
Workflow Modeling using Proclets

W.M.P. van der Aalst1;2, P. Barthelmess2, C.A. Ellis2, and J. Wainer2;3

1 Department of Technology Management, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tm.tue.nl

2 Department of Computer Science, University of Colorado at Boulder, Campus Box 430,
Boulder, CO 80309-0430, USA. fbarthelm,skipg@colorado.edu

3 Department of Computer Science, State University of Campinas, Caixa Postal 6176,
13083-970, Campinas - SP, Brazil wainer@dcc.unicamp.br

Abstract. The focus of traditional workflow management systems is on control
flow within one process definition, that describes how a single case (i.e., work-
flow instance) is handled in isolation. For many applications this paradigm is
inadequate. Interaction between cases is at least as important. This paper intro-
duces and advocates the use of interacting proclets, i.e., light-weight workflow
processes. By promoting interactions to first-class citizens, it is possible to model
complex workflows in a more natural manner, with improved expressive power
and flexibility.

1 Introduction

Workflow Management Systems allow for the explicit representation and support of
business processes. Available workflow management systems have difficulties dealing
with the dynamic and inter-organizational nature of today’s business processes [26]. We
will argue that one of the core problems of current workflow languages is the focus on
isolated case-based processes.

In traditional workflow management systems, the control-flow of a workflow is de-
scribed by one workflow process definition, that specifies which tasks need to be exe-
cuted and in what order. Workflow process definitions are instantiated for specific cases.
Examples of cases are an insurance claim, or an order.

Today’s workflow management systems assume that a workflow process can be
modeled by specifying the life-cycle of a single case in isolation. For many real-life ap-
plications this assumption is too restrictive. As a result, the workflow process is changed
to accommodate the workflow management system, the control-flow of several cases is
artificially squeezed into one process definition, or the coordination amongst cases is
hidden inside custom built applications. Consider for example an engineering process
of a product consisting of multiple components. Some of the tasks in this engineering
process are executed for the whole product, e.g., the task to specify product require-
ments. Other tasks are executed at the level of components, e.g., determine the power
consumption of a component. Since a product can have a variable number of compo-
nents and the components are engineered concurrently, it is typically not possible to
squeeze this workflow into one process definition. In most workflow management sys-
tems, it is not possible to concurrently instantiate selected parts of the workflow process
a variable number of times.



To solve these problems, we propose an approach based on proclets, performatives
and channels. Proclets are light-weight processes. The interaction between proclets is
modeled explicitly, i.e., proclets can exchange structured messages, called performa-
tives, through channels. By adopting this approach the problems related to purely case-
based processes can be avoided.

The remainder of this paper is organized as follows. First, we motivate our approach
by identifying the problems encountered when modeling the reviewing process of a
conference. Then we present the framework, which is based on Petri nets [22, 23] and
inspired by concepts originating from object-orientation [9, 24], agent-orientation [19],
and the language/action perspective [15, 30–32]. Finally, we compare the framework
with existing approaches and conclude with our plans for future research.

2 Motivating Example: Organizing a Conference

The process of selecting papers for a conference presents features that challenge exist-
ing modeling languages. The goal of this process is to select papers out of a larger set,
based, e.g., on quality, minimum and maximum number of papers, and so on. After a
set of people accepts to act as program committee members, a call for papers is issued.
Authors submit papers that are then reviewed by peers (invited by pc members) and
finally a selection is made. Such process is complicated by a series of factors:

– Prospective PC members and reviewers may accept or reject the invitation to join
the committee and to review one or more papers, respectively. Replacements for
those that rejected need to be found.

– Reviewers can fail to return reviews on time. As a result, some of the papers may
lack enough reviews to allow their fair evaluation.

– For effective distribution, classification and matching, the set of papers needs to be
considered as a whole, i.e., distribution can not be done only considering individual
papers in isolation.

– For selection, paper quality needs to be gauged against the quality of remaining
papers. Again, this requires that the set of papers be considered as a whole.

A modeler faces many problems translating these requirements. A first basic question
is what is to be considered the case1 - the submission, the review, the “empty slot” in
the conference, that one wants to fill with a good quality paper, or is the case the whole
set of slots?

The class diagram (Figure 1) shows that different tasks rely on information that is at
different levels of aggregation - some of the tasks operate at the conference level, that
groups all papers, others at the paper level, and others yet at the lower level of individual
reviews. A major obstacle is, therefore, how to conciliate these multiple perspectives
into one model.

