
A General Framework for Action-Oriented
Process Mining

Gyunam Park and Wil M.P. van der Aalst

Process and Data Science Group (PADS), Department of Computer Science,
RWTH Aachen University, Aachen, Germany
{gnpark,wvdaalst}@pads.rwth-aachen.de

Abstract. Process mining provides techniques to extract process-centric
knowledge from event data available in information systems. These tech-
niques have been successfully adopted to solve process-related problems
in diverse industries. In recent years, the attention of the process mining
discipline has shifted to supporting continuous process management and
actual process improvement. To this end, techniques for operational sup-
port, including predictive process monitoring, have been actively studied
to monitor and influence running cases. However, the conversion from
insightful diagnostics to actual actions is still left to the user (i.e., the
“action part” is missing and outside the scope of today’s process mining
tools). In this paper, we propose a general framework for action-oriented
process mining that supports the continuous management of operational
processes and the automated execution of actions to improve the process.
As proof of concept, the framework is implemented in ProM.

Key words: action-oriented process mining, continuous operational
management, insights turned into actions, process improvement

1 Introduction
Process mining aims to discover, monitor, and improve business processes by ex-
tracting knowledge from event logs available in information systems [1]. Process
mining techniques enable business managers to better understand their processes
and gather insights to improve these processes. They are successfully deployed
by a range of industries, including logistics, healthcare, and production [2].

Nowadays, attention in the process mining discipline is shifting to supporting
continuous process management [2]. In order to manage operational processes
properly, it is imperative to apply process mining techniques in a repetitive
manner, rather than focusing on making a one-time report of process mining
diagnostics. This repetitive application enables not only the identification of
more relevant problems at stake, but also the continuous improvement of opera-
tional processes in a dynamically changing environment. The one-time report is
likely to present less relevant problems in the current situation, failing to handle
newly-introduced problems.

Online operational support techniques in process mining aim at enabling the
continuous management of operational processes [1]. To that end, they continu-

https://orcid.org/0000-0001-9394-6513
https://orcid.org/0000-0002-0955-6940


2 Gyunam Park and Wil M.P. van der Aalst

ously monitor and analyze cases that are still running, intended for controlling
the problematic process instances [3, 4]. These techniques have been effective in
extracting practical diagnostics into performance and compliance problems [1].
However, they do not suggest how the diagnostics are exploited to achieve actual
improvements in the operational processes.

For the actual process improvement, it is necessary to convert the insights
from process mining diagnostics to management actions. For example, when a
bottleneck emerges or is expected to occur, one should take actions, such as
assigning more resources, alerting managers, and finding bypassing routes, to
mitigate the risk caused by the problem. To fill the gap between the diagnostics
and the improvement actions, in this paper, we propose a general framework for
action-oriented process mining. This framework supports the continuous mon-
itoring of operational processes and the automated execution of actions to im-
prove the processes based on the monitoring results (i.e., diagnostics).

Fig. 1: Overview of the general framework for action-oriented process mining

Figure 1 shows an overview of the proposed framework. By analyzing the con-
tinuously updated event data (i.e., event stream), the constraint monitor evalu-
ates a set of constraints that are defined with various diagnostics. As a result, it
generates a constraint instance stream that is the description of monitoring re-
sults. By analyzing this constraint instance stream, the action engine assesses the
necessity of actions and generates the actions ranging from process-level valves,
instance-level adaptors, and alerts, as described in Fig. 1 with representative
examples.

In order to advocate the effectiveness of the proposed framework on the
continuous process management and the actual process improvement, it has been
instantiated as a ProM plug-in. In addition, we have tested the implementation
on an information system that supports a simulated order handling process. The



A general framework for Action-Oriented Process Mining 3

details of implementation and the information system are publicly available via
https://github.com/gyunamister/ActionOrientedProcessMining.

The remainder is organized as follows. We first present a motivating example
in Sect. 2. Next, we explain the preliminaries and the general framework for
action-oriented process mining in Sect. 3 and Sect. 4. Afterward, Sect. 5 and
Sect. 6 present the implementation of the framework and experiments as a proof
of concept. Sect. 6 discusses the related work, and Sect. 7 concludes the paper.

