.997
P285-L13 140 46 7 0.997 0.997 0.997 0.997 0.997
P285-L56 140 48 7 0.947 0.947 0.947 0.947 0.947
P291-L22 170 90 7 0.999 7 0.999 7 0.999
P291-L51 170 91 7 0.989 7 0.989 7 0.989
P297-L7 125 59 7 0.998 0.998 0.998 0.998 0.998
P297-L55 125 60 7 0.982 0.982 0.982 0.982 0.982
P307-L28 193 22 7 0.994 0.994 0.994 0.994 0.994
P307-L53 193 23 7 0.996 0.996 0.996 0.996 0.996
P313-L25 185 20 7 0.993 0.993 0.993 0.993 0.993
P313-L59 185 20 7 0.986 0.986 0.986 0.986 0.986
P347-L40 212 60 7 0.998 0.998 0.998 0.998 0.998
P347-L58 212 59 7 0.996 0.996 0.996 0.996 0.996
P381-L4 111 73 7 0.998 0.998 0.998 0.998 0.998
P381-L63 111 74 7 0.985 0.985 0.985 0.985 0.985
P383-L16 150 106 7 0.999 0.999 0.999 0.999 0.999
P383-L61 150 111 7 0.979 7 0.979 7 0.979
P430-L19 160 104 7 0.999 0.999 0.999 0.999 0.999
P430-L57 160 104 7 0.997 7 0.997 0.997 0.997
P436-L46 230 35 7 0.983-0.996 0.996 0.996 0.995 0.996
P436-L54 230 35 7 0.982 0.982 0.982 0.982 0.982

monolithic approach in feasibility when there is a constraint on
alignment time. More importantly, the recomposition approach
can always give a fitness result to reflect the conformance level
between the model and log whereas the monolithic approach
can only give a result if replay can be fully completed.

Having compared the performance of the recomposition ap-
proach with the existing monolithic approach for different pro-
cess characteristics and noise scenario, we show that the recom-
position approach can be applied to real-life datasets.

6.5. Recomposed fitness in real-life cases

In this section we apply the monolithic approach and the re-
composition approach on a real-life dataset. This is to demon-
strate that the recomposition approach can be applied to real-
life datasets and to compare the performances of both ap-
proaches. Notice that, the final goal of any conformance ap-
proach is to gain insight on the conformance problems. There-
fore, we perform a simple analysis using the conformance re-

sults from replay to showcase the applicability of alignment-
based conformance checking for the analysis of deviations.

We used the real-life dataset, BPIC2012 [34], which previ-
ously was the real-life dataset at the 2012 BPI (Busines Process
Intelligence) Challenge. This dataset is taken from a Dutch Fi-
nancial Institute and contains 13,087 cases and 36 event classes.
Apart from some anonymization, the log contains all data as it
came from the financial institute.

The process represented in the event log is an application
process for a personal loan or overdraft within a global financ-
ing organization. The event log is a merger of three intertwined
sub processes such that the first letter of each task can be used
to identify the subprocess that the task originated from.

Since no explicit process model is provided with the dataset,
a model is constructed with consideration to the task semantics
and the three sub processes as illustrated in Figure 23 (please
ignore the color bars at the bottom of transitions and the color
of transitions and places for now).

For the experiments, a 1 hour time limit is set such that re-
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Table 6: Replay feasibility and computation times for BPIC2012

Dataset Monolithic Recomposition

Name |A| |σ| Feasible Fitness Time (s) Feasible Fitness Time (s)

BPIC2012 36 20 7 ot 3 0.647-0.648 1761

Figure 23: Handmade model for the BPIC2012 real-life dataset projected with the deviation issues between the model and log

plays which are still running after the time limit are stopped
and deemed infeasible. The recomposition approach is instan-
tiated by a maximal decomposition. A maximal decomposition
is where the subcomponents are as small as possible while still
remaining as a valid decomposition. We report the time and
fitness of replay under both approaches.

