
Data-Aware Process Oriented Query
Language

Eduardo Gonzalez Lopez de Murillas, Hajo A. Reijers,
and Wil M. P. van der Aalst

Abstract The size of execution data available for process mining analysis grows
several orders of magnitude every couple of years. Extracting and selecting the
relevant data to enable process mining remains a challenging and time-consuming
task. In fact, it is the biggest handicap when applying process mining and other
forms of process-centric analysis. This work presents a new query language,
DAPOQ-Lang, which overcomes some of the limitations identified in the field of
process querying and fits within the Process Querying Framework. The language
is based on the OpenSLEX meta model, which combines both data and process
perspectives. It provides simple constructs to intuitively formulate questions. The
syntax and semantics have been formalized and an implementation of the language
is provided, along with examples of queries to be applied to different aspects of the
process analysis.

1 Introduction

One of the main goals of process mining techniques is to obtain insights into the
behavior of systems, companies, business processes, or any kind of workflow under
study. Obviously, it is important to perform the analysis on the right data. Data
extraction and preparation are among the first steps to take and, in many cases, up
to 80% of the time and effort, and 50% of the cost is spent during these phases [12].

E. G. L. de Murillas (�)
Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

H. A. Reijers
Department of Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands
e-mail: h.a.reijers@uu.nl

W. M. P. van der Aalst
Department of Computer Science, RWTH Aachen University, Aachen, Germany
e-mail: wvdaalst@pads.rwth-aachen.de

© Springer Nature Switzerland AG 2022
A. Polyvyanyy (ed.), Process Querying Methods,
https://doi.org/10.1007/978-3-030-92875-9_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92875-9_3&domain=pdf
mailto:h.a.reijers@uu.nl
mailto:wvdaalst@pads.rwth-aachen.de
https://doi.org/10.1007/978-3-030-92875-9_3

50 E. G. L. de Murillas et al.

Being able to extract and query some specific subset of the data becomes crucial
when dealing with complex and heterogeneous datasets. In addition, the use of
querying tools allows one to find specific cases or exceptional behavior. Whatever
the goal, analysts often find themselves in the situation in which they need to develop
ad hoc software to deal with specific datasets, given that existing tools might be
difficult to use, too general, or just not suitable for process analysis.

Different approaches exist to support the querying of process data. Some of them
belong to the field of business process management (BPM). In this field, events are
the main source of information. They represent transactions or activities that were
executed at a certain moment in time in the environment under study. Querying
this kind of data allows us to obtain valuable information about the behavior and
execution of processes. There are other approaches originating from the field of data
provenance, which are mainly concerned with recording and observing the origins
of data. This field is closely related to scientific workflows in which the traceability
of the origin of experimental results becomes crucial to guarantee correctness and
reproducibility. In the literature, we find many languages to query process data.
However, none of these approaches succeeds at combining process and data aspects
in an integrated way. An additional challenge to overcome is the development of a
query mechanism that allows to exploit this combination, while being intuitive and
easy to use.

In order to make the querying of process event data easier and more efficient, we
propose the Data-Aware Process Oriented Query Language (DAPOQ-Lang). This
query language, first introduced in [3], exploits both process and data perspectives.
The aim of DAPOQ-Lang is not to theoretically enable new types of computations,
but to ease the task of writing queries in the specific domain of process mining.
Therefore, our focus is on the ease of use. We propose the following example to
show the ease of use of DAPOQ-Lang. Let us consider a generic question that could
be asked by an analyst when carrying out a process mining project:

GQ: In which cases, there was (a) an event that happened between time T1 and T2, (b) that
performed a modification in a version of class C, (c) in which the value of field F changed
from X to Y?

This query involves several types of elements: cases, events, object versions, and
attributes. We instantiate this query with some specific values for T1 = “1986/09/17
00:00”, T2 = “2016/11/30 19:44”, C = “CUSTOMER”, F = “ADDRESS”, X =
“Fifth Avenue”, and Y = “Sunset Boulevard”. Query 1 presents the corresponding
DAPOQ-Lang query. This example shows how compact a DAPOQ-Lang query can
be. The specifics of this query will be explained in the coming sections.

The rest of this chapter is organized as follows. Section 2 introduces some
background information, which is needed to understand the specifics of our
query language. Section 3 presents the query language, focusing on the syntax
and semantics. Section 4 provides information about the implementation and its
evaluation. Section 5 presents possible use cases. Section 6 positions DAPOQ-Lang
in the Process Querying Framework [10]. Section 7 concludes the chapter.

Data-Aware Process Oriented Query Language 51

Query 1 DAPOQ-Lang query to retrieve cases with an event happening between two dates that
changed the address of a customer from “Fifth Avenue” to “Sunset Boulevard”.

1 def P1 = cr ea t ePe r i od ("1986/09/17 00:00" ,"2016/11/30 19:44" ,"yyyy/MM/dd HH:mm
↪→ ")

2
3 case sOf (
4 eventsOf (
5 vers ionsOf (
6 a l l C l a s s e s () . where {name == "CUSTOMER"}
7) . where {
8 changed ([at : "ADDRESS" , from :"Fifth Avenue" , to :"Sunset Boulevard"]) }
9) . where
10 {
11 def P2 = cr ea t ePe r i od (i t . t imes tamp)
12 during (P2 , P1)
13 }
14)

2 Preliminaries

To enable our approach to data querying, we need to have access to data storage,
and the information should comply with a certain structure. An appropriate structure
has been previously defined as a meta model [4] and implemented in a queryable
file format called OpenSLEX. The meta model captures all the necessary aspects
to enable data querying with our language. This section describes the structure of
OpenSLEX and provides the necessary background to understand the details of
DAPOQ-Lang.

Standards of reference, like XES [5], are focused on the process view (events,
traces, and logs) of systems. OpenSLEX supports all concepts present in XES but,
in addition, considers the data elements (data model, objects, and versions) as an
integral part of its structure. This makes it more suitable for database environments
where only a small part of the information is process-oriented (i.e., events) with
respect to the rest of data objects of different classes that may be seen as an
augmented view on the process information. The OpenSLEX format is supported
by a meta model (Fig. 1) that considers data models and processes as the entities at
the highest abstraction level. These entities define the structure of more granular
elements like logs, cases, and activity instances with respect to processes and
objects with respect to classes in the data model. Each of these elements at the
intermediate level of abstraction can be broken apart into more granular pieces.
This way, cases are formed by events, and objects can be related to several object
versions. Both events and object versions represent different states of a higher level
abstraction (cases or objects) at different points in time. A detailed ER diagram
of the OpenSLEX format can be found online.1 The format makes use of an SQL

1 https://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model.png.

https://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model.png

52 E. G. L. de Murillas et al.

Fig. 1 ER diagram of the OpenSLEX meta model. The entities have been grouped into sectors,
delimited by the dashed lines

Data-Aware Process Oriented Query Language 53

schema to store all the information, and a Java API2 is available for its integration
in other tools. The use of OpenSLEX in several environments, e.g., database redo
logs and ERP databases, is evaluated in [4], focusing on the data extraction and
transformation phase. To provide the necessary background for the understanding
of this work, a simplified version of the meta model is formally presented below.
Every database system contains information structured with respect to a data model.
Definition 1 provides a formalization of a data model in the current context.

Definition 1 (Data Model) A data model is a tuple DM = (CL, AT,

classOfAttribute, RS, sourceClass, targetClass), such that

– CL is a set of class names.
– AT is a set of attribute names.
– classOfAttribute ∈ AT → CL is a function that maps each attribute to a class.
– RS is a set of relationship names.
– sourceClass ∈ RS → CL is a function mapping each relationship to its source
class.

– targetClass ∈ RS → CL is a function mapping each relationship to its target
class.

Data models contain classes (i.e., tables), which contain attribute names (i.e.,
columns). Classes are related by means of relationships (i.e., foreign keys). Defi-
nition 2 formalizes each of the entities of the OpenSLEX meta model, as can be
observed in Fig. 1, and shows connections between them.

Definition 2 (Connected Meta Model) Let V be some universe of values and
TS a universe of timestamps. A connected meta model is defined as a tuple
CMM = (DM, OC, classOfObject, OVC, objectOfVersion, EC, eventToOVLabel,
IC, eventAI, PMC, activityOfAI, processOfLog) such that

– DM = (CL, AT, classOfAttribute, RS, sourceClass, targetClass) is a data model.
– OC is a collection of objects.
– classOfObject ∈ OC → CL is a function that maps each object to its
corresponding class.

– OVC = (OV, attValue, startTimestamp, endTimestamp, REL) is a version collec-
tion, where OV is a set of object versions, attValue ∈ (AT × OV) �→ V is a map-
ping of pairs of object version and attribute to a value, startTimestamp ∈ OV →
TS is a mapping between object versions and start timestamps, endTimestamp ∈
OV → TS is a mapping between object versions and end timestamps, and
REL ⊆ (RS×OV ×OV) is a set of triples relating pairs of object versions through
a specific relationship.

– objectOfVersion ∈ OV → OC is a function that maps each object version to an
object.

– EC = (EV, EVAT, eventTimestamp, eventLifecycle, eventResource,
eventAttributeValue) is an event collection, where EV is a set of events, EVAT

2 https://github.com/edugonza/OpenSLEX.

https://github.com/edugonza/OpenSLEX

54 E. G. L. de Murillas et al.

is a set of event attribute names, eventTimestamp ∈ EV → TS maps events to
timestamps, eventLifecycle ∈ EV → {start, complete, ...} maps events to life
cycle attributes, eventResource ∈ EV → V maps events to resource attributes,
and eventAttributeValue ∈ (EV × EVAT) �→ V maps pairs of event and attribute
name to values.