2 Motivating example

Suppose we are operation managers in an e-commerce company like Amazon,
responsible for an order handling process, where four main object types (i.e.,
order, item, package, and route) exist in the process as shown in Fig. 2a. Note
that we do not assume a single case notion as in traditional process mining in
the proposed framework. Instead, using the principles of object-centric process
mining [5], we consider multiple object types and interacting processes. It is
indispensable for acquiring precise diagnostics and deploying the framework at
the enterprise level where multiple processes with different object types interact
with each other.

Fig. 2: Data model and the discovered process model of the order handling
process. The discovered process model shows that check availability happens
redundantly.

As operation managers, we analyze the event data using different process
mining techniques. As an example, we discovered the process model shown in
Fig. 2b where the arcs correspond to the specific object types. Interpreting the
discovered process model, we observe that the activity, check availability, is re-
dundantly repeated for some items, which should not happen according to a
business rule and its negative effects on the overall operational performance.
For the continuous management of this problem, we define a constraint C1 as
follows:

– C1: there must be no more than one “check availability” for each item.

https://github.com/gyunamister/ActionOrientedProcessMining


4 Gyunam Park and Wil M.P. van der Aalst

Afterward, we put it into the repository of constraints and let the constraint
monitor evaluate if any item violates or is predicted to violate the constraint
every morning (e.g., at 9 AM).

We consider that it is highly risky to have more than 10 items violating or
predicted to violate C1 at any point in time, and in case this situation happens,
it is most efficient to notify a case manager. Thus, we analyze the monitoring
results every morning and take the following action to mitigate the risk:

– A1: If there exist more than 10 (possibly) violated items, send an e-mail to
the case manager to warn for bad consequences.

This example shows how the insights from process discovery transform into
mitigating actions (i.e., alerting a case manager). The proposed framework sup-
ports this process of insights turned into actions by continuously monitoring
the violations and automatically generating proactive actions. In the following
sections, we explain the major components of the framework, i.e., constraint
monitor and action engine, using the above example as a running example.

3 Event data

In this section, we introduce the basic concepts, including event streams, time
windows, and time moments.

Real-life processes often have multiple candidate identifiers, as shown in Sect.
2. To enable precise analysis and enterprise-wide adoption of the proposed frame-
work, we use a more realistic event data notion where multiple case notions (e.g.,
order, item, etc) may coexist. Each event may refer to different objects from dif-
ferent object classes. Note that a conventional event log is a special case of this
event data notion; hence one can use the proposed framework with the conven-
tional event logs.

Definition 1 (Universes). We define the following universes to be used in this
paper:

– Uei is the universe of event identifiers
– Uproc is the universe of process identifiers,
– Uact is the universe of activities,
– Ures is the universe of resources,
– Utime is the universe of timestamps,
– Uoc is the universe of object classes,
– Uoi is the universe of object identifiers,
– Uomap = Uoc ↛ P(Uoi) is the universe of object mappings where, for omap ∈
Uomap, we define omap(oc) = ∅ if oc /∈ dom(omap),

– Uattr be the universe of attribute names,
– Uval the universe of attribute values,
– Uvmap = Uattr ↛ Uval is the universe of value mappings where, for vmap ∈
Uvmap, we define vmap(attr) =⊥ if attr /∈ dom(vmap).



A general framework for Action-Oriented Process Mining 5

– Uevent = Uei ×Uproc ×Uact ×Ures ×Utime ×Uomap ×Uvmap is the universe of
events.

We assume these universes are pairwise disjoint, e.g., Uei ∩ Uproc = ∅.

Each row in Table 1 shows an event of the order handling process introduced
in Sect.2.

