
Comparing Ordering Strategies
for Process Discovery Using

Synthesis Rules

Tsung-Hao Huang(B) and Wil M. P. van der Aalst

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
{tsunghao.huang,wvdaalst}@pads.rwth-aachen.de

Abstract. Process discovery aims to learn process models from observed
behaviors, i.e., event logs, in the information systems. The discovered
models serve as the starting point for process mining techniques that are
used to address performance and compliance problems. Compared to the
state-of-the-art Inductive Miner, the algorithm applying synthesis rules
from the free-choice net theory discovers process models with more flex-
ible (non-block) structures while ensuring the same desirable soundness
and free-choiceness properties. Moreover, recent development in this line
of work shows that the discovered models have compatible quality. Follow-
ing the synthesis rules, the algorithm incrementally modifies an existing
process model by adding the activities in the event log one at a time. As
the applications of rules are highly dependent on the existing model struc-
ture, the model quality and computation time are significantly influenced
by the order of adding activities. In this paper, we investigate the effect
of different ordering strategies on the discovered models (w.r.t. fitness and
precision) and the computation time using real-life event data. The results
show that the proposed ordering strategy can improve the quality of the
resulting process models while requiring less time compared to the order-
ing strategy solely based on the frequency of activities.

Keywords: Process discovery · Synthesis rules · Ordering strategy

1 Introduction

Process mining, a discipline bridging the gap between process science and data
science [2], offers techniques and tools to analyze event data, i.e., event logs, gen-
erated during the process execution. The analysis generated by process mining
techniques provides valuable data-driven insights for the stakeholders.

Process discovery is one of the three main research fields in process mining
among conformance checking and process enhancement. Process discovery tech-
niques aim to learn end-to-end process models from the event data. With the
discovered models, knowledge workers can apply other process mining techniques
to generate further insights for optimization.

Comparing Ordering Strategies for Process Discovery Using Synthesis Rules 41

While various algorithms have been proposed, only a few ensure desirable
properties such as soundness and free-choiceness. On the one hand, the sound-
ness property guarantees that (1) it is always possible to finish the process (2)
a process can be properly completed (3) no inexecutable transitions exist in
the model [1]. On the other hand, the free-choice property separates the choice
and synchronization constructs of a process model (Petri net). Such property is
desirable as it allows easy conversions from the discovered model to widely-used
notations such as BPMN [3]. Moreover, free-choice nets are supported by an
abundance of analysis techniques developed from the theory [5].

State-of-the-art techniques, such as the Inductive Miner (IM) [9] family, dis-
cover process models guaranteed to be sound and free-choice. IM can provide
such guarantees by exploiting its internal process representation - the process
tree. However, such representation can also be a double-edged sword. Due to
the representational bias, the discovered models by IM are doomed to be block-
structured, i.e., the model must compose of parts that have a single entry and
exit [9]. This implies that only a subset of sound free-choice workflow nets can
be discovered by IM.

To provide a more flexible process representation while keeping the same
guarantees, we proposed a novel discovery algorithm, the so-called Synthesis
Miner in [8]. The Synthesis Miner utilizes the synthesis rules from the free-
choice net theory [5]. Activities in the event log are gradually added to a model
under construction using predefined patterns. Following the rules ensures that
the discovered process models are always sound and free-choice. Moreover, it is
shown that the discovered models have compatible quality compared to the ones
from Inductive Miner. Nevertheless, the possible applications of synthesis rules
are highly dependent on the existing model structure. Different orders of adding
activities can result in different models. Therefore, an open research question
is the influence of the order in which the activities are added to an existing
model on the final process model quality. In this paper, we address the research
question by comparing the ordering strategies for the Synthesis Miner and taking
a deeper look into the impacts of the activity adding order to the model quality
and computation time. The experiment using four publicly available real-life
event logs shows that advanced ordering strategies can significantly improve the
model quality and the computation time.

