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Abstract. Process mining dramatically changed the way we look at process mod-
els and operational processes. Even seemingly simple processes like Purchase-to-
Pay (P2P) and Order-to-Cash (O2C) are often amazingly complex, and traditional
hand-made process models fail to capture the true fabric of such processes. Many
processes are inherently concurrent and involve interaction between different ob-
jects (customers, suppliers, orders, items, shipments, payments, machines, work-
ers, etc.). Process mining uses event data to construct process models that can
be used to diagnose performance and compliance problems. If such models re-
flect reality well, they can be used for forward-looking forms of process mining,
including predictive analytics, evidence-based automation, and what-if simula-
tion. The ultimate goal is to create a “digital twin of an organization” that can
be used to explore different improvement actions. This paper provides a high-
level overview of the different process mining tasks followed by a more detailed
discussion on concurrency and object-centricity in process mining.
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1 Towards a Digital Twin of an Organization

The desire to adequately describe operational processes has been around since the 1890-
ties when the field of scientific management emerged. Scientific management is also
known as Taylorism, named after its pioneer Frederick Winslow Taylor (1856-1915)
who tried to systematically improve economic efficiency, especially labor productivity.
Taylor systematically observed how people work and can be seen as the “first process
miner” using pen and paper (see Figure 1). In 1950 computers started to influence busi-
ness processes. However, the systematic use of data about operational processes is much
more recent [1].

The desire to build computer models that mimic organizations and processes is also
not that new. Since the 1960-ties so-called discrete event simulation tools have been
available with SIMULA [11] as one of the first influential examples. In discrete event
simulation it is common to estimate parameters and distributions based on observed data
(e.g., service times and arrival rates). However, one still needs to model the process by
hand. The first comprehensive approaches to automatically learn complete simulation
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Fig. 1. Analyzing event data to improve operational processes is not that new. This is illustrated
by some of the tables in [33]. Frederick Winslow Taylor can be seen as the first “process miner”
using manually collected event data.

models from event data became available around 2008 [30, 31]. Based on event logs, it
is possible to learn a control-flow model (transition system, Petri net, of BPMN model)
that is enriched with information about resources, data, and time using replay or align-
ment techniques [30, 31].
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Fig. 2. Process mining provides a concrete approach to create a digital twin of an organization
and its operational processes. A key element is the creation of a model based on event data that is
able to mimic reality as well as possible. Such a model needs to be able to capture concurrency
and interacting objects (customers, workers, products, orders, payments, shipments, etc.).

The notion of a digital twin is part of the Industry 4.0 development facilitated
through advanced data analytics (machine learning, process mining, etc.) and the Inter-
net of Things (IoT) connectivity [20, 15]. The notion can be described as an effortless
integration of the “real reality” and a “modeled reality” in both directions. The “mod-
eled reality” is based on the “real reality”, but may also influence the “real reality”.
This is one of the key concepts in the Internet of Production (IoP) developed at RWTH
Aachen University [6]. In IoP, process mining plays a key role. Gartner coined the term
digital twin of an organization to indicate that the desire to create a digital twin is not
limited to specific Industry 4.0 applications [19]. The goal is to create a virtual rep-
resentation of an organization and its operational processes (including assets such as
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architectures, infrastructures, roles, responsibilities, products, etc.) to assess the impact
of change in a controlled environment. Note that this is only a vision that is still far
away from reality. However, it illustrates the role that models will need to play in the
future.
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Fig. 3. The difference between a digital model, a digital shadow, and a digital twin.

Figure 3 illustrates the difference between (a) a digital model, (b) a digital shadow,
and (c) a digital twin. Building a discrete event simulation model (using e.g. Arena,
AnyLogic, CPN Tools, FlexSim, Vensim, or Simul8) in a classical way corresponds to
the digital model notion in Figure 3(a). The dashed lines show that the model is created
by hand. There is no automated connection between reality and the digital model. More-
over, insights generated by the simulation model do not automatically lead to concrete
actions. The digital shadow notion in Figure 3(b) uses a model, driven by data automat-
ically extracted from reality. If such a connection is automated, it is often possible and
desirable to update the model continuously. If reality changes, also the model changes.
However, insights and diagnostics still need to be translated into actions manually. The
digital twin notion in Figure 3(c) shows that there is an automated and real-time con-
nection between reality and the model(s) in both directions. As a result, the digital twin
directly influences reality, possibly without human intervention.

