
Model Independent Error Bound Estimation for
Conformance Checking Approximation

Mohammadreza Fani Sani1, Martin Kabierski2, Sebastiaan J. van Zelst3,1, and
Wil M.P. van der Aalst1,3

1Process and Data Science Chair, RWTH Aachen University, Aachen, Germany
2Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany

3Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany
{fanisani,s.j.v.zelst,wvdaalst}@pads.rwth-aachen.de,

martin.bauer@hu-berlin.de

Abstract Conformance checking techniques allow us to quantify the
correspondence of a process’s execution, captured in event data, w.r.t.,
a reference process model. In this context, alignments have proven to be
useful for calculating conformance statistics. However, for extensive event
data and complex process models, the computation time of alignments
is considerably high, hampering their practical use. Simultaneously, it
suffices to approximate either alignments or their corresponding con-
formance value(s) for many applications. Recent work has shown that
using subsets of the process model behavior leads to accurate confor-
mance approximations. The accuracy of such an approximation heavily
depends on the selected subset of model behavior. Thus, in this paper,
we show that we can derive a priori error bounds for conformance check-
ing approximation based on arbitrary activity sequences, independently
of the given process model. Such error bounds subsequently let us select
the most relevant subset of process model behavior for the alignment
approximation. Experiments confirm that conformance approximation
accuracy improves when using the proposed error bound approximation
to guide the selection of relevant subsets of process model behavior.

Keywords: Process mining · Conformance checking approximation ·
Alignments · Edit distance · Instance selection · Sampling

1 Introduction

The execution of processes in companies leaves digital event data footprints in
the databases of the information systems employed, known as event logs. Process
mining [1] aims to develop techniques that enhance the overall knowledge of the
process by analyzing such event logs, e.g., by automatically discovering process
models based on the event log. Conformance checking [2], i.e., one of the main
sub-fields of process mining, aims at assessing to what degree a given process
model and the recorded event data conform to one another. In this context,
alignments [3], an established class of conformance checking artifacts, are of
particular interest, as they provide an exact quantification of deviations between

ar
X

iv
:2

10
3.

13
31

5v
1

 [
cs

.S
E

]
 2

3
M

ar
 2

02
1

2 Mohammadreza Fani Sani et al.

Process Model M

Generates Event Log

Process P

Describes
Language

L
Exact Conformance CheckingExact Conformance Checking

C
o
n
fo

rm
a
n
ce

 C
h
ec

ki
n
g

E
rr

or
 B

o
u
n
ds

C
o
n
fo

rm
a
n
ce

 C
h
ec

ki
n
g

E
rr

or
 B

o
u
n
ds

Ω

Arbitrary Finite Proxy-Set Ω Arbitrary Finite Proxy-Set Ω

Relevant
Finite Subset

Finite
Ω T

hi
s

P
ap

er
’s
 C

o
n
tr

ib
u
ti
o
n

Possibly Infinite Possibly Infinite

FiniteFinite

ModelsModels

Defines

Quantifies

Figure 1: Overview of the proposed approach and its relation to existing work.
A process model M models a process P that generates an event log L. Existing
approaches either compute exact or approximate conformance checking results
based on the language of the model L(M) (or a finite subset thereof). We propose
a method that quantifies error bounds for conformance checking approximation,
based on an arbitrary proxy-set Ω.

the recorded process execution and its intended behavior, as modeled by the
process model.

The increasing prevalence of information systems in different domains leads
to a drastic increase in the amount of recorded event data [4]. Such high-volume
event data, combined with complex process models, yield infeasible alignment
computation times, hampering their practical use. Yet, in many applications, ex-
act alignment values are not required, i.e., it suffices to obtain an approximated
value to draw meaningful conclusions. For example, in genetic process discov-
ery [5], various generations of candidate process models are evaluated w.r.t. an
event log. Due to the complexity of alignment computation, computing exact
alignment results for each candidate process model is impractical. However, in
each generation, rather than obtaining an exact alignment result to judge the
process model quality, it is sufficient to know whether a newly generated process
model improves its alignment results with respect to that of previous generations.
Therefore, fast alignment approximation techniques, that provide guarantees on
the approximation error are of particular interest.

Recently, various approaches for alignment approximation have been pro-
posed [6, 7]. In our previous work [6], we exploit subsets of the process model’s
behavior for approximation, i.e., by using the subset of process behavior as a

Model Independent Error Bound Estimation 3

representative for the complete process model behavior. In this way, we are able
to provide bounds for the approximated alignment value. This branch of approx-
imation techniques shows promising results; however, the approximation result’s
quality (i.e., the difference between actual and approximated value) heavily de-
pends on the selected subset of process model behavior. Therefore, quantifying
an approximation’s quality based on a specific subset of model behavior prior to
performing the actual approximation allows us to identify the most appropriate
subset to use for said approximation. In this paper, we present a novel approach
to quantify an alignment approximations quality before performing the actual
approximation.

Consider Fig. 1 (page 2), in which we present a schematic overview of the
approach. A process model M models a process P that generates a digital event
log L. Existing approaches compute exact or approximate conformance checking
results by considering the language of the model L(M) (possibly infinite), or, a
relevant finite subset thereof. The proposed method allows us to a-priori compute
error bounds for alignment approximation, using an arbitrary proxy-set Ω, i.e., a
set of sequence of activities. This proxy-set Ω can be used to derive the relevant
subset of process model behavior LF (M) and may consist of behavior that is
not part of the model nor the event log.