Lacking the power to express differences in aggregation, most workflow manage-
ment systems force one to depict the process at an arbitrarily chosen level. Important
shortcomings result:

1 Workflow instance.

2



PC Member

Reviewer

Conference

Author Paper

Review

1..n

1..n

1..n
1..1

1..n

1..n

1..1

1..n

1..1

0..n

1..1
1..n

1..1
0..n

1..n

1..n

Fig. 1. Review process class diagram.

– Models are artificially flattened, being unable to account for the mix of different
perspectives of the real process.

– Batch tasks are usually not supported. Batch tasks are those that require grouping
sets of elements, e.g., the set of papers during distribution and selection.

– Launching and synchronizing variable numbers of tasks is also usually a problem,
e.g., launching and synchronizing reviews from a paper centered case.

– Actors sometimes interact in complex ways. These interactions are usually not in-
corporated in process models.

Conference review is not an atypical example, in the sense that one encounters similar
problems very frequently in other areas as well, for example:

– In software development: changes to one module may impact a variable number of
other modules, making necessary the instantiation of a variable number of cascad-
ing tasks.

– Processing of insurance claims: some claims may refer to the same accident. At
some point in time it is desirable that all related claims be merged so that a uniform
decision can be reached.

– Hiring new people: candidates have to be evaluated and ranked with respect to each
other. Again, the interactions between the applications are most relevant.

3 Framework

The examples given in the previous section show that today’s workflow management
systems typically have problems dealing with workflow processes that are not purely
case-oriented.

Inspired by these problems, we have developed a new framework for modeling
workflows. This framework is based on proclets. A proclet can be seen as a lightweight
workflow process equipped with a knowledge base containing information on previous
interactions. One can think of proclets as objects equipped with an explicit life-cycle

3



(in the object-oriented sense) [9, 24]. Proclets interact via channels. A channel is the
medium to transport messages from one proclet to another. The channel can be used to
send a message to a specific proclet or a group of proclets (i.e., multicast). Based on the
properties of the channel, different kinds of interaction are supported, e.g., push/pull,
synchronous/asynchronous, and verbal/non-verbal. In order for proclets to find each
other, there is a naming service, that keeps track of registered proclets. The concepts
proclet, channel and naming service constitute a framework for modeling workflow
processes (see Figure 2).

Create

end

*,1

1,*

channelproclettask

port

naming
service

Fig. 2. Graphical representation of the framework.

Compared to existing workflow modeling languages, complex case-based workflow
definitions describing the control flow of an entire process are broken up into smaller
interacting proclets, i.e., there is a shift from control to communication. The frame-
work is based on a solid process modeling technique (Petri nets [22, 23]) extended with
concepts originating from object-orientation [9, 24], agent-orientation [19], and the lan-
guage/action perspective [15, 30–32].

In the remainder of this section we present the four main components of our frame-
work: proclets, channels, naming service, and actors.

3.1 Proclets

A proclet class describes the life-cycle of proclet instances. A proclet class can be
compared to an ordinary workflow process definition or workflow type [18]. The class
describes the order in which tasks can or need to be executed for individual instances of
the class, i.e., it is the specification of a generic process. Proclet instances can be created

4



and destroyed, and are executed according to a class specification. Proclet instances
have a state.

To specify proclet classes, we use a graphical language based on Petri nets, an es-
tablished tool for modeling workflow processes [1, 2, 6, 12, 13]. Powerful analysis tech-
niques can be used to verify the correctness of Petri net models [22, 23].

In this paper, we use a specific subclass of Petri nets, the so-called class of sound
WF-nets [1, 2].2 A WF-net has source and sink transitions: A source transition has no
input places and a sink transition has no output places. Every node (i.e., place or tran-
sition) is on a path from some source transition to some sink transition. Moreover, any
WF-net is connected, i.e., the network structure cannot be partitioned in two uncon-
nected parts. A WF-net becomes activated if one of the source transitions fires. In the
remainder we assume that a WF-net becomes activated only once (single activation),
and furthermore, that it is sound (see [1, 2] for a discussion of soundness).

Most workflow modeling languages primarily focus on control flow inside one pro-
cess definition and (partly) abstract from the interaction between process definitions,
i.e., coordination is limited to the scope of the process definition and communication
and collaboration are treated as second-class citizens. Our framework explicitly models
interactions between proclets. The explicit representation of interaction is inspired by
the language/action perspective [32, 31] which is rooted in speech act theory [25]. The
language/action perspective emphasizes how coordination is brought about by commu-
nication. The need for treating interaction as first-class citizens is also recognized in the
agent community [19]. Emerging agent communication languages such as KQML [14]
demonstrate this need.