As shown in Table 6, we find that the monolithic approach is
not feasible for BPIC2012 under the 1 hour time limit. In con-
trast, the recomposition approach was able to provide a fitness
interval value with a range of less than 0.001 under 30 minutes
(1800 seconds). The results also showed that an interval value
was given rather than an exact value because 1 trace was re-
jected during the replay process given the exclusion parameters
defined (cf. Section 5). The fitness interval of [0.647 − 0.648]
indicates there are considerable deviations between the mod-
eled behavior and observed behavior. Further analysis can be
done by visualizing the conformance results.

Conformance results can be visualized through alignments
as shown in Figure 14 or by projecting the deviation issues
onto the corresponding places and transitions as shown in Fig-
ure 23. Transitions are augmented with two additional infor-
mation. Firstly, the color of the visible transitions indicates
the execution frequency of a particular transition in the log. A
lighter color means that the transition is rarely executed and a

Figure 24: Conformance diagnosis on transition O ACCEPTED

darker color means that the transition is often executed. The
color at the bottom of transitions indicates the distribution be-
tween synchronous moves (green) and model moves (pink). A
color bar with a high green portion means that there is little
conformance issue with the corresponding transition and a low
green portion means there is severe conformance issue with the
transition. Transitions without color bars do not have any con-
formance issues. Log moves are shown by marking the places
where log moves occurred. The occurrence frequency is indi-
cated by the size of the places.

We first observe that out of the three subprocesses, subpro-
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Figure 25: Alignment for case 173733 with model move on transition
O ACCEPTED

cess A which relates to the application itself has minimal con-
formance issues. Since the application is submitted through
the webpage, it makes sense that the observed behavior can
be easily and accurately described by a corresponding model.
On the other hand, both subprocess O which relates to the of-
fer of the application and subprocess W which relates to the
work items belonging to the application have major confor-
mance issues. For simplicity, we only focus on subprocess
O. There are log moves relating to all parts of the subpro-
cess and there is a high frequency of model moves relating
to the transitions: O SELECTED, O SENT, O CREATED and
O ACCEPTED. For example, figure 24 shows the ratio between
synchronous moves (at 2243 cases) and model moves (at 10040
cases) for transition O ACCEPTED. This means that 10040
cases did not execute transition O ACCEPTED even though
they were supposed to according to the model. This can be
confirmed by inspecting the alignments of particular cases in
the alignment visualization. Figure 25 shows the alignment
for case 173733 which indicates a model move for transition
O ACCEPTED. As such, there is a discrepancy between the re-
ality and the model suggested by the task semantics regarding
to how an offer is processed. The identification of this con-
formance issue may prompt further investigations with related
stakeholders such as the employees who handled the deviating
cases.

In conclusion, the results clearly demonstrate that the appli-
cability of the recomposition approach make alignment-based
conformance checking feasible for real-life datasets. Further-
more, the utility of the conformance results is shown through a
simple analysis.

7. Related work

For an introduction to process mining we refer to [3]. For
an overview of best practices and challenges, we refer to the
Process Mining Manifesto [38].

As previously mentioned, there are four competing quality
criteria in conformance checking: fitness, precision, simplicity
and generalization [18]. In this paper, we focused on fitness,
however the border properties of subnets can also be applied to
quantify precision and generalization. There are many confor-
mance checking techniques in the literature [18, 16, 17, 15, 3]
but in the recent years, the use of alignment-based conformance
checking has become the de facto standard [16, 39, 40]. Align-
ment techniques provide a robust analysis of fitness, especially
in the presence of non-determinism in the model or noise in the
logs.

Yet one limitation of the existing alignment algorithm is the
explosion of state space when handling industrial sized prob-
lems. With the increasing availability of event data, this calls

for solutions so that the alignment technique can be widely ap-
plicable in the evolving context.