We evaluated our error bound estimation technique using various real event
logs. Our experiments confirm a strong correlation between the predicted max-
imum error bounds and the eventual approximation error. As such, our exper-
iments confirm that the conformance approximation accuracy improves when
using the proposed error bound approximation to guide the selection of relevant
subsets of process model behavior. Furthermore, our experiments show that the
error bounds’ computation time is negligible w.r.t. computing conventional exact
alignments.

The remainder of this paper is structured as follows. In Section 2, we discuss
related work. In Section 3, we present preliminaries and basic notation. We
explain the main methodology of our approach in Section 4 and subsequently
evaluate it in Section 5. Finally, Section 6 concludes this work.

2 Related Work

Several process mining techniques exist, ranging from process discovery to pro-
cess performance prediction. Here, we cover related work in the field of confor-
mance checking and corresponding approximation techniques. We refer to [1] for
an extensive overview and introduction of process mining.

Conformance checking techniques have been well studied. In [8], the authors
review the various conformance checking techniques in the process mining do-
main. Similarly, in [2], different methods for conformance checking and its ap-
plications are covered. Alignments were introduced in [9] and have rapidly de-
veloped into the standard conformance checking technique. In [10,11], decompo-
sition techniques are proposed for improving the performance of the alignment
computation. Applying decomposition techniques improves computation time.

4 Mohammadreza Fani Sani et al.

However, these techniques are able to improve the performance of alignment
computation, if there are numerous unique activities in the process [12]. Re-
cently, general approximation schemes for alignments, i.e., computation of near-
optimal alignments, have been proposed [13]. Finally, the authors in [7] propose
to incrementally compute prefix-alignments, i.e., enabling real-time conformance
checking for event data streams.

A limited amount of work considers the use of sampling in process mining.
In [14], the authors recommend a trace-based statistical sampling method to
decrease the required discovery time and memory footprint. Moreover, in [15],
we analyzed random and biased sampling methods with which we are able to
adjust the size of the sampled data for process discovery.

Some research has focused on alignment approximation. In [16], deep learn-
ing is used to approximate alignment statistics. In [17], the authors propose to
incrementally sample the event log and applying conformance checking on the
sampled data. The proposed method increases the sample size until the approx-
imated value is accurate enough. The authors of [18] propose a conformance ap-
proximation method that applies relaxation labeling methods on a partial order
representation of a process model, which needs to preprocess the process model
each time. Unlike these approaches that do not provide bounds for the approx-
imation, some methods have proposed to generate a subset of model behaviors
using instance selection [6] and simulation [19]. [6] has proposed to compute
alignments of some instances in the event log and use the corresponding model
behavior for approximating the alignment of other instances.

In this paper we prove that by having a subset of model behaviors, we can
estimate the approximation error for any process model, thus helping users to
adjust the approximation setting. Furthermore, we propose some instance selec-
tion methods to decrease approximation error.

3 Preliminaries

This section briefly introduces basic conformance checking terminology and the
notation used in this paper. We assume that the reader has a basic knowledge
of sets, bags (multisets), Cartesian products functions, and sequences.

We let B(X) denote the set of all possible bags over X. Given
b∈B(X), b={x|b(x)>0}. X∗ denotes the set of all sequences over X.
Let X ′⊆X and let σ∈X∗, σ↓X′ returns the projected sequence of
σ on set X ′, e.g., 〈a, b, c, b, d〉↓{b,d}=〈b, b, d〉. Let X1, X2, . . ., Xn be
n arbitrary sets and let X1×X2· · ·×Xn denote the corresponding
Cartesian product. Let σ∈(X1×X2· · ·Xn)∗ be a sequence of tuples,
πi(σ) returns the sequence of elements in σ at position 1≤i≤n, e.g.,

π2(〈(x11, x12, . . ., x1n), (x21, x
2
2, . . ., x

2
n), . . ., (x

|σ|
1 , x

|σ|
2 , . . ., x

|σ|
n)〉=〈x12, x22, . . .x

|σ|
2 〉.

Given σ, σ′∈X∗, δ(σ, σ′)∈N≥0 represents the Longest Common Subsequence
(LCS) edit distance (only using insertions and deletions) between σ and σ′,
i.e., the minimum number of edits required to transform σ into σ′. For exam-
ple, δ(〈w, x, y〉, 〈x, y, z〉)=2. Note that δ(σ, σ′)=δ(σ′, σ) (δ is symmetrical) and

Model Independent Error Bound Estimation 5

Table 1: Simple example of an event log. Rows capture events recorded in the
context of the execution of the process.

Case-id Event-id Activity name Starting time Finishing time ...

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. . . .
7 35 Register(a) 2020-01-02 12:23 2020-01-02 12:25 . . .
7 36 Analyze Defect(b) 2020-01-02 12:30 2020-01-02 12:40 . . .
7 37 Inform User(g) 2020-01-02 12:45 2020-01-02 12:47 . . .
7 38 Repair(Simple)(c) 2020-01-02 12:45 2020-01-02 13:00 . . .
8 39 Register(a) 2020-01-02 12:23 2020-01-02 13:15 . . .
7 40 Test Repair(e) 2020-01-02 13:05 2020-01-02 13:20 . . .
7 41 Archive Repair(h) 2020-01-02 13:21 2020-01-02 13:22 . . .
8 42 Analyze Defect(b) 2020-01-02 12:30 2020-01-02 13:30 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

δ(σ, σ′′)≤δ(σ, σ′)+δ(σ′, σ′′) (triangle inequality applies to δ). Given a sequence
σ∈X∗ and a set of sequences S⊆X∗, we define ∆(σ, S)= min

σ′∈S
δ(σ, σ′).

