
Repairing Event Logs with Missing Events to Support
Performance Analysis of Systems with Shared Resources

Vadim Denisov1,3, Dirk Fahland1, and Wil M.P. van der Aalst1,2

1 Eindhoven University of Technology, Eindhoven, The Netherlands,
2 Process and Data Science (Informatik 9), RWTH Aachen University, Aachen, Germany,

3 Vanderlande Industries, Veghel, The Netherlands,
v.denisov@tue.nl, d.fahland@tue.nl, wvdaalst@pads.rwth-aachen.de

Abstract. To identify the causes of performance problems or to predict process
behavior, it is essential to have correct and complete event data. This is particularly
important for distributed systems with shared resources, e.g., one case can block
another case competing for the same machine, leading to inter-case dependencies
in performance. However, due to a variety of reasons, real-life systems often
record only a subset of all events taking place. For example, to reduce costs, the
number of sensors is minimized or parts of the system are not connected. To
understand and analyze the behavior of processes with shared resources, we aim to
reconstruct bounds for timestamps of events that must have happened but were not
recorded. We present a novel approach that decomposes system runs into token
trajectories of cases and resources that may need to synchronize in the presence of
many-to-many relationships. Such relationships occur, for example, in warehouses
where packages for N incoming orders are not handled in a single delivery but in
M different deliveries. We use linear programming over token trajectories to derive
the timestamps of unobserved events in an efficient manner. This helps to complete
the event logs and facilitates analysis. We focus on material handling systems
like baggage handling systems in airports to illustrate our approach. However,
the approach can be applied to other settings where recording is incomplete. The
ideas have been implemented in ProM and were evaluated using both synthetic
and real-life event logs.

Keywords: Log repair · Process mining · Performance analysis · Modeling ·
Material handling systems

1 Introduction

Precise knowledge about actual process behavior and performance is required for identi-
fying causes of performance issues [16], as well as for predictive process monitoring of
important process performance indicators [14]. For Material Handling Systems (MHS),
such as Baggage Handling Systems (BHS) of airports, performance incidents are usually
investigated offline, using recorded event data for finding root causes of problems [10],
while online event streams are used as input for predictive performance models [4]. Both
analysis and monitoring heavily rely on the completeness and accuracy of input data.
For example, events may not be recorded and, as a result, we do not know when they
happened even though we can derive that they must have happened. Yet, when different

2 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

m3s

d1s

d2s

m4s

m3s

m3c

m4s

m4c

d1s

m
3
’s

pid=51

pid=50

d1c

d2s

d
1
’c

m
4
’s

(b)
observed

(c)
variant 1

(d)
variant 2

d
2
’c

(a)

t1

Lo
ad

Lo
ad

observed event unobserved event

e3

e1

e7

e5

e11

Time

e3e5 e5

e9

e9e7
e7

e1 e1

e11 e11
t0 t2

t3
t1 t1 TimeTime

PARTIAL LOG

Id,Activity,Time

50,m3, t0
50,d1, t2
51,m4, t1
51,d2, t3

Fig. 1. An MHS model example (a), observed imprecise behavior for two cases 50 and 51 (b),
possible actual behaviors (c,d).

cases are competing for shared resources, it is important to reconstruct the ordering of
events and provide bounds for non-observed timestamps.

However, in most real-life systems, items are not continuously tracked and not all
events are stored for cost-efficiency, leading to incomplete performance information
which impedes precise analysis. For example, an MHS tracks the location of an item, e.g.,
a bag or box, via hardware sensors placed throughout the system, generating tracking
events for system control, monitoring, analysis, and prediction. Historically, to reduce
costs, a tracking sensor is only installed when it is strictly necessary for the correct
execution of a particular operation, e.g., only for the precise positioning immediately
before shifting a bag from one conveyor onto another. Moreover, even when a sensor is
installed, an event still can be discarded to save storage space. As a result, the recorded
event data of an MHS are typically incomplete, hampering analysis based on such
incomplete data. Therefore, it is essential to repair the event data before analysis. Fig. 1
shows a simple MHS where events are not always recorded. The process model is given
and for two cases the recorded incomplete sets of events are depicted using the so-called
Performance Spectrum [10].

Fig. 1(b) shows item pid=50 entering the system via m3 at time t0 (event e1) and
leaving the system via d1 at time t2 (e7), and item pid=51 entering the system via m4 at
time t1 (e5) and leaving the system via d2 at time t3 (e11). As only these four events are
recorded, the event data do not provide information in which order both cases traversed
the segment m4→ d1. Naively interpolating the movement of both items, as shown in
Fig. 1(b), suggests that item pid=51 overtakes item pid=50. This contradicts that all
items are moved from m4 to d1 via a conveyor belt, i.e., a FIFO queue: item 51 cannot
have overtaken item 50. In contrast, Fig. 1(c) and Fig. 1(d) show two possible behaviors
that are consistent with our knowledge of the system. We know that a conveyor belt

Repairing Event Logs of Systems with Shared Resources 3

(FIFO queue) is a shared resource between m4 and d1. Both variants differ in the order
in which items 50 and 51 enter and leave the shared resource, the speed with which the
resource operated, and the load and free capacity the resource had during this time. In
general, the longer the duration of naively interpolated segment occurrences, the larger
the potential error. Errors in load, for example, make performance outlier analysis [10] or
short-term performance prediction [9] rather difficult. Errors in order impede root-cause
analysis of performance outliers, e.g., finding the cases that caused or were affected by
outlier behavior.

Problem. In this paper, we address a novel type of problem as illustrated in Fig. 1 and
explained above. The behavior and performance of the system cannot be determined by
the properties of each case in isolation, but depends on the behavior of other cases and the
behavior of the shared resources involved in the cases. Crucially, each case is handled by
multiple resources and each resource handles multiple cases, resulting in many-to-many
relations between them. The concrete problem we address is to reconstruct unobserved
behavior and performance information of each case and each shared resource in the
system that is consistent with both observed and reconstructed unobserved behavior and
performance of all other cases and shared resources. More specifically, we consider the
following information as given: (1) an event log L1 containing the case identifier, activity
and time for recorded events where intermediate steps are not recorded (i.e., the event
log may be incomplete), (2) a model of the process (i.e., possible paths for handling
each individual case), and (3) a description (model) of the resources involved in each
step (e.g., queues, single server resources and their performance parameters such as
processing and waiting time). Based on the above input, we want to provide a complete
event log L2 that describes (1) for each case the exact sequence of process steps, (2)
and for each unobserved event a time-window of earliest and latest occurrence of the
event so that (3) either all earliest or all latest timestamps altogether describe a consistent
execution of the entire process over all shared resources.