Event
identifier

Process
identifier

Activity
name

Resource
name Timestamp Objects involved Attribute

Order Item Package Route Type
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
746 OH place order Jane 01-01-2020 09:55 {o7} {i8, i9} ∅ ∅ Gold
747 OH check availability Jansen 01-01-2020 10:15 {o7} {i8} ∅ ∅
748 OH pick item Kevin 01-01-2020 11:55 {o7} {i8} ∅ ∅
749 OH check availability Matthias 01-01-2020 17:55 {o7} {i9} ∅ ∅
750 OH check availability Jansen 01-01-2020 19:05 {o7} {i9} ∅ ∅
751 OH pick item Kevin 01-01-2020 19:55 {o7} {i9} ∅ ∅
752 OH place order System 02-01-2020 09:15 {o8} {i10} ∅ ∅ Silver
753 OH pack items Robin 02-01-2020 15:05 {o7} {i8, i9} {p8} ∅
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: A fragment of event data where each line corresponds to an event

Definition 2 (Event Projection). Given an event e = (ei, proc, act, res, time,
omap, vmap) ∈ Uevent, πei(e) = ei, πproc(e) = proc, πact(e) = act, πres(e) =
res, πtime(e) = time, πomap(e) = omap, and πvmap(e) = vmap.

Let e746 be the first event depicted in Table 1. πei(e746) = 746, πproc(e746) =
OH, πact(e746) = place order, πres(e746) = Jane, πtime(e746) = 01-01-2020 09:55,
πomap(e746)(Order) = {o7}, πomap(e746)(Item) = {i8, i9}, and πvmap(e746)(Type) =
Gold.

We adopt the notion of online event stream-based process mining, in which
the data are assumed to be an infinite collection of unique events. An event
stream is a collection of unique events that are ordered by time.

Definition 3 (Event Stream). An event stream S is a (possibly infinite) set
of events, i.e., S ⊆ Uevent such that ∀e1,e2∈S πei(e1) = πei(e2) =⇒ e1 = e2. We
let Ustream denote the set of all possible event streams.

A time window indicates the range of time to be analyzed.

Definition 4 (Time Window). A time window tw = (ts, te) ∈ Utime × Utime

is a pair of timestamps such that ts ≤ te. Given a time window tw = (ts, te),
πstart(tw) = ts and πend(tw) = te. Utw is the set of all possible time windows.

A time moment represents the time when we start analyzing processes and
the time window that the analysis addresses.

Definition 5 (Time Moment). A time moment tm = (t, tw) ∈ Utime ×Utw is
a pair of a timestamp t and a time window tw such that t ≥ πend(tw). Given
tm = (t, tw), we indicate πt(tm) = t and πtw(tm) = tw. Utm is the set of all
possible time moments.



6 Gyunam Park and Wil M.P. van der Aalst

4 A General Framework for Action-oriented Process
Mining

The proposed framework is mainly composed of two components. Firstly, the
constraint monitor converts an event stream into a constraint instance stream
where each constraint instance describes the (non) violation of a constraint. Sec-
ond, the action engine transforms the constraint instance stream into an action
instance stream where each action instance depicts a transaction to be executed
by the information system to mitigate the risks caused by the violations.

4.1 Constraint Monitor

Each (non) violation of a constraint has a context where it occurs. For instance,
C1 in Sect. 2 could be violated by item i9, which is a part of an order by a
Gold customer in the process OH, when processed by Joe for the activity check
availability.

Definition 6 (Context). A context ctx ∈ P(Uproc) × P(Uact) × P(Ures) ×
Uomap × Uvmap is a tuple of a set of process identifiers Proc, a set of activ-
ities Act, a set of resources Res, an object mapping omap, and a value mapping
vmap. Uctx is the set of all possible contexts.

The above context is denoted as ctx1 = ({OH}, {check availability}, {Joe},
omap1, vmap1), where omap1(Item) = {i9} and vmap1(Type) = Gold.

Given an event stream and a time window, the constraint formula evaluates
if violations happen in a specific context by analyzing the events in the event
stream, which are relevant to the time window.

Definition 7 (Constraint Formula). We define Uoutc = {OK,NOK} to be
the universe of outcomes. cf ∈ (Ustream×Utw) → P(Uctx×Uoutc) is a constraint
formula. Ucf is the set of all possible constraint formulas.