Inspired by these different perspectives on interaction, we use performatives to spec-
ify communication and collaboration among proclets. A performative is a message ex-
changed between one sender proclet and one or more receiver proclets. A performative
has the following attributes:

(1) time: the moment the performative was created/received.
(2) channel: the medium used to exchange the performative.
(3) sender: the identifier of the proclet creating the performative.
(4) set of receivers: list of identifiers of the proclets receiving the performative.
(5) action: the type of the performative.
(6) content: the actual information that is being exchanged.

The role of these attributes will be explained later. At this point, it is important to
note the action attribute. This attribute can be used to specify the illocutionary point
of the performative. Examples of typed performatives are request, offer, acknowledge,
promise, decline, counter-offer or commit-to-commit [32]. In this paper, we do not re-
strict our model to any single classification of performatives (i.e., a fixed set of types).
At the same time we stress the importance of using the experience and results reported
by researchers working on the language/action perspective.

Proclets combine performatives and sound WF-nets. A proclet class PC is defined
as follows:

2 For the readers familiar with WF-nets: For notational convenience we omit the unique source
and sink place used in [1, 2].

5



(1) PC has a unique name. This name serves as a unique identification of the class -
the class id.

(2) PC has a process definition defined in terms of a sound WF-net. The transitions
correspond to tasks and the places correspond to state conditions.

(3) PC has ports. Ports are used to interact with other proclets. Every port is connected
to one transition.

(4) Transitions can send and receive performatives via ports. Each port has two at-
tributes: (a) its cardinality and (b) its multiplicity. The cardinality specifies the
number of recipients of performatives exchanged via the port. The multiplicity
specifies the number of performatives exchanged via the port during the lifetime
of any instance of the class.

(5) PC has a knowledge base for storing these performatives: Every performative sent
or received is stored in the knowledge base.

(6) Tasks can query the knowledge base. A task may have a precondition based on the
knowledge base. A task is enabled if (a) the corresponding transition in the WF-net
is enabled, (b) the precondition evaluates to true, and (c) each input port contains a
performative.

(7) Tasks connected to ports have post conditions. The post condition specifies the
outcome of the task in terms of performatives generated for its output ports.

A proclet class is a generic definition. Proclet instances are created by instantiating
the proclet class and have a unique identification - the proc id. Tokens in the WF-net
specifying the process definition refer to one proclet instance, i.e., tokens of different
proclet instances are not merged into one WF-net. Moreover, each proclet instance has
its own knowledge base.

A performative has by definition one sender, but can have multiple recipients. The
sender is always represented by a proc id, i.e., by its identifier. The list of recipients can
be a mixture of proc id’s and class id’s, i.e., one can send performatives to both proclet
instances and proclet classes. A performative sent to a proclet class is received by all
proclet instances of that class.

To illustrate the framework we use the example shown in Figure 3. There are two
proclet classes, used to organize meetings. Proclet class Meeting is instantiated once
per meeting. Proclet class Personal entry is instantiated for every potential participant
of a specific meeting. The instance of class Meeting first multicasts an invitation to all
potential participants. Note that the cardinality of the port connected to task Invite for
meeting is denoted by a star �. This star indicates that the invitation is sent to an ar-
bitrary number of potential participants, i.e., the performative has multiple recipients.
We will use � to denote an arbitrary number of recipients, + to denote at least one
recipient, 1 to denote precisely one recipient, and ? to denote no or just a single re-
cipient. Performatives with no recipients are considered not to have occurred, and are
not registered in the knowledge base. The multiplicity of the output port connected to
task Invite for meeting is denoted by the number 1. This means that during the life-
time of an instance of class Meeting exactly one performative is sent via this port. The
invitation performative is sent though the channel E-mail (details in Section 3.2). The
performative creates a proclet for each recipient, i.e., creation task Create entry is trig-
gered. Creation tasks are depicted by squares with a black top. The input port connected

6



Invite
for

meeting

Send
agenda

Meeting

Receive
respons

e

*,1

1,*

Create
meeting

Finish
meeting

*,1

Decide

Skip
meeting

Create
entry

Finish
entry

Personal
entry

1,1

Plan to
attend

Receive
agenda

Remind
er

1,?

1,?

E-mail

Mail

1,?