Event logs, i.e., collections of events representing the execution of several
instances of a process, are the starting point of process mining algorithms. An
example event log is shown in Table 1. Events record when an activity was per-
formed (according to their Starting and Finishing time) for an instance of the
process (represented by the Case-id column). For some applications, e.g., align-
ment computation, only the control-flow information, i.e., sequences of activities
executed in the context of a process instance, is required. Hence, we adopt the
aforementioned mathematical model of an event log (in practice however, event
data typically records much more features related to the executed activities, e.g.,
resource information and costs of activities).

Definition 1 (Event Log). Let Σ denote the universe of activities. A trace σ
is a sequence of activities (σ∈Σ∗). An event log L∈B(Σ∗) is a bag of traces.

Process models are used to describe the (expected) behavior of a process.
Process models come in various forms, i.e., ranging from simple conceptual draw-
ings to mathematical concepts with associated execution semantics, e.g., Petri
nets [20] or BPMN diagrams [21]. For example, in Fig. 2, we show process model
M1 in BPMN notation. The model describes that the first activity in the process
should be a, followed by activities b and c are in parallel. It is possible to skip
activity c. After the execution of activity b, if we execute activity d, we should
again execute b. Activity e finalizes the process. In this paper’s context, we do
not assume a specific modeling notation; rather, we assume process models to
describe a collection of sequences of activities.

Definition 2 (Process Model). Let Σ denote the universe of activities. A
process model M describes the intended behavior of a process. We refer to the
behavior described by model M as its language ∅⊂L(M)⊆Σ∗, i.e., a non-empty
collection of activity sequences.

For the given process model M1 in Fig. 2, we have
L(M1)={〈a, b, e〉, 〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, d, b, e〉, . . .}. Note that, due to
the existence of loops, the language of a process model may be infinite.

6 Mohammadreza Fani Sani et al.

a
b d

c
e

» b d e

a b » e

Alignment

Figure 2: An example of a process model M1 (in BPMN notation) and a simple
event log L1 (represented in multiset-view). The optimal alignment of the last
trace of the event log and the process model is shown in the middle of the figure.

To quantify whether an event log conforms to a process model, we use align-
ments. An alignment between a trace and a model describes which events in the
trace can be “aligned with activities described by the process model”. Further-
more, alignments indicate whether an event cannot be explained by the model
or whether an activity as described by the model was not observed. In Fig. 2,
an alignment of trace 〈b, d, e〉, and the given process model is provided. Observe
that the trace does not contain activity a, which should always be present ac-
cording to the model. In the alignment, this is visualized by the first column �a .
Similarly, after the observed d-activity, no second b-activity was observed. As
such, in this alignment, the occurrence of d is rendered obsolete, i.e., visualized
as d
� . We formally define alignments as follows.

Definition 3 (Alignment). Let Σ denote the universe of activities, let M be
a process model with corresponding language ∅⊂L(M)⊆Σ∗ and let σ∈Σ∗ be a
trace. An alignment γ of σ and M , is a sequence, characterized as γ∈((Σ∪{�
})×(Σ∪{�}))∗, s.t., π1(γ)↓Σ=σ and π2(γ)↓Σ∈L(M). The set of all possible
alignments of trace σ and model language L(M) is denoted as Γ (σ,L(M)).

In the context of this paper, given γ∈Γ (σ,L(M)), we write ϕ(γ)=π2(γ)↓Σ to re-
fer to the “model trace” corresponding to γ. Let c : (Σ∪{�})×(Σ∪{�})→R,
then, given σ∈Σ∗, M⊆Σ∗ and γ∈Γ (σ,L(M)), we let κc(γ)=

∑
1≤i≤|γ|

c(γ(i))

denote the cost of alignment γ. We let Γ ?c (σ,L(M))= arg min
γ∈Γ (σ,L(M))

κc(γ) be

the set of optimal/minimal alignments. We let zc(σ,L(M))= min
γ∈Γ (σ,L(M))

κc(γ)

be the optimal alignment cost for trace σ and model M (hence:
∀γ∈Γ ?c (σ,L(M)) (κc(γ)=zc(σ,L(M)))). In the remainder, we assume that
c represents the standard cost function, i.e., c(a,�)=c(�, a)=1,∀a∈Σ,
c(a, a)=0,∀a∈Σ and c(a, a′)=∞,∀a6=a′∈Σ, and we omit it as a subscript.

4 Alignment Error Bound Estimation

In this section, we show how to estimate maximal alignment approximation error
bounds. We first show that edit distance can be used to compute conventional

Model Independent Error Bound Estimation 7

optimal alignments. Subsequently, we use this result to show that we are able to
quantify the maximum alignment approximation error for an arbitrarily given
activity sequence. Finally, we show that we can guarantee tighter approximation
bounds by exploiting a collection of arbitrary activity sequences.