– eventToOVLabel ∈ (EV × OV) �→ V is a function that maps pairs of an event
and an object version to a label. The existence of a label associated with an event
and an object version, i.e., (ev, ov) ∈ dom(eventToOVLabel), means that both
event and object version are linked. The label defines the nature of the link, e.g.,
“insert”, “update”, “delete”, etc.

– IC = (AI, CS, LG, aisOfCase, casesOfLog, CSAT, caseAttributeValue, LGAT,

logAttributeValue) is an instance collection, where AI is a set of activity instances,
CS is a set of cases, LG is a set of logs, aisOfCase ∈ CS → P(AI) is a mapping
between cases and sets of activity instances,3 casesOfLog ∈ LG → P(CS) is a
mapping between logs and sets of cases, CSAT is a set of case attribute names,
caseAttributeValue ∈ (CS × CSAT) �→ V maps pairs of case and attribute name
to values, LGAT is a set of log attribute names, and logAttributeValue ∈ (LG ×
LGAT) �→ V maps pairs of log and attribute name to values.

– eventAI ∈ EV → AI is a function that maps each event to an activity instance.
– PMC = (PM, AC, actOfProc) is a process model collection, where PM is a set of
processes, AC is a set of activities, and actOfProc ∈ PM → P(AC) is a mapping
between processes and sets of activities.

– activityOfAI ∈ AI → AC is a function that maps each activity instance to an
activity.

– processOfLog ∈ LG → PM is a function that maps each log to a process.

A connected meta model (CMM) provides the functions that make it possible to
connect all the entities in the meta model. This is important in order to correlate
elements, e.g., events that modified the same object. However, some constraints
must be fulfilled for a meta model to be considered a valid connected meta model
(e.g., versions of the same object do not overlap in time). The details about such
constraints are out of the scope of this work, but their description can be found in [4].
DAPOQ-Lang queries are executed on data structures that fulfill the constraints
set on the definition of a connected meta model. According to our meta model
description, events can be linked to object versions, which are related to each other
by means of relations. These relations are instances of data model relationships. In
database environments, this would be the equivalent to using foreign keys to relate
table rows and knowing which events relate to each row. For the purpose of this
work, we assume that pairwise correlations between events, by means of related
object versions, are readily available in the input connected meta model.

3 P (X) is the powerset of X, i.e., Y ∈ P (X) if Y ⊆ X.

Data-Aware Process Oriented Query Language 55

3 DAPOQ-Lang

DAPOQ-Lang is a Data-Aware Process Oriented Query Language that allows the
user to query data and process information stored in a structure compatible with the
OpenSLEXmeta model [4]. As described in Sect. 2, OpenSLEX combines database
elements (data models, objects, and object versions) with common process mining
data (events, logs, and processes), considering them as first-class citizens. DAPOQ-
Lang considers the same first-class citizens as OpenSLEX, which makes it possible
to write queries in the process mining domain enriched with data aspects with lower
complexity than in other general purpose query languages like SQL.

Intuitively, we could think that considering all the elements of the OpenSLEX
meta model as first-class citizens would introduce a lot of complexity in our lan-
guage. However, these elements have been organized in a type hierarchy as subtypes
of higher level superclasses (Fig. 2). It can be seen that MMElement (Meta Model
Element) is an abstract class at the highest level superclass. Next, we distinguish two
subtypes of elements: (1) stored elements (StoredElement), i.e., elements that can be
found directly stored in an OpenSLEX structure, such as activities, events, objects,
and logs and (2) computed elements (ComputedElements), i.e., elements that are
computed based on the rest, temporal periods of cases and temporal periods of
events. We will exploit this hierarchy to design a simple language, providing many
basic functions that can operate on any MMElement, and some specific functions
that focus on specific subtypes. Given a connected meta model CMM (Definition 2),
we define the concept of MMElement in DAPOQ-Lang as the union of all its
terminal subtypes: MMElement = AC ∪ LG ∪ EV ∪ REL ∪ OC ∪ AT ∪ CL ∪ PER ∪
PM ∪CS∪AI ∪OV ∪RS∪DM. Some of the functions that we define operate on sets
of elements (P(MMElement)). However, as a constraint of our query language, we
require that the elements of those sets belong to the same subtype (i.e., a set of Class
elements, or a set of Version elements, or a set of Event elements, etc.). Therefore,
we define the set MMSets as the set of all possible subsets of each element type in a

Fig. 2 DAPOQ-Lang type hierarchy. Arrows indicate subtype relations

56 E. G. L. de Murillas et al.

meta model MM:

MMSets = P(AC) ∪ P(LG) ∪ P(EV) ∪ P(REL) ∪ P(OC) ∪ P(AT) ∪ P(CL) ∪
P(PER) ∪ P(PM) ∪ P(CS) ∪ P(AI) ∪ P(OV) ∪ P(RS) ∪ P(DM)

(1)

The output of any query will be an element set es ∈ MMSets, i.e., a set of
elements of the same type. The following subsections describe the syntax and
semantics of DAPOQ-Lang in detail.

3.1 Syntax

The language has been designed with the aim to find a balance between simplicity
and expressive power. To do so, we exploited the specifics of the underlying meta
model defining a total of 57 basic functions, as organized in 5 well-defined blocks,
that can be applied in the context of a given meta model MM. The functions
proposed in Sects. 3.1.1–3.1.5 will be used to define syntax and semantics of
DAPOQ-Lang in Sects. 3.1 and 3.2.

3.1.1 Terminal Meta Model Elements

We define a set of 13 basic terminal functions. Each of them maps to the set of all
elements of the corresponding type (Fig. 2) in the OpenSLEX meta model structure
(Definition 2). Given a connected meta model, we define the following:

1. allDatamodels: the set of all data models, i.e., DM.
2. allClasses: the set of all classes, i.e., CL.
3. allAttributes: the set of all class attributes, i.e., AT.
4. allRelationships: the set of all class relationships, i.e., RS.
5. allObjects: the set of all objects, i.e., OC.
6. allVersions: the set of all object versions, i.e., OV .
7. allRelations: the set of all relations, i.e., REL.
8. allEvents: the set of all events, i.e., EV .
9. allActivityInstances: the set of all activity instances, i.e., AI.
10. allCases: the set of all cases, i.e., CS.
11. allLogs: the set of all logs, i.e., LG.
12. allActivities: the set of all activities, i.e., AC.
13. allProcesses: the set of all processes, i.e., PM.

Data-Aware Process Oriented Query Language 57

3.1.2 Elements Related to Elements

The following 14 functions take as an input a set of elements of the same type and
return a set of elements related to them of the type corresponding to the return type
of the function, e.g., a call to eventsOf (es), being es ∈ P(LG) will return the set
of events that are related to the logs in the set es. Thanks to the subtype hierarchy,
in most of the cases, we can reuse the same function call for input sets of any type,
which leads to a more compact syntax. In the cases when an input of any type would
not make sense, we can still restrict the input type to a particular kind, as is the case
with the function versionsRelatedTo, which only accepts sets of object versions as
input.

14. datamodelsOf ∈ MMSets → P(DM): returns the set of data models related to
the input.

15. classesOf ∈ MMSets → P(CL): returns the set of classes related to the input.
16. attributesOf ∈ MMSets → P(A): returns the set of attributes related to the

input.
17. relationshipsOf ∈ MMSets → P(RS): returns the set of relationships related

to the input.
18. objectsOf ∈ MMSets → P(O): returns the set of objects related to the input.
19. versionsOf ∈ MMSets → P(OV): returns the set of object versions related to

the input.
20. relationsOf ∈ MMSets → P(REL): returns the set of relations related to the

input.
21. eventsOf ∈ MMSets → P(E): returns the set of events related to the input.
22. activityInstancesOf ∈ MMSets → P(AI): returns the set of activity instances

related to the input.
23. activitiesOf ∈ MMSets → P(AC): returns the set of activities related to the

input.
24. casesOf ∈ MMSets → P(CS): returns the set of cases related to the input.
25. logsOf ∈ MMSets → P(LG): returns the set of logs related to the input.
26. processesOf ∈ MMSets → P(PM): returns the set of processes related to the

input.
27. versionsRelatedTo ∈ P(OV) → P(OV): returns the set of object versions

directly related (distance 1) to the input object versions through any kind of
relationship.

3.1.3 Computation of Temporal Values

Some elements in our meta model contain temporal properties (e.g., events have
timestamps, object versions have life spans, etc.) which allows making temporal
computations with them. To do so, we provide the following 8 functions to compute
time periods (with a start and an end), as well as durations. Durations (DUR) are
special in the sense that they can be considered as a scalar and are not part of the

58 E. G. L. de Murillas et al.

Table 1 Relations in Allen’s interval algebra

Relation Name Illustration Interpretation

X < Y before X
X takes place before Y

Y > X after Y

X m Y meets X
X meets Y (i stands for inverse)

Y mi X meetsInv Y

X o Y overlaps X
X overlaps with Y

Y oi X overlapsInv Y

X s Y starts X
X starts Y

Y si X startsInv Y

X d Y during X
X during Y

Y di X duringInv Y

X f Y finishes X
X finishes Y

Y fi X finishesInv Y

X = Y matches
X

X is equal to Y
Y

MMElement subtype hierarchy. Durations can only be used to be compared with
other durations.

28. periodsOf ∈ MMSets → P(PER): returns the computed periods for each of
the elements of the input set.

29. globalPeriodOf ∈ MMSets → PER: returns a global period for all the elements
in the input set, i.e., the period from the earliest to the latest timestamp.

30. createPeriod ∈ TS×TS → PER: returns a period for the specified start and end
timestamps.

31. getDuration ∈ PER → DUR: returns the duration of a period in milliseconds.
32. Duration.ofSeconds ∈ N → DUR: returns the duration of the specified

seconds.4

33. Dduration.ofMinutes ∈ N → DUR: returns the duration of the specified
minutes.

34. Duration.ofHours ∈ N → DUR: returns the duration of the specified hours.
35. Duration.ofDays ∈ N → DUR: returns the duration of the specified days.

