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Abstract. The real-time prediction of business processes using historical event data is an im-
portant capability of modern business process monitoring systems. Existing process prediction
methods are able to also exploit the data perspective of recorded events, in addition to the
control-flow perspective. However, while well-structured numerical or categorical attributes are
considered in many prediction techniques, almost no technique is able to utilize text documents
written in natural language, which can hold information critical to the prediction task. In this
paper, we illustrate the design, implementation, and evaluation of a novel text-aware process
prediction model based on Long Short-Term Memory (LSTM) neural networks and natural lan-
guage models. The proposed model can take categorical, numerical and textual attributes in
event data into account to predict the activity and timestamp of the next event, the outcome,
and the cycle time of a running process instance. Experiments show that the text-aware model
is able to outperform state-of-the-art process prediction methods on simulated and real-world
event logs containing textual data.

Keywords: Predictive Monitoring, Process Mining, Natural Language Processing, LSTM Neu-
ral Networks

1 Introduction

In recent years, a progressive and rapid tendency to digital transformation has become ap-
parent in most aspects of industrial production, provision of services, science, education, and
leisure. This has, in turn, caused the widespread adoption of new technologies to support hu-
man activities. A significant number of these technologies specialize in the management of
enterprise business processes.

The need of analysis and compliance in business processes, united to a larger and larger
availability of historical event data have stimulated the birth and growth of the scientific discipline
of process mining. Process mining enables the discovery of process models from historical
execution data, the measurement of compliance between data and a process model, and the
enhancement of process models with additional information extracted from complete process
cases.

Advancements in process mining and other branches of data science have also enabled
the possibility of adopting prediction techniques, algorithms that train a mathematical model
from known data instances and are able to perform accurate estimates of various features of
future instances. In the specific context of process mining, predictive monitoring is the task of
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predicting features of partial process instances, i.e., cases of the process still in execution, on
the basis of recorded information regarding complete process instances. Examples of valuable
information on partial process instances are the next activity in the process to be executed for
the case, the time until the next activity, the completion time of the entire process instance, and
the last activity in the case (outcome). If accurately estimated, these case features can guide
process owners in making vital decisions, and improve operations within the organization that
hosts the process; as a result, accurate predictive monitoring techniques are widely desirable
and a precious asset for companies and organizations.

Existing predictive monitoring techniques typically operate at the merging point between
process mining and machine learning, and are able to consider not only the control-flow per-
spective of event data (i.e., the activity, the case identifier, and the timestamp), but also ad-
ditional data associated with them. However, few prediction techniques are able to exploit
attributes in the form of text associated with events and cases. These textual attributes can
hold crucial information regarding a case and its status within the workflow of a process. A
general framework describing the problem is shown in Figure 1.
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Figure 1. Problem overview: a general predictive monitoring model. The aim is predicting features of running process instances
based on historical data, by exploiting numerical, categorical, and textual data.

The aim of this paper is to assess the extent to which textual information can influence
predictive monitoring. To this end, we present a novel predictive monitoring approach able to
exploit numerical, categorical, and textual attributes associated with events, as well as control-
flow information. Our prediction model estimates features of cases in execution by combining
a set of techniques for sequential and textual data encoding with predictions from an LSTM
neural network, a machine learning technique particularly effective on sequential data such as
process traces. Validation through experiments on real-life event logs shows that our approach
is effective in extracting additional information from textual data, and outperforms state-of-the-
art approaches for predictive monitoring.

The remainder of the paper is structured as follows. Section 2 discusses some recent work
related to predictive monitoring. Section 3 presents some preliminary definitions. Section 4
illustrates the details and architecture of our text-aware predictive monitoring technique. Sec-
tion 5 presents the evaluation of the predictor and the results of the experiments. Section 6
concludes the paper.

2 Related Work

The intersection of process mining and machine learning is a rich and influential field of re-
search. Among the numerous applications of machine learning in process mining, feature pre-
diction on partial process traces based on historical complete traces (i.e., predictive monitoring)
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is particularly prominent. Accurately predicting features such as cycle time and bottlenecks
leads to valuable insights in many domains, e.g. production processes [17].