It is important to note that many of these ideas have been realized in the context
of process mining, albeit with a focus on individual processes in isolation [1]. Most
process mining techniques aim to create a digital shadow, as indicated in Figure 3(b).
This ranges from control-flow discovery (from mining directly follows graphs [2] to
scalable inductive mining [23]) to automatically creating simulation models (e.g., [30,
31]). However, under the umbrella term of “operational support” [1], process mining
also aims to impact the process automatically in real-time. An early example is the work
presented in [32], where workflow technology is connected to process mining. In [32]
YAWL is used as a workflow management system, ProM as a process mining system,
and CPN Tools as the simulation engine. ProM is used to learn a faithful simulation
model from the event data of YAWL and/or the models in YAWL. At any point in time,
the current state of the YAWL workflow system can be loaded into the simulation model
and simulated using CPN Tools. This concept is termed short-term simulation because
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rather than focusing on the steady-state behavior, the focus is on transient behaviors and
answering what-if questions. Commercial process mining tools increasingly support
what we call “action-oriented process mining”. This means that diagnostics are turned
into actions. The recent release of the Celonis EMS (Execution Management System),
which embeds a low-code workflow management system, illustrates this trend.

The above shows that the idea of creating a digital twin was already realized in
the field of process mining long before the term became “in vogue”. However, existing
approaches typically focus on well-defined processes that are considered in isolation.
We are still far away from creating a realistic “digital twin of an organization”. In this
paper, we focus on two of the many challenges to create such digital twins:

– Concurrency. Organizations are like distributed systems or social systems. The dif-
ferent parts operate autonomously but need to synchronize at selected points in
time. Although most organizations and systems are highly concurrent, the dominant
paradigm is still the highly sequential Turing machine model created in 1936 which
does not allow for concurrency. The von Neumann architecture defined in 1945 is
based on the Turing machine and also views computation as a sequential process.
Moreover, automata, transition systems, Markov chains, and many other represen-
tations of behavior do not support concurrency. If concurrency is supported, it is of-
ten added as an afterthought. Representations that start from concurrency, like Petri
nets, are still the exception. Consider for example a Petri net without places and
just transitions. Even people familiar with Petri nets have difficulties to accept that
such a Petri net allows for any behavior (and that Petri nets are much more declara-
tive than commonly assumed). Although organizations are highly concurrent, event
logs are viewed as sequential (i.e., events are assumed to be totally ordered). This
complicates the creation of a digital twin from event data.

– Object-centricity. Most of the modeling notations used (e.g., BPMN, Workflow
Nets, UML activity diagrams, etc.) assume a single case notion. However, events
may involve a variety of objects. Consider for example batching where in one event
many objects are affected or an assembly step where a collection of objects is trans-
formed into a new composite object. When drawing for example a BPMN model
one needs to pick one case notion (the process instance). In many applications this
is not so easy. Consider for example the hiring process of new employees. Is the
vacancy the case or the application? One can also consider the classical example
of ordering books from Amazon. One order may include multiple books, a ship-
ment may contain books of different orders, and an order may involved multiple
shipments. Possible case notions are order, book, and shipment. It is impossible to
create a digital twin of an organization without being able to represent the different
objects and their interactions.

For example, imagine a car factory producing hundreds of cars per day with each car
assembled from thousands of components. Process models that do not allow for con-
currency and object-centricity are clearly unable to describe such a factory as a digital
twin.

The remainder of this paper is organized as follows. Section 2 present a short high-
level introduction to process mining. Section 3 discusses event logs and the importance
of concurrency and object-centricity. Section 4 concludes this short paper.
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2 Process Mining: A Top-Down View

In recent years, we could witness an uptake in process mining. There used to be a gap
between process science (i.e., tools and techniques to improve operational processes)
and data science (i.e., tools and techniques to extract value from data). Mainstream
machine learning and data mining techniques do not consider operational processes.
Business Process Management (BPM) and Operations Research (OR) tend to start from
models rather than data. Process mining bridges this gap [1].