3.1.4 Temporal Interval Algebra

Allen’s interval algebra, described in [1], introduces a calculus for temporal
reasoning that defines possible relations between time intervals. It provides the
tools to reason about the temporal descriptions of events in the broadest sense.
Table 1 shows the 13 base relations between two intervals. These temporal relations

4
N is the set of natural numbers.

Data-Aware Process Oriented Query Language 59

are used in our approach to reason about data elements for which we can compute
a temporal interval.

We have introduced the functions to compute and create periods of time. The
following 13 functions cover all the interval operators, described by Allen’s interval
algebra, that we can use to compare periods. Take (a, b) to be a pair of periods for
which:

36. before ∈ PER × PER → B: before(a, b) iff a takes place before b.5

37. after ∈ PER × PER → B: after(a, b) iff a takes place after b.
38. meets ∈ PER × PER → B: meets(a, b) iff the end of a is equal to the start of b.
39. meetsInv ∈ PER × PER → B: meetsInv(a, b) iff the start a is equal to the end

of b.
40. overlaps ∈ PER × PER → B: overlaps(a, b) iff the end of a happens during b.
41. overlapsInv ∈ PER × PER → B: overlapsInv(a, b) iff the start of a happens

during b.
42. starts ∈ PER × PER → B: starts(a, b) iff both start at the same time, but a is

shorter.
43. startsInv ∈ PER × PER → B: startsInv(a, b) iff both start at the same time, but

a is longer.
44. during ∈ PER × PER → B: during(a, b) iff a starts after b started and ends

before b ends.
45. duringInv ∈ PER × PER → B: duringInv(a, b) iff a starts before b starts and

ends after b ends.
46. finishes ∈ PER × PER → B: finishes(a, b) iff both end at the same time, but a

is shorter.
47. finishesInv ∈ PER × PER → B: finishesInv(a, b) iff both end at the same time,

but a is longer.
48. matches ∈ PER × PER → B: matches(a, b) iff both have the same start and

end.

3.1.5 Operators on Attributes of Elements

Events, object versions, cases, and logs of the OpenSLEX meta model can be
enriched with attribute values. The following functions allow the user to obtain their
values:

49. eventHasAttribute ∈ EVAT × EV → B: true iff the event contains a value for a
certain attribute name.

50. versionHasAttribute ∈ AT × OV → B: true iff the object version contains a
value for a certain attribute name.

51. caseHasAttribute ∈ CSAT × CS → B: true iff the case contains a value for a
certain attribute name.

5
B is the set of Boolean values.

60 E. G. L. de Murillas et al.

52. logHasAttribute ∈ LGAT × LG → B: true iff the log contains a value for a
certain attribute name.

53. getAttributeEvent ∈ EVAT × EV �→ V : returns the value for an attribute of an
event.

54. getAttributeVersion ∈ AT × OV �→ V : returns the value for an attribute of an
object version.

55. getAttributeCase ∈ CSAT × CS �→ V : returns the value for an attribute of a
case.

56. getAttributeLog ∈ LGAT × LG �→ V : returns the value for an attribute of a log.
57. versionChange ∈ AT × V × V × OV → B: true iff the value for an attribute

linked to an object version changed from a certain value (in the previous object
version) to another (in the provided object version).

By definition, getAttribute* functions (items 53 to 56) are defined for combina-
tions of elements and attributes for which the corresponding *HasAttribute function
(items 49 to 52) evaluates to true.

3.1.6 Abstract Syntax

The abstract syntax of DAPOQ-Lang is defined using the notation proposed
in [8]. In DAPOQ-Lang, a query is a sequence of Assignments combined with an
ElementSet:

Query � s : Assignments; es : ElementSet

Assignments � Assignment∗

The result of a query is an ElementSet, i.e., the set of elements (of the same type)
from the queried OpenSLEX dataset that satisfies certain criteria. An Assignment
assigns an ElementSet to a variable. Then, any reference to such variable, via its
identifier, will be replaced by the corresponding ElementSet.

Assignment � v : Varname; es : ElementSet

Varname � identifier

An ElementSet can be defined over other ElementSets by Construction or
Application. It can also be defined by means of a variable identifier, i.e., an
ElementSetVar, by a call to a terminal element function with an ElementSetTerminal

Data-Aware Process Oriented Query Language 61

(Sect. 3.1.1), by computation or creation of Periods, or by filtering elements of the
previous options with a FilteredElementSet.

ElementSet � Construction | Application | Period | ElementSetVar |
ElementSetTerminal | FilteredElementSet

ElementSetVar � identifier

An ElementSetTerminal is the ElementSet resulting from a call to the correspond-
ing terminal element function (e.g., allEvents).

ElementSetTerminal � AllDatamodels | AllClasses | AllAttributes |
AllRelationships | AllObjects | AllVersions |
AllRelations | AllActivityInstances | AllEvents |
AllCases | AllLogs | AllActivities | AllProcesses

An ElementSet can be composed from other ElementSets by applying set
operations such as union, exclusion, and intersection.

Construction � es1, es2 : ElementSet; o : Set_Op

Set_Op � Union | Excluding | Intersection

Also, an ElementSet can be constructed by means of a call to one of the
ElementOf_Op functions, which includes the functions described in Sect. 3.1.2
that return sets of elements related to other elements, and the periodsOf function
described in Sect. 3.1.3 that computes the periods of elements.

Application � es : ElementSet; o : ElementOf_Op

ElementOf_Op � datamodelsOf | classesOf | attributesOf | relationshipsOf |
objectsOf | versionsOf | relationsOf | eventsOf |
activityInstancesOf | casesOf | activitiesOf | logsOf |
processesOf | periodsOf | versionsRelatedTo

An ElementSet can be built by means of filtering, discarding elements of
another ElementSet according to certain criteria. These criteria are expressed as a
PredicateBlock, which will be evaluated for each member of the input ElementSet.
Depending on the result of evaluating the PredicateBlock, each element will be
filtered out or included in the new ElementSet.

FilteredElementSet � es : ElementSet; pb : PredicateBlock

62 E. G. L. de Murillas et al.

A PredicateBlock is a sequence of Assignments combined with a Predicate. Such
Predicate can be recursively defined as a binary (and, or) or unary (not) combination
of other Predicates.

PredicateBlock � s : Assignments; p : Predicate

Predicate � AttributePredicate | Un_Predicate | Bin_Predicate |
TemporalPredicate

Bin_Predicate � p1, p2 : Predicate; o : BinLogical_Op

Un_Predicate � p : Predicate; o : UnLogical_Op

BinLogical_Op � And | Or

UnLogical_Op � Not

Also, a Predicate can be defined as an AttributePredicate, which either refers
to AttributeExists function that checks the existence of an attribute for a certain
element, an operation on attribute values (e.g., to compare attributes to substrings,
constants, or other attributes), or an AttributeChange predicate, making use of the
functions specified in Sect. 3.1.5.

AttributePredicate � AttributeExists | AttributeV alueP red | AttributeChange

AttributeExists � at : AttributeName

AttributeValuePred � at1, at2 : Attribute; o : Value_Op

AttributeChange � at : AttributeName; from, to : Value

AttributeName � identifier

Value_Op � == | >= | <= | > | < | startsWith | endsWith | contains

Attribute � AttributeName | Value

Value � literal

Finally, a Predicate can be defined as a TemporalPredicate, i.e., a Boolean
operation comparing periods or durations. Period comparisons based on Allen’s
Interval Algebra are supported by the functions defined in Sect. 3.1.4. Duration
comparisons are done on simple scalars (e.g., ==, >, <, ≥, and ≤). A Period can
be either created from some provided timestamps with the function createPeriod or
computed as the global period of an element or a set of elements with the function
globalPeriodOf. Also, a Period can be constructed referring to a variable containing
another period by means of an identifier. Durations can be obtained from existing

Data-Aware Process Oriented Query Language 63

periods (with the function durationOf) or created from specific durations in seconds,
minutes, hours, or days with the functions defined in Sect. 3.1.3.

TemporalPredicate � per1, per2 : Period; o : Period_Op |
dur1, dur2 : Duration; o : Numerical_Comp_Op

Period � PeriodCreation | PeriodVar

PeriodCreation � ts1, ts2 : Timestamp; o : createPeriod |
es : ElementSet; o : globalPeriodOf

PeriodVar � identifier

Period_Op � before | after | meets | meetsInv | overlaps |
overlapsInv | starts | startsInv | during |
duringInv | finishes | finishesInv | matches

Duration � p : Period; o : getDuration | v : Value; o : DurationOf

DurationOf � Duration.ofSeconds | Duration.ofMinutes |
Duration.ofHours | Duration.ofDays

Numerical_Comp_Op � == | >= | <= | > | <

Figure 3 shows the syntax tree of Query 1 according to the presented abstract
syntax. It also contains elements of the proposed concrete syntax, presented in detail
in Sect. 5, to demonstrate the mapping to real DAPOQ-Lang queries.

3.2 Semantics

In this section, we make use of denotational semantics, as proposed in [8], to
describe the meaning of DAPOQ-Lang queries. We define function MT to describe
the meaning of the nonterminal term T (e.g., MQuery describes the meaning of the
nonterminal Query). First, we introduce a notation of overriding union that will be
used in further discussions.

Definition 3 (OverridingUnion) The overriding union of f : X → Y by g : X →
Y is denoted as f ⊕ g : X → Y such that dom(f ⊕ g) = dom(f) ∪ dom(g) and

f ⊕ g(x) =
{

g(x) if x ∈ dom(g)

f (x) if x ∈ dom(f) \ dom(g).