Earlier techniques for prediction in process mining focused on white-box and human-inter-
pretable models, largely drawn from statistics. Many proposals have been put forward to com-
pute an estimate of the cycle time of a process instance, including decision trees [6] and simu-
lation through stochastic Petri nets [13]. Additionally, Teinemaa et al. [16] proposed a process
outcome prediction method based on random forests and logistic regression. Van der Aalst
et al. [1] exploit process discovery as a step of the prediction process, obtaining estimations
through replay on an annotated transition system; this technique is then extended by Polato
et al. [12] by annotating a discovered transition system with an ensemble of naı̈ve Bayes and
support vector regressors, allowing for the data-aware prediction of cycle time and next activity.

The second half of the 2010s saw a sharp turn from ensemble learning to single prediction
models, and from white-box to black-box models – specifically, recurrent neural networks. This
is due to the fact that recurrent neural networks have been shown to be very accurate in learning
from sequential data. However, they are not interpretable, and the training efficiency is often
lower.

This family of prediction methods employs LSTM neural networks to estimate process in-
stance features. Evermann et al. [7] proposed the use of LSTMs for next activity prediction;
Tax et al. [15] trained LSTMs to predict cycle time of process instances. Navarin et al. [9]
extended this approach by feeding additional attributes in the LSTM, attaining data-aware pre-
diction. More recently, Park and Song [10] merged system-level information from a process
model with a compact trace representation based on deep neural networks to attain perfor-
mance prediction.

No existing predictive monitoring technique, to the best of our knowledge, incorporates
information from free text, recorded as event or trace attribute, with the control-flow perspective
of the process into a state-of-the-art LSTM neural network model for predictive monitoring: this
motivates the approach we present in this paper.

3 Preliminaries

Let us first introduce some preliminary definitions and notations.

Definition 1 (Sequence) A sequence of length n ∈ N0 over a set X is an ordered collection
of elements defined by a function σ : {1, . . . , n} → X, which assigns each index an element
of X. A sequence of length n is represented explicitly as σ = 〈x1, x2, . . . , xn〉 with xi ∈ X for
1 ≤ i ≤ n. In addition, 〈 〉 is the empty sequence of length 0. Over the sequence σ we define
|σ| = n, σ(i) = xi, and x ∈ σ ⇔ ∃1≤i≤n : x = xi. X∗ denotes the set of all sequences over X.

The function hdk : X∗ → X∗ gives the head or prefix of length k of σ for 0 ≤ k ≤ n:
hdk(σ) = 〈x1, x2, . . . , xk〉. For instance, hd2(σ) = 〈x1, x2〉.

Definition 2 (Event, Trace, Event Log, Prefix Log) Let A be the universe of activity labels.
Let T be the closed under subtraction and totally ordered universe of timestamps. Let D1,
D2, . . . ,Dm be the domains of additional attributes. An event is a tuple e = (a, t, d1, . . . , dm) ∈
A × T × D1 × · · · × Dm = E . Over an event e we define the projection functions πA(e) = a,
πT (e) = t, and πDi(e) = di. A trace σ ∈ E∗ is a sequence of events such that timestamps are
non-decreasing: πT (ei) ≤ πT (ej) for 1 ≤ i < j ≤ |σ|. An event log L ∈ B(E∗) is a multiset of
traces. Given an event log L, we define the prefix log L = {hdk(σ) | σ ∈ L ∧ 1 ≤ k ≤ |σ|}.

Additional attributes di ∈ Di may be in the form of text, i.e., its domain is the set of se-
quences Di = Σ∗ from a fixed and known alphabet Σ.
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Next, let us define the target functions for our predictions:

Definition 3 (Target Functions) Let σ ∈ E∗ be a non-empty trace, and let 1 ≤ k ≤ |σ|. The
next activity function fa : E∗ ×N→ A∪ {�} returns the activity of the next event, or an artificial
activity � if the given trace is complete:

fa(σ, k) =
{
� if k = |σ|
πA(σ(k + 1)) else

The next timestamp function ft : E∗×N→ T returns the time difference between the next event
and last event in the prefix:

ft(σ, k) =
{

0 if k = |σ|
πT (σ(k + 1))− πT (σ(k)) else

The case outcome function fo : E∗ → A returns the last activity of the trace: fo(σ) = πA(σ(|σ|)).
The cycle time function fc : E∗ → T returns the total duration of the case, i.e., the time difference
between the first and the last event of the trace: fc(σ) = πT (σ(|σ|))− πT (σ(1)).