Contribution. We propose a solution to this problem for a limited class of systems.
We focus on processes where each step is served by one single-server resource and
resources are connected by strict FIFO queues only. These assumptions are reasonable
for a large class of MHSs. Our current solution formulation assumes the process to be
acyclic which suffices for many real-life problem instances. Sect. 2 presents related
work while elaborating on the problem. Specifically, prior work either only considers
the case or the resource perspective explicitly, making implicit assumptions about their
complex interplay. To overcome this limitation, we use synchronous proclets [11] in
Sect. 3 to conceptually decompose a run of a system into individual token trajectories of
cases, resources, and queues. Token trajectories synchronize when a resource or queue
is involved in a case, allowing to explicitly describe their many-to-many relations in
the run. Sect. 4 then formally captures token trajectories in terms of partial orders of
events and defines the general problem. We solve the problem in Sect. 5 by formulating
a Linear Programming (LP) problem [19] in terms of timestamps along the different
token trajectories. To evaluate the approach, we compare the restored event logs with the
ground truth for synthetic logs and estimate errors for real-life event logs for which the
ground truth is unavailable (Sect. 6). We discuss our findings and future work in Sect. 7.

4 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

2 Related Work

In all operational processes (logistics, manufacturing, healthcare, education and so on)
complete and precise event data, including information about workload and resource
utilization, is highly valuable since it allows for process mining techniques uncovering
compliance and performance problems. Event data can be used to replay processes on top
of process models [2], to predict process behavior [5,9], or to visualize detailed process
behavior using performance spectra [10]. All of these techniques rely on complete and
correct event data. Since this is often not the case, we aim to transform incomplete event
data into complete event data.

Various approaches exist for dealing with incomplete data of processes with non-
isolated cases that compete for scarce resources. In call-center processes, thoroughly
studied in [12], queueing theory models can be used for load predictions under as-
sumptions about distributions of unobserved parameters, such as customer patience
duration [6], while assuming high load snapshot principle predictors show better accu-
racy [21]. For time predictions in congested systems, the required features are extracted
using congestion graphs [20] mined using queuing theory.

Techniques to repair, clean, and restore event data before analysis have been sug-
gested in other works. An extensive taxonomy of quality issue patterns in event logs
is presented in [22]. The taxonomy also lists approaches to repair inadvertent time
intervals [22] in [8]. In [15] resource availability calendars are retrieved from event logs
without the use of a process model, but assuming start and complete life-cycle transi-
tions as well as a case arrival time present in a log. Using a process model, classical trace
alignment algorithms [7] restore missing events but do not restore their timestamps. The
authors conclude (see [7], p. 262) that incorporating other dimensions, e.g., resources, for
multi-perspective trace alignment and conformance checking is an important challenge
for the near future. Recently, also techniques for process discovery and conformance
checking over uncertain event data were presented [17,18]. The output of our approach
can provide the input needed for these techniques.

Our work contributes to the problem of reconstructing behavior of cases and limited
shared resources for which the cases compete. We use the notion of proclets first
introduced in [1] and adapted for process mining in [11] to approach the problem
from control-flow and resource perspectives at once. We assume a system model given
as a composition of a control-flow proclet (process) and resource/queue proclets. We
restore missing events through classical trace alignments over control-flow proclets. The
dynamic synchronization of proclets [11] allows us to infer how and when resource
tokens must have traversed over the control-flow steps, which we express as a linear
programming problem to compute timestamp intervals for the restored events. Event
logs repaired in this way enable the use of analysis assuming complete event logs.

3 Modeling Inter-Case Behavior via Shared Resources

Prior work (cf. Sect. 2) approaches the problem of analyzing the performance of systems
with shared resources primarily either from the control-flow perspective [15,17,18,5,9]
or the resource/queuing perspective [12,6,21,20], leading to information loss about the

Repairing Event Logs of Systems with Shared Resources 5

id=51

c2 m2

s1

c1

d1

c2

c1

m2’

s1

d1

m2

p

(a) (b)

id=50

m3’ m3

m4’ m4

c3

c4

c3 m3

c4 m4

d2

s2 s2 d2

(c)

Event,Id,Activity,Time

e0, 50,c3,01.01.20 9:00:15

e1, 50,m3,01.01.20 9:00:30

e3, 50,m4,01.01.20 9:00:45

e7, 50,d1,01.01.20 9:01:00

e18,50,s1,01.01.20 9:01:15

(d)
Event,Id,Activity,Time

e17,51,c4,01.01.20 9:00:35

e5, 51,m4,01.01.20 9:00:50

e9, 51,d1,01.01.20 9:00:05

e11,51,d2,01.01.20 9:01:20

e19,51,s2,01.01.20 9:01:35

PARTIAL LOG 1

Fig. 2. A baggage handling system fragment (a) and its material flow diagram (b). Conveyor belts
of check-in counters c1 − c4 merge at points m2 − m4, further downstream bags can divert at
d1 and d2 to X-Ray security scanners s1 and s2. Red arrows show sensor (logging) locations.
Conveyor c1 : m2 is modeled as a coloured Petri net model (c). An example of an incomplete
event log of the system in (a) is shown in (d), where missing events are shown in the grey color.

other perspective. In the following, we show how to conceptualize the problem from both
perspectives at once using synchronous proclets [11]. This way we are able to capture
both control-flow and resource dynamics and their interaction as synchronizing token
trajectories. We introduce the model in Sect 3.1 and use it to illustrate how incomplete
logging incurs information loss for performance analysis in Sect. 3.2.

3.1 Processes-Aware Systems with Shared Resources

We explain the dynamics of process-aware systems over shared resources using a BHS
handling luggage. The process control-flow takes a bag from a source (e.g., check-
in or transfer from another flight), to a destination (e.g., the airplane, transfer) along
intermediate process steps (e.g., baggage scanning, storage). BHS resources are primarily
single-server machines (e.g., baggage scanners) connected via conveyor belts, i.e., FIFO
queues. Fig. 2(a) shows a typical system design pattern involving the control-flow and
resource perspective: four parallel check-in desks (c1-c4) merge into one linear conveyor
through merge points (m2-m4). Divert points (d1 and d2) can route bags from the linear
conveyor to scanners (s1 and s2). Each merge point and scanner is preceded by a FIFO
queue for buffering incoming cases (bags) in case the corresponding resource is busy.
Fig. 2(b) shows the plain control-flow of this BHS (also called Material Flow Diagram
(MFD)). A real-life BHS may contain hundreds of process steps and resources, and
conveyors may also form loops.

Modeling with Coloured Petri Nets. Fig. 2(c) shows a Coloured Petri Net (CPN)
model for the segment c1→ m2. In the model, transitions c1s and c1c describe start and
completion of the check-in step c1. At the occurrence of c1s a new bag (ν id) represented
by a token with an id is inserted. Step c1 is served by a single resource (place capacityc1)
which has service-time tsrc1 to complete the step and waiting time trwc1 until the next
bag can go through c1. All Resources in a BHS may require a waiting time to ensure
sufficient “operating space” between two subsequent cases. After completion of c1, the

6 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

bag enters a FIFO queue (modeling a conveyor belt) to the start of the merge step m2s.
Time annotation twqc1m2 models the minimum time it takes for a bag to travel from c1 to
m2. Only then a bag may leave the queue at m2s. The CPN model in Fig. 2(c) describes
the impact of limited resource capacity and queues on the progress of a case, but does not
model the resource itself as its own entity. The absence of the resource in the described
behavior makes it impossible to reason about its behavior explicitly.
Modeling with Synchronous Proclets. The synchronous proclet system in Fig. 3 de-
scribes the entire BHS of Fig. 2(a) by using three types of proclets.