64 E. G. L. de Murillas et al.

Query

Assignments

Assignment

v
Varname

P1

es
ElementSet

Period

PeriodCreation

ts1
Timestamp

“1986/09/17
00:00”

ts2
Timestamp

“2016/11/30
19:44”

o
createPeriod

ElementSet

Application

es
ElementSet

Filtered
ElementSet

Application

es
ElementSet

Filtered
ElementSet

es
ElementSet

Application

Filtered
ElementSet

es
ElementSet

ElementSet
Terminal

allClasses

pb
PredicateBlock

Assignments Predicate

AttributePredicate

AttributeValuePred

at1
Attribute

Attribute
Name

name

at2
Attribute

Value

“CUSTOMER”

o
Value Op

==

o
ElementOf Op

versionsOf

pb
PredicateBlock

Assignments Predicate

Attribute
Predicate

Attribute
Change

at
Attribute
Name

“ADDRESS”

from
Value

“Fifth
Avenue”

to
Value

“Sunset
Boulevard”

o
ElementOf Op

eventsOf

pb
PredicateBlock

s
Assignments

Assignment

v
Varname

P2

es
ElementSet

Period

PeriodCreation

ts1
Timestamp

it.timestamp

o
createPeriod

p:Predicate

TemporalPredicate

per1
Period

PeriodVar

P2

per2
Period

PeriodVar

P1

o
Period Op

during

o
ElementOf Op

CasesOf

Fig. 3 Syntax tree of DAPOQ-Lang Query 1

In the previous section, we have introduced the use of variables in the language.
These variables must be translated into a value in MMSets (Eq. 1) during the
execution of our queries. A Binding assigns a set of elements to a variable name:

Binding � Varname → MMSets

Queries are computed based on a dataset complying with the structure of the
OpenSLEX meta model. Such a meta model can be seen as a tuple of sets of
elements of each of the basic types:

MetaModel � (AC, LG, EV, REL, OC, AT, CL, PER,

PM, CS, AI, OV, RS, DM)

Data-Aware Process Oriented Query Language 65

The meaning function of a query takes a query and a meta model dataset as an
input and returns a set of elements that satisfy the query:

MQuery : Query × MetaModel → MMSets

This function is defined as

MQuery [q : Query, MM : MetaModel] � MElementSet(q.es, MM, MAssignments(q.s, MM, ∅))

The evaluation of the query meaning function MQuery depends on the evaluation
of the assignments and the element set involved. Evaluating the assignments means
resolving their corresponding element sets and remembering the variables to which
they were assigned.

MAssignments : Assignments × MetaModel × Binding → Binding

A sequence of assignments resolves to a binding, which links sets of elements
to variable names. Assignments that happen later in the order of declaration take
precedence over earlier ones when they share the variable name.

MAssignments [s : Assignments, MM : MetaModel, B : Binding] �
if ¬(s.TAIL).EMPTY then

MAssignments(s.TAIL, MM, B ⊕ MAssignment(s.FIRST, MM, B))

else B

The result of an assignment is a binding, linking a set of elements to a variable
name.

MAssignment : Assignment × MetaModel × Binding → Binding

MAssignment [a : Assignment, MM : MetaModel, B : Binding] �
{(a.v, MElementSet(a.es, MM, B))}

An ElementSet within the context of a meta model and a binding returns a set of
elements of the same type that satisfy the restrictions imposed by the ElementSet.

MElementSet : ElementSet × MetaModel × Binding → MMSets

An ElementSet can be resolved as a Construction of other ElementSets with the
well-known set operations of union, exclusion, and intersection. It can be the result
of evaluating an Application function, returning elements related to other elements,
the result of the creation of Periods, or the value of a variable previously declared

66 E. G. L. de Murillas et al.

(ElementSetVar). Also, it can be the result of a terminal ElementSet, e.g., the set
of all the events (allEvents). Finally, an ElementSet can be the result of filtering
another ElementSet according to PredicateBlock, which is a Predicate preceded
by a sequence of Assignments. These Assignments are only valid within the scope
of the PredicateBlock and are not propagated outside of it (i.e., if a variable is
reassigned, it will maintain its original value outside of the PredicateBlock). The
resulting FilteredElementSet will contain only the elements of the input ElementSet
for which the evaluation of the provided Predicate is true.

MElementSet[es : ElementSet, MM : MetaModel, B : Binding] �
case es of

Construction ⇒
case es.o of

Union ⇒ MElementSet(es.es1, MM, B) ∪ MElementSet(es.es2, MM, B)

Excluding ⇒ MElementSet(es.es1, MM, B) \ MElementSet(es.es2, MM, B)

Intersection ⇒ MElementSet(es.es1, MM, B) ∩ MElementSet(es.es2, MM, B)

end

Application ⇒ es.o(MElementSet(es.es, MM, B))

Period ⇒ MPeriod(es, MM, B)

ElementSetVar ⇒
⎧⎨
⎩B(es) if es ∈ dom(B)

∅ otherwise

ElementSetTerminal ⇒ esMM

FilteredElementSet ⇒ {e ∈ MElementSet(es.es, MM, B) |
MPredicate(es.pb.p, MM, MAssignments(es.pb.s, MM, B ⊕ (it, e)))}

end

A Predicate is evaluated as a Boolean, with respect to a MetaModel and a
Binding:

MPredicate : Predicate × MetaModel × Binding → B

The meaning function of Predicate evaluates to a Boolean value, which can be
recursively constructed combining binary (and, or) or unary (not) predicates. Also,
a Predicate can be defined as an AttributePredicate that evaluates the existence
of attributes, comparisons of attribute values, or attribute value changes. Finally,
a Predicate can be defined as a TemporalPredicate, which can compare durations or
periods by means of Allen’s Interval Algebra operators.

Data-Aware Process Oriented Query Language 67

MPredicate[p : Predicate, MM : MetaModel, B : Binding] �
case p of

AttributePredicate ⇒
case p of

AttributeExists ⇒ if B(it) ∈ EV : eventHasAttribute(p.at, B(it))

elif B(it) ∈ OV : versionHasAttribute(p.at, B(it))

elif B(it) ∈ CS : caseHasAttribute(p.at, B(it))

elif B(it) ∈ LG : logHasAttribute(p.at, B(it))

else : ∅
AttributeValuePred ⇒

p.o(MAttribute(p.at1, B(it), MM), MAttribute(p.at2, B(it), MM))

AttributeChange ⇒
if B(it) ∈ MM.OV then : versionChange(p.at, p.from, p.to, B(it)) else : ∅

end

Un_Predicate ⇒ ¬MPredicate(p.p, MM, B)

Bin_Predicate ⇒
case p.o of

And ⇒ Mpredicate(p.p1, MM, B) ∧ Mpredicate(p.p2, MM, B)

Or ⇒ Mpredicate(p.p1, MM, B) ∨ Mpredicate(p.p2, MM, B)

end

TemporalPredicate ⇒
case p.o of

Period_Op ⇒ p.o(MPeriod(p.per1, MM, B), MPeriod(p.per2, MM, B))

Duration_Op ⇒ p.o(MDuration(p.dur1, MM, B), MDuration(p.dur2, MM, B))

end

end

A Period for a given meta model dataset and a binding returns an instance of
PER, i.e., a single period element:

MPeriod : Period × MetaModel × Binding → PER

68 E. G. L. de Murillas et al.

The meaning function of Period will return a period element that can be created
(PeriodCreation) or assigned from a variable name containing a period (PeriodVar).
In the case of a PeriodCreation, a period can be created for the specified start and
end timestamps using the createPeriod function or it can be computed as the global
period of another set of periods (globalPeriodOf).

MPeriod[p : Period, MM : MetaModel, B : Binding] �
case p of

PeriodCreation ⇒
case p.o of

createPeriod ⇒ p.o(p.ts1, p.ts2)

globalPeriodOf ⇒ p.oMM(MElementSet(p.es, MM, B))

end

PeriodVar ⇒
{

B(p) if p ∈ dom(B)

∅ otherwise

end

A Duration is a value representing the length of a period, and it is computed
within the context of a meta model dataset and a binding:

MDuration : Duration × MetaModel × Binding → DUR

A Duration can be evaluated based on the duration of a period (getDuration) or
a duration specified in scalar units (DurationOf).

MDuration[d : Duration, MM : MetaModel, B : Binding] �
case d.o of

DurationOf ⇒ d.o(d.v)

getDuration ⇒ d.o(MPeriod(d.p, MM, B))

end

Finally, an Attribute is a value assigned to an element in the context of a meta
model:

MAttribute : Attribute × Element × MetaModel → Value

In order to evaluate the value of an Attribute, we can refer to the AttributeName,
in which case the value will be obtained in different ways depending on the type

Data-Aware Process Oriented Query Language 69

of element (event, object version, case, or log). Also, an Attribute can be explicitly
defined by its Value.

MAttribute[at : Attribute, e : Element, MM : MetaModel] �
case at of

AttributeName ⇒
case e of

Event ⇒ if eventHasAttribute(at, e) then : getAttributeEvent(at, e) else : ∅
Version ⇒ if versionHasAttribute(at, e) then : getAttributeVersion(at, e)

else : ∅
Case ⇒ if caseHasAttribute(at, e) then : getAttributeCase(at, e) else : ∅
Log ⇒ if logHasAttribute(at, e) then : getAttributeLog(at, e) else : ∅

end

Value ⇒ at

end

This concludes the formal definition of DAPOQ-Lang in terms of syntax and
semantics at an abstract level. The coming sections provide some details about the
concrete syntax, implementation, and its performance.

