
Conformance Checking Approximation Using
Simulation

Mohammadreza Fani Sani1, Juan J. Garza Gonzalez1, Sebastiaan J. van Zelst2,1, and Wil M.P. van der Aalst1,2

1-Process and Data Science (PADS) Chair, RWTH-Aachen University, Germany

2-Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany

Email:{fanisani, s.j.v.zelst, wvdaalst}@pads.rwth-aachen.de

Abstract—Conformance checking techniques are used to com-
pute to what degree a process model and real execution data
correspond to each other. In recent years, alignments have
proven to be useful for calculating conformance statistics. Most
alignment techniques provide an exact conformance value. How-
ever, in many applications, it suffices to have an approximated
alignment value. Specifically, for large event data and using
standard hardware, current alignment techniques are time-
consuming and sometimes intractable. This paper proposes to
use simulated behaviors of process models to approximate the
conformance checking value. To simulate a process model, we
exploit the behavior in the given event data. This method is
independent from the process model notation and provides upper
and lower bounds for the approximated alignment value. We
assess the quality of our approximations and compare it to
existing approximation techniques. The experiments on real event
data show that using the proposed method, it is possible to achieve
significant performance improvements.

Index Terms—Process Mining, Conformance Checking Ap-
proximation, Alignment, Simulation, Edit Distance

I. INTRODUCTION

Conformance checking aims to investigate the conformity

of a discovered/designed process model w.r.t., real process

executions [1]. Conformance checking techniques are used

to detect deviations and to measure how accurate a process

model is. It is possible to apply this branch of techniques to

assess both event data and the process model. Alignments [2]

were developed with the concrete goal to describe and quantify

deviations in a non-ambiguous manner. Computing alignments

has rapidly turned into the de facto standard conformance

checking technique [3]. Moreover, alignments serve as a

basis for other process mining methods that link event data

to process models, e.g., they support performance analysis,

decision mining [4], business process model repair [5], and

prediction techniques. However, alignment computations may

be time-consuming for real large event data.
In some scenarios, the diagnostic information that is pro-

duced by alignments is not required and we simply need an

objective measure of model quality to compare process mod-

els, i.e., the alignment value. Moreover, in many applications,

it is required to compute alignment values several times. For

example, if we aim to discover an appropriate process model

from event data, it is required to discover several process mod-

els using various process discovery algorithms with different

settings, and, measure how each process model fits, w.r.t., the

event data, i.e., by applying alignment techniques. As normal

alignment methods take a considerable time for large real event

data, analyzing many candidate process models is impractical.

Therefore, by decreasing the alignment computation time, it

is possible to consider more candidate process models in a

limited time. Thus, by having an approximated conformance

value, we are able to find a suitable process model faster. By

providing bounds, we guarantee that the accurate alignment

value does not exceed a range of values, and, consequently

we determine if it is required to do further analysis or not,

which saves a considerable amount of time. Thus, it is valuable

to have a quick approximated conformance value and it is

excellent worth to let users adjust the level of approximation.

It is shown in [6] that using the edit distance function,

a subset of model behaviors can be used instead of the

process model for conformance approximation. It suggests to

sample some behaviors from the event log and approximate

their alignments. In this paper, we extend the previous work

by proposing to use process model simulation (i.e., some

of its possible executable behaviors) to create a subset of

process model behaviors. The core idea of this paper is to

have simulated behaviors close to the recorded behaviors in

the event log. Moreover, we provide bounds for the actual

conformance value. Using the proposed method, users are able

to adjust the amount of process model behaviors considered

in the approximation, which affects the computation time

and the accuracy of alignment values and their bounds. As

the proposed method just uses the simulated behaviors for

conformance approximation, it is independent of any process

model notation. Because we use the edit distance function and

do not compute any alignment, even if there is no reference

process model and just some of the correct behaviors of the

process (e.g., some of the valid variants) are known, the

proposed method is able to approximate the conformance

value. The method additionally returns problematic activities,

based on their deviation rates.

We implemented the proposed method using both the

ProM [7] and RapidProM [8] platforms. Moreover, we applied

it to several large real event data and process models. We

also compared our approach with the state-of-the-art alignment

approximation method [6]. The results show that the proposed

simulation method improves the performance of the confor-

mance checking process while providing approximations close

to the actual values.

The remainder of this paper is structured as follows. In Sec-

tion II, we discuss related work. Section III defines preliminary

notation. We explain the proposed method in Section IV and

evaluate it in Section V. Section VI concludes the paper and

presents some future work.

II. RELATED WORK

In this section, we explain some conformance checking

and simulation techniques in the process mining domain. For

a complete overview of conformance checking techniques

in process mining, we refer to [9] and [10]. Early work

in conformance checking uses token-based replay [11]. This

technique replays a trace of executed events from the event

log on a Petri net and adds missing tokens if transitions

are not able to fire. After the replay phase, the conformance

statistic is computed based on remaining and missing tokens.

Alignments were introduced in [12] and have rapidly devel-

oped into the standard conformance checking technique [3].

In [13] and [14], decomposition techniques are proposed for

alignment computation. Applying decomposition techniques

generally improves computation time. These techniques use

the divide-and-conquer paradigm. However, these techniques

are primarily beneficial when there are lots of unique activities

in the process [15]. The authors in [3] and [16] also propose to

incrementally compute prefix-alignments, and providing real-

time conformance checking for event data streams. Recently, a

general stochastic conformance checking method is proposed

in [17] which requires a stochastic process model that is not

available in many cases.