Fig. 3. Example of two proclet classes: Meeting and Personal entry.

to Create entry has cardinality 1 and multiplicity 1. Every input port has by definition
cardinality 1, i.e., from the perspective of the receiving proclet there is only one pro-
clet receiving the performative. Input ports connected to a creation task (i.e., a source
transition) have by definition a multiplicity of 1 or ?: An instance can be created only
once. Since there is just one creation task in Personal entry, the multiplicity is 1. Af-
ter an instance of the class Personal entry is created, a decision is made (task Decide).
Based on this decision either task Skip meeting or Plan to attend is executed. In both
cases a performative is sent to the instance of the proclet class Meeting. The performa-
tive is either a confirmation (Plan to attend) or a notification of absence (Skip meeting).
Note that each instance of the class Personal entry sends such a performative. These
performatives are sent through channel E-mail. Note that the ports connected to Plan to
attend and Skip meeting both have cardinality 1 (i.e., one recipient) and multiplicity ?
(one performative is sent via one of the two ports). Task Receive response is executed
once for every “confirmation/notification of absence” performative. After some time, as
indicated by the clock symbol [2], task Send agenda is executed. Send agenda generates
one performative: the agenda of the meeting. This performative is sent to all proclets
that confirmed the invitation (this information is in the knowledge base of the Meet-
ing proclet). The proclets that confirmed the invitation receive the agenda (task Receive
agenda) and a timer for the task Reminder is set. Finally, all proclets are destroyed by
executing the finishing tasks Finish meeting and Finish entry. The finishing tasks (i.e.,
sink transitions) are depicted by squares with a black bottom.

7



3.2 Communication Channels

Communication channels are used to link proclets. Channels transmit messages contain-
ing performatives. There are many different categories of channels defined by channel
properties such as medium type, reliability, security, synchronicity, closure, and formal-
ity. These properties are briefly explained:

– Medium Type
This can be point-to-point or broadcast, or some form of limited multicast. Recall
that performatives can be sent to an individual proclet instance (point-to-point), a
set of proclets (multicast), or an entire proclet class (broadcast). Common media
include postal mail, telephone, and electronic mail.

– Reliability
Some channels are very reliable; some are unreliable. For some electronic channels,
we assume that the technology is robust, and that error detection and retransmission
are implemented at lower layers of the communication protocols. Sometimes chan-
nels are inherently unreliable (such as in data channels in some lesser developed
countries).

– Security
At times the content of a performative is considered to be quite valuable and secret.
In such cases, the transmission should be via secure channels.

– Synchronicity
Some channels are used for real time communications in which each party expects
to get rather immediate feedback from recipient parties. This requires synchronous
channels. Face-to-face spoken conversation falls into this category. In the case of an
asynchronous channel, the sender usually is not waiting for an immediate response.

– Closure
Channels can be classified as open or closed. When a channel is open, the sender
does not know exactly who, and how many recipients are connected. When a chan-
nel is closed, the exact identity of all recipients is specified in advance. A radio
broadcast, and a notice posted on a bulletin board are examples of open medium
communications, in which the senders do not exactly know who are the recipients.

– Formality
Some channels convey much more formality in the messages delivered than oth-
ers. Performatives can be very formally specified, or can be informal and flexible.
Generally, business letters are much more formal than chat rooms. A careful record
is kept of formal channel transmissions, whereas informal channels are usually not
recorded.

Clearly, channel properties and performative types are closely related, i.e., for a given
performative certain properties are appropriate, others are not. For example, for the
performative “You are fired!” a point-to-point, reliable, secure, synchronous, closed,
and formal channel is most appropriate.

3.3 Naming service

All interaction is based on proclet identifiers (proc id’s) and class identifiers (class id’s).
These identifiers provide the handles to route performatives. By sending a performative

8



using a class id, all instances of the corresponding class receive the performative. In
many situations the sending proclet does not know the proc id’s of all receiving proclets.
The naming service keeps track of all proclets and can be queried to obtain proc id’s.
There are many ways to implement such a naming service. Consider, e.g., object request
brokers developed in the context of CORBA. In this paper, we only consider the desired
functionality and abstract from implementation details (e.g., distribution of the naming
service over multiple domains).

The naming service provides the following main primitives: register, unregister,
update, and query.

The function register is called by the proclet the moment it is created. The execution
of one of the create tasks (i.e., source transitions) coincides with the execution of the
register primitive.

The naming service stores a set of attributes for each proclet. These attributes are
not fixed and may vary from one class to another. The function update with parameters
proc id and attributes can be used to change existing or add new attributes.