4 Implementation and Evaluation

DAPOQ-Lang6 has been implemented as a Domain Specific Language (DSL) on
top of Groovy7, a dynamic language for the Java platform. This means that, on top
of all the functions and operators provided by DAPOQ-Lang, any syntax allowed by
Groovy or Java can be used within DAPOQ-Lang queries. DAPOQ-Lang heavily
relies on a Java implementation of the OpenSLEX8 meta model using SQLite9 as
a storage and querying engine. However, DAPOQ-Lang abstracts from the specific
storage choice, which allows it to run on any SQL database and not just SQLite.
The platform PADAS10 (Process Aware Data Suite) integrates DAPOQ-Lang and

6 https://github.com/edugonza/DAPOQ-Lang/.
7 http://groovy-lang.org/.
8 https://github.com/edugonza/OpenSLEX/.
9 https://www.sqlite.org.
10 https://github.com/edugonza/PADAS/.

https://github.com/edugonza/DAPOQ-Lang/
http://groovy-lang.org/
https://github.com/edugonza/OpenSLEX/
https://www.sqlite.org
https://github.com/edugonza/PADAS/

70 E. G. L. de Murillas et al.

Table 2 Characteristics of the three datasets employed in the evaluation

Dataset # Objects # Versions # Events # Cases # Logs # Activities

A 6740 8424 8512 108, 751 34 14

B 7, 339, 985 7, 340, 650 26, 106 82, 113 10, 622 172

C 162, 287 277, 094 277, 094 569, 026 29 62

OpenSLEX in a user-friendly environment to process the data and run queries. The
current implementation relies on the SQLite library to store the data and execute
certain subqueries. Therefore, it is to be expected that DAPOQ-Lang introduces
certain overhead, given that data retrieval and object creation on the client side
consume extra time and memory compared to an equivalent SQL query. In order
to assess the impact of DAPOQ-Lang on query performance, we run a benchmark
of pairs of equivalent queries, as expressed in DAPOQ-Lang and SQL, on the
same database. The queries are organized in 3 categories and run on the 3 datasets
described in [4]: A (event data obtained from the redo logs of a simulated ticket
selling platform), B (event records from a financial organization), and C (ERP event
data from a sample SAP system) (Table 2).

The DAPOQ-Lang queries of each pair were run with two different configura-
tions: memory-based and disk-based caching. Memory-based caching uses the heap
to store all the elements retrieved from the database during the execution of the
query. This is good for speed when dealing with small or medium size datasets but
represents a big limitation to deal with big datasets given the impact on memory
use and garbage collection overhead. Disk-based caching makes use of MapDB,11

a disk-based implementation of Java hash maps, to serialize and store on disk all
the elements retrieved from the database. This significantly reduces the memory
consumption and allows handling much larger datasets, which comes at the cost
of speed given the overhead introduced by serialization and disk I/O operations.
Figure 4 shows the results of the benchmark, with one plot per query type, one box
per query engine (SQL, DAPOQ-Lang, and DAPOQ-Lang with disk caching), for
the three datasets. As expected, we observe that the performance of DAPOQ-Lang
queries is, in general, poorer than that of the equivalent SQL queries, especially
when it comes to queries regarding the order of activities. This is due to the overhead
on transmission and processing of data and the fact that many filtering operations
are performed on the client instead of the server side. Obviously, there is a trade-
off between ease of use and performance. Nevertheless, performance was never
the main motivation for the development of DAPOQ-Lang, but ease of use and
speed of query writing. In future versions, further efforts will be made to improve
performance and to provide more comprehensive benchmarks.

11 http://www.mapdb.org.

http://www.mapdb.org

Data-Aware Process Oriented Query Language 71

Attribute & Periods filters Activity ordering ElementsOf

A B C A B C A B C

1 sec

10 sec

100 sec

Dataset

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Engines: DAPOQ−Lang (Memory Based Caching) DAPOQ−Lang (Disk Based Caching) SQL

Fig. 4 Benchmark of queries run with DAPOQ-Lang, DAPOQ-Lang with disk-based caching,
and SQL on an SQLite backend. Note that the vertical axis is logarithmic

5 Application and Use Cases

The purpose of this section is to demonstrate the applicability of our approach and
tools. First, we explore the professional profiles, in the context of process mining,
to which this language is directed to, and we identify the most common data aspects
to query given each profile. Then, we provide some use cases of DAPOQ-Lang with
examples of relevant queries for each data aspect. Finally, we compare DAPOQ-
Lang to SQL by means of an example. The example highlights the expressiveness
and compactness of our query language.

5.1 Business Questions in Process Mining

Process mining is a broad field, with many techniques available tailored toward a
variety of analysis questions. “Process miners” (analysts or users carrying out a
process mining project) are often interested in discovering process models from
event data. Sometimes these models are provided beforehand and the focus is on
conformance between the models and events. It can be the case that assessing the
performance of specific activities is critical. Also, finding bottlenecks in the process
can be of interest for the analysts. In some contexts, where existing regulations and
guidelines impose restrictions on what is allowed and what is not in the execution
of a process, compliance checking becomes a priority. In the literature, we can find
examples of frequently posed questions for specific domains, like healthcare [7], in
which root cause analysis becomes relevant in order to trace back data related to a
problematic case. All these perspectives pose different challenges to process miners,
who need to “dig” into the data to find answers to relevant questions.

Previous works [6, 9] identified professional roles and profiles in the area of
business process management by analyzing job advertisements and creating a

72 E. G. L. de Murillas et al.

classification based on the competencies. We make use of this classification to point
out the corresponding data aspects relevant for each profile. Table 3 presents, in the
two leftmost columns, the classification of the roles, as proposed by the authors of
studies [6, 9]. In the column Main Focus, we propose, based on the role description,
the sub-disciplines of process mining and data engineering that become relevant
for each job profile (i.e., discovery, compliance checking, conformance checking,
performance analysis, root cause analysis, integration, and data integrity). The rest
of the columns indicate whether certain event data aspects become particularly
interesting to be queried for each professional role, considering the role description
and themain focus.We have grouped these event data aspects into two big categories
that reflect the expected output of the queries: (a) specialized sublogs are event
logs that contain only event data that reflects certain desired properties (e.g.,
temporal constraints, activity occurrence constraints), and (b) metrics, artifacts,
and provenance are the resulting values of the computation of certain event data
properties (e.g., performance metrics).

We see that there is a clear distinction between roles interested in performance
and root cause analysis, in contrast to those mainly interested in compliance.
The former will need to obtain performance metrics from the data, e.g., average
case duration, or most time-consuming tasks. Also, they are interested in finding
data related to problematic cases, e.g., obtaining all the products purchased in an
unpaid order (dependency relations), or finding out providers of a defective batch of
products (data lineage). However, those with a focus on compliance typically need
to answer questions related to temporal constraints (e.g., if cases of a particular type
of client are resolved within the agreed SLAs), activity occurrence constraints (e.g.,
whether a purchase was always paid), and order of actions (e.g., if an invoice is
created before a delivery is dispatched).

As the roles get more concerned with the technical aspects of IT systems, more
focus is put on performance and data properties. Especially, for technical architects,
data integrity is crucial, since they are the ones in charge of integrating both
applications and data storage systems. Being able to filter information based on data
properties and find irregular data changes is important to verify a correct integration
of different infrastructures.

Now that we have identified data aspects of interest, in what follows we present
a set of example DAPOQ-Lang queries. The aim of these examples is twofold: to
serve as a template to write queries and to demonstrate that the features of DAPOQ-
Lang indeed cover all the aspects described in Table 3.

5.2 Exporting Logs

One of the main purposes when querying process execution data is to export it as a
compatible event log format. DAPOQ-Lang provides utilities to export logs, cases,
and events as XES event logs, which can be further analyzed using process mining

Data-Aware Process Oriented Query Language 73

T
ab

le
3

Ty
pe
s
of

B
PM

pr
of
es
si
on
al
s,
ac
co
rd
in
g
to

[9
],
an
d
re
la
ti
on

to
qu
er
yi
ng

in
pr
oc
es
s
m
in
in
g

Sp
ec
ia
liz
ed

su
bl
og
s

M
et
ri
cs
,a
rt
if
ac
ts
,a
nd

pr
ov
en
an
ce

Te
m
po
ra
l

A
ct
iv
ity

O
rd
er

of
D
at
a

D
at
a

D
at
a

D
ep
en
de
nc
y

Pe
rf
or
m
an
ce

R
ol
e
[9
]

D
es
cr
ip
tio

n
[9
]

M
ai
n
fo
cu
s

co
ns
tr
ai
nt
s

oc
cu
rr
en
ce

ac
tio

ns
pr
op
er
tie
s

ch
an
ge
s
lin

ea
ge

re
la
tio

ns
m
et
ri
cs

B
us
in
es
s

Pr
oc
es
s

A
na
ly
st

E
lic
its
,a
na
ly
ze
s,
do
cu
m
en
ts
,a
nd

co
m
m
un
ic
at
es

us
er

re
qu
ir
em

en
ts
an
d

de
si
gn
s
ac
co
rd
in
g
to

bu
si
ne
ss

pr
oc
es
se
s
an
d
IT

sy
st
em

s;
ac
ts
as

a
lia
is
on

be
tw
ee
n
bu
si
ne
ss

an
d
IT

D
is
co
ve
ry
,

C
om

pl
ia
nc
e,

an
d
C
on
fo
r-

m
an
ce

�
�

�
�

�

B
us
in
es
s

Pr
oc
es
s

C
om

pl
ia
nc
e

M
an
ag
er

A
na
ly
se
s
re
gu
la
to
ry

re
qu
ir
em

en
ts
an
d

en
su
re
s
co
m
pl
ia
nc
e
of

bu
si
ne
ss

pr
oc
es
se
s
an
d
IT

sy
st
em

s

C
om

pl
ia
nc
e

an
d
C
on
fo
r-

m
an
ce

�
�

�
�

�

B
us
in
es
s

Pr
oc
es
s

M
an
ag
er
,S

al
es

an
d
M
ar
ke
tin

g

D
es
ig
ns

sa
le
s
pr
oc
es
se
s
an
d
an
al
ys
es

re
qu
ir
em

en
ts
fo
r
re
la
te
d
IT

sy
st
em

s;
su
pp
or
ts
an
d
ex
ec
ut
es

sa
le
s
an
d

m
ar
ke
tin

g
pr
oc
es
se
s

C
om

pl
ia
nc
e

�
�

�
�

�

B
us
in
es
s

Pr
oc
es
s

Im
pr
ov
em

en
t

M
an
ag
er

A
na
ly
se
s,
m
ea
su
re
s,
an
d
co
nt
in
uo
us
ly

im
pr
ov
es

bu
si
ne
ss

pr
oc
es
s,
e.
g.
,

th
ro
ug
h
ap
pl
ic
at
io
n
of

L
ea
n
or

Si
x

Si
gm

a
m
an
ag
em

en
tt
ec
hn
iq
ue
s

Pe
rf
or
m
an
ce
,

C
on
fo
r-

m
an
ce

an
d

R
oo
tC

au
se

A
na
ly
si
s

�
�

�
�

�
�

�
�

E
R
P
So

lu
tio

n
A
rc
hi
te
ct

Im
pl
em

en
ts
bu
si
ne
ss

pr
oc
es
se
s
in

E
R
P

sy
st
em

s
Pe
rf
or
m
an
ce
,

C
on
fo
r-

m
an
ce

an
d

R
oo
tC

au
se

A
na
ly
si
s

�
�

�
�

�
�

�
�

IT
-B
us
in
es
s

St
ra
te
gy

M
an
ag
er

A
lig

ns
bu
si
ne
ss

an
d
IT

st
ra
te
gi
es
;