Some research has been done to approximate the alignment

value. [18] uses deep learning to approximate alignment statis-

tics. Moreover, a recursive general approach for approximating

the alignment, i.e., computation of near-optimal alignments,

has been proposed in [19]. Moreover, [20] uses a statistical

trace sampling approach that approximates the conformance

value without proving bounds for the actual alignment value.

The authors of [21] suggest a conformance approximation

method that applies relaxation labeling methods to a par-

tial order representation of a process model. Similar to the

previous method, it does not provide any guarantee for the

approximated value. Furthermore, it needs to preprocess the

process model each time. Finally, [6] recommends using a

subset of model behaviors for conformance approximation and

bounds for the actual value. It suggests applying the alignment

technique for some traces to build the subset of model behav-

iors. In this paper, we propose a guided simulation method to

build the subset of model behavior to generate behaviors that

are closer to recorded behaviors in the event data. Unlike many

conformance checking methods, this method is independent of

process model notation and considers a process model as a set

of possible behaviors.

Different approaches to simulation in process mining have

been proposed. These approaches are mostly at an instance

level, i.e., a detailed level such as the framework presented

in [22], which uses the process detailed information to create

a CPN model for simulation. Moreover, [23] recommends an

approach to simulate an event log based on a given (stochastic)

process model. In [24], a simulation approach to simulate

business process models that uses information in event logs

is proposed. Another direction of the simulation in process

mining is an aggregated level simulation, e.g., [25], in which

the system dynamics modeling technique is introduced for

“what-if” analysis in processes.

III. PRELIMINARIES

In this section, we briefly introduce basic process mining

and, specifically, conformance checking terminology and no-

tations that ease the readability of this paper.

Given a set X , a multiset B over X is a function

B : X→N≥0 that allows certain elements of X to appear

multiple times. We write a multiset as B=[ek1
1 , ek2

2 , ..., ekn
n],

where for 1≤i≤n, we have B(ei)=ki with ki∈N≥0. If ki=1,

we omit its superscript, and if for some e∈X we have B(e)=0,

we omit it from the multiset notation. B={e∈X|B(e)>0} is

the set of unique elements present in the multiset. The set of

all multisets over a set X is written as B(X).
A sequence of length n over members of set X is a function

σ:{1, 2, ..., n}→X which defines the occurrence order of

elements of set X . We show a sequence using the notation

σ=〈s1, ..., sn〉 where si=σ(i), for 1≤i≤n. We denote with

si∈σ that si is an element of the sequence σ. Moreover, the

set of all possible sequences over set X is shown by X∗.
The empty sequence is denoted with ε. Furthermore, |σ| indi-

cates the length of sequence σ, e.g., |〈a, d, d, e〉|=4. Function

hd : X∗×N≥0→X∗, returns the “head” of a sequence, i.e.,

given a sequence σ∈X∗, hd(σ, k)=〈s1, s2, .., sk〉, i.e., the se-

quence of the first k elements of σ. If k≥|σ|, then hd(σ, k)=σ.

Symmetrically, tl : X∗×N≥0→X∗ returns the “tail” of a se-

quence and is defined as tl(σ, k)=〈sn−k+1, sn−k+2, ..., sn〉,
i.e., the sequence of the last k elements of σ. If k≥|σ|,
tl(σ, k)=σ. We define that hd(σ, 0)=tl(σ, 0)=ε. The concate-

nation of two sequences σ1 and σ2 with length m and n is

sequence σ3=σ1·σ2 with length m+n where σ3(i)=σ1(i) for

1≤i≤m and σ3(i)=σ2(i−m) for m+1≤i≤m+n. A subse-

quence σs of σ is obtained by removing |σ|−|σs| elements of

σ where the result equals σs. For example, 〈b, d〉 is a subse-

quence of 〈a, b, c, d, e〉. Moreover, σ′ is a strict subsequence

of sequence σ if there exist σ1 and σ2 such that σ=σ1·σ′·σ2
and we denote it by σ′�σ ; furthermore, if σ1=ε, we say that

σ′ is a prefix of σ.

Having two sequences, function ω:X∗×X∗→X∗ re-

turns one of the longest common subsequence of them.

For example, ω(〈a, b, d, e〉, 〈c, a, d, f, e〉)=〈a, d, e〉. Finally,

fq:X∗×X∗→N≥0 is a function that returns how many

times in a sequence a subsequence is present. For example,

fq(〈d, a, d, e〉, 〈d〉)=2.

Event logs are the starting point of many process mining al-

gorithms. For alignment computation, we just use the control-

flow information of the event logs. Therefore, we define an

event log as follows.

Definition 1 (Event Log): Let A be the universe of activities

and A⊆A is a set of activities. An event log is a multiset of

106

sequences over A, i.e., L∈B(A∗). Moreover, we refer to each

σ∈L as a ”variant” whereas L(σ) denotes how many traces

of the form σ are presented within the event log. Moreover,

|L| refers to the number of variants in the event log.

For example, in the event log that is presented in Figure 1,

A={a, b, c, d, e}, |L|=5, and L(〈a, b, e〉)=2.

There are many notations to describe the possible behaviors

described by a process model. Here, we define a process model

using a set of all its possible replayable behaviors as follows.