The remainder of the paper is structured as follows. Related work is presented
in Sect. 2. We introduce the necessary notations and concepts used throughout
the paper in Sect. 3. Then, the proposed ordering strategies are introduced in
Sect. 4. The evaluation using publicly available real-life event logs is presented
in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Related Work

For a general introduction to process mining, we refer to [2]. Additionally, a
review and benchmark of the recent development in process discovery can be
found in [4]. In this paper, we focus on process discovery techniques that incre-
mentally modify a model under construction to derive the final process.

42 T.-H. Huang and W. M. P. van der Aalst

Incremental process mining allows users to learn a process model from event
logs by gradually integrating different traces into an existing model [14]. As the
ordering strategy has a significant impact on the model quality, a study [13] is
conducted to investigate the interplay. Nevertheless, it is the trace that is added
to the algorithm iteratively rather than the activity. Therefore, it is less relevant
to this paper.

Dixit et al. [6] were among the first to use synthesis rules from free-choice
net theory [5] to discover process models. Inspired by [6,8] introduces the Syn-
thesis Miner that automates the discovery by introducing predefined patterns
and a search space pruning mechanism. Both [6] and [8] introduce a few order-
ing strategies for their approaches. However, the choice of ordering is left to the
user as an input parameter. The impact of the ordering strategies on the model
quality and computation time is not thoroughly investigated. Furthermore, the
interplay between the ordering strategies and the search space pruning has not
been explained. Last but not least, a comparison between different ordering
strategies is needed. In this paper, we aim to address the open research question
and provide users with a rule of thumb.

3 Preliminaries

In this section, we introduce the necessary concepts and notations that are used
throughout the paper.

For an arbitrary set A, we denote the set of all possible sequences as A∗ and
the set of all multi-sets over A as B(A). Given σ1, σ2 ∈ A∗, σ1 · σ2 denotes
the concatenation of the two sequences. Let A be a set and X ⊆ A be a
subset of A. For σ ∈ A∗ and a ∈ A, we define �X∈ A∗→X∗ as a projection
function recursively with 〈〉�X = 〈〉, (〈a〉 · σ)�X = 〈a〉 · σ�X if a ∈ X and
(〈a〉 · σ)�X = σ�X if a /∈ X. For example, 〈x, y, x〉�{x,z} = 〈x, x〉. The pro-
jection function can also be applied to a multi-set of sequences. For example,
[〈x, y, x〉4, 〈x, y〉2, 〈y, x, z〉6]�{y,z} = [〈y〉6, 〈y, z〉6]. We denote UA as the universe
of activity labels.

Definition 1 (Trace & Log). A trace σ ∈ U∗
A is a sequence of activity labels.

A log is a multi-set of traces, i.e., L ∈ B(U∗
A).

Definition 2 (Log Properties [8]). Let L ∈ B(U∗
A) and a, b ∈ UA be two

activity labels. We define the following log properties:

– #(a, L) = Σσ∈L|{i ∈ {1, 2, ..., |σ|}|σ(i) = a}| is the times a occurred in L.
– #(a, b, L) = Σσ∈L|{i ∈ {1, 2, ..., |σ|−1}|σ(i) = a∧σ(i+1) = b}| is the number

of direct successions from a to b in L.

– caus(a, b, L) =

{
#(a,b,L)−#(b,a,L)

#(a,b,L)+#(b,a,L)+1 if a �= b
#(a,b,L)

#(a,b,L)+1 if a = b
is the strength of causal rela-

tion (a, b).
– Apre

c (a, L) = {apre ∈ UA|caus(apre, a, L) ≥ c} is the set of a’s preceding
activities, determined by threshold c.

Comparing Ordering Strategies for Process Discovery Using Synthesis Rules 43

– Afol
c (a, L) = {afol ∈ UA|caus(a, afol, L) ≥ c} is the set of a’s following activ-

ities, determined by threshold c.