1. The process proclet (red border) is a Petri net describing the control-flow perspective
of how bags may move through the system. It directly corresponds to the MFD of
Fig. 2(b). It is transition-bordered and each occurrence of one of its initial transitions
creates a new case identifier, see [11] for details.

2. Each resource proclet (green border) models a resource as its own entity with a
cyclic behavior. For example, the PassengerToSystemHandover proclet (top left)
identifies a concrete resource by token id c1; its life-cycle models that starting a
task (c1s) makes the resource busy and takes service time tsrc1, after completing the
task (c1c) the resource has waiting time twrc1 before being idle again in the same
way as Fig. 2(c). All other resource proclets follow the same pattern, though some
resources such as MergingUnit-m2 and DivertingUnit-d1 may have two transitions
to become busy or idle, respectively.

3. Each queue proclet (blue border) describes a FIFO queue as in Fig. 2(c). However,
the queue state (the list) is accompanied by a queue identifier in place q. Items
entering the queue are remembered by their number (generated from the count
place).

The proclet system synchronizes process, resources, and queues via synchronous chan-
nels between transitions. Transitions linked via synchronous channels may only occur
when all linked transitions are enabled; when they occur, they occur in a single syn-
chronized event. For example, transition c1s is always enabled in Process, generating
a new bag id, e.g., id=49, but it may only occur together with c1s in PassengerToSys-
temHandover, i.e., when resource c1 is idle, thereby synchronizing the process case for
bag id = 49 with the resource with identifier c1. By annotation init c1,1:1 c1 is now
correlated to id = 49. The subsequent correlation annotation =c1, 1:1 on the channel of
the complete transition c1c ensures that resource c1 only synchronizes with the process
case on which it started the step, i.e., id = 49; the next occurrence of c1s will create a new
correlation to another process case, see [11] for details. In the example, each resource
is statically linked to one process step, but the model also allows for one resource to
participate in multiple different process steps, and multiple resources to be required for
one process step. In the following, we call a proclet system that defines proclets for
processes, queues, and resource that are linked via synchronous channels as described
above, a PQR system.
Proclets describe synchronizing token trajectories. We now highlight how the partial-
order semantics of synchronous proclets [11] preserves the identities of process, re-
sources, and queues as “token trajectories”. Figure 4(b) shows a partially-ordered run of
the PQR system of Fig. 3 for two bags id = 50 and id = 51. The run in Fig. 4(b) can

Repairing Event Logs of Systems with Shared Resources 7

Fig. 3. The synchronous proclet model of the system shown in Fig. 2(a) consists of three types
of proclets: Process for modeling a system layout and process control flow (red), Resource
for modeling connector and sensor resources (services), and Queue for modeling conveyors
transporting bags in the FIFO order. Only filled transitions can be observed in an event log.

8 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

Fig. 4. Synchronization of multiple sub-runs of the synchronous proclet system in Fig. 3 over
shared resources and queues (a), and a global partial order obtained by the union of partial orders
of each sub-run (b) for synchronized events, shown by red, green and blue arrows for partial orders
<pid, <rid and <qid respectively.

Repairing Event Logs of Systems with Shared Resources 9

be understood as a synchronization of multiple runs of the process, resource, and queue
proclets, one for each case, resource, or queue involved as shown in Fig. 4(a).

Bag 50 gets inserted via input transition c3c (event e∗0 in Fig. 4(b)). This event is a
synchronization of events e0 (c3c occurs for bag 50 in the Process proclet) and e0′ (c3c

occurs for the c3:m3 queue) in Fig. 4(a). The minimal waiting time twqc3m3 must pass
before bag 50 reaches the end of the queue and process step m3 can start. The process
step m3 merges bag 50 from the check-in conveyor c3 onto the main linear conveyor
and may only start via transition m3s when MergingUnit-m3 is idle. As this is the case,
bag 50 leaves the queue (e1′′ in c3:m3), m3 starts merging (e1′ in m3), the bag starts the
merging step (event e1 in Process), resulting in the synchronized event e1∗ in Fig. 4(b).

By e′1, resource m3 switches from idle to busy and takes time tsrm3 before it can
complete the merge step with m3c (event e2′) on bag 50 (event e2); this merge step also
inserts bag 50 into queue m3:m4 (e2′′) resulting in synchronized event e2∗. Subsequently,
bag 50 leaves queue m3:m4 (e3∗) is pushed by merge unit m4 into queue m4:d1 (e4∗).

Concurrently, bag 51 is inserted via input transition c4c (event e17∗), moves via
queue c4:m4 also to merge unit m4 to enter queue m4:d1, i.e., both bags 50 and 51 now
compete for merge unit m4 and the order of entering m4:d1. In the run in Fig. 4, m4
executes m4s and m4c for bag 51 (e5∗ and e6∗) after completing this step for bag 50 (e3∗

and e4∗). Thus, 51 enters the queue (e6∗) after 50 entered the queue (e5∗) but before 50
leaves the queue e7∗. Consequently, divert unit d1 first serves 50 (e7∗ and e8∗) to reach
scanner s1 (e18∗) before serving 51 (e9∗ and e10∗) to reach scanner s2 (e19∗).

Fig. 4(b) shows how the process tokens of bag 50 and 51 synchronized with
the resources and queue tokens along the run, forming sequences or trajectories of
events where this token was involved. For example, bag 50 followed the trajectory
e0∗, e1∗, . . . , e8∗, e18∗ and queue m4:d1 followed trajectory e4∗, e6∗, e7∗, e9∗ thereby
synchronizing with both bag 50 and bag 51.

3.2 Information Loss Because of Incomplete Logging

Although event data on objects that are tracked can be used for various kinds of data
analysis [4,9], in practice sensors are placed only where it is absolutely necessary for
correct operation of the system, e.g., for merge and divert operations, without considering
data analysis needs. Applied to our example, only the transitions that are shaded in Fig. 3
would be logged, i.e., c1s,m2′s,m3′s,m4′s, d1s, d2s, s1s, s22 would be logged from the
control-flow perspective only. The run of Fig. 4 would result in a “typical” but highly
incomplete event log as shown in Fig. 2(d).

According to this incomplete log, bag 50 silently passes m4 and is tracked again
only at d1 (e7) and finally at s1 (e18) whereas 51 silently passes d1 (as it moves further
on the main conveyor) and is tracked again only at d2 (e11). Based on this incomplete
information the bags 50 and 51 may have traversed m4:d1 in different orders and at
different speeds resulting also in different loads as illustrated in Fig. 1. As a result, in
case of congestion, we cannot determine the ordering of cases [10], cannot compute the
exact load on each conveyor part for (predictive) process monitoring [9,5]. The longer
an unobserved path (e.g., c1→ d2), the higher the uncertainty about the actual behavior
and the less accurate performance analysis outcome.

10 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

Although minimal (or even average) service and waiting times on conveyor belts and
resource are known, we need to determine the exact timestamps of all missing events
and their order to reconstruct for how long resources were occupied by particular cases
and in which order cases were handled, e.g., did 50 precede 51 on m4:d1 or vice versa?