Suppose cf1 is instantiated to evaluate the constraint described in C1 of the
motivating example. Given the event stream S that contains events listed in
Table 1 and time window tw1 = (01-01-2020 09:00, 02-01-2020 09:00), it evaluates if
any item in the time window experience more than one check availability. Since
there are two check availability for item i9, (ctx1, NOK) ∈ cf1(S, tw1).

In this paper, we do not assume specific approaches to instantiate the con-
straint formula. Several approaches are proposed in the field of process mining,
including conformance checking techniques [6] and rule-driven approaches based
on Petri-net patterns [7] and Linear Temporal Logic [8] (see also Sect.7)

A constraint consists of a constraint formula and a set of time moments,
where the former explains what to monitor, and the latter specifies when to
monitor.

Definition 8 (Constraint). A constraint c = (cf, TM) ∈ Ucf × P(Utm) is a
pair of a constraint formula cf and a set of time moments TM . Uc is the set of
all possible constraints.



A general framework for Action-Oriented Process Mining 7

Suppose c1 = (cf1, TM1) where (02-01-2020 09:00, (01-01-2020 09:00, 02-01-2020 09:00)) ∈
TM1. For instance, we evaluate cf1 at 02-01-2020 09:00 with the events related to
time window (01-01-2020 09:00,02-01-2020 09:00).

A constraint instance specifies when and whether a violation happens in a
certain context by a constraint formula.

Definition 9 (Constraint Instance). A constraint instance ci ∈ Ucf ×Uctx ×
Utime × Uoutc is a tuple of a constraint formula cf , a context ctx, a timestamp
time, and an outcome outc. Uci is the set of all possible constraint instances.

For instance, a constraint instance ci1 = (cf1, ctx1, 02-01-2020 09:00, NOK) de-
notes that cf1 is violated at 02-01-2020 09:00. in context ctx1.

A constraint instance stream is a collection of unique constraint instances.

Definition 10 (Constraint Instance Stream). A constraint instance stream
CIS is a (possibly infinite) set of constraint instances, i.e., CIS ⊆ Uci. UCIS is
the set of all possible constraint instance streams.

Given an event stream, a constraint monitor evaluates a set of constraints
and generates a constraint instance stream.

Definition 11 (Constraint Monitor). Let C ⊆ Uc be a set of constraints to be
used for monitoring. cmC ∈ Ustream → UCIS is the constraint monitor such that,
for any S ∈ Ustream, cmC(S) = {(cf, ctx, time, outc) ∈ Uci|∃TM,tm (cf, TM) ∈
C ∧ tm ∈ TM ∧ time = πt(tm) ∧ (ctx, outc) ∈ cf(S, πtw(tm))}.

Note that the definition of a constraint monitor is abstracted in a way that
we are able to analyze future events. In reality, it analyzes only the historical
events from an event stream and outputs the constraint instance stream relevant
to them.

4.2 Action Engine

The action engine aims at producing an action instance stream describing trans-
actions that source information systems need to execute to mitigate the risk
incurred by the constraint violations.

Definition 12 (Transaction). Let Uop be the universe of operations that
are executed by information systems (e.g., send emails). A transaction tr =
(op, vmap) ∈ Uop ×Uvmap is a pair of an operation op and a parameter mapping
vmap. Utr ⊆ Uop × Uvmap denotes the set of all possible transactions.

For instance, the action description A1 in Sect. 2 represents a transac-
tion, tr1=(send-an-email,vmap′) where vmap′(recipient)=“case manager” and
vmap′(message) = “Frequent violations of C1”.

Given a constraint instance stream and a time window, the action formula
produces required transactions by analyzing the constraint instances in the con-
straint instance stream, which are relevant to the time window.



8 Gyunam Park and Wil M.P. van der Aalst

Definition 13 (Action Formula). An action formula af ∈ (UCIS × Utw) →
P(Utr) is a function that maps a constraint instance stream and time window to
a set of transactions. Uaf is the set of all possible action formulas.