4.1 Computing the Maximal Alignment Approximation Error

In this section, we show that, for given traces σ, σ′∈Σ∗ and process model M ,
∆(σ, σ′) quantifies a range for the optimal alignment value z(σ,L(M)), when
using z(σ′,L(M)) as an estimator for z(σ,L(M)). We first show that for the
standard cost function, we are able to use the LCS edit distance function to
compute the cost of the optimal alignment.

Lemma 1 (Edit Distance Quantifies Alignment Costs). Let Σ denote
the universe of activities, let σ∈Σ∗ be a trace, let M be a process model and let
γ∈Γ ?(σ,L(M)) be an optimal alignment of σ and M . Using the standard cost
function, κ(γ)=δ(σ, ϕ(γ))

Proof. Observe that γ only contains elements of the form (a, a), (a,�) and
(�, a). Let R denote the set of elements of the form (a,�) and let I denote
the set of elements of the form (�, a). Transforming σ into ϕ(γ) is achieved by
removing activities in σ represented by the elements in R and inserting activities
in σ represented by the elements in I. Hence, κ(γ)=R+I. Similarly, δ(σ, ϕ(γ))
represents the minimum number of insertions and removals to transform σ into
ϕ(γ). Thus, if κ(γ)<δ(σ, ϕ(γ)), then δ(σ, ϕ(γ)) does not represent the minimal
number of edits. Similarly, if κ(γ)>δ(σ, ϕ(γ)) then γ is not optimal. �

Corollary 1 (∆(σ,L(M)) equals z(σ,L(M))). Let Σ denote the universe of
activities, let σ∈Σ∗ be a trace, let M be a process model with corresponding lan-
guage ∅⊂L(M)⊆Σ∗. Using the standard cost function, z(σ,L(M))=∆(σ,L(M)).

Proof. Let γ∈Γ ?(σ,L(M)).
z(σ,L(M))=κ(γ)=δ(σ, ϕ(γ))=∆(σ,L(M)). �

In the following, we show that it is possible to exploit an arbitrary activity
sequence to derive a range on another activity sequence’s alignment value.

Theorem 1 (Edit Distance Provides Approximation Bounds). Let
σ, σ′∈Σ∗ be two traces and let M be a process model with corresponding lan-
guage ∅⊂L(M)⊆Σ∗. The optimal alignment value z(σ,L(M)), is within δ(σ, σ′)
of z(σ′,L(M)), i.e., z(σ′,L(M))−δ(σ, σ′)≤z(σ,L(M))≤z(σ′,L(M))+δ(σ, σ′).

Proof. Let γ∈Γ ?(σ,L(M)) and let γ′∈Γ ?(σ′,L(M)). Triangle inequality of LCS
edit distance yields δ(σ, ϕ(γ′))≤δ(σ, σ′)+δ(σ′, ϕ(γ′)), which we can rewrite (
Lemma 1) to δ(σ, ϕ(γ′))≤δ(σ, σ′)+z(σ′,L(M)). Since z(σ,L(M))≤δ(σ, ϕ(γ′)),
we have: z(σ,L(M))≤z(σ′,L(M))+δ(σ, σ′).

Similarly, δ(σ′, ϕ(γ))≤δ(σ, σ′)+δ(σ, ϕ(γ)). Again, we deduce
δ(σ′, ϕ(γ))≤δ(σ, σ′)+z(σ,L(M)). Since z(σ′,L(M))≤δ(σ′, ϕ(γ)), we deduce
z(σ′,L(M))−δ(σ, σ′)≤z(σ,L(M)). Hence, we obtain z(σ′,L(M))−δ(σ, σ′)≤
z(σ,L(M))≤z(σ′,L(M))+δ(σ, σ′). �

8 Mohammadreza Fani Sani et al.

For example, reconsider process model M1 and event log L1 in Fig. 2.
Observe that z(〈a, c, c, b, d, e〉,L(M1))=2 and δ(〈a, c, c, b, d, e〉, 〈a, c, b, d, e〉)=1.
Hence, we deduce 1≤z(〈a, c, b, d, e〉,L(M1))≤3. If z(〈a, c, c, b, d, e〉,L(M1)) is un-
known, δ(〈a, c, c, b, d, e〉, 〈a, c, b, d, e〉)=1 implies that using it as an estimator for
z(〈a, c, b, d, e〉,L(M1)) yields a maximal absolute approximation error of 1.

4.2 Generating Proxy-Sets

The result of Theorem 1 implies that, given a process model M and traces
σ, σ′∈Σ∗, when using z(σ′,L(M)) as an estimator for z(σ,L(M)), we obtain
an approximation error ε≤δ(σ, σ′). Interestingly, the bound on ε is determined
independently of the model. Furthermore, σ′ is allowed to be an arbitrary se-
quence, i.e., it is perfectly fine if σ′ /∈L(M), and, given some L∈B(Σ∗) s.t. σ∈L,
σ′ /∈L. Hence, given an arbitrary set of sequences Ω⊆Σ∗, arg min

σ′∈Ω
δ(σ, σ′) repre-

sents the members of Ω that minimize the expected maximum error when using
z(σ′,L(M)) as an estimator (i.e., for σ′∈ arg min

σ′∈Ω
δ(σ, σ′)). In the remainder, we

refer to such a set of sequences Ω⊆Σ∗ as a proxy-set, i.e., we intend to “align
by proxy through Ω”.