Definition 2 (Process Model): Let A be the universe of

activities and A⊆A is a set of activities. A process model is

a set of sequences over A, i.e., M⊆A∗.
For example, in the process model that is presented in Fig-

ure 1 in a Petri net notation, we have 〈a, b, d, b, c, e〉∈M ,

〈a, b, e〉∈M , and 〈a, b, d, b, e〉∈M . Note that in case of having

an unbounded loop in a process model, Set M is infinite.

As we define event logs and process models as collections

of sequences of activities, we are able to use edit distance and

the optimal alignment functions to compute their alignment.

Definition 3 (Edit Distance and Optimal Alignment
Cost): Let A be a set of activities and σl, σm∈A∗
be two traces.
:A∗×A∗→N≥0 is a function such that

(σl, σm)=|σl|+|σm|−2×|ω(σl, σm)| returns the minimal

number of required edits to transform σl to σm. In addition,

we define δ:A∗×A∗→B(A)×B(A) that returns two multisets

of synchronous and asynchronous moves. Synchronous moves

correspond to one of the longest common subsequences of

the given sequences and asynchronous moves represents the

edited activities that are required to transform subsequences.

Moreover, Γ:A∗×P(A∗)→N≥0 is a function that returns the

minimum number of edits to transfer a trace to one of the

traces in a set of traces, i.e., the optimal alignment cost.

For example,
(〈a, b, d, b, e〉, 〈a, c, d, e〉)=3 that corresponds

two deletions (i.e., b) and one insertion (i.e., c). Therefore,

δ(〈a, b, d, b, e〉, 〈a, c, d, e〉)=([a, d, e], [b2, c]). By using�1 and

�2, we retrieve the synchronous and asynchronous moves

respectively. For example, ([a, d, e], [b2, c1])�2=[b2, c] are the

asynchronous moves. Note that, there may exist more than one

longest common subsequence for two sequences and the δ is

non-deterministic. Moreover, for the model that is presented

in Figure 1, Γ(〈a, c, e〉,M)=1 that corresponds to transfer

〈a, c, e〉 to 〈a, b, c, e〉∈M or 〈a, c, b, e〉∈M . In [6], it is shown

that Γ(σ,M) equal to the optimal alignment cost.

To compute the fitness value of a trace and a model we use

the following equation.

fitnessTrace(σL,M) =
Γ(σL,M)

|σL|+Ms

(1)

In the above equation, Ms= min
σ∈M

(|σ|) is the length of the

shortest trace in the model. To compute the fitness value of an

event log and a process model, we use the following formula.

Fitness(L,M) =

∑

σ∈L

L(σ)×fitnessTrace(σ,M)

∑

σ∈L

L(σ)
(2)

Figure 1: An example event log, a Petri net, and a prefix tree.

Figure 2: A schematic view of the proposed method.

IV. APPROXIMATING ALIGNMENTS USING SUBSET OF

MODEL BEHAVIOR

In this section, we present the proposed conformance ap-

proximation method. We aim to approximate the alignment

value without any alignment computation. A schematic view

of this method is shown in Figure 2. We first analyze the

event log; then, based on the probabilities of subsequences,

we provide characteristics of the process model using the

simulation method. Afterwards, based on these characteristics,

we provide prefixes for the alignment approximation. In the

following, each stage is explained in more details.

A. Event log analysis

In this stage, we traverse the event log to find all the activ-

ities and variants in the event log. Moreover, we compute the

occurrence probability of different sequences with a specific

length. These probabilities guide the simulation algorithm to

generate model traces close to the available traces in the event

log. The occurrence probability of a subsequence σ′∈A∗ is

computed as follows.

Prob(σ
′
, L)=

∑

σ∈L

L(σ)× fq(σ, σ′)

∑

σ∈L

(
∑

σ”�σ∧ |σ”|=|σ′|
(L(σ)× fq(σ, σ”))

(3)

For example, for the event log that is presented

in Figure 1, Prob(〈a, b, c〉, L)= 10
10+10+3+3+3+2 or

Prob(〈a, b, c, e〉, L)= 10
10+3+3 . By getting the maximum

length of subsequence from the user, we are able to compute

the probabilities of them.

B. Simulation

The input of the simulation algorithm is a process model

and an event log and it provides a Model Characterization that

is defined as follows.

Definition 4 (Model Characterization): Let M⊆A∗ be a

process model, a 4-tuple MC=(SL, Pk, k,Ms) be a model

characterization of M , where SL⊆M is a subset of model

traces and Ms= min
σ∈M

(|σ|) is the length of the shortest trace in

model M. Moreover, Pk={hd(σ, i)|σ∈M ∧ i ≤ k} is the set

of all prefixes in M with length less or equal to k.

107

To simulate the process model, we use a prefix tree. In

Figure 1 a process model and a part of its prefix tree are

shown. We consider sequence σ′ as a prefix of model M if

∃σ∈M∧l∈N≥0
(hd(σ, l)=σ′). We use Pk to show the informa-

tion of the prefix tree that contains all the observed prefixes.

Most process model notations, e.g., BPMN and Petri net,

allow us to clarify which activities are executable after the

execution of sequence of activities (i.e., a prefix). Thus, we

define prefix extension as follows.