The prediction techniques we show include the information contained in textual attributes
of events. In order to be readable by a prediction model, the text needs to be processed by a
text model. Text models rely on a text corpus, a collection of text fragments called documents.
Before computing the text model, the documents in the corpus are preprocessed with a number
of normalization steps: conversion to lowercase, tokenization (separation in distinct terms),
lemmatization (mapping words with similar meaning, such as “diagnose” and “diagnosed” into
a single lemma), and stop word removal (deletion of uninformative parts of speech, such as
articles and adverbs). These transformation steps are shown in Table 1.

Step Transformation Example Document

0 Original “The patient has been diagnosed with high blood pres-
sure.”

1 Lowercase “the patient has been diagnosed with high blood pressure.”
2 Tokenization 〈“the”, “patient”, “has”, “been”, “diagnosed”, “with”, “high”,

“blood”, “pressure”, “.”〉
3 Lemmatization 〈“the”, “patient”, “have”, “be”, “diagnose”, “with”, “high”,

“blood”, “pressure”, “.”〉
4 Stop word filtering 〈“patient”, “diagnose”, “high”, “blood”, “pressure”〉

Table 1. Text preprocessing transformation of an example document containing a single sentence.

In order to represent text in a structured way, we consider four different text models:

Bag of Words (BoW) [5]: a model where, given a vocabulary V , we encode a document
with a vector of length |V | where the i-th component is the term frequency (tf), the number of
occurrences of the i-th term in the vocabulary, normalized with its inverse document frequency
(idf), the inverse of the number of documents that contain the term. This tf-idf score accounts
for term specificity and rare terms in the corpus. This model disregards the order between
words.

Bag of N-Grams (BoNG) [5]: this model is a generalization of the BoW model. Instead of
one term, the vocabulary consists of n-tuples of consecutive terms in the corpus. The unigram
model (n = 1) is equivalent to the BoW model. For the bigram model (n = 2), the vocabulary
consists of pairs of words that appear next to each other in the documents. The documents are
encoded with the td-idf scores of their n-grams. This model is able to account for word order.
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Paragraph Vector (Doc2Vec) [8]: in this model, a feedforward neural network is trained to
predict one-hot encodings of words from their context, i.e., words that appear before or after
the target word in the training documents. An additional vector, of a chosen size and unique for
each document, is trained together with the word vectors. When the network converges, the
additional vector carries information regarding the words in the corresponding document and
their relationship, and is thus a fixed-length representation of the document.

Latent Dirichlet Allocation (LDA) [4]: a generative statistical text model, representing doc-
uments as a set of topics, which size is fixed and specified a priori. Topics are multinomial
(i.e., categorical) probability distributions over all words in the vocabulary and are learned by
the model in an unsupervised manner. The underlying assumption of the LDA model is that
the text documents were created by a statistical process that first samples topic from a multi-
nomial distribution associated with a document, then sample words from the sampled topics.
Using the LDA model, a document is encoded as a vector by its topic distribution: each compo-
nent indicates the probability that the corresponding topic was chosen to sample a word in the
document. LDA does not account for word order.

In the next section, we will describe the use of text models in an architecture allowing to
process a log to obtain a data- and text-aware prediction model.

4 Prediction Model Architecture

The goal of predictive monitoring is to estimate a target feature of a running process instance
based on historical execution data. In order to do so, predictive monitoring algorithms examine
partial traces, which are the events related to a process case at a certain point throughout its
execution. Obtaining partial traces for an event log is equivalent to computing the set of all
prefixes for the traces in the log. Prefix logs will be the basis for training our predictive model.

In this paper, we specifically address the challenge of managing additional attributes that
are textual in nature. In order to account for textual information, we need to define a construc-
tion method for fixed-length vectors that encode activity labels, timestamps, and numerical,
categorical, and textual attributes.

Given an event e = (a, t, d1, . . . , dm), its activity label a is represented by a vector ~a using
one-hot encoding. Given the set of possible activity labelsA, an arbitrary but fixed ordering over
A is introduced with a bijective index function indexA : A → {1, . . . , |A|}. Using this function,
the activity is encoded as a vector of size |A|, where the component indexA(πA(e)) has value 1
and all the other components have value 0. The function 1A : A → {0, 1}A is used to describe
the realization of such one-hot encoding ~a = 1A(πA(e)) for the activity label of the event e.