Observe that, for an event log L∈B(Σ∗) and proxy-set Ω⊆Σ∗,

∀σ∈L
(

min
σ′∈Ω

δ(σ, σ′)=0

)
⇔Ω⊇L, i.e., if every member of the log has an edit

distance of 0 w.r.t. the proxy-set, then every member of the event log is a mem-
ber of the proxy-set (and vice versa). Clearly, in such a case, using proxy-set Ω
yields optimal alignments, yet, at the same (or even worse) time and memory
complexity as computing conventional optimal alignments.

In the remainder, given an event log L∈B(Σ∗) and proxy-set Ω⊆Σ∗, we let
εΩ(L)=

∑
σ∈L

L(σ)· min
σ′∈Ω

δ(σ, σ′). Given two proxy-sets Ω,Ω′⊆Σ∗, Ω dominates

Ω′ for event log L if and only if εΩ(L)≤εΩ′(L) and |Ω|<|Ω|′. In such a case,
we refer to Ω′ as a redundant proxy-set. A proxy-set Ω is k-optimal for event
log L if and only if ∀Ω′∈Σ∗ (|Ω′|=k =⇒ εΩ(L)≤εΩ′(L)). A k-optimal proxy-set
Ω is k-primal if |Ω|=k. For example, Ω=L is |L|-primal, 1-optimal, 2-optimal,
. . ., |L|-optimal. Furthermore, it is easy to see that any (k-primal) proxy-set Ω
with |Ω|>L is dominated by L and hence redundant. More interestingly, primal
proxy-sets that are smaller than the event log are never redundant.

Theorem 2 (Primal Proxy-Sets are Non-Redundant). Let L∈B(Σ∗) be
an event log and let Ω⊆Σ∗ be a proxy-set such that |Ω|<|L| and Ω is k-primal.
Ω is non-redundant.

Proof. Assume that Ω is redundant. Hence, ∃Ω′⊆Σ∗ (|Ω′|<|Ω|∧εΩ′(L)≤εΩ(L)).
However, observe that, we are able to create Ω′′=Ω′∪L′′ with |L′′|=|Ω|−|Ω′| and
σ∈L′′ =⇒ σ∈L∧σ/∈Ω′ (note that |Ω|=|Ω′′|). Observe that εΩ′′(L)<εΩ′(L) and
as a consequence εΩ′′(L)<εΩ(L), contradicting the fact that Ω is k-primal. �

Observe that Theorem 2 implies that for any event log L∈B(Σ∗) and
k∈1, 2, . . .|L|, there exists a k-primal proxy-set Ω. A k-primal proxy-set min-
imizes the maximal possible error bound, and hence, can be regarded as the

Model Independent Error Bound Estimation 9

optimal proxy-set to use of size k. However, providing such proxy-sets is usually
NP-Hard. In the upcoming paragraphs, we briefly introduce various proxy-set
generation methods and their relation to primal proxy-sets.

Sampling Proxy-sets can be generated using sampling methods: either sampling
members for the input event log, the given process model, or a mixture thereof.
In previous work, we investigated sampling of model behavior using uniform
distributions [6] and event-log-guided process model simulation [19].

Strictly sampling the behavior from the process model, i.e., Ω⊆L(M),
particularly when using event-log-guided simulation yields (under standard
cost function) z(σ′,L(M))=0, ∀σ′∈Ω. On the one hand, it is very un-
likely that such a proxy-set is k-primal. On the other hand, the fact that
z(σ′,L(M))=0, ∀σ′∈Ω, can be exploited. For example, given some trace σ∈L
and some σ′∈ arg min

σ′∈Ω
δ(σ, σ′), rather than using z(σ′,L(M)) (i.e., value 0) as an

estimator for z(σ,L(M)), one can use δ(σ,σ′)
2 . Hence, the maximal approximation

error is reduced by half.
Sampling Ω from the event log is likely to result in a proxy-set that is closer

to a k-primal solution, i.e., in particular when prioritizing sampling of σ∈L with
high L(σ) values. Hence, using event log-based sampling typically yields smaller
values for the maximal obtainable approximation error. However, since the actual
z(σ′,L(M)) for σ′∈Ω is unknown, we cannot tighten the estimator.

Centroid-Based Clustering For a given target size k, the best possible ob-
tainable proxy-set is k-primal. As an alternative approach to sampling, clustering
algorithms [22] are a suitable proxy-set selection mechanism. A clustering algo-
rithm groups a set of objects into subgroups (clusters) such that the members
of a cluster are similar/close, given some similarity/distance metric. In the case
of proxy-set generation, the edit distance serves as a distance metric. Centroid-
based clustering algorithms, i.e., algorithms that define clusters using a central
object (the centroid), are of particular interest. In centroid-based clustering, the
algorithms assign the objects to the centroid objects that are at a minimal dis-
tance of the object. As an example, the K-Medoids algorithm [23] uses objects
from the object set as centroids and minimzizes the pair-wise dissimilarity of the
objects and the centroids. Clearly, several variations of centroid-based clustering
algorithms can be used. Whereas the clustering algorithms can be applied on an
arbitrary set of activity sequences, applying them on the input event log yields
proxy-sets that are close to the k-primal solution.

4.3 Deriving Exact Alignment Approximation Bounds

Thus far, given sequence σ∈Σ∗ and process model M , we have shown that a
proxy-set Ω and proxy-sequence σ′∈Ω quantify the maximum approximation
error, when using z(σ′,L(M)) as an estimator for z(σ,L(M)). In this section,
we show that we can exploit proxy-sets to derive exact approximation bounds.