The objective of this paper is to reconstruct from a subset of events logged from the
control-flow perspective only the remaining events (including time information), so that
the time order is consistent with a partially ordered run of the entire system, including
resource and queue proclets. For example, from the recorded events of the event log in
Fig. 2(d) we reconstruct the remaining events (Fig. 4(a)) with time information so that
the resulting order (by time) is consistent with the partially ordered run in Fig. 4(b).

4 System Runs and Partial Event Logs

In Sect. 3, we showed how the behavior of resource and queue-aware processes can
be modeled as a PQR system, a particular type of a synchronous proclet system. The
partially-ordered run of a PQR system decomposes into token trajectories for process
cases, resources, and queues. In this section, we first formalize this relation between a
partially ordered run of a system and its token trajectories through projection on partially
ordered sets. We then formalize partial and complete event logs of a system run within
this model and state the formal problem we address.

We use the following notion. Let A be a set of event classifiers; A is usually the set
of activity names or the set of locations in case of an MHS. Let T be the set of time
durations and timestamps, e.g., the rational or real numbers. Let E be the universe of
unique events with attributes, let AN be a set of attribute names. For any e ∈ E, n ∈ AN,
#n(e) is the value of attribute n for event e (#n(e) =⊥ if attribute n is undefined for e).
Each event has a mandatory attribute act, #act(e) ∈ A, a mandatory attribute lt for a
life-cycle transition, #lt(e) ∈ {start, complete} and an optional attribute time, #time(e) ∈ T .
Finally, we allow events to be related to multiple case notions. Let Z be the universe
of case identifiers and ID ⊂ AN be a set of case notions. If #id(e) = z, then event e is
related to case z under case notion id ∈ ID.
From partial orders to token trajectories. A run of a proclet system [11] can be
observed in terms of a Strict Partially Ordered Set (SPOSET) π = (E, <) of events
E ⊆ E. As usual, we write e1 < e2 if event e1 precedes event e2 and we write e1 l e2 iff
e1 directly precedes e2, i.e., e1 < e2 and there is no other event e3 with e1 < e3 < e2. In
a PQR system we can distinguish three case notions ID = {pid, rid, qid} to distinguish
cases of the process, resources, and queues. Each event e ∈ E in a run of a PQR
system has one or more case notions from ID. For example, in Fig. 4, #pid(e5∗) = 51,
#rid(e5∗) = m4, #qid(e5∗) = c4:m4.

Restricting < of a system run to events of the same case notion id ∈ ID results in a
case notion-specific partial order e1 <id e2 iff e1 < e2 and #id(e1) = #id(e2) ,⊥. Only
events which share the same case notion and case identifier are ordered by <id – events
of different cases are unordered. For example, in Fig. 4(b) e4∗ <rid e5∗ but e4∗ ≮pid e5∗.
Consequently, <pid orders all events wrt. the process perspective whereas <rid and <qid

order all events wrt. the resource and queue perspective, respectively. For a given case
notion id ∈ ID and case identifier z ∈ Z, the events Ez

id = {e ∈ E|#id(e) = z} of case z and

Repairing Event Logs of Systems with Shared Resources 11

Strict Partial Order (SPO) <z
id |E

z
id×Ez

id
, restricted to the events of the same case, define a

sub-run πz
id = (Ez

id, <
z
id). Each such sub-run formalizes one token trajectory in the system

run π. For example, Fig. 4(a) shows the sub-runs, viz. token trajectories, of all cases of the
run of Fig. 4(b), i.e., π50

pid and π51
pid from the perspective of the process, πm3

rid, π
m4
rid, π

d1
rid, π

d2
rid

from the perspective of the resources, and πc3:m3
qid , πm3:m4

qid , πc4:m4
qid , πm4:d1

qid , πd1:d2
qid , πd1:s1

qid , πd2:s2
qid

from the perspective of the queues. In this way, our model shows that events of different
process cases (pid = 50 and pid = 51) are independent under the classical control-flow
perspective <pid, e.g., e4∗ ≮pid e5∗ ≮pid e7∗, but mutually depend on each other under
<rid and <qid, e.g., e4∗ <rid e5∗ <rid e6∗ and e6∗ <qid e7∗. Each sub-run πz

id is a “proper”
run of case z in the corresponding proclet (Lemma 2 in [11]).

Event logs and token trajectories. Starting point for our analysis is the notion of a
classical control-flow event log, which we express in our model of SPOSETs using pid
as case notion. An event log L = (E, <) is a finite set of events E where each event e
has an activity #act(e), a process case id #pid(e). Note that e may have additional case
identifiers #rid(e) and #qid(e) as attributes.

Adopting [13] to our setting, the optional timestamps #time(e) induce the log’s partial
order, i.e., two events e1 and e2 are ordered if e1 time-wise precedes e2 and both are
related in some case (for any id ∈ ID), i.e., e1 < e2 iff ⊥, #time(e1) < #time(e2) ,⊥ and
there exists id ∈ ID with #id(e1) = #id(e2). If all events are only related to id cases, then
< and <id are identical. Further, each sub-run Lz

id (projection onto events with #id(e) = z)
is a trace for case z under case notion id.

Event logs and token trajectories. Given a model M of a PQR system, i.e., a system
defining proclets for pid, rid, qid, we call log L complete wrt. events and ordering iff
there is a run π of M such that L and M are isomorphic wrt. attributes act, pid, qid, rid.
Note that the ordering in L is induced by event timestamps only, thus a complete log
defines the “right” timestamps. Further note that in a complete log L, each trace Lz

id
is also complete and describes a token trajectory, i.e., a sub-run πz

id of π that fits the
corresponding proclet. Further, all traces of process cases (pid) are ordered relative to
each other via the shared resources and queues as described in M.

In reality often only a subset of activities B ⊆ A and the control-flow case notion pid
have been recorded in a log, making it partial. In this paper, we call a log L′ partial if
there exists a complete log L = (E, <) of M (viz. system run π) such that L′ = (E′, <′) is
the projection of L onto activities in B, L|B = (EB, < |EB×EB), EB = {e ∈ E | #act(e) ∈ B}
such that additionally

1. each e ∈ E′ has only case notion pid, i.e., #pid(e) ,⊥, #rid(e) = #qid(e) =⊥,
2. #time(e) is defined, and
3. for each process case z occurring in L, L′ contains at least the first and last event of

the complete trace.

Thus, L′ contains for each case z at least one partial trace L′zpid recording the entry and
exit of the case and preserving the order of observed events, i.e., it can be completed to
fit the model. An MHS typically records a partial log as defined above. Fig. 2(d) shows a
partial event log of the run on Fig. 4. In a partial event log, events of different process
cases are less ordered, e.g., observed events e1∗ and e5∗ in Fig. 4 are unordered wrt. any

12 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

a)
Event,Id,Activity,Time

f1, 53, c1, 8:00:00

f3, 53, m2, 8:00:15

f5, 53, m3, 8:00:30

f6, 53, m4, 8:00:45

f9, 53, d1, 8:01:00

f0, 54, c3, 8:01:20

f12,54, m3, 8:00:35

f14,54, m4, 8:00:50

f16,54, d1, 8:01:05

Fig. 5. Another partial event log of the system in Fig. 3 for bags 53 and 54 (a), partially complete
traces of the Process (b), Resource (c) and Queue (d) proclets, restored by oracles O1,O2. Only
observed events are ordered, e.g., f 9 <d1

rid f 16, while the other events are isolated.

resource or queue whereas they are ordered in the complete run. In the following, we
investigate how to restore this lost ordering.
Problem Formulation. Reconstructing a complete log from a partial log as defined
above requires to reconstruct all missing events, all missing case notion attributes, and
their timestamp. Restoring the exact timestamp is generally infeasible and for most use
cases also not required. We, therefore, formulate the problem as restoring time-windows
providing minimal and maximal timestamps for each unobserved event.