Currently, there are over 35 commercial process mining vendors (ABBYY Time-
line, ARIS Process Mining, BusinessOptix, Celonis Process Mining, Disco/Fluxicon,
Everflow, Lana, Mavim, MPM, Minit, PAFnow, QPR, etc.) and process mining is ap-
plied in most of the larger organizations in countries such as Germany and The Nether-
lands. Example application domains include: finance (Rabobank, Hypovereinsbank,
etc.), telecom (Deutsche Telekom, Vodafone, etc.), logistics (Vanderlande, etc.), pro-
duction (BMW, Siemens, Fiat, Bosch, etc.), food (Edeka, etc.), fashion (Zalando, etc.),
energy (E-on, etc.), transport (Uber, DB, Lufthansa, etc.), healthcare (AstraZenica,
Medtronic, etc.), consulting (Deloitte, EY, KPMG, etc.), and IT systems (Dell, IBM,
ServiceNow, etc.).
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Fig. 4. Overview of the process mining pipeline.

Figure 4 shows a high-level overview of process mining. Event data need to be
extracted from information systems. Such data can be explored, filtered, and cleaned.
Process discovery tools transform event data into process models (e.g., BPMN, Petri
nets, and UML activity diagrams). There are simple approaches like creating so-called
Directly-Follows-Graphs (DFGs) that do not discover concurrency thus having obvi-
ous problems [2]. The Alpha algorithm was the first to discover concurrent processes
[7]. This approach provides some guarantees, but most processes do not satisfy the as-
sumptions described in [7]. After the Alpha algorithm, dozens of more sophisticated
algorithms were proposed [1, 9, 21–23, 34]. Using replay and alignment techniques it
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is possible to relate process models (hand-made or discovered) with event data. This
can be used to discover differences between reality and model [1, 10, 29]. Moreover,
the model can be extended with additional perspectives, e.g., organizational aspects,
decisions, and temporal aspects. This way, detailed performance analyses are possi-
ble. Root-cause analysis can be performed for both conformance and performance
problems. It is always possible to relate observations to the original event data. Such
evidence-based diagnostics aid discussions about root-causes and possible improve-
ments. The right-hand side of Figure 4 refers to forward-looking techniques aimed at
improving the processes. Process models extended with additional perspectives (orga-
nizational aspects, decisions, and temporal aspects) can be used to predict conformance
and performance problems. As described in [1], predictions can be used to generate
recommendations. Figure 4 shows that Machine Learning (ML) techniques can be used
in this step. These may range from novel deep learning approaches (e.g., artificial recur-
rent neural networks like LSTM) to more traditional approaches like logistic regression
and decision-tree learning.

It should be noted that process mining techniques are different from mainstream
Machine Learning (ML) techniques. However, as Figure 4 shows, process mining can
be used to generate ML problems. The current trend is to make process mining tech-
niques more action-oriented, e.g., automatically trigger a corrective workflow when a
problem emerges.
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Finding, extracting, and transforming event data is still 
taking up to 80% of the time.

Most techniques focus on a single case notion (i.e., a single 
process), whereas problems may be caused by interacting or 
competing processes.

Process discovery is not a solved problem despite powerful 
techniques like inductive mining. Concurrency is hard to 
discover from event data that provide only a sample.

There is a need to better integrate mining and modeling 
(e.g., user-guided discovery).

Conformance checking is time-consuming and diagnostics 
tend to be non-deterministic.

There is a need for techniques recommending process 
changes (i.e., moving beyond diagnostics).

Machine Learning (ML) techniques tend to perform poorly 
because essential aspects are missed (e.g., system load). 

Process mining results need to trigger automated actions 
(e.g., start a corrective workflow).
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Fig. 5. Some of the challenges encountered when applying process mining.

The process mining manifesto [17] published a decade ago lists 11 challenges. Most
of these challenges still exist and are still relevant. Figure 5 maps eight challenges onto
the overview used before (Figure 4). These are partly overlapping with the challenges
listed in [17], e.g., basic tasks like data extraction and process discovery remain chal-
lenging. The reader interested in applications of process mining is recommended to
read [26] with experience reports from Siemens, BMW, Uber, ABB, Bayer, and several
other organizations.