Assume af1 to assess the condition that is specified by the action description
A1 in Sect. 2, and to produce the corresponding transaction. Given constraint
instance stream CIS and time window tw1 = (01-01-2020 09:00, 02-01-2020 09:00), it
assesses if there exist more than 10 constraint instances whose outcomes are
“NOK” in the time window. If so, tr1 = (send-an-email, vmap′) ∈ af(CIS, tw1).

An action consists of an action formula and a set of time moments. The
action formula specifies which transactions to generate in which conditions, and
the set of time moments indicates when to assess the conditions and to generate
transactions.

Definition 14 (Action). An action a = (af, TM) ∈ Uaf ×P(Utm) is a pair of
an action formula af and a set of time moments TM . Ua denotes the set of all
possible actions.

Suppose a1 = (af1, TM1) where (02-01-2020 09:00, (01-01-2020 09:00, 02-01-2020 09:00)) ∈
TM1. We implement af1 at 02-01-2020 09:00 with the constraint instances related
to time window (01-01-2020 09:00,02-01-2020 09:00).

An action instance indicates when and which transaction is required.

Definition 15 (Action Instance). An action instance ai = (af, tr, time) ∈
Uaf × Utr × Utime is a tuple of an action formula af , a transaction tr, and a
timestamp time. Uai is the set of all possible action instances.

For instance, an action instance ai1 = (af1, tr1, 02-01-2020 09:00) denotes that
the transaction tr1 needs to be executed at 02-01-2020 09:00 according to af1.

An action instance stream is a collection of unique action instances.

Definition 16 (Action Instance Stream). An action instance stream AIS is
a (possibly infinite) set of action instances, i.e., AIS ⊆ Uai. UAIS is the set of
all possible action instance streams.

Given a constraint instance stream, an action engine continuously assesses the
necessity of transactions by analyzing the action formulas in predefined actions
at their appointed times.

Definition 17 (Action Engine). Let A ⊆ Ua be a set of actions used by the
action engine. aeA ∈ UCIS → UAIS is the action engine such that, for any
CIS ∈ UCIS, aeA(CIS) = {(af, tr, time) ∈ Uai|∃TM,tm (af, TM) ∈ A ∧ tm ∈
TM ∧ time = πt(tm) ∧ tr ∈ af(CIS, πtw(tm))}.

We abstract that the action engine is able to assess future constraint in-
stances. In fact, it analyzes the historical constraint instance stream and pro-
duces transactions which mitigate risks caused by the past constraint violations.



A general framework for Action-Oriented Process Mining 9

5 Implementation

The general framework discussed above is implemented as a plug-in of ProM1,
an open-source framework for the implementation of process mining tools in
a standardized environment. Our new plug-in is available in a new package
named ActionOrientedProcessMining. The main input objects of our plug-in are
an event stream, a constraint formula definition, and an action formula definition,
whereas the output is an action instance stream.

The input event stream is in an XML-based Object-Centric Log (OCL) format
storing events along with their related objects, while the constraint formula and
action formula are defined by Constraint Formula Language (CFL) and Action
Formula Language (AFL), respectively. The schema of OCL and the syntax of
CFL and AFL are explained in the tool manual2 with examples.

The output action instance stream is in an XML-based Action Instance
Stream (AIS) format2 storing action instances describing the transactions that
need to be applied by source information systems. A dedicated gateway imple-
mented in the source system parses the resulting AIS file and translates it into
the system-readable transactions.

6 Proof-of-concept

Based on the implementation, we conducted experiments with the artificial in-
formation system supporting a simulated process to evaluate the feasibility of
the framework. Specifically, we are interested in answering the following research
questions.
– RQ1: Does the constraint monitor effectively detect violations?
– RQ2: Does the action engine effectively generate corresponding transactions?
– RQ3: Does the application of the transactions improve operational processes?

Experimental design The information system used for the evaluation sup-
ports the order handling process described in Sect. 2. There are 16 available
resources in total at any point in time, and each of them is responsible for mul-
tiple activities in the process. Orders are randomly placed and queued for the
resource allocation after each activity. The resource is allocated according to the
First-in First-out rule.