Definition 3 (Petri Net). Let N = (P, T, F, l) be a Petri net, where P is the
set of places, T is the set of transitions, P ∩ T = ∅. F ⊆ (P × T) ∪ (T × P) is
the set of arcs, and l ∈ T → UA ∪ {τ} is a labeling function that assigns activity
labels to transitions. A transition t ∈ T is invisible (or silent) if l(t) = τ .

Definition 4 (Path & Elementary Path). A path of a Petri net N =
(P, T, F) is a non-empty sequence of nodes ρ = 〈x1, x2, ..., xn〉 such that
(xi, xi+1) ∈ F for 1 ≤ i < n. ρ is an elementary path if xi �= xj for 1 ≤ i < j ≤ n.
For X,X ′ ∈ P ∪T , elemPaths(X,X ′, N) ⊆ (P ∪T)∗ is the set of all elementary
paths from some x ∈ X to some x′ ∈ X ′.

Definition 5 (Workflow Net (WF-net) [1]). Let N = (P, T, F, l) be a Petri
net. W = (P, T, F, l, i, o,�,⊥) is a WF-net iff (1) it has a dedicated source
place i ∈ P : •i = ∅ and a dedicated sink place o ∈ P : o• = ∅ (2) � ∈ T :
•� = {i} ∧ i• = {�} and ⊥ ∈ T : ⊥• = {o} ∧ •o = {⊥} (3) every node x is on
some path from i to o, i.e., ∀x∈P∪T (i, x) ∈ F ∗ ∧ (x, o) ∈ F ∗, where F ∗ is the
reflexive transitive closure of F .

Definition 6 (Activity Order). Let L ∈ B(U∗
A) and A =

⋃
σ∈L{a ∈ σ}.

γ ∈ A∗ is an activity order for L if {a ∈ γ} = A and |γ| = |A|.

Synthesis Miner: Process Discovery Using Synthesis Rules. In previous
work [8], we introduced the Synthesis Miner that guarantees to discover sound
and free-choice workflow nets by applying the synthesis rules defined in [5] with
an additional dual abstraction rule [8].

Given a workflow net W , the abstraction rule (ψA) allows to add a place
p and a transition t between a set of transitions R ⊆ T and a set of places
S ⊆ P if they are fully connected, i.e., (R × S ⊆ F) ∧ (R × S �= ∅). The linear
transition/place rule (ψT /ψP) allows to add a transition t/place p if it is linearly
dependent on the other transitions/places in the corresponding incidence matrix.
The dual abstraction rule (ψD) can add a transition t and a place p between a
set of places S and a set of transitions R if (S × R ⊆ F) ∧ (S × R �= ∅). All
four rules1 preserve sound and free-choice properties [5,8]. Figure 1 shows a few
examples of rules applications.

Given a log L, the Synthesis Miner first determines an activity order γ. Then,
the iteration is initiated. In iteration i (where 1 ≤ i ≤ |γ|), activity γ(i) is added
to an existing net2 from the i − 1 iteration. The procedure for every iteration
is as follows: (1) use heuristics from the projected log Li = L�{γ(1),γ(2),...γ(i)}
to find the most likely position for the to-be-added activity γ(i) on the existing
WF-net (Wi), (2) apply predefined patterns (derived from synthesis rules) to get
the set of candidate nets, and (3) select the best net (w.r.t. fitness and precision)
from the set of candidates for the next iteration.
1 For the formal definitions of the rules, we refer to [5,8].
2 The existing net in the first iteration is initiated by the initial net, as shown in the

example for the abstraction rule in Fig. 1.

44 T.-H. Huang and W. M. P. van der Aalst

Fig. 1. Some examples of the synthesis rules applications. ψA allows to add p2 and t1
by R = {�} and S = {p1}. t2 is added by ψT as it is linearly dependent on t1. p3 is
added by ψP as it is a linear combination of p1 and p2. ψD allows to add t3 and p4

with S = {p1, p3} and R = {⊥}.