The top-left corner and bottom-right corner show the interface between the real
systems and organization on the one hand and process mining technology on the other
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hand. These correspond to the solid arrows in Figure 3(c) used to explain the notion of a
digital twin. Using state-of-the-art process mining tools it is possible to create a digital
twin with limited scope (e.g., a single process). Process mining is probably the most
concrete technology available to create digital twins. Most of the proposals are merely
visions or application specific.

3 Process Mining: A Bottom-Up View

After providing a high-level view on process mining, we focus on concurrency and
object-centricity. These are essential to create digital twins that properly reflect real
organizations. To illustrate these concepts, we use Petri nets. However, it is good to
note that the ideas are generic and not notation-specific.

3.1 Petri Nets

Figure 6 shows an accepting labeled Petri net eight places (p1, p2, . . . , p8) and seven
transitions (t1, t2, . . . , t7) with initial marking [p1] and final marking [p8]. We assume
that the reader is familiar with the semantics of Petri nets [5, 13, 25, 27, 28]. However, to
make the paper more self-contained, we informally explain the behavior of an accept-
ing labeled Petri net. A transition t is enabled in a marking if each of its input places
contains at least one token. An enabled transition t may fire, i.e., one token is removed
from each of the input places •t and one token is produced for each of the output places
t•. This way the Petri net can move from one marking to the next. For example, in the
marking shown in Figure 6 (with a token in p1) only t1 is enabled. Firing t1 means the
consumption of one token and the production of three tokens. The resulting marking
is [p2, p3, p4]. In this marking, four transitions are enabled: There is a choice between
t5 or t6 because both compete for the token in p4. The ordering of t2, t4, and t5 or
t6 is not fixed. The transitions in Figure 6 are labeled, e.g., executing t6 correspond to
taking an X-ray. Moreover, next to the initial marking indicated by the black token in
place p1, there is also a final target marking with just a token in p8. We are interested in
firing sequences leading from [p1] to [p8]. Three examples are: σ1 = 〈t1, t2, t4, t5, t7〉,
σ2 = 〈t1, t2, t4, t6, t7〉, and σ3 = 〈t1, t2, t3, t2, t3, t2, t4, t6, t7〉. There are infinitely
many firing sequences due to the loop. If we block the loop and do not fire transition
t3, there are 12 possible firing sequences.

Figure 7 shows three example runs of the accepting labeled Petri net. Places in
Figure 7 correspond to tokens in Figure 6, and transitions in Figure 7 correspond to
transition firings in Figure 6. A run of a Petri net corresponds to a partial order. For
example, r1 in Figure 7 does not impose an ordering on the three middle activities. The
transition labels in Figure 7 refer to the transitions in Figure 6, e.g., t21, t22, and t23 in
run r3 refer to transition t2 (administer medicine). For a formal definition of the runs
of a Petri net, we again refer to standard literature [12, 14, 27]. Typically, the number
of runs is much smaller than the number of firing sequences. For example, if we block
the loop and do not fire transition t3, then there are only two runs (r1 and r2) whereas
there where 12 possible firing sequences (e.g., σ1 is one of the six firing sequences
corresponding to run r1). Run r3 corresponds 7 ∗ 6 = 42 firing sequences.
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Fig. 6. An accepting labeled Petri net eight places (p1, p2, . . . , p8) and seven transitions
(t1, t2, . . . , t7).
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Fig. 7. Three example runs of the accepting Petri net: r1, r2, and r3. Run r3 corresponds to 42
firing sequences.

The fact that run r3 corresponds to 42 firing sequences illustrates the challenge of
discovering concurrency. If we assume that t3 is executed at most 5 times, then there are
2(1+1+1+1+1+1) = 12 runs and 2(13∗12+11∗10+9∗8+7∗6+5∗4+3∗2) = 812
firing sequences. Even when our event log has information about thousands of traces,
it is extremely unlikely that one can witness all 812 variants (especially when not all
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variants have an equal probability). This illustrates that one cannot ignore concurrency,
because it will lead to an explosion of possible interleavings of which just a fraction
will be witnessed.

3.2 Object-Centric Partially-Ordered Event Logs

Next to the problem of concurrency, we also need to deal with events referring to col-
lections of objects. This is analogous to moving from a classical Petri net to a Colored
Petri Net (CPN) [5, 18]. In a CPN, tokens have values and can present different objects.
In a classical Petri net, tokens are indistinguishable and transitions cannot consumer or
produce a variable number of tokens.