Based on the attributes, proclets can query the naming service using the function
query. The function has one parameter describing a Boolean expression in terms of
attributes and returns a set of proc id’s, i.e., all proclets satisfying the expression.

Entries in the naming service can be removed using the function unregister. Exe-
cuting a finish task (i.e., a sink transition in the WF-net) results in a call to unregister.

3.4 Actors

Proclets have owners. Owners are the actors responsible for the proclet. Actors can
be automated components, persons, organizations (e.g., shipping department), or even
whole companies. Owners are specified at proclet registration time and this informa-
tion is kept by the naming service (see Section 3.3). Ownership can be transferred by
updating the naming service information.

Owners will sometimes be the executors of proclet tasks themselves - in the exam-
ple of Figure 3, for instance, owners of each personal entry will most probably be the
ones that will perform the tasks, essentially the decision of attending or skipping the
meeting. Roles may be specified for each task, in which case the executor can be differ-
ent from the owner. We assume then that the usual role resolution mechanisms [34] are
employed.

We propose to model as external proclets those actors (in the broad sense of the
word) that interact with proclets in a more complex way. External proclets are useful
to model those interactions that go beyond the simple model assumed by the usual
role mechanism, e.g., when a request for service may be either accepted, rejected or
counter-proposed. External proclets, as the name implies, represent entities that are
outside of the scope of the process proper, whereas internal proclets are those under the
control of the workflow system’s enactment service. Both types of proclets are modeled
in a similar way - by describing expected interactions with other proclets. For more
extensive examples of both internal and external proclets, see [5]. This technical report
also describes the application of the approach to the example described in Section 2
(i.e., the workflow of organizing a conference).

9



4 Related work

Petri nets have been proposed for modeling workflow process definitions long before the
term “workflow management” was coined and workflow management systems became
readily available [12, 13]. Workflow models described in the literature focus on various
aspects (cf. [26]) such as transactional concepts [16], flexibility [21], analysis [1, 2], and
cross-organizational workflows [3, 4], etc. Any attempt to give a complete overview of
these models is destined to fail. Therefore, we only acknowledge the work that extended
workflow models to accommodate the problems identified in Section 2.

Zisman [33] presents a paper refereeing example that involves Petri-nets and allows
multiple instantiation of the reviewer net.

Batch-oriented tasks were discussed in [8]. Creation of multiple instances of tasks
have been proposed by some, e.g., Casati et al. [10] (multi-tasks); Regatta system by
Fujitsu [27] (multi-stage); Spade-1 [7] (multiple active copies). The framework pre-
sented here is more generic. Multiple instantiation is just one aspect of a broader view
of interactions as first-class citizens.

The idea to promote interaction to first-class citizens was proposed in different set-
tings. In the context of language/action perspective [15, 30–32], Action Technologies
developed a workflow tool [28]. Speech-acts also form the basis for performatives in
agent interaction languages, e.g. KQML [14]. Agents are used to implement work-
flows, e.g., in the Bond multi-agent system [29] and others (e.g., [20, 11]). In the more
systems-oriented domains there have also been some proposals for inter-process com-
munication (e.g. in Opera [17]).

Some of the ideas presented in this section have been adopted by our framework:
batch-oriented operation, multi-tasks, and inter-process communication can be handled
easily by the framework. In addition, the framework employs concepts such as perfor-
matives, channels, ports, knowledge bases, naming services, and the rigor of a Petri-net
basis which allows for various forms of analysis and a straightforward and efficient
implementation.

5 Conclusion

In this paper, we presented a framework which advocates the use of interacting pro-
clets, i.e., light-weight workflow processes communicating by exchanging performa-
tives through channels. As was demonstrated in [5], the framework can solve many of
the traditional modeling problems resulting from the case-oriented paradigm.

In the future, we plan to explore the relation between channels and performatives.
We are also compiling a list of interaction patterns. In our view, the interaction between
proclets typically follows a number of well-defined patterns, e.g., a request performative
is followed by an accept or reject performative. Finally, we plan to build a prototype to
support the framework. This prototype will be used to support the reviewing process of
the ACM biannual Siggroup conference following the model described in this paper.

10



References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer
Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Interorganizational Workflows: An Approach based on Message Se-
quence Charts and Petri Nets. Systems Analysis - Modelling - Simulation, 34(3):335–367,
1999.

4. W.M.P. van der Aalst. Process-oriented Architectures for Electronic Commerce and Interor-
ganizational Workflow. Information Systems, 24(8):??–??, 2000.

5. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Workflow modeling using
proclets. Technical report cu-cs-900-00, University Of Colorado at Boulder, February 2000.
http://www.cs.colorado.edu/ skip/proclets.pdf.

6. N.R. Adam, V. Atluri, and W. Huang. Modeling and Analysis of Workflows using Petri Nets.
Journal of Intelligent Information Systems, 10(2):131–158, 1998.

7. S. Bandinelli, M. Braga, A. Fuggetta, and L. Lavazza. Cooperation support in the
spade environment: a case study. In Proceedings of the Workshop on Computer Sup-
ported Cooperative Work, Petri nets, and Related Formalisms (14th International Con-
ference on Application and Theory of Petri Nets), Chicago, June 1993. ftp://ftp-
se.elet.polimi.it/dist/Papers/ProcessModeling/CSCWPN93.ps.

8. P. Barthelmess and J. Wainer. Workflow systems: a few definitions and a few suggestions.
In N. Comstock and C.A. Ellis, editors, Proceedings of the Conference on Organizational
Computing Systems - COOCS’95, pages 138–147, Milpitas, California, September 1995.
ACM Press.

9. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison Wesley, Reading, MA, USA, 1998.

10. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows. In Proceed-
ings of the OOER International Conference, Gold Cost, Australia, 1995.

11. J.W. Chang and C.T. Scott. Agent-based wrokflow: Trp support environment (tse). Computer
Networks and ISDN Systems, 28(1501), 1996.

12. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information Flow.
In Proceedings of the Conference on Simulation, Measurement and Modeling of Computer
Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

13. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, Berlin, 1993.

14. T. Finin, J. Weber, G. Wiederhold, and et. al. Specification of the KQML Agent-
Communication Language , 1993.

15. F. Flores and J.J. Ludlow. Doing and Speaking in the Office. In Decision Support Systems:
Issues and Challenges, pages 95–118. Pergamon Press, New York, 1980.

16. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119–153, 1995.

17. C. Hagen and G. Alonso. Beyond the black box: Event-based inter-process communication in
process support systems (extended version). Technical report, ETH Zürich, July 1997. Tech-
nical Report No. 303. http://www.inf.ethz.ch/department/IS/iks/publications/files/ha98c.pdf.

18. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

11



19. N. Jennings and M. Wooldridge, editors. Agent Technology : Foundations, Applications, and
Markets. Springer-Verlag, Berlin, 1998.

20. M. Merz, B. Liberman, K. Muller-Jones, and W. Lamersdorf. Interorganisational Workflow
Management with Mobile Agents in COSM. In Proceedings of PAAM96 Conference on the
Practical Application of Agents and Multiagent Systems, 1996.

21. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow without
Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

22. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

23. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications, volume 1492
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

24. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Man-
ual. Addison Wesley, Reading, MA, USA, 1998.

25. J.R. Searle. Speech Acts. Cambridge University Press, Cambridge, 1969.
26. A.P. Sheth, W.M.P. van der Aalst, and I.B. Arpinar. Processes Driving the Networked Econ-

omy: ProcessPortals, ProcessVortex, and Dynamically Trading Processes. IEEE Concur-
rency, 7(3):18–31, 1999.

27. K. Swenson. Collaborative planning: Empowering the user in a process environment. Col-
laborative Computing, 1(1), 1994. ftp://ftp.ossi.com/pub/regatta/JournalCC.ps.

28. Action Technologies. ActionWorkflow Enterprise Series 3.0 User Guide. Action Technolo-
gies, Inc., Alameda, 1996.

29. Purdue University. Bond. the distributed object multi-agent system.
http://bond.cs.purdue.edu, 2000.

30. E.M. Verharen, F. Dignum, and S. Bos. Implementation of a cooperative agent architecture
based on the language-action perspective. In Intelligent Agents, volume 1365 of Lecture
Notes in Artificial Intelligence, pages 31–44. Springer-Verlag, Berlin, 1998.

31. T. Winograd. Special Issue on the Language Action Perspective - Introduction. ACM Tran-
sations on Office Information Systems, 6(2):83–86, 1988.

32. T. Winograd and F. Flores. Understanding Computers and Cognition: A New Foundation for
Design. Ablex, Norwood, 1986.

33. M. D. Zisman. Use of production systems for modeling asynchronous concurrent processes.
Pattern-Directed Inference Systems, pages 53–68, 1978.

34. M. zur Mühlen. Evaluation of workflow management systems using meta models. In Pro-
ceedings of the 32nd Hawaii International Conference on System Sciences - HICSS’99, pages
1–11, 1999.

12