Let M be a model of a PQR system defining life-cycles of process, resource, and
queue proclets, which resources and queues synchronize on which process step, and for
each resource the minimum service time tsr and waiting time twr and for each queue the
minimum waiting time twq. Given M and a partial log L1 = (E1, <1) of M, we want to (1)
reconstruct unobserved events Eu for all process cases in L1 and their relations to queues
and resources, and (2) for each unobserved event e ∈ Eu a time-window of earliest and
latest occurrence of the event #tmin(e), #tmax(e) ∈ T so that (3) L2 = (E1 ∪ Eu, <2) is a
complete log of M when <2 is inferred from #tmin(e) or from #tmax(e).

5 Inferring Timestamps Along Token Trajectories

In Sect. 4, we presented the problem of restoring missing events and time-windows for
their timestamps from a partial event log L1 such that the resulting log is consistent with
resource and queueing behavior. In this section, we solve the problem for PQR systems
with acyclic process proclets by casting it into a constraint satisfaction problem, that
can be solved using Linear Programming (LP) [19]. In Sect. 5.1, we show how to infer
unobserved events (from M) and how to infer resource and queue identifiers from M to
construct an intermediate SPO (E2, <2). All unobserved events E2\E1 have no timestamp,
i.e., they are unordered in <2. In Sect. 5.2 we then show how to determine minimal and
maximal timestamps for each unobserved event (through a linear program) that preserves
the already known ordering <2. Inferring <3 from the minimal (or maximal) timestamps
refines <2 and results in an SPO L3 = (E2, <3) which is a complete log of M and has L1
as a partial log. We explain our approach using another (more compact running) example
shown in Fig. 5(a) for two bags 53 and 54 processed in the system of Fig 3. The events
in grey italic (i.e., f3, f5, f6, f14) are unobserved.

Repairing Event Logs of Systems with Shared Resources 13

5.1 Infer Potential Complete Runs From a Partial Run

We first derive for the partial log L1 = (E1, <1) an intermediate log L2 = (E2, <2) so that
each trace Lz

2,pid of a process case z is complete (i.e., fits the process proclet in M). In
a second step, we relate each unobserved event e ∈ Eu = E2 \ E1 to a corresponding
resource and/or queue case identifier which orders observed events wrt. <rid and <qid,
resulting in an SPO π = (Eπ, <π) (with Eπ = E2). All unobserved events e ∈ Eu lack
a timestamp and hence are left unordered wrt. <rid and <qid in π; we later refine <π in
Sect 5.2.

We specify how to solve each of the steps in terms of two oracles O1 and O2 and
describe concrete implementations for either. Oracle O1 has to return L2 = (E2, <2) =

O1(E1, <1,M) by completing each partial trace Lz
1,pid of some process case z into a

complete trace Lz
2,pid that fits the process proclet M. The restored unobserved events

Eu = E1 \ E1 only have attributes act, pid and lt (life-cycle transition) and events are
totally ordered along pid, i.e., <2=<pid is a total order. O1 can be implemented using
well-known trace alignment [3]. For example, applying O1 on the partial log of Fig. 5(a)
results in the complete process traces of Fig. 5(b). Note that, slightly deviating from our
model, O1 constructs <2 explicitly (not based on timestamps).

Oracle O2 has to enrich events in L2 with information about queues and resources
so that for each e ∈ E2 if resource r is involved in the step #act(e), then #rid(e) = r and
if queue q was involved, then #qid(e) = q. Moreover, in order to formulate the linear
program to derive timestamps in a uniform way, each event e has to be annotated with
the performance information of the involved resource and/or queue. That is, if e is a
start event and #rid(e) = r ,⊥, then #tsr(e) and #twr(e) hold the minimum service and
waiting time of r, and if #qid(e) = q ,⊥, then #twq(e) hold the minimum waiting time of
q. For the concrete PQR systems considered in this paper, we set #rid(e) = r based on
the model M if r is the case id of the resource proclet that synchronizes with transition
t = #act(e) via a channel (there is at most one). Attributes #tsr(e), #twr(e), can be set from
the model as they are parameters of the resource proclet. To ease the LP formulation, if e
is unrelated to a resource, we set #rid(e) = r∗ to fresh identifier and #tsr(e) = #twr(e) = 0;
#qid(e) and #twq(e) are set correspondingly. By annotating the events in E2, we obtain
SPO π = (Eπ, <π), Eπ = E2 that also contains sub-runs for each queue and resource
containing all events to be complete wrt. M but only observed events are ordered (due
to their timestamps). For example, Fig. 5(d) shows the sub-run πm4:d1

qid containing events
f8, f9, f16, f15 with only f9 <qid f16. Next, we define constraints based on the information
in this intermediate log π to infer timestamps for all unobserved events.

5.2 Restoring Timestamps of Unobserved Events by Linear Programming

The SPO π = (E, <) obtained in Sect. 5.1 from partial log L1 = (E1, <1) includes all
unobserved events Eu = E \ E1 of the complete log, but lacks timestamps for each
e ∈ Eu, #time(e) =⊥. Each observed e ∈ E1 has a timestamp #time(e) and we also added
minimum service time #tsr, waiting time #twr(e) of the resource #rid(e) involved in e and
minimum waiting time #twq(e) of the queue involved in e. We now define a constraint
satisfaction problem that specifies the earliest #tmin(e) and latest #tmax(e) timestamps
for each e ∈ Eu so that all earliest (latest) timestamps yield a consistent ordering of

14 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

all events in E wrt. <pid (events follow the process), <rid (events follow resource life-
cycle), and <qid (events satisfy queueing behavior). The problem formulation propagates
the known #time(e) values along with the different case notions <pid, <rid, <qid, using
tsr, twr, twq. For that, we introduce variables xtmin

e , xtmax
e ≥ 0 for representing event

attributes tmin, tmax of each e ∈ Eu. For all observed events e ∈ E1, we set xtmin
e =

xtmax
e = #time(e) as here the correct timestamp is known. We now define two groups of

constraints to constrain the xtmin
e and xtmax

e values for the unobserved events further. In
the following, we assume for the sake of simpler constraints presented in this paper,
that all observed events are start events (which is in line with logging in an MHS). The
constraints can easily be reformulated to assume only complete events were observed
(as in most business process event logs) or a mix (requiring further case distinctions).