To answer RQ1-RQ3, we carried out the following steps repeatedly:
1. The information system generates events and updates an event stream.
2. The constraint monitor evaluates the constraint formula, which formulates

“An order must be delivered in 72 hours”, every 24 hours.
3. The action engine assesses the following action formulas every 24 hours:

– “If there is a violated order in the last 24 hours, set a higher priority for
it” (AF1), and

1 http://www.promtools.org
2 https://github.com/gyunamister/ActionOrientedProcessMining

http://www.promtools.org
https://github.com/gyunamister/ActionOrientedProcessMining


10 Gyunam Park and Wil M.P. van der Aalst

– “If there is a violation that lasted longer than 24 hours, send a notification
to a case manager”. (AF2)

4. The dedicated gateway for the information system translates the action in-
stance stream into transactions that are executed by the information system.

Fig. 3: Experimental results: (a) The results of constraint monitor and action
engine on 40 selected orders. (b) Number of violated instances for 30 days.

Experimental Results Fig. 3a reports the results related to RQ1 and RQ2.
The figure shows the history of 40 orders by time, where the gray box indicates
the delivery time (i.e. from order placement to delivery) and the green arrow
denotes allowable delivery time (i.e., 72 hours). The red box represents the time
when the violation happens. As shown in Fig. 3a, every order whose delivery
time is outside the green arrow is detected by the constraint monitor every 24
hours. Moreover, AF1 is generated for every violation and AF2 is generated if
the violation lasts longer.

Fig. 3b reports an experimental result related to RQ3. The figure shows the
number of violated instances for 30 days. The yellow line indicates the total
number of instances, while the red/green lines represent the number of violated
instances with/without applying mitigating transactions. The number of violated
instances decreases when the transactions are applied.

7 Related Work

A constraint formula is a core component of the proposed framework, enabling
the constraint monitor. The process mining discipline provides many techniques
to be deployed to instantiate it. Conformance checking [6] can be deployed to
find discrepancies between the modeled and the observed behavior of running
instances. More tailor-made rules can be formalized into Petri-net patterns [7] or
Linear Temporal Logic (LTL) [8] to evaluate whether process executions comply
with them.



A general framework for Action-Oriented Process Mining 11

In addition, deviation detection techniques detect deviations in process ex-
ecutions with the user-defined compliance rules not being given. Instead, the
model-based [9] and clustering-based [10] approaches learn the rules by analyz-
ing event data and evaluate the violation of them in the execution of processes.

Furthermore, a constraint formula can be extended by more forward-looking
techniques that are able to predict what will happen to individual cases and
where bottlenecks are likely to develop [3, 4]. The resulting predictions can be
incorporated into the compliance rules [7, 8] to evaluate future violations.

A commercial process mining tool, Celonis Action Engine [11], is a represen-
tative effort to turn analysis results into actions. It generates signals by analyzing
the event data, and executes the actions corresponding to these signals to the
source system. However, it does not support processing streaming data, which
limits the continuous process management, analyzing signals (i.e., monitoring
results), which inhibits the generation of relevant actions, and executing actions
at process levels.

Several methods have been developed to generate proactive actions from
the process mining diagnostics. In [12], the resource allocation is proactively
optimized with the risk predictions of running instances. A prescriptive alarm
system [13] generates alarms for the process instances that are predicted to be
problematic with the aid of a cost model to capture the trade-off between differ-
ent interventions. These approaches focus on improving the process by dealing
with specific problems, mostly at the instance level. Instead, our proposed frame-
work supports the management of comprehensive process-related problems and
the execution of actions at both instance and process levels.

Robotic Process Automation (RPA) also aims at improving operational pro-
cesses by automating repetitive tasks performed by humans by mimicking the
execution on the user interface (UI) level [14]. While having the shared goal, the
proposed framework has more emphasis on effectively managing the process in
a continuous manner by identifying the problems based on diagnostics and exe-
cuting proactive actions. Automating the problematic part of process executions
with RPA techniques is one of those effective management actions.