Definition 5 (Prefix extension): Let A be a set of

activities and let σ′∈A∗ be a sequence of activities

and let M⊆A∗ be a process model. The prefix ex-

tension function α:A∗×P(A∗)
→P(A∗) returns the set of

all possible extensions of prefix σ′. In other words,

α(σ′,M)={σ′·〈a〉|∃σ∈M (σ′·〈a〉=hd(σ, |σ′|+1)}.
For example, if M is corresponding to the

process model that is presented in Figure 1,

α(〈a, b〉,M)={〈a, b, c〉, 〈a, b, d〉, 〈a, b, e〉}.
The simulation algorithm starts with initializing P={ε} and

SL ={}. At each step, we select one of the non-extended

prefixes in P and discover all its possible extensions, i.e.,

α(σ′,M), and append them to P . Moreover, if any of the

newly extended prefixes are complete trace, we append them

to SL. Therefore, the updated sets are P=P∪(α(σ′,M)) and

SL=SL∪{σ∈α(σ′,M)|σ∈M}. Note that a prefix σ′∈P is

non-extended if �σ”∈P\{σ′} (σ′=hd(σ”, |σ′|)).
The simulation method is guided to select the prefix

with the highest probability according to Equation 3.

In this regard, for all non-extended prefixes in P , the

method computes Prob(tl(σ′, l), L), where l indicates the

maximum length of subsequences that is given by the

user. For example, in Figure 1, if P={ε, 〈a〉, 〈a, b〉, 〈a, c〉},
we know that 〈a, b〉 and 〈a, c〉 are non-extended prefixes.

Therefore, the method chooses 〈a, b〉 which has a higher

probability in the event log. By extending this prefix, we

have P={ε, 〈a〉, 〈a, b〉, 〈a, c〉}∪{〈a, b, c〉, 〈a, b, d〉, 〈a, b, e〉},
and SL={〈a, b, e〉}.

By having the k value, we guarantee that all possible

prefixes of the model with length less or equal to k are present

in Pk. The proposed simulation method finds k based on the

length of the shortest non-extended prefix in P .

We continue the simulation procedure until at least one

of the following conditions is satisfied: 1) the number of

simulated traces, i.e., |SL| reaches to the simulation size, i.e.,

given by the user 2) there exist no non-extended prefix in P
which means we could not simulate any new traces 3) having

k≥2×max
σ∈L

(|σ|)+Ms that indicates all the unseen prefixes are

longer than two times of the longest trace in the event log plus

the shortest path in the model. In the next subsection, we prove

that if we have the third condition, we are able to find the

optimal alignment cost using the simulated traces. Moreover,

we use Pk notation to show a set of all observed prefixes with

length less or equal to k where Pk={σ′∈P | |σ′|≤k}.
To sum up, the output of the simulation stage is

MC=(SL, Pk, k,Ms). Note that any other simulation method

that generates a model characterization can be used in the

proposed approximation method. For example, it is possible

to extend the prefix tree in a breadth first traversal order.

If the simulation method could not guarantee to have a set

of complete prefixes with a specific length, we should use

Pk={ε} and k=0 in the corresponding MC.

C. Computing Alignment Cost Bounds and Approximation

In this stage, for each variant σ∈L, we compute the

bounds and an approximation for its alignment cost based

on a model characterization MC=(SL, Pk, k,Ms) which can

be produced by any simulation method. Thus, the proposed

approach is independent of the process model notation and

the simulation method to provide bounds and approximation

values. Here, we first explain how to compute the upper and

lower bounds; then, the approximation method is described.

Upper bound: For the upper bound of the alignment cost,

we compute UB(MC,σ)=Γ(σ, SL). It is shown in [6] that

Γ(σ, SL)≥Γ(σ,M) as Γ returns the distance of the most

similar trace and SL⊆M . In the following, we prove that if

k≥2×|σ|+Ms, then Γ(σ, SL) returns the optimal alignment.

Note that by having Pk, SL contains all the model traces with

length less or equal to k.

Lemma 1 (Maximum required length of prefixes):
We know that Γ(σ,M)≤|σ|+Ms. Suppose that σ′m∈M
corresponds to the optimal alignment of σ, i.e.,

Γ(σ,M)=
(σ, σ′m). Therefore,
(σ, σ′m)≤|σ|+Ms and

according to Definition 3, |σ|+|σ′m|−2×|ω(σ, σ′m)|≤|σ|+Ms.

Note that the maximum length of the longest common

subsequence of two sequences is at most the length of the

shorter sequence. Thus, in the worst case, |σ′m|≤2×|σ|+Ms.

Therefore, the length of the model trace corresponds to the

optimal alignment of trace σ should be less or equals to

2×|σ|+Ms. In other words, if k≥2×max
σ∈L

(|σ|)+Ms, we re-

turn the actual fitness value using SL.

Lower bound: For the lower bound, we use the maximum

value of three values, i.e., LB(MC,σ)=Max(lb1, lb2, lb3).
let A′⊆A be the set of all activities in the model,

lb1(MC,σ)=|σ|−|σ�A′ | where σ �A′ is a projection of se-

quence σ on activities in set A′. It means if we have some

activities in the trace that are not present in the model, we

can easily consider them as asynchronous moves. Moreover,

as discussed in [6], lb2(MC,σ)=max(Ms−|σ �A′ |, 0) is a

lower bound for the optimal alignment cost that is useful

if the length of the trace is shorter than the shortest path

in the model. Note that both lb1 and lb2 are independent

from the simulation result. Finally, we compute the third

lower bound as lb3(MC,σ)=Γ(hd(σ, k), Pk). As we have all

possible prefixes of model M with length less or equal to

k in Pk, lb3 computes the minimum number of edits that

is required to have a valid prefix for trace σ. As ε∈Pk, we

always have 0≤lb3(MC,σ)≤min(k, |σ|). All lb1, lb2 and lb3
are valid lower bounds for the actual alignment cost; therefore,

we use the highest number to have a tighter bound.