As step (1) is directly affected by the ordering strategy, we formally define3

how the search space is limited to only a subset of the nodes on a workflow net
using log heuristics.

Definition 7 (Reduced Search Space). Let a ∈ U∗
A be an activity, L∈B(U∗

A)
be a log, W = (P, T, F, l, i, o,�,⊥) be a WF-net, and 0 ≤ c ≤ 1. T pre is the set
of transitions labeled by the preceding activities of a in log L. T pre = {t ∈
T |l(t) ∈ Apre

c (a, L)} if Apre
c (a, L) �= ∅, otherwise T pre = {�}. T fol is the set of

transitions labeled by the following activities of a in log L.T fol = {t ∈ T |l(t) ∈
Afol

c (a, L)} if Afol
c (a, L) �= ∅, otherwise T fol = {⊥}. The reduced search space

is reduce(a, L,W, c) = {x ∈ ρ|ρ ∈ elemPath(T pre, T fol,W)}.
The function reduce first finds the preceding and following activities and

the corresponding sets of labeled transitions for the to-be-added activity γ(i).
Then, it returns the set of nodes, denoted as Vi, that are on the path between
the preceding and following transitions. Vi is used to confine the application of
synthesis rules. To be more precise, the set of transitions R and the set of places
S used as the preconditions for applying rules ψA and ψD need to be a subset
of Vi, i.e., S ⊆ V ∧ R ⊆ V . As for rule ψT /ψP , the new transition/place (t′/p′)
cannot have arcs connected to any node other than Vi. This step helps us to
limit the search space to the most likely nodes on a workflow net to add activity
γ(i). Figure 2 shows an example for reducing the search space.
3 As the formal definitions of steps (2) and (3) are out of scope, we refer to [8].

Comparing Ordering Strategies for Process Discovery Using Synthesis Rules 45

Fig. 2. An example showing how the search space is reduced. Consider the log L3 =
[〈x, y, z〉66, 〈x, z〉66]. y is the activity which we want to add to the net W2. Using c = 0.9,
we get T pre = {t1} and T fol = {t2}. Therefore, the function reduce would return the
set of nodes between t1 and t2, which means V3 = {t1, p2, t2} as highlighted by the
green dashed line in (a). The application of synthesis rules would then only consider
these three nodes. Finally, the best net is selected as W3 from the candidates and is
visualized in (b). (Color figure online)

4 Ordering Strategies

In this section, we introduce different ordering strategies. To illustrate the
ordering strategy, consider the following log Ls = [〈b, c, d, e, f, g〉, 〈b, e, c, d, f, g〉,
〈b, e, c, f, g, d〉, 〈b, e, c, f, d, g〉, 〈b, c, e, d, f, g〉, 〈b, c, e, f, g, d〉, 〈b, c, e, f, d, g〉, 〈e, b,
c, d, f, g〉, 〈e, b, c, f, g, d〉, 〈e, b, c, f, d, g〉].

Fig. 3. The DFG for log Ls.

The corresponding directly fol-
lows graph (DFG) is shown in Fig. 3.

The first ordering strategy is
frequency-based and it is relatively
straightforward. The activities are
simply ordered by their frequency in
the log.

Definition 8 (Frequency-Based Ordering). Let L∈B(U∗
A). Frequency-based

ordering function is orderfreq(L) = γ such that γ is an activity order and
∀1≤i<j≤|γ|#(γ(i), L) ≥ #(γ(j), L).

If activities have the same frequency, we order them alphabetically. Using the
example log Ls for illustration, the order would be orderfreq(Ls) = 〈b, c, d, e, f, g〉.

The other ordering strategies are more involved as they consider not only the
frequency of activities but also the connections between them. Before introducing
the other ordering strategies, we first define a helper function that ranks the
directly-follow activities based on the strength of connections.