m
on
ito

rs
te
ch
no
lo
gi
ca
l
in
no
va
tio

ns
an
d
id
en
tifi

es
bu
si
ne
ss

op
po
rt
un
iti
es

Pe
rf
or
m
an
ce

an
d
C
on
fo
r-

m
an
ce

�
�

�
�

�
�

Te
ch
ni
ca
l

A
rc
hi
te
ct

D
ev
el
op
s
an
d
in
te
gr
at
es

ha
rd
w
ar
e
an
d

so
ft
w
ar
e
in
fr
as
tr
uc
tu
re
s

In
te
gr
at
io
n

an
d
D
at
a

In
te
gr
ity

�
�

�
�

�

74 E. G. L. de Murillas et al.

platforms such as ProM12 or RapidProM.13 The following queries show the way to
export XES logs for different types of data. These functions can be applied to all
the query types defined under the Specialized Sublogs category (Table 3) in order
to extract the corresponding XES event log. When a set of logs is retrieved, an
independent XES log is generated for each of them.

Query 2 Export all the logs with a specific name. The result can be one or many logs being
exported according to the XES format.

1 exportXLogsOf (a l lLog s () . where{ name == "log01" })

When the input of exportXLogsOf is a set of cases, one single XES log is
exported.

Query 3 Export in a single XES log all the cases of different logs.

1 exportXLogsOf (case sOf (a l lLog s () . where { name . con ta in s ("1") }))

In the case of a set of events, a single XES log with a single trace is exported
(Query 4).

Query 4 Export in a single XES log all the events of different logs.

1 exportXLogsOf (eventsOf (a l lLog s () . where{ name . con ta in s ("1") }))

A special situation is when we want to export a set of logs or cases while filtering
out events that do not complywith some criteria. In that case, we call exportXLogsOf
with a second argument representing the set of events that can be exported (Query 5).
Any event belonging to the log to be exported not contained in this set of events will
be excluded from the final XES log.

Query 5 Export one or many XES logs excluding all the events that do not belong to a specific
subset.

1 exportXLogsOf (a l lLog s () , eventsOf (a l l C l a s s e s () . where { name == "BOOKING"}))

5.3 Specialized Sublogs

So far, we have seen how to export logs as they are stored in the dataset under
analysis. However, it is very common to focus on specific aspects of the data
depending on the questions to answer. This means that we need to create specialized
sublogs according to certain criteria. This section presents examples of queries to

12 http://www.promtools.org.
13 http://www.rapidprom.org/.

http://www.promtools.org
http://www.rapidprom.org/

Data-Aware Process Oriented Query Language 75

create specialized sublogs that comply with certain constraints in terms of temporal
properties, activity occurrence, order of action, data properties, or data changes.

Temporal Constraints A way to create specialized sublogs is to filter event data
based on temporal constraints. The creation and computation of periods makes it
possible to select only data relevant during a certain time span. Query 6 returns
events that happened during period p and that belong to the log “log01”.

Query 6 Temporal constraints. Retrieve all the events of “log01” that happened during a certain
period of time.

1 def evLog01 = eventsOf (a l lLog s () . where{ name == "log01" })
2 def p = cr ea t ePe r i od ("2014/11/27 15:57" ,"2014/11/27 16:00" , "yyyy/MM/dd HH:mm

↪→ ")
3
4 eventsOf (p) . i n t e r s e c t i o n (evLog01)

Query 7 focuses on the duration of cases rather than on the specific time when
they happened. Only cases of log “log01” with a duration longer than 11 minutes
will be returned.

Query 7 Temporal constraints. Retrieve cases of “log01” with a duration longer than 11 minutes.
The variable “it” is used to iterate over all values of “c” within the “where” closure

1 def c = case sOf (a l lLog s () . where{ name == "log01" })
2
3 c . where { g loba lPer iodOf (i t) . getDurat ion () > Duration . ofMinutes (1 1) }

Activity Occurrence Another way to select data is based on activity occurrence.
The following query shows an example of how to retrieve cases in which two
specific activities were performed regardless of the order. First, cases that include
the first activity are retrieved (casesA). Then, cases that include the second activity
are retrieved (casesB). Finally, the intersection of both sets of cases is returned.

Query 8 Activity occurrence. Retrieve cases where activities that contain the words “INSERT”
or “UPDATE” and “CUSTOMER” happened in the same case.

1 def actA = a l l A c t i v i t i e s () . where {
2 name . con ta in s ("INSERT") && name . con ta in s ("CUSTOMER") }
3
4 def ac tB = a l l A c t i v i t i e s () . where {
5 name . con ta in s ("UPDATE") && name . con ta in s ("CUSTOMER") }
6
7 def casesA = case sOf (ac tA)
8 def ca se sB = case sOf (ac tB)
9
10 casesA . i n t e r s e c t i o n (c a se sB)

Order of Actions This time we are interested in cases in which the relevant
activities happened in a specific order. The following query, an extended version
of Query 8, selects the cases that include both activities. Yet, before storing the
intersection of cases containing events of the activities in the set actA with cases

76 E. G. L. de Murillas et al.

containing events of the activities in the set actB in a variable (line 13), the query
performs a filter based on the order of these two activities. To do so, for each case,
the set of events is retrieved (line 15). Next, the events of the first and second
activities are selected (lines 16 and 17). Finally, the periods of both events are
compared (line 18), evaluating the condition to the value true for each case in which
all the events of activity A happened before the events of activity B. Only the cases
for which the condition block (lines 14 to 18) evaluated to true are stored in the
variable casesAB and returned.

Query 9 Order of actions. Retrieve cases where activities that contain the words “INSERT” and
“CUSTOMER” happen before activities that contain the words “UPDATE” and “CUSTOMER”.

1 def actA = a l l A c t i v i t i e s () . where {
2 name . con ta in s ("INSERT") && name . con ta in s ("CUSTOMER") }
3
4 def ac tB = a l l A c t i v i t i e s () . where {
5 name . con ta in s ("UPDATE") && name . con ta in s ("CUSTOMER") }
6
7 def casesA = case sOf (ac tA)
8 def ca se sB = case sOf (ac tB)
9
10 def even t sA = eventsOf (ac tA)
11 def even t sB = eventsOf (ac tB)
12
13 def casesAB = casesA . i n t e r s e c t i o n (c a se sB)
14 . where {
15 def ev = eventsOf (i t)
16 def evA = ev . i n t e r s e c t i o n (even t sA)
17 def evB = ev . i n t e r s e c t i o n (even t sB)
18 before (g loba lPer iodOf (evA) , g loba lPer iodOf (evB))
19 }

Data Properties Some elements in our OpenSLEX dataset contain attributes that
can be queried. These elements are object versions, events, cases, and logs. The
following query shows how to filter events based on their attributes. First, the query
compares the value of the attribute resource to a constant. Also, it checks if the
attribute ADDRESS contains a certain substring. Finally, it verifies that the event
contains the attribute CONCERT_DATE. Only events that satisfy the first and either
the second or the third will be returned as a result of the query.

Query 10 Data properties. Retrieve events of resource “SAMPLE” that either have an attribute
ADDRESS which value contains “35” or have a CONCERT_DATE attribute.

1 a l lEven t s () . where {
2 r e s o u r c e == "SAMPLEDB" && (at .ADDRE. c o n t a i n s (" 3 5 ") | | has (a t .CONCERT_DATE)) }

Data Changes An important feature of our query language is the function named
changed. This function determines if the value of an attribute for a certain object
version changed. The function has the attribute name as a required parameter (at:)
and two optional parameters (from:, and to:). Query 11 returns all the events related
to object versions for which the value of the attribute “BOOKING_ID” changed.
No restrictions are set on the specific values. Therefore, the call to changed will be

Data-Aware Process Oriented Query Language 77

evaluated to true for an object version only if the value of the attribute in preceding
version was different from the value in the current one.

Query 11 Data changes. Retrieve events that affected versions where the value of “BOOK-
ING_ID” changed.

1 eventsOf (a l lV e r s i o n s () . where { changed ([at : "BOOKING_ID"]) })

Query 12 shows a similar example. This time we want to obtain the events related
to object versions for which the attribute “SCHEDULED_DATE” changed from
“11-JUN-82” to a different one.

Query 12 Data changes. Retrieve events that affected versions where the value of “SCHED-
ULED_DATE” changed from “11-JUN-82” to a different value.