In order to capture time-related correlations, a set of time-based features is utilized to en-
code the timestamp t of the event. We compute a time vector ~t = (t̂1, t̂2, t̂3, t̂4, t̂5, t̂6) of min-max
normalized time features, where t1 is the time since the previous event, t2 is the time since the
first event of the case, t3 is the time since the first event of the log, t4 is the time since midnight,
t5 is the time since previous Monday, and t6 is the time since the first of January. The min-max
normalization is obtained through the formula

x̂ = x−min(x)
max(x)−min(x)

where min(x) is the lowest and max(x) is the highest value for the attribute x.

Every additional attribute di of e is encoded in a vector ~di as follows:

~di =


1Di(di) if Di is categorical
d̂i if Di is numerical
TEXTMODEL(d1) if Di is textual
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The encoding technique depends on the type of the attribute. Categorical attributes are
one-hot encoded similarly to the activity label. Numerical attributes are min-max normalized: if
the minimum and maximum are not bounded conceptually, the lowest or highest value of the at-
tribute in the historical event log is used for scaling. Finally, if Di is a textual model, it is encoded
in a fixed-length vector with one of the four text models presented in Section 3; the documents in
the text corpus for the text model consist of all instances of the textual attribute Di contained in
the historical log. This technique allows to build a complete fixed-length encoding for the event
e = (a, t, d1, . . . , dm), which we indicate with the tuple of vectors enc(e) = (~a,~t, ~d1, . . . , ~dm).

This encoding procedure allows us to build a training set for the prediction of the target
functions presented in Section 3 utilizing an LSTM neural network.

Figure 2 illustrates the entire encoding architecture, and the fit/predict pipeline for our final
LSTM model. The schematic distinguishes between the offline (fitting) phase, where we train
the LSTM with encoded historical event data, and the online (real-time prediction) phase, where
we utilize the trained model to estimate the four target features on running process instances.
Given an event log L, the structure of the training set is based on the partial traces in its prefix
log L = {hdk(σ) | σ ∈ L ∧ 1 ≤ k ≤ |σ|}. For each σ = 〈e1, e2, . . . en〉 ∈ L and 1 ≤ k ≤ n,
we build an instance of the LSTM training set. The network input 〈vecx1, ~x2, . . . , ~xk〉 is given by
the event encodings vecx1 = enc(e1), vecx2 = enc(e2), through vecxk = enc(ek). The targets
(~ya, yt, ~yo, yc) are given by ~ya = fa(σ, k), ~yt = ft(σ, k), ~yo = fo(σ), and yc = fc(σ, k).

Figure 3 shows the topology of the network. The training utilizes gradient descent and
backpropagation through time (BPTT). The loss for numerical prediction values ŷ and the true
value y is the absolute error AE(ŷ, y) = |ŷ − y|, while the loss for categorical prediction values
is computed using the categorical cross-entropy error CE(~̂y, ~y) = −

∑k
i=1 yi · log ŷi.

5 Evaluation

The predictive monitoring approach presented in this paper has been implemented for valida-
tion, utilizing a Python-based, fully open-source technological stack. PM4Py [3] is a process
mining Python tool developed by Fraunhofer FIT. It is used for event log parsing and its internal
event log representation. The neural network framework Tensorflow [2], originally developed
by Google, and its API Keras1 were utilized to implement the final LSTM model. Furthermore,
the libraries Scikit-learn [11], NLTK2, and Gensim3 provided the natural language processing
capabilities required to preprocess and normalize text, as well as build and train the text models.

The text-aware model is compared to two other process prediction methods. First, the pure
LSTM approach based on the ideas of Navarin et al. [9] is considered, which only uses the
activity, timestamp, and additional non-textual attributes of each event. This approach can be
considered the state of the art in predictive monitoring with respect to prediction accuracy. The
second baseline is the process model-based prediction method originally presented by van der
Aalst et al. [1]. This approach builds an annotated transition system for a log using a sequence,
bag, or set abstraction. Each state of the transition system is annotated with measurements of
historical traces that can be used to predict target values for unseen traces. During the predic-
tion phase, running traces are mapped to the corresponding state of the transition system, and
the measurements of the state are used to compute a prediction. We adopt the improvement
of this method described in [14] to apply it to classification tasks and obtain the next activity
and outcome predictions. The first 8 events of a trace are considered for the construction of
the state space. Experiments with different horizon lengths (1, 2, 4, 16) mostly led to inferior
results, and are thus not reported.