Approximation: In both SL and L, because of the presence

of loops in the process, it is possible that a subsequence is

108

Table I: Result of using the proposed approximation method for the event log that is given in Figure 1, using model

characterization MC=({〈a, b, e〉}, {ε, 〈a〉, 〈a, b〉, 〈a, c〉}, 2, 3}.
Trace/ Event Log Γ(σ,M) Γ(σ, SL) Actual Fitness Lower Bound Fitness Upper Bound Fitness Approximated Fitness Frequency

〈a, b, c, e〉 0 1 1.0 0.857 1.0 0.857 10

〈a, e〉 1 1 0.8 0.8 0.8 0.8 4

〈a, c, b, d, e〉 1 2 0.875 0.75 1 0.75 3

〈a, b, e〉 0 0 1 1 1 1 2

〈d, e〉 3 3 0.6 0.4 0.6 0.4 1

L ∼ ∼ 0.921 0.821 0.94 0.821 ∼

present several times in a trace. The repetitive patterns increase

the number of unique behaviors which leads to inaccurate

approximations considering a constant MC. We define the

repetitive patterns of a sequence as follows.

Definition 6 (Repetitive Patterns): Let σ∈X∗ be a sequence.

Given a non-empty strict subsequence σ′�σ, we call σ′ a

repetitive pattern if σ′·σ′�σ. Moreover, we define function

λ:X∗→P(X∗) that receives a sequence and returns the set of

all repetitive patterns in it.

For instance, we have λ(〈a, d, d, d, d, e〉)={〈d〉, 〈d, d〉} and

λ(〈a, f, g, f, g, e〉)={〈f, g〉}.
To deal with the problem of the existence of repetitive

patterns, we propose to compress sequences and keep only

one repetition of repetitive patterns. The sequence compression

function is defined as follows.

Definition 7 (Sequence Compression): Let σ′ be a repet-
itive pattern of σ and σ=σ1·σ′..σ′·σ2. We say that σc is a

compression of σ by σ′ if σc=σ1·σ′·σ2·. Moreover, we define

sequence compression function θ:(X∗\{ε})×(X∗\{ε})→X∗

is a function such that θ(σ, σ′)=σc.

Therefore, if θ(σ, σ′)=σc, then σ′ �∈λ(σc). For example,

θ(〈a, d, d, d, d, e〉, 〈d〉)=〈a, d, e〉.
To approximate the alignment cost, we consider both

original and compressed traces of the simulated log

and the original event log. Therefore, we compute

Apx(MC,σ)= min
σ”∈{θ(σ,σ′)|σ′∈λ(σ)}

(Γ(σ”, SL∪SLc)). How-

ever, by compressing the traces, it is possible to remove

some asynchronous moves which causes to have approxi-

mated alignment cost smaller than the lower bound. There-

fore, if the computed Apx(MC,σ)<LB(MC,σ), we use

Apx(MC,σ)=LB(MC,σ)+UB(MC,σ)
2 .

To compute the fitness bounds and approximation for traces,

UB, Apx, and LB values should be used instead of Γ(σ,M)

in Equation 1, e.g., fitnessLB(MC,σ)=UB(MC,σ)
|σ|+Ms

. To com-

pute the lower bound for the fitness we need to use UB and to

have the fitness upper bound, LB should be used. Moreover,

to have fitness bounds and approximation for an event log

and a model characterization, we use the weighted average of

values for the variants in the event log similar to Equation 2,

e.g., FitnessApx(L,MC) =

∑

σ∈L

L(σ)×fitnessAPX(MC,σ)

∑

σ∈L

L(σ) .

In Table I, the computed bounds and the approximated

fitness value for each variant and the overall event log of

Figure 1 is given based on having only one simulated trace and

k=2, i.e., MC=({〈a, b, e〉}, {ε, 〈a〉, 〈a, b〉, 〈a, c〉}, 2, 3}. The

approximated fitness is 0.821 and the proposed fitness bounds

are 0.94 and 0.821. By increasing |SL|, we expect to have

Table II: The real event logs that are used in the experiment.

Artificial start and end activities are inserted in all the traces.

Event Log Activities# Traces# Variants#
BPIC-2012 [26] 25 13087 4336

BPIC-2017 [27] 28 31509 15930

BPIC-2018-Inspection [28] 17 5485 3190

BPIC-2019 [29] 44 251734 11973

Hospital-Billing [30] 20 100000 1020

RTFM [31] 13 150370 231

Sepsis [32] 18 1050 846

more accurate approximations and bounds. Furthermore, using

the δ function, we find the number of asynchronous moves for

each activity which is 1 for a, 2 for b, c, and d, and 0 for e.

V. EVALUATION

In this section, we aim to explore the accuracy and the

performance of the proposed method. We first explain the

implementation and the experimental setting. Thereafter, the

experimental results and a discussion of results are provided.