10 Mohammadreza Fani Sani et al.

When approximating alignments using proxy-set Ω, we first compute the
alignments of the proxy-set traces (i.e., σ′∈Ω). We derive the upper and
lower bound of the alignment cost of z(σ,L(M)) by simply adding/subtracting
δ(σ, σ′) to z(σ′,L(M)). Observe that, when using the standard cost function,
the lower bound of any alignment is bounded, i.e., it cannot be lower than 0.
Furthermore, in certain cases, it is possible to derive a tighter lower-bound.
Let ΣM={a∈Σ|∃σ∈L(M)(a∈σ)}, then, for any σ∈Σ∗, it is easy to see that
z(σ,L(M))≥|σ↓Σ\ΣM

|, i.e., the elements of σ↓Σ\ΣM
are always moves of the

form a
� . Furthermore, in case |σ|< min

σ′∈L(M)
|σ′|, we need at least |σ′|−|σ| (where

σ′∈ arg min
σ′∈L(M)

|σ′|) moves of the form �
a . Hence, the theoretical lower-bound of

any σ∈Σ∗ is equal to max(0, min
σ′∈L(M)

(|σ′|)−|σ|)+|σ↓Σ\ΣM
|. We correspondingly

define the Ω-driven lower and upper bound as follows.

Definition 4 (Ω-Driven Alignment Bounds). Let Σ denote the universe of
activities, let M be a process model with corresponding language ∅⊂L(M)⊆Σ∗
and let Ω⊆Σ∗ be a proxy-set. We let >Ω,M : Σ∗→N denote the Ω-driven upper
bound and we let ⊥Ω,M : Σ∗→N denote the Ω-driven lower bound where:

>Ω,M (σ)= min
σ′∈Ω

(z(σ′,L(M))+δ(σ, σ′)) (1)

⊥Ω,M (σ)= max(max(0, min
σ′∈L(M)

(|σ′|)−|σ|)+|σ↓Σ\ΣM
|,max
σ′∈Ω

(z(σ′,L(M))−δ(σ, σ′)))

(2)

Finally, given >Ω,M and ⊥Ω,M , we quantify the alignment approximation value

of σ∈Σ∗, i.e., ẑΩ(σ,L(M)), as ẑΩ(σ,L(M))=
>Ω,M (σ)−⊥Ω,M (σ)

2 . Theoretically, it
is possible to give different weights to lower and upper bounds. However, finding
the best weight is not the scope of this paper.

5 Evaluation

In this section, we explore the accuracy and the performance of our proposed
method. First, we briefly describe the implementation, after which we explain
the experimental setting. Finally, we report on the experimental results.

Implementation To apply the proposed conformance approximation method,
we implemented the Conformance Approximation plug-in in the ProM [24] frame-
work1, including various proxy-set generation methods (both sampling and
centroid-based clustering, cf. Section 4.2).

1 svn.win.tue.nl/repos/prom/Packages/LogFiltering

svn.win.tue.nl/repos/prom/Packages/LogFiltering

Model Independent Error Bound Estimation 11

Table 2: Statistics regarding the real event logs that are used in the experiment.
Event Log Activities Traces Variants DF#
BPIC-2012 [25] 23 13087 4336 138
BPIC-2018-Inspection [26] 15 5485 3190 67
BPIC-2019 [27] 42 251734 11973 498
Hospital-Billing [28] 18 100000 1020 143
Road [29] 11 150370 231 70
Sepsis [30] 16 1050 846 115

5.1 Experimental Setup

We applied the proposed methods to six real event logs. Basic information, e.g.,
the number of distinct activities, traces, and variants, of the event logs used,
is given in Table 2. For each event log, we apply conformance checking using
different process models. To obtain these process models, we used the Inductive
Miner [31] process discovery algorithm, with infrequent thresholds equal to 0.2,
0.4, and 0.6. Typically, these models describe a strict subset of the input event
log. We used four different proxy-set generation methods, all using the event log
as a primary driver, i.e., random sampling, frequency-based sampling, K-Medoids
clustering and K-Center clustering. In random sampling, we randomly sample
variants (without replacement) from the event log to act as a proxy. In frequency-
based sampling, we select traces based on their L(σ)-values, in descending order.
In K-Medoids clustering, centroids are determined by minimizing the pair-wise
dissimilarity. In K-Center clustering, the maximum distance between centroids
and the objects is minimized. To determine the size of proxy-sets we use a
different percentage of the number variants in the event logs, i.e., 5%, %10,
20%, 30%, 50%. Moreover, we have repeated each experiment four times as
some results are non-deterministic.

Using the described experimental setup, we investigate the relationship be-
tween the maximum error,i.e.,

∑
σ∈L

(L(σ)× min
σ′∈Ω

δ(σ, σ′)) and the eventual approx-

imation error, as well as the performance of the approach.

5.2 Results

In this section, we discuss the results of the experiments. We first investigate
the relationship between the estimated maximum error and the actual approx-
imation error. Secondly, we investigate the time-performance of the estimation.
Lastly, we investigate the role of the new proposed lower bound.