1https://keras.io/
2https://nltk.org/
3https://radimrehurek.com/gensim/
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Figure 2. Overview of the text-aware process prediction model. Predictions for real-time processes are realized by an LSTM
model that is fitted using an encoded representation of all prefixes of the historical event log. The encoding of textual attributes is
realized by a text preprocessing pipeline and an exchangeable text encoding model.
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We evaluate the two baseline methods against our approach considering all four text models
presented here, with a varying dimension of vector size (50, 100 and 500 for BoW and BoNG,
10, 20 and 100 for PV and LDA). The BoNG model is built with bigrams (n = 2). Of the four
target functions presented in Section 3, classification tasks (next activity and outcome) are
evaluated with a weighted-average class-wise F1 score; regression tasks (next timestamp and
cycle time) are evaluated on Mean Absolute Error (MAE). The first 2/3 of the chronologically
ordered traces is used to fit the prediction model to the historical event data. The remaining 1/3
of traces are used to measure the prediction performance.

Event Log Customer Hospital
Journey Admission

Cases 15 001 46 520
Trace variants 1001 2784
Events 55 220 117 952
Events per case (mean) 3.681 2.536
Median case duration (days) 0.224 7.579
Mean case duration (days) 0.713 121.154
Activities 18 26
Words before preprocessing 247 010 171 938
Words after preprocessing 98 915 165 285
Vocabulary before preprocessing 1203 4973
Vocabulary after preprocessing 817 4633
Text attribute Customer question Diagnosis
Additional non-textual attributes Gender Admission type

Age Insurance

Table 2. Overview of the evaluated event logs with their key properties.

The process prediction models are evaluated on two real-world event logs, of which the
general characteristics are given in Table 2. Additionally, snippets of the datasets are shown in
Tables 3 and 4. The first describes the customer journeys of the Employee Insurance Agency
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Case Activity Timestamp Age Gender Message

40154127 question 2015/12/15 12:24:42.000 50-65 M Can you send me a copy of the decision?
40154127 taken 2015/12/30 15:39:36.000 50-65 M
40154127 mijn sollicitaties 2015/12/30 15:39:42.000 50-65 M
40154127 taken 2015/12/30 15:39:46.000 50-65 M
40154127 home 2015/12/30 15:39:51.000 50-65 M
23245109 question 2015/07/21 09:49:32.000 50-65 M Law: How is the GAA (Average Number of Labor)?
23245109 question 2015/07/21 09:54:28.000 50-65 M Dismissal Procedure: Stops my contract automatically after two years of illness?
23245109 question 2015/07/21 10:05:43.000 50-65 M Dismissal: Am I entitled to a transitional allowance?
23245109 question 2015/07/21 10:05:56.000 50-65 M Chain Determination: How often may be extended a fixed-term contract?
23245109 mijn werkmap 2015/07/27 09:54:03.000 50-65 M
23245109 mijn berichten 2015/07/27 09:54:13.000 50-65 M
23245109 mijn cv 2015/07/27 10:04:20.000 50-65 M
21537056 taken 2015/10/30 13:16:48.000 50-65 M
21537056 question 2015/10/30 13:22:00.000 50-65 M How can I add a document/share with my consultant work through the workbook?
21537056 taken 2015/10/30 13:23:24.000 50-65 M
21537056 mijn werkmap 2015/10/30 13:24:39.000 50-65 M
19290768 question 2015/09/21 12:41:21.000 30-39 V Filling: What should I do if I made a mistake when filling out the Income Problem?
19290768 home 2015/09/22 10:09:53.000 30-39 V
19290768 taken 2015/09/22 10:10:14.000 30-39 V
19290768 home 2015/09/22 10:11:12.000 30-39 V
53244594 mijn berichten 2016/02/25 09:10:40.000 40-49 M
53244594 question 2016/02/25 13:27:38.000 40-49 M When is/are transferred my unemployment benefits?
53244594 question 2016/02/29 10:04:23.000 40-49 M Problem: I have to pay sv C 0 and further fill only the amount of holiday pay. What should I do if I

get an error?
53244594 question 2016/02/29 10:10:52.000 40-49 M Why did you change the amount of my payment?