A. Implementation

To apply the proposed conformance approximation method,

we implemented the Conformance Approximation using Sim-
ulation plug-in in the ProM framework1 [7]. It takes an

event log and a process model as inputs and returns the

conformance approximation, its bounds, and the deviation

rates of different activities. In this implementation, we consider

a Petri net representation. However, other notations can be

supported using our proposed method. The given Petri net can

have silent transitions or duplicate labels, however, it should

be sound. The user is able to adjust the maximum number

of the simulated traces. Another parameter of this plug-in

is the maximum length of subsequence in computation of

probabilities according to Equation 3.

To apply the method on various event logs with different

parameters, we ported the developed plug-in to RapidProM,

i.e., an extension of RapidMiner and combines scientific

work-flows with a several process mining algorithms [8].

B. Experimental Setup

We applied the proposed methods on seven different real

event logs. Some information about these logs is given in

Table II. To discover models, we used the Inductive miner [33]

with infrequent thresholds equal to 0.2, 0.3, 0.5, and 0.7.

In the first experiment, we compared the proposed method

with the sampling method [6] that generates a subset of model

traces by alignment computation of some traces in the event

log. Here, we use its default setting, i.e., computing alignment

1svn.win.tue.nl/repos/prom/Packages/LogFiltering and http://www.
promtools.org/doku.php

109

Table III: Comparison of approximating the conformance checking using the proposed simulation method and the sampling

method that is proposed in [6]. For the sampling method, we selected the 10% of the most frequent variants in the event logs

and for the simulation method, we used |SL| equal to the generated model traces by the sampling method.

of 10% of the most frequent variants. However, the generated

model traces using this method could be less than the number

of computed alignments. Therefore, we use the simulation

method with |SL| equal to the number of unique model

behaviors that are generated by sampling method.

In the second experiment, we analyse the effect of changing

the simulation parameters on the accuracy and performance

of the proposed method. Therefore, we used the simula-

tion method with |SL| equals to 100, 500, and 1000 and

the subsequence length equals 1, 2, 3, and 4. Moreover, in

the last experiment, we compared the proposed simulation

method, with a random simulation method. In this regard, we

used the subsequence length equal to 2 and |SL| equal to

10, 50, 100, 500, 1000, and 10000 for Sepsis event log.

In all the experiments and for all methods, we used one

thread of CPU. Moreover, each experiment was repeated four

times, since the conformance checking and simulation times

are not deterministic, and the average values are shown. For

computing the normal conformance checking, we used the

method that is proposed in [34].

To evaluate whether the proposed simulation method is

able to improve the performance of the conformance checking

process, we measure PI= Normal Conformance Time
Approximated Conformance Time

. In this

formula, a higher PI value means conformance is computed

in less time. As both approximation methods need a prepro-

cessing phase (e.g., traversing the event log and computing a

subset of model behaviors), we compute PI considering the

preprocessing time.

The approximation error, i.e., the difference between ap-

proximated fitness value and the actual fitness value shows

how the accuracy of approximation that is computed by

AppxErr=|ActualF itness−AppxFitness|. Also, we mea-

sure the bound width of an approximation by computing

BoundWidth=UBFitness−LBFitness. A tighter bound

width means we have more accurate bounds.

C. Experimental Result and Discussion
In Table III, we show how different approximation methods

improve the performance of conformance checking. For both

sampling and simulation methods, in most of the cases, we

have improvement in the performance of conformance check-

ing (i.e., PI>1). This improvement for the simulation method

is much higher in all the the cases. It is mainly because,

the required time to generate model traces is less than using

alignments. When we have complex process models and large

event logs, the improvement is higher. However, in these cases,

we have a higher approximation error and the provided bounds

are not accurate enough. However, the provided bounds for

the conformance value are always worse when the simulation

method is used. It is because, the sampling method knows the

exact conformance values of the 10% of the most frequent

variants. Due to a Pareto-line distribution a small number of

variants may account for a large number of traces.

110

Table IV: Analysing the effect of the simulation size on the

approximation time and the accuracy results. Here, the average

value are shown when the subsequence length for computing

probabilities equals to 2 and IMi=0.2.

The result shows that we are able to have more accurate

approximations using the simulation method specifically when

we have more precise process models (that are discovered

using a higher threshold in the Inductive miner) even with

just few simulated traces. Note that the corresponding model

behavior for alignment of several variants may be similar.

Therefore, the sampling method usually generates fewer model

traces compared to the number of computed alignments. For

example, for RFTM event log and process model that is

discovered using IMi=0.7, it computed alignments of 24
variants to generate 6 model traces.

For some logs, none of the methods are able to provide

accurate bounds (with the applied setting). Specifically, when

the process model is imprecise, the output of the proposed

method is not accurate. The simulation of an imprecise process

model usually generates many behaviors that may be far from

variants that are in the event log. Thus, the provided bounds

are far from each other which is a limitation of our method. To

have more accurate results in these cases, we should simulate

more traces that decrease the performance improvement.

In the next experiment, we analyze the effect of the number

of simulated traces on the simulation and approximation times

and the accuracy of the approximation. In this experiment, we

considered subsequences in Equation 3 equals to 2 and used

the process models with threshold equals to 0, 2.