1 eventsOf (a l lV e r s i o n s () . where { changed ([at : "SCHEDULED_DATE" , from : "11-JUN
↪→ -82"]) })

Query 13 instead retrieves the events related to object versions for which the
attribute “SCHEDULED_DATE” changed to “22-MAY-73” from a different one.

Query 13 Data changes. Retrieve events that affected versions where the value of “SCHED-
ULED_DATE” changed to “22-MAY-73” from a different value.

1 eventsOf (a l lV e r s i o n s () . where { changed ([at : "SCHEDULED_DATE" , to : "22-MAY-73"
↪→]) })

Finally, Query 14 imposes a stricter restriction, retrieving only the events related
to object versions for which the attribute “SCHEDULED_DATE” changed from
“24-MAR-98” to “22-MAY-73”.

Query 14 Data changes. Retrieve events that affected versions where the value of “SCHED-
ULED_DATE” changed from “24-MAR-98” to “22-MAY-73”.

1 eventsOf (a l lV e r s i o n s () . where {
2 changed ([at : "SCHEDULED_DATE" , from : "24-MAR-98" , to : "22-MAY-73"]) })

5.4 Metrics, Artifacts, and Provenance

In the previous section, we have seen examples of how to obtain specialized sublogs
given certain criteria. However, we do not always want to obtain events, cases, or
logs as the result of our queries. In certain situations, the interest is in data objects,
and their relations to other elements of the dataset, e.g., objects of a certain type,
artifacts that coexisted during a given period, or data linked to other elements. Also,
one can be interested in obtaining performance metrics based on existing execution
data. All these elements cannot be exported as an event log, since they do not always
represent event data. However, they can be linked to related events or traces. This

78 E. G. L. de Murillas et al.

section shows example queries that exploit these relations and provide results that
cannot be obtained as plain event logs.

Data Lineage Data lineage focuses on the lifecycle of data, its origins, and where it
is used over time. DAPOQ-Lang supports data lineage mainly with the ElementsOf
functions listed in Sect. 3.1.2. These functions return elements of a certain type
linked or related to input elements of another type. As an example, we may have
an interest in obtaining all the products in the database affected by a catalog update
process during a certain period in which prices were wrongly set. The following
query finds the cases in log “log01” whose life span overlaps with a certain period
and returns the object versions related to them.

Query 15 Data lineage. Retrieves versions of objects affected by any case in “log01” whose life
span overlapped with a certain period of time. The date format is specified.

1 def P1 = cr ea t ePe r i od ("2014/11/27 15:56" ,"2014/11/27 16:30" ,"yyyy/MM/dd HH:mm
↪→ ")

2
3 vers ionsOf (
4 case sOf (a l lLog s () . where{name=="log01"})
5 . where {
6 over l ap s (g loba lPer iodOf (i t) , P1)
7 }
8)

Dependency Relations An important feature of the language is the ability to query
existing relations between elements of different types, as well as within object
versions of different classes. Query 15 showed an example of relations between
elements of different types (logs to cases, cases to versions). The following query
shows an example of a query on object versions related to other object versions.
First, two different classes of data objects are obtained (lines 1 and 2). Then, the
versions of the class “TICKET” are retrieved (line 3). Finally, the object versions
related to object versions belonging to class “BOOKING” are obtained (lines 5 and
6), and only the ones belonging to class “TICKET” are selected (line 7).

Query 16 Dependency relations. Retrieve versions of ticket objects that are related to versions of
booking objects.

1 def t i c k e t C l a s s = a l l C l a s s e s () . where{ name == "TICKET"}
2 def book i ngC l a s s = a l l C l a s s e s () . where{ name == "BOOKING"}
3 def t i c k e t V e r s i o n s = vers ionsOf (t i c k e t C l a s s)
4
5 vers ionsRe la tedTo (
6 vers ionsOf (book i ngC l a s s)
7) . i n t e r s e c t i o n (t i c k e t V e r s i o n s)

Performance Metrics As has been previously discussed, measuring performance
and obtaining metrics for specific cases or activities are very common and relevant
questions for many professional roles. DAPOQ-Lang supports this aspect by
computing periods and durations to measure performance. The resulting periods
can be used to compute performance statistics such as average execution time or

Data-Aware Process Oriented Query Language 79

maximum waiting time. The following query shows how to compute periods for a
subset of the events in the dataset.

Query 17 Performance metrics. Retrieve periods of events belonging to activities that contain the
words “UPDATE” and “CONCERT” in their name.

1 def a c tUpda t eConc e r t = a l l A c t i v i t i e s () . where {
2 name . con ta in s ("UPDATE") && name . con ta in s ("CONCERT")
3 }
4
5 per iodsOf (eventsOf (a c tUpda t eConc e r t))

Query 18 demonstrates how to filter out periods based on their duration. Cases
with events executed by a certain resource are selected and their periods are
computed. Next, only periods with a duration longer than 11 min are returned.

Query 18 Performance metrics. Retrieve periods of a duration longer than 11 minutes computed
on cases which had at least one event executed by the resource “SAMPLEDB”.

1 def c = case sOf (a l lEven t s () . where { r e s o u r c e == "SAMPLEDB" })
2
3 per iodsOf (c) . where { i t . getDurat ion () > Duration . ofMinutes (1 1) }

5.5 DAPOQ-Lang vs. SQL

So far, we have seen several examples of “toy” queries to demonstrate the use of
the functions and operators provided by DAPOQ-Lang. Obviously, any DAPOQ-
Lang query can be computed with other Turing-complete languages. When it comes
to data querying on databases, SQL is the undisputed reference. It is the common
language to interact with most of the relational database implementations available
today. It is a widespread language, known by many professionals from different
fields. Even without considering scripting languages like PL/SQL and just with
CTEs (Common Table Expressions) and Windowing, SQL has been proven to be
Turing-complete [2]. Therefore, the aim of DAPOQ-Lang is not to enable new types
of computations, but to ease the task of writing queries in the specific domain of
process mining.

Let us consider again the generic question (GQ) presented in Sect. 1:

GQ: In which cases, there was (a) an event that happened between time T1 and T2, (b) that
performed a modification in a version of class C, (c) in which the value of field F changed
from X to Y?

This question involves several types of elements: cases, events, object ver-
sions, and attributes. We instantiate this query with some specific values for
T1 = “1986/09/17 00:00”, T2 = “2016/11/30 19:44”, C = “CUSTOMER”, F =
“ADDRESS”, X = “Fifth Avenue”, and Y = “Sunset Boulevard”. Assuming that
our database already complies with the structure proposed by the OpenSLEX meta
model, we can write the following SQL query to answer the question:

80 E. G. L. de Murillas et al.

Query 19 Standard SQL query executed on the OpenSLEX dataset in [4] and equivalent to the
DAPOQ-Lang Query 1

1 SELECT d i s t i n c t C . i d AS "id" , CAT . name , CATV. value , CATV. t ype
2 FROM
3 "case" AS C
4 JOIN a c t i v i t y _ i n s t a n c e _ t o _ c a s e AS AITC ON AITC . c a s e _ i d = C . i d
5 JOIN a c t i v i t y _ i n s t a n c e AS AI ON AI . i d = AITC . a c t i v i t y _ i n s t a n c e _ i d
6 JOIN ev en t AS E ON E . a c t i v i t y _ i n s t a n c e _ i d = AI . i d
7 JOIN e v e n t _ t o _ o b j e c t _ v e r s i o n AS ETOV ON ETOV. e v e n t _ i d = E . i d
8 JOIN o b j e c t _ v e r s i o n AS OV ON ETOV. o b j e c t _ v e r s i o n _ i d = OV. i d
9 JOIN o b j e c t AS O ON OV. o b j e c t _ i d = O. i d
10 JOIN c l a s s AS CL ON O. c l a s s _ i d = CL . i d AND CL . name = "CUSTOMER"
11 JOIN a t t r i b u t e _ n ame AS AT ON AT . name = "ADDRESS"
12 JOIN a t t r i b u t e _ v a l u e AS AV ON AV. a t t r i b u t e _ n am e _ i d = AT . i d AND
13 AV. o b j e c t _ v e r s i o n _ i d = OV. i d
14 LEFT JOIN c a s e _ a t t r i b u t e _ v a l u e AS CATV ON CATV. c a s e _ i d = C . i d
15 LEFT JOIN c a s e _ a t t r i b u t e _ n ame AS CAT ON CAT. i d = CATV. c a s e _ a t t r i b u t e _ n ame _ i d
16 WHERE
17 E . timestamp > "527292000000" AND
18 E . timestamp < "1480531444303" AND
19 AV. va lue LIKE "Sunset Boulevard" AND
20 EXISTS
21 (
22 SELECT OVP. i d
23 FROM
24 o b j e c t _ v e r s i o n AS OVP,
25 a t t r i b u t e _ v a l u e AS AVP
26 WHERE
27 AVP . a t t r i b u t e _ n am e _ i d = AT . i d AND
28 AVP . o b j e c t _ v e r s i o n _ i d = OVP . i d AND
29 OVP . o b j e c t _ i d = OV. o b j e c t _ i d AND
30 AVP . va lue LIKE "Fifth Avenue" AND
31 OVP . i d IN
32 (
33 SELECT OVPP . i d
34 FROM o b j e c t _ v e r s i o n AS OVPP
35 WHERE
36 OVPP . end_ t imes tamp <= OV. s t a r t _ t im e s t am p AND
37 OVPP . end_ t imes tamp >= 0 AND
38 OVPP . o b j e c t _ i d = OV. o b j e c t _ i d AND
39 OVPP . i d != OV. i d
40 ORDER BY OVPP . end_ t imes tamp DESC LIMIT 1
41)
42)

The logic is the following. Two subqueries are nested in order to retrieve (a)
object versions preceding another object version (lines 33–40) and object versions
that contain the attribute that changed (lines 22–41). Parts of the query focus on
checking the value of the attributes (lines 27–30), the timestamp of the events (lines
17–18), and the class of the object versions (line 10). The rest of the query is
concerned with joining rows of different tables by means of foreign keys.