Table 3. Snippet from the customer journey log.

commissioned by the Dutch Ministry of Social Affairs and Employment. The log is aggregated
from two anonymized data sets provided in the BPI Challenge 2016, containing click data of

Case Activity Timestamp Admission Type Insurance Diagnosis

8 PHYS REFERRAL/NORMAL DELI 2117-11-20 10:22:00 NEWBORN Private NEWBORN
8 HOME 2117-11-24 14:20:00 NEWBORN Private
9 EMERGENCY ROOM ADMIT 2149-11-09 13:06:00 EMERGENCY Medicaid HEMORRHAGIC CVA
9 DEAD/EXPIRED 2149-11-14 10:15:00 EMERGENCY Medicaid
10 PHYS REFERRAL/NORMAL DELI 2103-06-28 11:36:00 NEWBORN Medicaid NEWBORN
10 SHORT TERM HOSPITAL 2103-07-06 12:10:00 NEWBORN Medicaid
11 EMERGENCY ROOM ADMIT 2178-04-16 06:18:00 EMERGENCY Private BRAIN MASS
11 HOME HEALTH CARE 2178-05-11 19:00:00 EMERGENCY Private
12 PHYS REFERRAL/NORMAL DELI 2104-08-07 10:15:00 ELECTIVE Medicare PANCREATIC CANCER SDA
12 DEAD/EXPIRED 2104-08-20 02:57:00 ELECTIVE Medicare
13 TRANSFER FROM HOSP/EXTRAM 2167-01-08 18:43:00 EMERGENCY Medicaid CORONARY ARTERY DISEASE
13 HOME HEALTH CARE 2167-01-15 15:15:00 EMERGENCY Medicaid
16 PHYS REFERRAL/NORMAL DELI 2178-02-03 06:35:00 NEWBORN Private NEWBORN
16 HOME 2178-02-05 10:51:00 NEWBORN Private
17 PHYS REFERRAL/NORMAL DELI 2134-12-27 07:15:00 ELECTIVE Private PATIENT FORAMEN OVALE PATENT FORAMEN OVALE MINIMALLY

INVASIVE SDA
17 HOME HEALTH CARE 2134-12-31 16:05:00 ELECTIVE Private
17 EMERGENCY ROOM ADMIT 2135-05-09 14:11:00 EMERGENCY Private PERICARDIAL EFFUSION
17 HOME HEALTH CARE 2135-05-13 14:40:00 EMERGENCY Private
18 PHYS REFERRAL/NORMAL DELI 2167-10-02 11:18:00 EMERGENCY Private HYPOGLYCEMIA SEIZURES
18 HOME 2167-10-04 16:15:00 EMERGENCY Private
19 EMERGENCY ROOM ADMIT 2108-08-05 16:25:00 EMERGENCY Medicare C 2 FRACTURE
19 REHAB/DISTINCT PART HOSP 2108-08-11 11:29:00 EMERGENCY Medicare
20 PHYS REFERRAL/NORMAL DELI 2183-04-28 09:45:00 ELECTIVE Medicare CORONARY ARTERY DISEASE CORONARY ARTERY BYPASS

GRAFT SDA
20 HOME 183-05-03 14:45:00 ELECTIVE Medicare

Table 4. Snippet from the hospital admission log.

customers logged in the official website werk.nl and phone call data from their call center.

The second log is generated from the MIMIC-III (Medical Information Mart for Intensive
Care) database and contains hospital admission and discharge events of patients in the Beth
Israel Deaconess Medical Center between 2001 and 2012.

The results of the experiments are shown in Table 5. The next activity prediction shows an
improvement of 2.83% and 4.09% on the two logs, respectively, showing that text can carry
information on the next task in the process. While the impact of our method on next timestamp
prediction is negligible in the customer journey log, it lowers the absolute error by approximately
11 hours in the hospital admission log. The improvement shown in the outcome prediction is
small but present: 1.52% in the customer journey log and 2.11% in the hospital admission
log. Finally, the improvement in cycle time prediction is particularly notable in the hospital
admission log, where the error decreases by 27.63 hours. In general, compared to the baseline
approaches, the text-aware model can improve the predictions on both event logs with at least
one parametrization.

In addition, the prediction performance is evaluated per prefix length for each event log.
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Table 5. Experimental results for the next activity, next timestamp, outcome, and cycle time prediction. All MAE scores are in days.