Definition 9 (Directly-Follow Activities Sorting). Let L∈B(U∗
A) and

a∈UA. A={b ∈ UA|#(a, b, L)>0} is the set of activities directly-follow a in L
at least once and σ ∈ A∗. Directly-follow activities sorting is sortDFA(a, L) =
σ such that {b ∈ σ} = A and |σ| = |A| and ∀1≤i<j≤|σ| #(a, σ(i), L) ≥
#(a, σ(j), L).

For example, sortDFA(b, Ls) = 〈c, e〉. This is because activities c and e have
incoming arcs from b and the strength #(b, c, Ls) ≥ #(b, e, Ls). With the func-
tion for sorting directly-follow activities defined, we are now ready to define the
Breadth-First-Search-Based ordering strategy in Algorithm 1.

46 T.-H. Huang and W. M. P. van der Aalst

Algorithm 1: Breadth-First-Search-Based Ordering, orderBFS

Input : A log L ∈ B(U∗
A)

Output : An activity order γ for L
A ← ⋃

σ∈L{a ∈ σ} ; // the set of activities in L

As ← {σ(1) | σ ∈ L ∧ σ 	= 〈〉} ; // the set of start activities in L

σ ← orderfreq(L)�As ; // the sequence of start activities ordered by frequency

i ← 1;
while |σ| 	= |A| :

A′ ← A \ {a ∈ σ} ; // the set of activities that are not in σ

σ′ ← sortDFA(σ(i), L)�A′ ; // sort σ(i)’s following activities & project on A′

σ ← σ · σ′ ; // update σ

i ← i + 1;

γ ← σ;
return γ;

BFS-based ordering strategy starts by building a sequence of start activities
in a log and iteratively append the sequence of directly-follow activities using
the function in Definition 9. Applying the function to the example log Ls, we
get orderBFS (Ls) = 〈b, e〉 · 〈c〉 · 〈f, d〉 · 〈〉 · 〈g〉 = 〈b, e, c, f, d, g〉. σ is initiated
with 〈b, e〉. Then, in iteration i, σ is appended by the sequence of σ(i)’s directly-
follow activities sorted by sortDFA(σ(i), Ls) with the set of activities already in
σ filtered out. The loop continues until σ includes every activity in the log. As
its name suggests, the ordering prioritizes the exploration of the directly-follow
activities.

Next, we introduce another ordering strategy in Algorithm 2 that is Depth-
First-Search-based. While also considering the connection between the activi-
ties as BFS-based ordering strategy, DFS-based ordering prioritizes depth over
breadth. That is, the directly-follow activities are not explored thoroughly until
activities with higher depth have been explored. Applying DFS-based ordering
to log Ls, we get orderDFS (Ls) = 〈b, c, f, g, d, e〉.

Note that although we define the BFS- and DFS-based ordering strategies to
start from the start activities, one can also initiate the exploration from another
direction, i.e., from the end activities and subsequently explore the directly-
precede activities for ordering. Using Ls as an example, if starting from the set
of end activities, we would get 〈g, f, c, b, e, d〉 with DFS-based ordering on log Ls

and 〈g, d, f, c, e, b〉 with BFS-based ordering.
To explain how the progression of the process discovery influenced by the dif-

ferent ordering strategies, Fig. 4 shows all the intermediate nets when applying
Synthesis Miner to log Ls using the three different ordering strategies. DFS-
based ordering tends to build the process from start to end at the beginning
before adding the activities in the parallel/choice branches. On the contrary,
BFS-based ordering prioritizes the construction of local control flows. For exam-
ple, the difference is observable from iteration 1 to 2. While all the ordering
strategies produce the same net in iteration 1, BFS-based ordering suggests to
add the concurrent activity e for b in iteration 2 and DFS-based ordering adds

Comparing Ordering Strategies for Process Discovery Using Synthesis Rules 47

Algorithm 2: Depth-First-Search-Based Ordering orderDFS

Input : A log L ∈ B(U∗
A)