The first group propagates constraints for #time(e) along <pid, i.e., for each token
trajectory (viz. trace) πz

pid of pid in π. By the steps in Sect. 5.1, events in πz
pid are totally

ordered and we write πz
pid = 〈e1...em〉 as a sequence of events. Each process step has a

start and a complete event in πz
pid, i.e., m = 2 · y, y ∈ N, odd events are start events and

even events are complete events. For each process step 1 ≤ i ≤ y, the time between start
event e2i−1 and complete event e2i is at least the service time of the resource involved
(which we stored as #tsr(e2i−1) in Sect. 5.1). Thus the following constraints must hold for
the earliest and latest time of e2i−1 and e2i.

xtmin
e2i

= xtmin
e2i−1

+ #tsr(e2i−1), (1)

xtmax
e2i

= xtmax
e2i−1

+ #tsr(e2i−1). (2)

For the remainder, it suffices to formulate constraints only for start events. We make
sure that tmin and tmax define a proper interval for each start event:

xtmin
e2i−1
≤ xtmax

e2i−1
. (3)

We write es
i = e2i−1 for the start event of the i-th process step in πz

pid and θz
pid = 〈es

1, ..., e
s
m〉

for the sub-trace of start events of πz
pid. Any event es

i ∈ θ
z
pid that was observed in L1,

i.e., es
i ∈ E1, has #time(es

i) ,⊥ defined. By the assumption in Sect. 4, πz
pid as well as θz

pid
always start and end with observed events, i.e., es

1, e
s
y ∈ E1 and #time(es

1), #time(es
y) ,⊥.

An unobserved event es
i has no timestamp #time(es

i) =⊥ yet, but #time(es
i) is bounded by

#time(es
1) (minimally) and #time(es

y) (maximally). Furthermore, any two succeeding start
events in θz

pid = 〈..., es
i−1, e

s
i , ...〉 are separated by the service time #tsr(es

i−1) of step es
i−1

and the waiting time #twq(ei) of the queue from ei−1 to ei. Similar to Eq. 1 and 2, we
formulate this constraint for both xtmin

e and xtmax
e variables:

xtmin
es

k
≥ xtmin

es
k−1

+ (#tsr(es
k−1) + #twq(es

k)), (4)

xtmax
es

k
≤ xtmax

es
k+1
− (#tsr(es

k) + #twq(es
k+1)). (5)

Fig. 6 uses the Performance Spectrum [10] to illustrate the effect of applying our approach
step by step to the partially complete traces of Fig. 5 obtained in the steps of Sect. 5.1.
The straight lines in Fig. 6(a) from f1 to f9 (for pid=53) and from f12 to f16 (for pid=54)

Repairing Event Logs of Systems with Shared Resources 15

(a)

pid=53

pid=54

c1

m2

m4

d1

m3

(b)

Time

Eq.5

observed events
segment
occurrence

resulted regions

tsr+twq

#time(f1)

tmin(f3)

#tmin(f5)

#tmin(f7)

#time(f9)

#tmax(f3)

#tmax(f5)

#tmax(f7)

R1

timestamp intervals

Eq.7

#tmax(f3)

#tmax(f5)

#time(f16)

#tmax(f14)

#time(f12)

#tmin(f12)

(c)

R2

sum of min. resource service
and queue waiting timetsr+twq

#time(f9) #time(f16)

twr

Eq.4

Fig. 6. Equations 1-5 define time intervals for unobserved events (a), defining regions for the
possible traces (b). Equations 6-7 propagate orders of cases observed on one resource to other
resources (b), resulting in tighter regions (c).

illustrate that L2 (after applying O1) contains all intermediate steps that both process
cases passed through but not their timestamps. Further (after applying O2), we know for
each process step the resources (i.e., c1, m2, m3, m4, d1) and the queues (c1:m2, m2:m3
etc.), and their minimum service and waiting times tsr, twr, twq. The sum tsr + twq is
visualized as bars on the time axis in Fig. 6(a), the duration of twr is shown in Fig. 6(b).
We now explain the effect of applying Eq. 4 on pid=53 for f3, f5 and f7. We have θ53

pid =

〈 f1, f3, f5, f7, f9〉 with f1 and f9 observed, thus xtmin
fi

= xtmax
fi

= #time(fi) for i ∈ {1, 9}. By
Eq. 4, we obtain the lower-bound for the time for f3 by xtmin

f3
≥ xtmin

f1
+ #tsr(f1) + #twq(f3)

with #tsr(f1) and #twq(f3) the service time of resource c1 and waiting time of queue
c1:m2. Similarly, Eq. 4 gives the lower bound for f5 from the lower bound from f3 etc.
Conversely, the upper bounds xtmax

fi
are derived from f9 “downwards” by Eq. 5. This

way, we obtain for each fi ∈ θ53
pid an initial interval for the time of fi between the bounds

xtmin
fi
≤ xtmax

fi
as shown by the intervals in Fig. 6(a). As xtmin

f1
= xtmax

f1
= #time(f1) and

xtmin
f1

= xtmax
f1

= #time(f9), the lower and upper bounds for the unobserved events in θ53
pid

form a polygon as shown in Fig. 6(b). Case 53 must have passed over the process steps
and resources as a path inside this polygon, i.e., the polygon contains all admissible
solutions for the timestamps of the unobserved events of θ53

pid; we call this polygon the
region of case 53. The region for case 54 overlays with the region for case 53.

We now introduce a second group of constraints by which we infer more tight
bounds for xtmin

ei
and xtmax

ei
based on the overlap with other regions. While the first

group of constraints traversed token trajectories along pid (i.e., process traces), the
second group of constraints traverses token trajectories for resources along rid. Each
resource trace πr

rid = (Er
rid, <

r
rid) in π, contains all events Er

rid resource r was involved

16 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

in - across multiple different process traces. The SPO <r
rid orders observed events of

this resource trace due to their known timestamps; e.g. in Fig. 6(b) f9 <m1
rid f16 with

f9 from pid=53 and f16 from pid=54. The order of the two events es
p1 <

r
rid es

p2 for the
same step #act(es

p1) = #act(es
p2) = t1 in different cases #pid(es

p1) = p1 , #pid(es
p2) = p2

propagates “upwards” and “downwards” the process traces πp1
pid and πp2

pid as follows. Let

events f s
p1 ∈ Ep1

pid and fp2 ∈ Ep2
pid be events in process traces πp1

pid and πp2
pid of the same

step #act(f s
p1) = #act(f s

p2) = tn. We say t1 and tn are in FIFO relation iff there is a unique
path 〈t1...tn〉 between t1 and tn in the process proclet (i.e., no loops, splits, parallelism) so
that between any two consecutive transitions tk, tk+1 only synchronize with single-server
resources or FIFO queues. If t1 and tn are in FIFO relation, then also f s

p1 <
r2
rid f s

p2 on the
resource r2 involved in tn (as the case cannot overtake the case along this path). Thus
xtmin

f s
p1
≤ xtmin

f s
p2

must hold. More specifically, xtmin
f s
p1

+ #tsr(f s
p1) + #twr(f s

p1) ≤ xtmin
f s
p2

must hold
as the service time and waiting time of the resource involved in f s

p1 must elapse.
For any pair es

p1, e
s
p2 ∈ Er

rid with es
p1 <

r
rid es

p2 and any other trace θr2
rid for resource

r2 and any pair f s
p1, f s

p2 ∈ Er2
rid such that #pid(es

p1) = #pid(f s
p1), #pid(es

p2) = #pid(f s
p2) and

transition #actes
p1 is in FIFO relation with #act(f s

p1), we generate the following constraint
for tmin:

xtmin
f s
p1
≤ xtmin

f s
p2
− (#tsr(f s

p1) + #twr(f s
p1)), (6)

and the following constraint for tmax:

xtmax
f s
p1
≤ xtmax

f s
p2
− (#tsr(f s

p1) + #twr(f s
p1)), (7)