Techniques to discover Petri nets from event data assume precisely one case identi-
fier per event [3, 4]. These case identifiers are used to correlate events, and the resulting
discovered Petri net aims to describe the life-cycle of individual cases. In reality, there
are often multiple intertwined case notions, and it is impossible to pick a single case no-
tion to describe the whole process. For example, events may refer to mixtures of orders,
items, packages, customers, and products. A package may refer to multiple items, multi-
ple products, one order, and one customer. Therefore, we need to assume that each event
refers to a collection of objects, each having a type (instead of a single case identifier).
Such object-centric event logs are closer to data in real-life information systems (e.g.,
SAP, Salesforce, Oracle, etc.). From an object-centric event log, we want to discover an
object-centric Petri net with places that correspond to object types and transitions that
may consume and produce collections of objects of different types. Such object-centric
Petri nets visualize the complex relationships among objects of different types.

In the remainder, we present object-centric event logs as defined in [3, 4]. Note that
this is a simplified version of the later OCEL standard (see ocel-standard.org)
which also adds attributes to objects [16]. OCEL also provides JSON/XML serializa-
tions of object-centric event logs and intends to overcome the limitations of the XES
standard [8]. Recall that is the official IEEE standard for storing and exchanging event
data assuming a single case notion.

Definition 1 (Universes). We define the following universes (based on [3, 4]):

– Uei is the universe of event identifiers,
– Uact is the universe of activity names (also used to label transitions in an accepting

Petri net),
– Utime is the universe of timestamps,
– Uot is the universe of object types (also called classes),
– Uoi is the universe of object identifiers (also called entities),
– type ∈ Uoi → Uot assigns precisely one type to each object identifier,
– Uomap = {omap ∈ Uot 6→ P(Uoi) | ∀ot∈dom(omap) ∀oi∈omap(ot) type(oi) =
ot} is the universe of all object mappings indicating which object identifiers are
included per type,1

1 P(Uoi) is the powerset of the universe of object identifiers, i.e., object types are mapped onto
sets of object identifiers. omap ∈ Uot 6→ P(Uoi) is a partial function. If ot 6∈ dom(omap),
then we assume that omap(ot) = ∅.
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– Uatt is the universe of attribute names,
– Uval is the universe of attribute values,
– Uvmap = Uatt 6→ Uval is the universe of value assignments,2 and
– Uevent = Uei × Uact × Utime × Uomap × Uvmap is the universe of events.

An event e = (ei , act , time, omap, vmap) ∈ Uevent is characterized by a unique
event identifier ei , the corresponding activity act , the event’s timestamp time , and two
mappings omap and vmap for respectively object references and attribute values.

Definition 2 (Event Projection). Given e = (ei , act , time, omap, vmap) ∈ Uevent ,
πei(e) = ei , πact(e) = act , πtime(e) = time , πomap(e) = omap, and πvmap(e) =
vmap.

πomap(e) ∈ Uot 6→ P(Uoi) maps a subset of object types onto sets of object iden-
tifiers for an event e. An object-centric event log is a collection of partially ordered
events. Event identifiers are unique, i.e., two events cannot have the same event identi-
fier.

Definition 3 (Object-Centric Event Log). L = (E,�E) is an event log with E ⊆
Uevent and �E ⊆ E × E such that:

– �E defines a partial order (reflexive, antisymmetric, and transitive),
– ∀e1,e2∈E πei(e1) = πei(e2) ⇒ e1 = e2, and
– ∀e1,e2∈E e1 �E e2 ⇒ πtime(e1) ≤ πtime(e2).

Definition 3 allows for partially ordered event logs. Many process mining tech-
niques require a total order, e.g., events are ordered based on timestamps and when two
events have the same timestamp we assume some order. However, there are process
discovery techniques that take into account causalities [3, 24]. These can exploit such
partial orders. There may be many reasons to use partially ordered event logs: efficiency,
imprecise timing information, uncertainty, and explicit partial order information (e.g.,
based on data flow analysis). As argued before, it is unreasonable to assume that all
possible interleavings will indeed be present in the event log. Instead of a partial order
one can also use the stricter notion of a weak order. This is particularly suitable when
one has imprecise timestamps (e.g., events on the same day cannot be ordered).