Output : An activity order γ for L
A ← ⋃

σ∈L{a ∈ σ} ; // the set of activities in L

As ← {σ(1) | σ ∈ L ∧ |σ| 	= 0} ; // the set of start activities in L

σs ← orderfreq(L)�As ; // the sequence of start activities ordered by frequency

σ ← 〈σs(1)〉 ; // initiate the sequence with the most frequent start activity

σs ← σs�{As\{σs(1)}} ; // update σs to be the stack

while |σ| 	= |A| :
A′ ← A \ {a ∈ σ} ; // set of activities that are not in σ

σf ← sortDFA(σ(|σ|), L)�A′ ; // sort σ(|σ|)’s following activities

if |σf | = 0 :
σ ← σ · 〈σs(1)〉 ; // append the 1st element from the stack σs to σ

else :

σ ← σ · 〈σf (1)〉 ; // append the 1st element from σf to σ

σs ← (σf �A\{a∈σ∨a∈σs}) · (σs�A\{a∈σ}) ; // update the stack σs

γ ← σ;
return γ;

Fig. 4. A comparison of different ordering strategies for log Ls. Each column repre-
sents an ordering strategy and each row corresponds to the intermediate workflow net
in iteration i after adding γ(i). The green dashed lines highlight the nodes representing
the reduced search space. The metrics fitness and precision are measured using the cor-
responding projected log Li = L�{γ(1),γ(2),...γ(i)}. Note that the final model discovered
by the BFS- and DFS-based ordering strategies are the same in this example. (Color
figure online)

the directly-follow activity c of b first. The frequency ordering doesn’t seem to
have clear patterns for the discovery.

We expect that the choice of ordering can significantly influence the com-
putation time of discovery. The main difference stems from the time required

48 T.-H. Huang and W. M. P. van der Aalst

to check the feasibility of the linear dependency rules. As the WF-net grows, it
becomes more expensive (w.r.t. time) to check if a candidate place/transition
is linear dependent. Thus, it is preferable to limit the search space as small as
possible, especially in the later iterations. Recall that the reduced search space
(Definition 7) is a set of nodes confining the application of synthesis rules. The
green dashed lines in Fig. 4 highlight the reduced search space Vi in iteration
i. As shown in Fig. 4, generally, BFS-based ordering can keep the search space
smaller than the other strategies because it prioritizes the connected activities.
In contrast, the search space of DFS-based ordering is more likely to be large in
the later iterations. As the parallel/alternative activities are added later, the pre-
ceding and following activities of the to-be-added activity γ(i) is highly likely to
be spread across the existing net. Together with the effect of search space reduc-
tion, it results in a relatively large search space, which indicates more nodes to
be considered. Examples can be seen in iterations 4 and 5 for the DFS-based
ordering in Fig. 4.

Although it is assumed that BFS-based ordering would have relatively lower
computation time, search space reduction might introduce trade-offs between the
optimal solution and time. In the following section, we aim to investigate the
impact of the ordering strategy on both model quality and the time to discover
the process model in the experiment.

5 Evaluation

In this section, we present the experiment used to evaluate the ordering strategies
including the setup and a discussion of the result4.

5.1 Experimental Setup

For the experiment, we use four publicly available real-life event logs [7,10–12].
The logs are filtered to focus on the mainstream behaviors (at least 95% of the
traces) where the most frequent trace variants are used. For the BPI2017 log [7],
we split it into three logs using the activity prefix (A, W, O). This results in six
logs in total.

For every event log, we apply different ordering strategies for the Synthesis
Miner [8] with default values for the other parameters. For the BFS- and DFS-
based ordering strategies, we apply the ordering from both directions (start and
end activities). Therefore, we evaluate five ordering strategies. To measure the
effect of ordering strategies on search space pruning, we keep track of the ratio
of reduced search space. This is evaluated by |Vi|

|Pi∪Ti|−2 , where Vi is the set of
reduced nodes, Pi and Ti are the set of places and transitions in the existing WF-
net Wi. The −2 in the denominator is there to exclude the two places (source and
sink) that can never be connected by new nodes by Definition 5. Using Fig. 4 as
an example, the value of |V3|

|P3∪T3|−2 for the frequency ordering strategy would be

4 https://github.com/tsunghao-huang/synthesisRulesMiner.