Several approaches have been proposed to decompose con-
formance checking in the literature [37, 24, 23, 22]. Their ex-
perimental results showed an immense reduction in computa-
tion time over the existing monolithic approach. However, con-
formance results from most of these approaches only remain at
the level of sublogs and subnets, the conformance between the
overall process model and event log is not computed. For ex-
ample, a recent paper [23] proposed a workflow decomposition
technique that decomposes a workflow net into a set of smaller
workflow nets by places after which conformance checking is
performed on the subnets by alignment. This treats subcom-
ponents independently and does not compute alignment at a
global level. An exception is the implementation of an ear-
lier proposed generic approach to decompose process discov-
ery and conformance checking [37]. In the implementation,
conformance checking is again performed by aligning sublogs
and subnets but an extra step is taken afterwards to merge the
subalignments into an overall pseudo alignment. The pseudo
alignment gives a lower bound for the mismatch costs between
the overall process model and log. This guarantee can provide
an idea about the overall conformance. In relation to these
works, the proposed recomposition approach advances exist-
ing decomposition solutions by extending decomposition tech-
niques to compute an exact or interval value that reflects the
overall conformance between a process model and log.

Other than decomposing conformance checking, other ideas
have also been proposed. In [26], approximate alignments are
proposed to view sections of step-moves in an alignment un-
der a coarser granularity as multisets. This abstract view of
alignment reduces the complexity of the alignment problem so
that computation time is reduced. Another way to reduce the
complexity of the problem is through reduction of the model
and log. In [41], the notion of indication is used to reduce
process models. The occurrence of an indicator transition re-
quires the presence of a specified set of transitions (its indicated
set) due to their causal relations. As such, these indication re-
lations between transitions can be used to reduce models and
logs. By using a reduced model and log, a macro-alignment
can be computed in significantly shorter time. The missing
alignment details are later expanded using an efficient align-
ment algorithm from bio-informatics. Other than abstracting
alignment details to alleviate complexity, new interpretations
of the alignment concept has also been proposed such as anti-
alignments [42]. Compared to these alternatives, the recompo-
sition approach presented in this paper preserves the alignment
concept and does not need to abstract away details to achieve
performance gain.

Another related work is conformance checking of proclets
[43]. Proclets can be used to define so-called artifact centric
processes, i.e. processes that are not monolithic but are com-
posed of smaller interacting processes (called proclets). In [43],
it is shown that conformance checking can be done per proclet
by projecting the event log onto a single proclet while consid-
ering interface transitions in the surrounding proclets.
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8. Conclusions and future work

This paper presents a novel approach to provide alignment-
based conformance checking results for large and complex
models where monolithical approaches are not suitable. This
approach applies divide and conquer strategies to break down
the overall component into subcomponents before iteratively
recomposing these small pieces to get the final result on the
overall conformance. As such, the approach significantly im-
proves upon the performance issue of the existing monolithic
approach for large and or more complex process models while
retaining a result quality that is absent from existing decomposi-
tion techniques. In summary, the approach applies decomposi-
tion techniques to give a complete solution to alignment-based
conformance checking problems.

To enable the aggregation of results from subcomponents, we
formalized the border transitions of a valid decomposition. We
showed that aggregation of conformance results from subcom-
ponents is permissible if and only if there is total border agree-
ment between all the subcomponents. In addition, we adapted
the existing relative fitness metric as the decomposed fitness
metric to compute an exact or interval value to reflect the fit-
ness between a model and log.

The conformance checking approach has been implemented
in ProM. Extensive experimental results from synthetic and
real-life datasets demonstrate the potential performance gains
of the recomposition approach over the existing state of the art
monolithic approach. The use of decomposition increased re-
play feasibility and reduced computation time for datasets fea-
sible under both approaches. The speedup from adopting the
recomposition approach has shown to be attainable under differ-
ent noise scenarios and increases with the average trace lengths
of the event logs.

Our future work aims at improving the presented approach as
well as investigating new metrics for conformance checking. In
the experiments, we found that the initial decomposition for in-
stantiating recomposing replay can have an impact on its perfor-
mance. For the sake of simplicity, manual decompositions were
used in the experiments on the synthethic datasets. We concede
that using a manual decomposition is a possible weakness of the
approach, but believe that we can generate such decompositions
in an automated way by using SESE techniques. Also, a study
of existing decomposition strategies as the initial decomposi-
tion may lead to new insights. On a similar note, better merging
heuristics and strategies to encourage border agreement would
also further improve the performance of the recomposition ap-
proach. In this paper we have focused on the fitness quality
dimension. New metrics are needed to extend the recomposi-
tion approach to other quality dimensions such as precision.
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Appendix A. Additional decomposed alignments
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