3.3 Object-Centric Petri Nets

In this paper, we argued that concurrency and objects matter. To progress the field of
process mining, we cannot assume that events are totally ordered and can be correlated
using a single case notion. Hence, we need process mining techniques and process
model representations handling concurrency and object-centricity as first-class citizens.
In [4], we presented an approach to automatically learn a so-called Object-Centric Petri
Net (OCPN) given an object-centric event log (e.g., in OCEL format [16]). A detailed
explanation of the approach to discover OCPNs is beyond the scope of this short paper.
Therefore, we only show the example depicted in Figure 8.

2 Uatt 6→ Uval is the set of all partial functions mapping a subset of attribute names onto the
corresponding values.
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Fig. 8. An Object-Centric Petri Net (OCPN) can be learned by first learning a classical Petri net
per object type and then merging the nets while correcting the multiplicities using variable arcs
(a detailed derivation of the process model was presented in [4]).

Let L = (E,�E) be an event log. The events in E refer to objects. Therefore,
given a specific object o of type ot, it is possible to create a partial order of all events
that refer to o. (Eo,�Eo

), with Eo = {e ∈ E | o ∈ πomap(e)(ot)} and �Eo
=�E

∩(Eo × Eo), defines the corresponding partial order. Hence, we can group all partial
orders of events corresponding to objects of a given type ot to get the required input for
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a standard process discovery algorithm. Note that the same event may appear in multiple
partial orders. Next, we can learn a process model per object type. For simplicity, we
assume that we discover a labeled accepting Petri net per object type satisfying the
constraint that labels of visible transition are unique. There may be silent transitions
(i.e., transitions that do not refer to an activity). However, there cannot be two transitions
referring to the same activity.

The top part of Figure 8 shows three labeled accepting Petri nets discovered for 100
orders, 500 items, and 10 routes. These three models happen to be sequential, but could
have been concurrent. The initial and final markings are denoted by the places with the
play and stop symbol. Next, the three labeled accepting Petri nets are merged into an
OCPN. Since the visible transitions are unique, merging is trivial. However, the anno-
tations need to be modified. In an OCPN there is a one-to-one correspondence between
transition firings and events. A single event (i.e., transition occurrence) may involve a
variable number of objects (e.g., one order may have any number of items). This is
indicated by the double arcs in the lower part of Figure 8. For example, on average one
execution of place order corresponds to five items and one order. On average one exe-
cution of start route corresponds to 50 items and one route. For more details, we refer
to [4].

The discovery Object-Centric Petri Nets (OCPNs) from object-centric event logs in
OCEL format is still in its infancy. However, the topic is important because in most
applications of process mining one faces the problem of one-to-many and many-to-
many relations between different types of objects relevant for an organization. Processes
are intertwined and difficult to separate. Figure 8 shows that it is possible to create
one, more holistic, process model that is showing the interactions between the different
types of objects. Actually, the term “process model” may be misleading in the context
of OCPNs that may represent collections of interacting processes.

4 Conclusion

To create a “digital twin of an organization” we need to disentangle the fabric of real
operational processes. Process mining provides many of the ingredients to make such a
step. In this paper, we provided a high-level overview of process mining and linked it to
historical developments in the field of scientific management and simulation. As shown,
there have been early examples of digital twins (or at least digital shadows) in the field
of process mining. We mentioned, for example, the work combining the process mining
framework ProM, the workflow management system YAWL, and CPN Tools as the
simulation engine [32]. This enabled new forms of “short-term simulation” that can be
used to see the effects of decisions given the current state and historic information.

However, we are far away from fully capturing the fabric of real operational pro-
cesses in a single model. An important prerequisite is the proper handling of concur-
rency and entangled objects. One event may refer to many objects and organizations
are highly concurrent. It is unrealistic to assume that one can witness all interleavings
of highly concurrent processes. Therefore, we elaborated on Object-Centric Petri Nets
(OCPNs) and OCEL as a format for exchanging object-centric event logs [16].



Concurrency and Objects Matter! 13

Future research needs to address the challenges described in this paper. Compared
to the pen-and-paper analyses done by Frederick Winslow Taylor and colleagues more
than a century ago, we have booked tremendous progress. The detailed event data avail-
able today provide unprecedented opportunities to create digital twins (provided we are
able to concurrency and object-centricity properly).
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