In the example of Fig. 6(b), we observe f9 <d1
rid f16 (both of transition d1s) along resource

d1 at the bottom of Fig. 6(b). By Fig. 3, d1s and m3s are in FIFO-relation. Applying Eq. 7
yields xtmax

f5
≤ #time(f12) − (#tsr(f5) + #twr(f5)), i.e., f5 occurs at latest before f12 minus

the service and waiting time of m3. This operation significantly reduces the initial region
R1. By Eq. 5, the tighter upper bound for f5 also propagates along the trace pid=53 to f3,
i.e., xtmax

f3
≤ xtmax

f5
− (#tsr(f3) + #twq(f5)), resulting in a tighter region as shown in Fig. 6(c).

If another trace 〈m3s, d1s〉 were present before trace 53, then this would cause reducing
the tmin attributes of the events of trace 53 by Eq. 4,6 in a similar way. In general, the
more cases interact through shared resources, the more accurate timestamp intervals can
be restored by Eq. 1-7 as we will show in Sect. 6.

To construct the linear program, we generate equations 1 to 5 by iteration of each
process trace in L2. Further, iterate over each resource trace and for each pair of events
ep1 <

r
rid ep2 we generate equations 6,7 for each other pair of events fp1 <

r2
rid fp2 that

is in FIFO relation. The objective function to maximize is the sum of all intervals∑
e∈E2

(xtmax
e − xtmin

e) to maximize the coverage of possible timestamp values by those
intervals.

6 Evaluation

To evaluate our approach, we formulated the following questions. (Q1) Can timestamps
be estimated in real-life settings and used to estimate performance reliably? (Q2) How

Repairing Event Logs of Systems with Shared Resources 17

to
 a

ir
p

la
n

es

to early bag store

X
-R

ay

sc
re

e
n

in
g

a c1 c2 c3 c4 d1 d2 f

s

Fig. 7. In the BHS bags come from check-in counters c1−4 and another terminals d1−2, f , go through
mandatory screening and continue to other locations.

accurately can the load (items per minute) be estimated for different system parts,
using restored timestamps? (Q3) What is the impact of sudden deviations from the
minimum service/waiting times, e.g., the unavailability of resource or stop/restart of an
MHS conveyor, on the accuracy of restored timestamps and the computed load? For
that, we extended the interactive ProM plug-in “Performance Spectrum Miner” with
an implementation of our approach that solves the constraints using heuristics4. As
input we considered the process of a part of real-life BHS shown in Fig. 7 and used
Synthetic Logs (SL) (simulated from a model to obtain ground-truth timestamps) and
Real-life Logs (RL) from a major European airport. Regarding Q3, we generated SL
with regular performance and with blockages of belts (i.e., a temporary stand-still); the
RL contained both performance characteristics. All logs were partial as described in
Sect. 4. We selected the acyclic fragment highlighted in Fig. 7 for restoring timestamps
of steps c1−4, d1−2, f , s.

We evaluated our technique against the ground truth known for SL as follows. For
each event we measured the error of the estimated timestamp intervals [tmin, tmax] against
the actual time t as max{|tmax − t|, |tmin − t|} normalized over the sum of minimal service
and waiting times of all involved steps (to make errors comparable). We report the Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE) of these errors. Applying
our technique to SL with regular behavior, we observed very narrow time intervals for
the estimated timestamps, shown in Fig. 8(a), and a MAE of < 5%. The MAE of the
estimated load (computed on estimated timestamps), shown in Fig. 8(e), was < 2%.
For SL with blockage behavior, the intervals grew proportionally with the duration of
blockages (Fig. 8(b)), leading to a proportional growth of the MAE for the timestamps.
However, the MAE of the estimated load (Fig. 8(f)) was at most 4%. The load MAE
for different processing steps for both scenarios are shown in Table 1. Notably, both
observed and reconstructed load showed load peaks each time the conveyor belt starts
moving again.

When evaluating on the real-life event log, we measured errors of timestamps
estimation as the length of the estimated intervals (normalized over the sum of minimal
service and waiting times of all involved steps). Performance spectra built using the
restored RL logs are shown in Fig. 8(c,d), and the load computed using these logs is
shown in Fig. 8(g,h). The observed MAE was < 5% in regular behavior and increased
proportionally as observed on SL. The load error could not be measured, but similarly to
synthetic data, it showed peaks after assumed conveyor stops.

4 The simulation model, simulation logs, ProM plugin, and high-resolution figures are available
on https://github.com/processmining-in-logistics/psm/tree/rel.

https://github.com/processmining-in-logistics/psm/tree/rel

18 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

a:c1
c1:c2
c2:c3
c3:c4
c4:d1
d1:d2
d2:f
f:s
a:c1
c1:c2
c2:c3
c3:c4
c4:d1
d1:d2
d2:f
f:s

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Restored Performance Spectrum for synthetic (a,b) and real-life (c,d) logs. The estimated
load (computed on estimated timestamps) for synthetic (e,f) and real-life (g,h) logs. For the
synthetic logs, the load error is measured and shown in red (e,f).

The obtained results on SL show that the timestamps can be always estimated, and
the actual timestamps are always within the timestamp intervals (Q1). When the system
resources and queues operate close to the known performance parameters tsr, twr, twq,
our approach restores accurate timestamps resulting in reliable load estimates in SL
(Q2). During deviations in resource performance, the errors increase proportionally with
performance deviation while the estimated load remains reliable (error < 4% in SL) and
shows known characteristics from real-life systems on SL and RL (Q3).

Scenario MAE, c4 : d1 RMSE, c4 : d1 MAE, d1 : d2 RMSE, d1 : d2 MAE, f : s RMSE, f : s
no blockages 0.16 1.01 0.22 1.66 0.17 0.89

blockages 1.67 4.8 3.19 7.17 0.15 0.75

Table 1. The estimated load (computed on estimated timestamps) Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) are shown in % of max. load.