The results of this experiment are shown in Table IV. The

results indicate that increasing the size of |SL| increases the

required time for simulation and finding the distance of the

most similar trace (i.e., the Approximation time). Results show

that for some event logs which have simple structured process

models, e.g., RTFM, even with 100 simulated traces, we are

able to detect accurate conformance value. Moreover, for some

Table V: Comparison of using the proposed simulation method

with random simulation technique [6] for Sepsis event log

when the Inductive miner with threshold 0.2 is used.

event logs, it is not possible to generate the specified number

of unique model traces, which is the reason that PI does

not decrease as expected. Also, by increasing the size of the

simulated traces, we provide more accurate approximations

and bounds. Therefore, the user is able to trade-off between the

performance improvement and accuracy of the approximated

value by adjusting this parameter. We also conducted a similar

experiment for analyzing the effects of changing the length of

subsequences when we compute probabilities. We found that

this parameter has no significant impact on the performance of

the proposed method. However, when |SL| is low, the length

of subsequence affects the accuracy of approximation value

and the provided bounds.

Finally, we analyzed the effect of considering log behaviors

in the simulation process on the accuracy of provided confor-

mance approximation and its bounds. As the base line, we used

the random simulation method that was originally proposed

by [35] and used for conformance checking approximation in

[6]. The results of this experiment are presented in Table V

which show that the proposed method detects more accurate

approximation and bounds. Also, the random sampling method

is faster than our method. It is because there is no need to

have a probability computation in this method and also it may

generate traces that are already presented in SL.

VI. CONCLUSION

In this paper, we proposed an approximation method for

computing conformance values including providing upper and

lower bounds based on process model simulation. We consider

a process model as a set of all possible behaviors than can be

executed by the process. This assumption allows us to obtain

conformance checking results even for the cases that we do

not have a descriptive process model. Using the simulation

method, we generate a subset of the model’s behaviors. We

guide the simulation method to generate traces that are more

similar to the recorded behaviors in the event log. We apply

these simulated traces for approximating the conformance

value using the edit distance function. Moreover, the method

provides lower and upper bounds for the approximated value

based on the seen simulated behaviors.

To evaluate the proposed method, we implemented our

technique using both ProM and RapidProM and applied our

implementation to seven real event logs and 28 discovered

111

process models. The results show that the proposed method

is able to decrease the conformance checking computation

time and simultaneously find approximated values close to the

actual alignment value. We found that when the process model

is imprecise, the accuracy of the approximation degrades.

Furthermore, experiments show that considering behaviors in

the event log in simulation improves the accuracy of the

approximation value and bounds compared to the case that

a process model is simulated randomly.

As future work, we aim to provide a platform in which gives

us qualitative feedback in a faster way. Moreover, it is possible

to provide an incremental approximation tool that increases the

number of simulated traces incrementally and lets the end-user

decide when the accuracy is enough.

ACKNOWLEDGMENT

We thank the Alexander von Humboldt (AvH) stiftung for

funding this research.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second
Edition. Springer Berlin Heidelberg, 2016.

[2] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. van Dongen, and
W. M. P. van der Aalst, “Alignment based Precision Checking,” in
International Conference on Business Process Management. Springer,
2012, pp. 137–149.

[3] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and W. M.
van der Aalst, “Online conformance checking: relating event streams to
process models using prefix-alignments,” International Journal of Data
Science and Analytics, pp. 1–16, 2017.

[4] M. De Leoni and W. M. van der Aalst, “Data-aware process mining:
discovering decisions in processes using alignments,” in Proceedings of
the 28th annual ACM symposium on applied computing. ACM, 2013,
pp. 1454–1461.

[5] D. Fahland and W. M. P. van der Aalst, “Model Repair—Aligning
Process Models to Reality,” Information Systems, vol. 47, pp. 220–243,
2015.

[6] M. Fani Sani, S. J. van Zelst, and W. M. P. van der Aalst,
“Conformance Checking Approximation Using Subset Selection and
Edit Distance,” in Advanced Information Systems Engineering -
32nd International Conference, CAiSE 2020, Grenoble, France, June
8-12, 2020, Proceedings, 2020, pp. 234–251. [Online]. Available:
https://doi.org/10.1007/978-3-030-49435-3 15

[7] W. M. P. van der Aalst, B. van Dongen, C. W. Günther, A. Rozinat,
E. Verbeek, and T. Weijters, “ProM: The Process Mining Toolkit,” BPM
(Demos), vol. 489, no. 31, 2009.

[8] W. M. P. van der Aalst, A. Bolt, and S. van Zelst, “RapidProM: Mine
Your Processes and Not Just Your Data,” CoRR, vol. abs/1703.03740,
2017.

[9] M. Elhagaly, K. Drvoderić, R. G. Kippers, and F. A. Bukhsh, “Evolution
of Compliance Checking in Process Mining Discipline,” in 2019 2nd
International Conference on Computing, Mathematics and Engineering
Technologies (iCoMET). IEEE, 2019, pp. 1–6.

[10] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking. Springer, 2018.

[11] A. Rozinat and W. M. van der Aalst, “Conformance checking of
processes based on monitoring real behavior,” Information Systems,
vol. 33, no. 1, pp. 64–95, 2008.

[12] W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen,
“Replaying history on process models for conformance checking
and performance analysis,” Wiley Interdiscip. Rev. Data Min. Knowl.
Discov., vol. 2, no. 2, pp. 182–192, 2012. [Online]. Available:
https://doi.org/10.1002/widm.1045

[13] W. M. van der Aalst, “Decomposing Petri nets for process mining: A
generic approach,” Distributed and Parallel Databases, vol. 31, no. 4,
pp. 471–507, 2013.