BPIC2016 Customer Journey MIMIC-III Hospital Admission
Text Text Activity Time Outcome Cycle Activity Time Outcome Cycle

Model Vect. Size F1 MAE F1 MAE F1 MAE F1 MAE

Text-Aware Process Prediction (LSTM + Text Model)
BoW 50 0.4251 0.1764 0.4732 0.2357 0.5389 29.0819 0.6120 69.2953
BoW 100 0.4304 0.1763 0.4690 0.2337 0.5487 31.4378 0.6187 70.9488
BoW 500 0.4312 0.1798 0.4690 0.2354 0.5596 27.5495 0.6050 70.1084

BoNG 50 0.4270 0.1767 0.4789 0.2365 0.5309 27.5397 0.6099 69.4456
BoNG 100 0.4237 0.1770 0.4819 0.2373 0.5450 28.3293 0.6094 69.3619
BoNG 500 0.4272 0.1773 0.4692 0.2358 0.5503 27.9720 0.6052 70.6906

PV 10 0.4112 0.1812 0.4670 0.2424 0.5265 29.4610 0.6007 73.5219
PV 20 0.4134 0.1785 0.4732 0.2417 0.5239 27.2902 0.5962 69.6191
PV 100 0.4162 0.1789 0.4707 0.2416 0.5292 28.2369 0.6058 69.4793

LDA 10 0.4239 0.1786 0.4755 0.2394 0.5252 28.8553 0.6017 69.1465
LDA 20 0.4168 0.1767 0.4747 0.2375 0.5348 27.8830 0.6071 69.6269
LDA 100 0.4264 0.1777 0.4825 0.2374 0.5418 27.5084 0.6106 69.3189

LSTM Model Prediction Baseline
LSTM [9] 0.4029 0.1781 0.4673 0.2455 0.5187 27.7571 0.5976 70.2978

Process Model Prediction Baseline (Annotated Transition System)
Sequence [1, 13] 0.4005 0.2387 0.4669 0.2799 0.4657 64.0161 0.5479 171.5684
Bag [1, 13] 0.3634 0.2389 0.4394 0.2797 0.4681 64.6567 0.5451 173.7963
Set [1, 13] 0.3565 0.2389 0.4381 0.2796 0.4397 63.2042 0.5588 171.4487

BoW BoNG PV LDA LSTM Sequence Bag Set
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(a) BPIC2016 Customer Journey event log: next timestamp (left), cycle time (right).
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(b) MIMIC-III Hospital Admission event log: next timestamp (left), cycle time (right).

Figure 4. Prediction performance on selected metrics and logs, shown by length of trace prefix.

Figure 4 shows the F1 score and next timestamp MAE for every prefix trace of length 1 ≤ k ≤ 8
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on a selection of prediction tasks. Note that the results on shorter traces are supported by
a much larger set of traces due to prefix generation. For text-aware models, only the best
encoding size is shown.

On the customer journey log, the performance of all models correlates positively with the
available prefix length of the trace. All text-aware prediction models surpass the baseline ap-
proaches on very short prefix traces of length 3 or shorter, for next activity and outcome predic-
tion: we hypothesize that the cause for this is a combination of higher availability of textual at-
tributes in earlier events in the traces, and the high number of training samples of short lengths,
which allow text models to generalize. The next timestamp and cycle time predictions show
no difference between text-aware models and the LSTM baseline, although they systematically
outperform transition system-based methods.

The hospital admission log is characterized by the alternation of admission and discharge
events. Therefore, the prediction accuracy varies between odd and even prefix lengths. The
text-aware prediction models generate slightly better predictions on admission events since only
these contain the diagnosis as text attribute. Regarding the next timestamp prediction, higher
errors after discharge events and low errors after admission events are observed. This can be
explained by the short hospital stays compared to longer time between two hospitalizations.

6 Conclusion

The prediction of the future course of business processes is a major challenge in business
process mining and process monitoring. When textual artifacts in a natural language like emails
or documents hold critical information, purely control-flow-oriented approaches are limited in
delivering accurate predictions.

To overcome these limitations, we propose a text-aware process predictive monitoring ap-
proach. Our model encodes process traces of historical process executions to sequences of
meaningful event vectors using the control flow, timestamp, textual, and non-textual data at-
tributes of the events. Given an encoded prefix log of historical process executions, an LSTM
neural network is trained to predict the activity and timestamp of the next event, and the out-
come and cycle time of a running process instance. The proposed concept of text-aware pre-
dictive monitoring has been implemented and evaluated on real-world event data. We show that
our approach is able to outperform state-of-the-art methods using insights from textual data.

The intersection between the fields of natural language processing and process mining is
a promising avenue of research. Besides validating our approach on more datasets, future
research also includes the design of a model able to learn text-aware trace and event embed-
dings, and the adoption of privacy-preserving analysis techniques able to avoid the disclosure
of sensitive information contained in textual attributes.
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