7 Conclusion

In this paper, we studied the problem of repairing a partial event log with missing
events for the performance analysis of systems where case interact and compete for
shared limited resources. We addressed the problem of repairing partial event logs that
contain only a subset of events which impede the performance analysis of systems
with shared limited resources and queues. To study and solve the problem, we used
synchronous proclets [11] to model processes served by resources and queues (a PQR
system). The model allows to decompose the interactions of resources and queues over
multiple process cases into token trajectories for process cases, resources and queues
that synchronize on shared events. We exploit the decomposition when restoring missing
events along the process token trajectories using trace alignment [7]. We exploit the
synchronization when formulating linear programming constraints over timestamps of
restored events along, both, the process and the resource token trajectories. As a result,
we obtain timestamps which are consistent for all events along the process, resource, and
queue dimensions. The evaluation of our implementation in synthetic and real-life data

Repairing Event Logs of Systems with Shared Resources 19

shows errors of the estimated timestamps and of derived performance characteristics (i.e.,
load) of < 5% under regular performance, while correctly restoring real-life dynamics
(i.e. load peaks) after irregular performance behavior.
Limitations. The work made several limiting assumptions. (1) Although the proclet for-
malism allows for arbitrary, dynamic synchronizations between process steps, resources,
and queues, we limited ourselves in this work to a static known resource/queue id per
process step. The limitation is not severe for some use cases such as analyzing MHS, but
generalizing oracle O2 to a dynamic setting is an open problem. (2) The LP constraints to
restore timestamps assume an acyclic process proclet without concurrency. Further, the
LP constraints assume 1:1 interactions (at most one resource and/or queue per process
step). Both assumptions do not hold in business processes in general; formulating the
constraints for a more general setting is an open problem. (3) Our approach ensures
consistency of either all earliest or all latest timestamps with the given model, it does not
suggest how to select timestamps between the latest and earliest such that the consistency
holds. (4) When the system performance significantly changes, e.g., due to sudden
unavailability of resources, the error of restored timestamps is growing proportionally
the duration of deviations. Points (3) and (4) require attention to further improve event
log quality for performance analysis.

Acknowledgements The research leading to these results has received funding from
Vanderlande Industries in the project “Process Mining in Logistics”. We also thank
Mitchel Brunings for his comments that greatly improved our approach.

References

1. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for
lightweight interacting workflow processes. International Journal of Cooperative Information
Systems 10(04), 443–481 (2001). https://doi.org/10.1142/S0218843001000412

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition. Springer
(2016)

3. Aalst, W.M.P., Adriansyah, A., Dongen, B.: Replaying history on process models for confor-
mance checking and performance analysis. WIREs Data Mining and Knowledge Discovery 2,
182–192 (03 2012). https://doi.org/10.1002/widm.1045

4. Ahmed, T., Pedersen, T.B., Calders, T., Lu, H.: Online risk prediction for indoor moving
objects. In: 2016 17th IEEE International Conference on Mobile Data Management (MDM).
vol. 1, pp. 102–111 (June 2016). https://doi.org/10.1109/MDM.2016.27

5. A.Senderovich, C.D.Francescomarino, F.M.Maggi: From knowledge-driven to data-driven
inter-case feature encoding in predictive process monitoring. Information Systems (2019),
https://doi.org/10.1016/j.is.2019.01.007

6. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.: Statis-
tical analysis of a telephone call center. Journal of the American Statistical Association
100(469), 36–50 (2005). https://doi.org/10.1198/016214504000001808, https://doi.org/10.
1198/016214504000001808

7. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking - Relating
Processes and Models. Springer (2018)

8. Conforti, R., La Rosa, M., ter Hofstede, A.: Timestamp repair for business process event logs.
Tech. rep. (2018/04/05 2018), http://hdl.handle.net/11343/209011

https://doi.org/10.1142/S0218843001000412
https://doi.org/10.1002/widm.1045
https://doi.org/10.1109/MDM.2016.27
https://doi.org/10.1016/j.is.2019.01.007
https://doi.org/10.1198/016214504000001808
https://doi.org/10.1198/016214504000001808
https://doi.org/10.1198/016214504000001808
http://hdl.handle.net/11343/209011

20 Vadim Denisov, Dirk Fahland, and Wil M.P. van der Aalst

9. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Predictive performance monitoring of mate-
rial handling systems using the performance spectrum. In: 2019 International Conference on
Process Mining (ICPM). pp. 137–144 (June 2019). https://doi.org/10.1109/ICPM.2019.00029

10. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description of pro-
cesses performance from event data. In: Weske, M., Montali, M., Weber, I., vom Brocke, J.
(eds.) Business Process Management. pp. 139–157. Springer International Publishing, Cham
(2018)

11. Fahland, D.: Describing behavior of processes with many-to-many interactions. In: Donatelli,
S., Haar, S. (eds.) Application and Theory of Petri Nets and Concurrency. pp. 3–24. Springer
International Publishing, Cham (2019)

12. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: Tutorial, review, and research
prospects. Manufacturing & Service Operations Management 5, 79–141 (03 2003)

13. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on partially or-
dered event data. In: BPM’14 Workshops. LNBIP, vol. 202, pp. 75–88. Springer (2014).
https://doi.org/10.1007/978-3-319-15895-2 7, https://doi.org/10.1007/978-3-319-15895-2 7

14. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business
processes: A survey. IEEE Transactions on Services Computing 11(6), 962–977 (Nov 2018).
https://doi.org/10.1109/TSC.2017.2772256

15. Martin, N., Depaire, B., Caris, A., Schepers, D.: Retrieving the resource availabil-
ity calendars of a process from an event log. Information Systems 88, 101463
(2020). https://doi.org/https://doi.org/10.1016/j.is.2019.101463, http://www.sciencedirect.
com/science/article/pii/S0306437919305150

16. Maruster, L., van Beest, N.R.T.P.: Redesigning business processes: a methodology based on
simulation and process mining techniques. Knowl. Inf. Syst. 21(3), 267–297 (2009)

17. Pegoraro, M., Aalst, W.: Mining uncertain event data in process mining. pp. 89–96 (06 2019).
https://doi.org/10.1109/ICPM.2019.00023

18. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process models from uncertain
event data. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) Business Process
Management Workshops. pp. 238–249. Springer International Publishing, Cham (2019)

19. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester
(1986)

20. Senderovich, A., Beck, J., Gal, A., Weidlich, M.: Congestion graphs for automated time
predictions. Proceedings of the AAAI Conference on Artificial Intelligence 33, 4854–4861
(07 2019). https://doi.org/10.1609/aaai.v33i01.33014854

21. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining - predicting delays
in service processes. In: CAiSE (2014)

22. Suriadi, S., Andrews, R., ter Hofstede, A., Wynn, M.: Event log imperfection patterns for
process mining: Towards a systematic approach to cleaning event logs. Information Systems
64, 132 – 150 (2017). https://doi.org/https://doi.org/10.1016/j.is.2016.07.011, http://www.
sciencedirect.com/science/article/pii/S0306437915301344

https://doi.org/10.1109/ICPM.2019.00029
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1109/TSC.2017.2772256
https://doi.org/https://doi.org/10.1016/j.is.2019.101463
http://www.sciencedirect.com/science/article/pii/S0306437919305150
http://www.sciencedirect.com/science/article/pii/S0306437919305150
https://doi.org/10.1109/ICPM.2019.00023
https://doi.org/10.1609/aaai.v33i01.33014854
https://doi.org/https://doi.org/10.1016/j.is.2016.07.011
http://www.sciencedirect.com/science/article/pii/S0306437915301344
http://www.sciencedirect.com/science/article/pii/S0306437915301344

	Repairing Event Logs with Missing Events to Support Performance Analysis of Systems with Shared Resources