Estimated Maximum Error versus Approximation Error Observe that
minimizing the expected maximum error does not guarantee a minimal ap-
proximation error. For example, given some model M , σ∈Σ∗, Ω={σ1, σ2} and
Ω′={σ1, σ3}, assume that δ(σ, σ1)=2, δ(σ, σ2)=3 and δ(σ, σ3)=1. Clearly, the
maximal error based on Ω is 2, and, based on Ω′, it is 1. As such, we intuitively
favorΩ′ overΩ. However, if z(σ1,L(M))=7, z(σ2,L(M))=2 and z(σ1,L(M))=6,

12 Mohammadreza Fani Sani et al.

Figure 3: Scatter plots of the estimated maximum error bounds and the real
approximation error using different proxy-set generation methods.

we obtain ⊥Ω,M (σ)=>Ω,M (σ)=5, whereas ⊥Ω′,M (σ)=5 and >Ω′,M (σ)=7.
Hence, from Ω, we derive that z(σ,L(M))=5 (note ẑΩ(σ,L(M))=5), whereas
from Ω′, we derive 5≤z(σ,L(M))≤7 (with ẑΩ′(σ,L(M))=6). Thus, using Ω to
derive the alignment approximation value actually yields the exact alignment
value using Ω′ yields an error of 1.

Given that there is no causal relation, we investigate, using the described
proxy-set generation methods and event logs, the strength of the correlation
between the estimated maximum error and the effective approximation error
when using the proxy-set. In Fig. 3, we show the scatter plots of these two
values, for each method, using different colors for the different event logs. More-
over, the corresponding Pearson correlation coefficients are presented in Table 3.

Table 3: Pearson correlation coeffi-
cients between the estimated bounds
and the real approximation errors for
different methods and event logs.

Interestingly, for frequency-based
sampling, K-Center, and K-Medoids, we
observe a strong correlation between the
estimated maximal approximation error
and the effective approximation error.
For random sampling, as expected, the
correlation is less strong, particularly for
the Hospital-Billing and Road logs. For
all event logs, the highest correlation is
achieved by the K-Center method.

In Fig. 4, we show the effect of choos-
ing different proxy-set generation methods and different percentages of variants
in the event log on the accuracy of approximated alignment costs. As we expect,
the K-Center and K-Medoids approaches provide the highest accuracy. There-
fore, using these approaches, we are able to generate more suitable proxy-sets
and consequently obtain more accurate approximations. Moreover, results indi-
cate that the alignment cost error is reduced by increasing the proxy-sets’ size
(i.e., the selection percentage). However, for some event logs, specifically if the
variants in the event log are similar, this reduction is not always significant, i.e.,
by just using a few trace-variants we already obtain an accurate approximation.
Thus, the approximation’s provided bounds help users adjust the setting more
efficiently, as a user may make the choice of increasing the proxy set size, thus
increasing the accuracy of approximation.

Model Independent Error Bound Estimation 13

Figure 4: Effect of increasing the selected percentage of variants on approximated
alignments’ accuracy for different methods.

Conformance Checking Performance Improvement Here, we analyze the
time performance of different proxy-set generation methods. Figures Fig. 5a
and Fig. 5b show the conformance checking performance improvement using the
proposed approach. To compute the performance improvement PI, we divide
conventional alignment computation time by the alignment approximation time
(both including and excluding proxy-set generation time). A higher PI-value
indicates a higher performance improvement and a PI-value less than 1 indicates
that there is no improvement. The greatest improvement (when we consider the
proxy generation time) is achieved by using the frequency-based method as it
quickly selects variants and generates the proxies. The Random method has a
lower PI-value because it may select some variants that usually need more time
to compute their alignments. Furthermore, the results indicate that by increasing
the percentage of the size of proxies, the performance improvement is reduced. In
some cases, we do not improve the performance when the proxy generation time
is considered. Thus, it is crucial to avoid selecting too many traces as a proxy.
Generally, the proxy generation time for K-Center and K-Medoids methods is
high, especially when the z size of proxy is high. But, if we separate the proxy
generation time (that is possible in some applications as explained in Section 1),
we improve the conformance checking procedure’s performance.

Efficiency of the Proposed Lower Bound Finally, in the last ex-
periment, we analyze the role of the lower bound without M ′, i.e.,
max(0, min

σ′∈L(M)
(|σ′|)−|σ|)+|σ↓Σ\ΣM

| and the lower bound that uses

M ′, i.,e., max
σ′∈Ω

(z(σ′,L(M))−δ(σ, σ′))) in computing the final lower

bound. Table 4 shows the percentage of traces that have higher val-
ues using the different bounds. In case the highest value is returned
by both methods, we consider both of them as the used bound.

14 Mohammadreza Fani Sani et al.

(a) Performance improvement with consideration of proxy-set generation time.

(b) Performance improvement without consideration of proxy selection time.

Figure 5: Effect of increasing the selected percentage of variants on performance
improvement of different proxy selection methods.

Table 4: Average percentage
of times that lower bounds
have the highest value.

The results show that in most cases, it is suffi-
cient to use the lower bound, which is based on the
proxy-set and its alignments. Consequently, using
the new proposed method for bound computation,
we will have tighter bounds.