8 Conclusion

In this paper, we proposed the general framework for action-oriented process
mining, which continuously transforms process diagnostics into proactive actions
for the process improvement. It is mainly composed of two parts: the constraint
monitor and the action engine. The constraint monitor supports continuous mon-
itoring of constraints, and the action engine generates the necessary transactions
to mitigate the risks caused by the constraint violations.

The framework is instantiated in a ProM plug-in and tested on an informa-
tion system. In fact, this paper is the starting point for a new branch of research
in process mining. As future works, we plan to develop a concrete technique
to support the efficient analysis of constraint instance streams by incorporat-
ing the concept of data cube. We also plan to validate the effectiveness of the



12 Gyunam Park and Wil M.P. van der Aalst

proposed framework in real-life processes supported by information systems like
SAP, Salesforce, Microsoft Dynamics, etc. Another important direction of fu-
ture work is to provide a comprehensive taxonomy of constraints and actions to
support the elicitation of relevant constraints and actions.

Acknowledgements We thank the Alexander von Humboldt (AvH) Stiftung
for supporting our research.

References
1. van der Aalst, W.M.P.: Data Science in Action. In: Process Mining. Springer,

Heidelberg (2016)
2. Reinkemeyer, L., ed.: Process Mining in Action: Principles, Use Cases and Outlook.

Springer International Publishing, Cham (2020)
3. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework

for correlating, predicting and clustering dynamic behavior based on event logs.
Information Systems 56 (2016) 235–257

4. Marquez-Chamorro, A.E., Resinas, M., Ruiz-Cortes, A.: Predictive Monitoring of
Business Processes: A Survey. IEEE Transactions on Services Computing 11(6)
(2018) 962–977

5. van der Aalst, W.M.P.: Object-Centric Process Mining: Dealing with Divergence
and Convergence in Event Data. In Ölveczky, P.C., Salaün, G., eds.: Software En-
gineering and Formal Methods. Volume 11724. Springer International Publishing,
Cham (2019) 3–25

6. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

7. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where Did I Misbehave?
Diagnostic Information in Compliance Checking. In Hutchison, D., et al., eds.:
Business Process Management. Volume 7481. Springer, Heidelberg (2012) 262–278

8. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and
Verification of Properties: An Approach Based on Temporal Logic. In Hutchison,
D., Kanade, T., et al., eds.: OTM 2005: CoopIS, DOA, and ODBASE. Volume
3760. Springer, Heidelberg (2005) 130–147

9. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of
process aware information systems. Information Systems 38(1) (2013) 33–44

10. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier Detection Techniques for
Process Mining Applications. In An, A., Matwin, S., et al., eds.: Foundations of
Intelligent Systems. Volume 4994. Springer, Heidelberg (2008) 150–159

11. Badakhshan, P., Bernhart, G., Geyer-Klingeberg, J., Nakladal, J., Schenk, S., Vo-
gelgesang, T.: The Action Engine – Turning Process Insights into Action. In: 2019
ICPM Demo Track, Aachen, Germany, ceur-ws (2019) 28–31

12. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P., ter Hofstede, A.H.:
A recommendation system for predicting risks across multiple business process
instances. Decision Support Systems 69 (2015) 1–19

13. Fahrenkrog-Petersen, S.A., Tax, N., Teinemaa, I., Dumas, M., de Leoni, M., Maggi,
F.M., Weidlich, M.: Fire Now, Fire Later: Alarm-Based Systems for Prescriptive
Process Monitoring. arXiv:1905.09568 [cs, stat] (2019) arXiv: 1905.09568.

14. Agostinelli, S., Marrella, A., Mecella, M.: Towards Intelligent Robotic Process
Automation for BPMers. arXiv:2001.00804 [cs] (2020) arXiv: 2001.00804.


	A General Framework for Action-Oriented Process Mining
	Gyunam Parkhttps://orcid.org/0000-0001-9394-6513orcidlogocol"E9D9 and Wil M.P. van der Aalsthttps://orcid.org/0000-0002-0955-6940orcidlogocol"E9D9