[14] J. Munoz-Gama, J. Carmona, and W. M. van der Aalst, “Single-entry
single-exit decomposed conformance checking,” Information Systems,
vol. 46, pp. 102–122, 2014.

[15] H. M. W. Verbeek, W. M. P. van der Aalst, and J. Munoz-Gama, “Divide
and Conquer: A Tool Framework for Supporting Decomposed Discovery
in Process Mining,” Comput. J., vol. 60, no. 11, pp. 1649–1674, 2017.
[Online]. Available: https://doi.org/10.1093/comjnl/bxx040

[16] D. Schuster and S. J. van Zelst, “Online Process Monitoring Using
Incremental State-Space Expansion: An Exact Algorithm,” in BPM
2020, Proceedings, ser. Lecture Notes in Computer Science. Springer,
2020. [Online]. Available: https://sebastiaanvanzelst.com/wp-content/
uploads/2020/06/2020 bpm schuster zelst incremental alignments.pdf

[17] S. J. J. Leemans and A. Polyvyanyy, “stochastic-aware conformance
checking: An entropy-based approach.”

[18] T. Nolle, A. Seeliger, N. Thoma, and M. Mühlhäuser, “Deepalign:
Alignment-based process anomaly correction using recurrent neural net-
works,” in International Conference on Advanced Information Systems
Engineering. Springer, 2020, pp. 319–333.

[19] F. Taymouri and J. Carmona, “A recursive paradigm for aligning
observed behavior of large structured process models,” in International
Conference on Business Process Management. Springer, 2016, pp.
197–214.

[20] M. Bauer, H. van der Aa, and M. Weidlich, “Estimating Process
Conformance by Trace Sampling and Result Approximation,” pp. 179–
197, 2019.

[21] L. Padró and J. Carmona, “Approximate Computation of Alignments
of Business Processes Through Relaxation Labelling,” in International
Conference on Business Process Management. Springer, 2019, pp.
250–267.

[22] A. Rozinat, M. T. Wynn, W. M. P. van der Aalst, A. H. M. ter
Hofstede, and C. J. Fidge, “Workflow simulation for operational
decision support,” Data Knowl. Eng., vol. 68, no. 9, pp. 834–850,
2009. [Online]. Available: https://doi.org/10.1016/j.datak.2009.02.014

[23] A. Rogge-Solti, R. S. Mans, W. M. P. van der Aalst, and M. Weske,
“Improving Documentation by Repairing Event Logs,” in IFIP Working
Conference on The Practice of Enterprise Modeling. Springer, 2013,
pp. 129–144.

[24] M. Camargo, M. Dumas, and O. G. Rojas, “Automated discovery
of business process simulation models from event logs,” vol.
abs/1910.05404, 2019. [Online]. Available: http://arxiv.org/abs/1910.
05404

[25] M. Pourbafrani, S. J. van Zelst, and W. M. P. van der Aalst,
“Scenario-Based Prediction of Business Processes Using System
Dynamics,” in On the Move to Meaningful Internet Systems:
OTM 2019 Conferences - Confederated International Conferences:
CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, October 21-
25, 2019, Proceedings, 2019, pp. 422–439. [Online]. Available:
https://doi.org/10.1007/978-3-030-33246-4 27

[26] Van Dongen, B.F. (Boudewijn), “BPI Challenge 2012,”
2012. [Online]. Available: https://data.4tu.nl/repository/uuid:
3926db30-f712-4394-aebc-75976070e91f

[27] Van Dongen, B.F., “BPIC 2017. Eindhoven University of
Technology,” 2017. [Online]. Available: https://doi.org/10.4121/uuid:
5f3067df-f10b-45da-b98b-86ae4c7a310b

[28] Van Dongen, B.F. (Boudewijn) and Borchert, F. (Florian),
“BPI Challenge 2018,” 2018. [Online]. Available: https:
//data.4tu.nl/repository/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

[29] Van Dongen, B.F. (Boudewijn), “BPI Challenge 2019,”
2019. [Online]. Available: https://data.4tu.nl/repository/uuid:
d06aff4b-79f0-45e6-8ec8-e19730c248f1

[30] F. Mannhardt, “Hospital billing-event log,” Eindhoven University of
Technology. Dataset, pp. 326–347, 2017.

[31] M. De Leoni and F. Mannhardt, “Road traffic fine management process,”
Eindhoven University of Technology. Dataset, 2015.

[32] F. Mannhardt, “Sepsis cases-event log. Eindhoven University of
Technology,” 2016. [Online]. Available: https://doi.org/10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460

[33] S. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
Block-Structured Process Models from Event Logs Containing Infre-
quent Behaviour,” in BPI, 2014, pp. 66–78.

[34] B. F. van Dongen, “Efficiently Computing Alignments - Algorithm and
Datastructures,” in Business Process Management Workshops - BPM
2018 International Workshops, Sydney, NSW, Australia, September 9-
14, 2018, Revised Papers, 2018, pp. 44–55.

[35] A. Rogge-Solti and M. Weske, “Prediction of business process durations
using non-Markovian stochastic Petri nets,” vol. 54, 2015, pp. 1–14.
[Online]. Available: https://doi.org/10.1016/j.is.2015.04.004

112