6 Conclusion

In this paper, we propose to select a set of traces,
compute their alignments and use these to approx-
imate the alignments of other traces in the event log. Furthermore, we have
shown that we can derive bounds for the so-introduced approximation error,

Model Independent Error Bound Estimation 15

independently of the model. Additionally, we prove that based on the selected
traces (i.e., a proxy-set), we can provide a bound for the approximation error
that helps users estimate the approximation error and thus aids in selecting an
appropriate proxy set. The experiments on the real event logs indicate, that by
using the proposed instance selection methods, we are able to reduce the max-
imum and the average error in the alignment cost approximation. Besides, by
increasing the number of the selected traces, the average possible error is re-
duced. But, for certain event logs, this reduction is not significant, which shows
we are able to select a few traces and have an accurate approximation.

We used the approximation solutions for K-Center and K-Medoids problems
in this work. However, it is useful for some applications to compute optimal
solutions and find the best K variants. Moreover, it is beneficial to provide an
incremental approach that keeps selecting the traces until we guarantee a tight
bound for the approximation error.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer Berlin Heidelberg (2016)

2. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking.
Springer (2018)

3. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B., van der Aalst,
W.M.P.: Alignment based Precision Checking. In: International Conference on
Business Process Management, Springer (2012) 137–149

4. Giacalone, M., Cusatelli, C., Santarcangelo, V.: Big data compliance for innovative
clinical models. Big Data Res. 12 (2018) 35–40

5. Buijs, J.C., van Dongen, B., van der Aalst, W.M.P.: On the Role of Fitness,
Precision, Generalization and Simplicity in Process Discovery. In: OTM, ” On the
Move to Meaningful Internet Systems”, Springer (2012) 305–322

6. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Conformance checking
approximation using subset selection and edit distance. In: 32nd International
Conference, CAiSE 2020, Grenoble, France, June 8-12, 2020, Proceedings. Volume
12127., Springer (2020) 234–251

7. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.: On-
line conformance checking: relating event streams to process models using prefix-
alignments. International Journal of Data Science and Analytics (2017) 1–16

8. Elhagaly, M., Drvoderić, K., Kippers, R.G., Bukhsh, F.A.: Evolution of compli-
ance checking in process mining discipline. In: 2nd International Conference on
Computing, Mathematics and Engineering Technologies (iCoMET), IEEE (2019)
1–6

9. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history
on process models for conformance checking and performance analysis. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2(2) (2012) 182–192

10. van der Aalst, W.M.P.: Decomposing petri nets for process mining: A generic
approach. Distributed and Parallel Databases 31(4) (2013) 471–507

11. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Information Systems 46 (2014) 102–122

16 Mohammadreza Fani Sani et al.

12. Verbeek, H.M.W., van der Aalst, W.M.P., Munoz-Gama, J.: Divide and conquer: A
tool framework for supporting decomposed discovery in process mining. Comput.
J. 60(11) (2017) 1649–1674

13. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of
large structured process models. In: International Conference on Business Process
Management, Springer (2016) 197–214

14. Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event
data is enough? A statistical framework for process discovery. In: International
Conference on Advanced Information Systems Engineering, Springer (2018) 239–
256

15. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Improving the performance
of process discovery algorithms by instance selection. Comput. Sci. Inf. Syst. 17(3)
(2020) 927–958

16. Nolle, T., Seeliger, A., Thoma, N., Mühlhäuser, M.: Deepalign: Alignment-based
process anomaly correction using recurrent neural networks. In: International Con-
ference on Advanced Information Systems Engineering, Springer (2020) 319–333

17. Bauer, M., van der Aa, H., Weidlich, M.: Estimating process conformance by trace
sampling and result approximation. (2019) 179–197

18. Padró, L., Carmona, J.: Approximate computation of alignments of business pro-
cesses through relaxation labelling. In: International Conference on Business Pro-
cess Management, Springer (2019) 250–267

19. Fani Sani, M., Garza Gonzalez, J.J., van Zelst, S.J., van der Aalst, W.M.P.: Con-
formance checking approximation using simulation. In van Dongen, B.F., Montali,
M., Wynn, M.T., eds.: 2nd International Conference on Process Mining, ICPM
2020, Padua, Italy, October 4-9, 2020, IEEE (2020) 105–112

20. Petri, C.A., Reisig, W.: Petri net. Scholarpedia 3(4) (2008) 6477
21. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput.

Stand. Interfaces 34(1) (2012) 124–134
22. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Annals of Data

Science 2(2) (2015) 165–193
23. Park, H., Jun, C.: A simple and fast algorithm for k-medoids clustering. Expert

Syst. Appl. 36(2) (2009) 3336–3341
24. van der Aalst, W.M.P., van Dongen, B., Günther, C.W., Rozinat, A., Verbeek, E.,

Weijters, T.: Prom: The process mining toolkit. BPM (Demos) 489(31) (2009)
25. Van Dongen, B.F. (Boudewijn): Bpi challenge 2012 (2012)
26. Van Dongen, B.F. (Boudewijn), Borchert, F. (Florian): BPI challenge 2018 (2018)
27. Van Dongen, B.F. (Boudewijn): BPI challenge 2019 (2019)
28. Mannhardt, F.: Hospital billing-event log. Eindhoven University of Technology.

Dataset (2017) 326–347
29. De Leoni, M., Mannhardt, F.: Road traffic fine management process. Eindhoven

University of Technology. Dataset (2015)
30. Mannhardt, F.: Sepsis cases-event log. Eindhoven university of technology (2016)
31. Leemans, S.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured

Process Models from Event Logs Containing Infrequent Behaviour. In: BPI. (2014)
66–78

	Model Independent Error Bound Estimation for Conformance Checking Approximation