The equivalent DAPOQ-Lang query, previously presented in Query 1, removes
most of the clutter and boilerplate code in order to join tables together and lets
the user focus on the definition of the constraints. The query is built up with an
assignment and several nested queries. First, a period of time is defined (line 1).
Then, object versions of a certain class are retrieved (lines 5–6) and filtered based
on the changes of one of the attributes (line 7). Next, the events related to such
object versions are obtained (lines 4–8) and filtered based on the time when they
occurred (lines 8–12). Finally, the cases of these events are returned (lines 3–13).

Data-Aware Process Oriented Query Language 81

Table 4 Event log obtained from the execution of Query 1

Case Activity name Timestamp Class Address

1 1 Insert Customer 2014-11-27 15:57:13 CUSTOMER Fifth Avenue

2 1 Update Customer 2014-11-27 16:05:01 CUSTOMER Sunset Boulevard

3 2 Insert Customer 2014-11-27 15:58:14 CUSTOMER Fifth Avenue

4 2 Update Customer 2014-11-27 16:05:37 CUSTOMER Sunset Boulevard

5 3 Insert Customer 2014-11-27 15:59:16 CUSTOMER Fifth Avenue

6 3 Update Customer 2014-11-27 16:05:54 CUSTOMER Sunset Boulevard

7 4 Insert Customer 2014-11-27 16:01:03 CUSTOMER Fifth Avenue

8 4 Update Customer 2014-11-27 16:07:02 CUSTOMER Sunset Boulevard

Table 4 shows the event log obtained from the execution of this query, where we can
observe that insertions of new customers are followed by updates that modify the
address attribute.

In essence, the advantage of DAPOQ-Lang over SQL is on the ease of use in the
domain of process mining. The fact that we can assume how logs, cases, events, and
objects are linked allows us to focus on the important parts of the query. Also, pro-
viding functions that implement the most frequent operations on data (such as period
and duration computation) makes writing queries faster and less prone to errors.

6 DAPOQ-Lang and the Process Querying Framework

The Process Querying Framework (PQF) provides a comprehensive overview
of the aspects involved in the process querying cycle. This framework partly
originates from a collection of functional and non-functional requirements for
process querying in the process management field. The requirements, based on
CRUD operations (Create, Read, Update, and Delete), focus on the relevant BPM
use cases presented in [11]. As has been shown in Sect. 5, our query language fulfills
or supports, to some extent, the tasks involved in the requirements regarding “Check
conformance using event data” and “Analyze performance using event data.” In this
section, we instantiate DAPOQ-Lang in the PQF.

The first part of PQF is named “Model, Simulate, Record, and Correlate.”
DAPOQ-Lang does not aim to support any of the aspects covered by this part of
the framework. However, the OpenSLEX meta model, and more specifically its
implementation, enables the recording and correlation of behavioral and historical
data in a structured way, i.e., create and update operations. This feature enables the
construction of a dataset ready to be queried (i.e., read operations) by DAPOQ-
Lang’s query engine. Therefore, DAPOQ-Lang addresses event log and correlated
data querying with the intent of retrieving information previously recorded in an
OpenSLEX-compliant storage.

82 E. G. L. de Murillas et al.

With respect to the “Prepare” part of the PQF, DAPOQ-Lang’s support is
twofold: (1) It proposes the OpenSLEX meta model to structure behavioral and
object data in a format that enables indexing and makes the querying process
easier to carry out from the usability point of view. Also, it speeds up query
execution providing the most frequently requested information in a preprocessed
format. (2) The underlying OpenSLEX implementation makes use of caching to
speed up response time and make efficient use of memory. Two strategies are
supported: (a) in-memory caching, which benefits speed but suffers when dealing
with large datasets, and (b) disk-based caching, which makes it possible to handle
larger datasets that would not fit in memory but introduces an overhead due to the
serialization and disk-writing steps.

As DAPOQ-Lang is a query language with an existing implementation, it covers
the “Execute” part of the PQF. The nested nature of the expressions in DAPOQ-
Lang enables the filtering of the data, executing parts of the query only on the
relevant elements. The implementation includes several optimizations, like pre-
fetching of attributes as a way to save time in the filtering step of the query
execution. The execution of a query in DAPOQ-Lang yields results in the form
of a set of elements, obtained from the original dataset, representing the subset of
the original data that satisfies the expressed constraints.

Finally, the “Interpret” part of the framework is supported by DAPOQ-Lang
in two ways: (1) enabling the inspection of data using explorative queries and
(2) exporting the result of queries to XLog, which makes it possible to apply
any existing process mining technique that requires an event log as input, while
benefiting from the capabilities of DAPOQ-Lang to build relevant sublogs for the
query at hand.

7 Conclusion

In the field of process mining, the need for better querying mechanisms has
been identified. This work proposes a method to combine both process and data
perspectives in the scope of process querying, helping with the task of obtaining
insights about processes. To do so, DAPOQ-Lang, a Data-Aware Process Oriented
Query Language, has been developed, which allows the analyst to select relevant
parts of the data in a simple way to, among other things, generate specialized
event logs to answer meaningful business questions. We have formally described
the syntax and semantics of the language. We presented its application by means
of simple use cases and query examples in order to show its usefulness and
simplicity. In addition, we provide an efficient implementation that enables not only
the execution but also the fast development of queries. This work shows that it is
feasible to develop a query language that satisfies the needs of process analysts,
while balancing these with demands for simplicity and ease of use. Finally, we
positioned DAPOQ-Lang within the Process Querying Framework [10]. DAPOQ-
Lang presents certain limitations in terms of performance, expressiveness, and ease

Data-Aware Process Oriented Query Language 83

of use. As future work, efforts will be made on (a) expanding the language with new
functionalities and constructs relevant in the process mining context, (b) improving
the query planning and execution steps in order to achieve better performance, and
(c) carrying out empirical evaluations with users in order to objectively assess the
suitability of the language within the process mining domain.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843
(1983). https://doi.org/10.1145/182.358434

2. Gierth, A., Fetter, D.: Cyclic tag system. In: PostgreSQL wiki (2011). https://www.webcitation.
org/6Db5tYVpi

3. González López de Murillas, E., Reijers, H.A., van der Aalst, W.M.P.: Everything you always
wanted to know about your process, but did not know how to ask. In: Dumas, M., Fantinato,
M. (eds.) Business Process Management Workshops, pp. 296–309. Springer International
Publishing, Cham (2017)

4. González López de Murillas, E., Reijers, H.A., van der Aalst, W.M.P.: Connecting databases
with process mining: a meta model and toolset. Softw. Syst. Model. (2018). https://doi.org/10.
1007/s10270-018-0664-7

5. IEEE Standard for eXtensible Event Stream (XES) for Achieving Interoperability in Event
Logs and Event Streams (2016). https://doi.org/10.1109/IEEESTD.2016.7740858

6. Lederer Antonucci, Y., Goeke, R.J.: Identification of appropriate responsibilities and positions
for business process management success: Seeking a valid and reliable framework. Bus.
Process Manag. J. 17(1), 127–146 (2011)

7. Mans, R.S., van der Aalst, W.M., Vanwersch, R.J., Moleman, A.J.: Process mining in
healthcare: Data challenges when answering frequently posed questions. In: Process Support
and Knowledge Representation in Health Care, pp. 140–153. Springer (2013)

8. Meyer, B.: Introduction to the Theory of Programming Languages. Prentice-Hall, Upper
Saddle River, NJ, USA (1990)

9. Müller, O., Schmiedel, T., Gorbacheva, E., vom Brocke, J.: Towards a typology of business pro-
cess management professionals: identifying patterns of competences through latent semantic
analysis. Enterprise IS 10(1), 50–80 (2016). https://doi.org/10.1080/17517575.2014.923514

10. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.: Process querying: Enabling
business intelligence through query-based process analytics. Decis. Support Syst. 100, 41–
56 (2017). https://doi.org/10.1016/j.dss.2017.04.011. http://www.sciencedirect.com/science/
article/pii/S0167923617300787. Smart Business Process Management

11. Van Der Aalst, W.M.: Business process management: a comprehensive survey. ISRN Softw.
Eng. 2013 (2013)

12. Watson, H.J., Wixom, B.H.: The current state of business intelligence. Computer 40(9), 96–99
(2007). https://doi.org/10.1109/MC.2007.331

https://doi.org/10.1145/182.358434
https://www.webcitation.org/6Db5tYVpi
https://www.webcitation.org/6Db5tYVpi
https://doi.org/10.1007/s10270-018-0664-7
https://doi.org/10.1007/s10270-018-0664-7
https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1080/17517575.2014.923514
https://doi.org/10.1016/j.dss.2017.04.011
http://www.sciencedirect.com/science/article/pii/S0167923617300787
http://www.sciencedirect.com/science/article/pii/S0167923617300787
https://doi.org/10.1109/MC.2007.331

	Data-Aware Process Oriented Query Language
	1 Introduction
	2 Preliminaries
	3 DAPOQ-Lang
	3.1 Syntax
	3.1.1 Terminal Meta Model Elements
	3.1.2 Elements Related to Elements
	3.1.3 Computation of Temporal Values
	3.1.4 Temporal Interval Algebra
	3.1.5 Operators on Attributes of Elements
	3.1.6 Abstract Syntax

	3.2 Semantics

	4 Implementation and Evaluation
	5 Application and Use Cases
	5.1 Business Questions in Process Mining
	5.2 Exporting Logs
	5.3 Specialized Sublogs
	5.4 Metrics, Artifacts, and Provenance
	5.5 DAPOQ-Lang vs. SQL

	6 DAPOQ-Lang and the Process Querying Framework
	7 Conclusion
	References