Comparing Ordering Strategies for Process Discovery Using Synthesis Rules 49

9
11−2 = 1 in iteration 3. This indicates that all the possible nodes are considered
for the application of synthesis rules to add the next activity. Furthermore, we
evaluate the final model in terms of fitness, precision, and F1 score (the harmonic
mean of fitness and precision).

5.2 Results and Discussion

Search Space Reduction and Computation Time. Figure 5 shows the
result of the comparison among the five ordering strategies regarding their effects
on the search space reduction. The value in the y-axis |Vi|

|Pi∪Ti|−2 is the average
across six event logs. As indicated, the metric keeps track of the reduced search
space ratio for adding the next activity, which indicates the number of possible
synthesis rule applications. In general, we can observe from the figure that the
ordering strategies behaved as expected. As shown in Fig. 5a, in the later stage
of the discovery (i ≥ 8), the BFS-ordering strategies (bfs start, bfs end) keep
the ratio of reduced search space at a low level while the value for frequency and
DFS-based ordering strategies show that they are more likely to include a large
portion of the nodes in the search space.

Fig. 5. Comparisons of ordering strategies on the effects of search space reduction as
well as the computation time for each step. Note that it is preferable to have a lower
value for |Vi|

|Pi∪Ti|−2
.

Figure 5b shows the average time to add an activity to the existing WF-
net for each step of six logs. Comparing the two figures, one can see the effect
of search space reduction on the computation time. As shown in Fig. 5b, the
bfs end strategy keeps the average computation time for each step at a fairly
low level. This is also the case for the bfs start strategy despite the two peaks
when adding the 7th and 10th activity. The two peaks in the 7th and 10th steps
are especially severe for the dfs end strategy. Both took more than 10 min to
add a single activity to the existing model. Also, the longest duration to add an
activity also happens in the 11th step of the dfs start strategy.

In short, due to its interplay with the search space reduction, the BFS-based
ordering strategies have significant advantage in terms of computation time.

50 T.-H. Huang and W. M. P. van der Aalst

Table 1. Quality of the models discovered by different ordering strategies.

Log Ordering Strategy & IMf Fitness Precision F1 time(sec)

BPI2017A frequency 0.971 0.947 0.958 685

BFS start 0.973 1.000 0.986 893

BFS end 0.990 0.935 0.961 334

DFS start 0.963 0.868 0.913 1850

DFS end 0.999 0.986 0.993 1248

IMf(0.2) 0.999 0.936 0.967 10

BPI2017O frequency 0.993 0.962 0.978 537

BFS start 0.985 0.963 0.974 165

BFS end 0.989 1.000 0.995 231

DFS start 0.996 1.000 0.998 498

DFS end 0.993 0.962 0.978 360

IMf(0.2) 0.997 0.907 0.950 7

BPI2017W frequency 0.993 0.726 0.838 3617

BFS start 0.974 0.864 0.914 1626

BFS end 0.993 0.888 0.936 579

DFS start 0.974 0.864 0.914 1732

DFS end 0.993 0.901 0.944 5397

IMf(0.2) 0.923 0.897 0.910 14

helpdesk frequency 0.974 0.984 0.978 51

BFS start 0.974 0.984 0.978 52

BFS end 0.983 0.976 0.979 43

DFS start 0.974 0.984 0.978 49

DFS end 0.989 0.963 0.976 64

IMf(0.2) 0.967 0.950 0.958 1

hospital billing frequency 0.945 0.810 0.879 509

BFS start 0.931 0.922 0.936 314

BFS end 0.988 0.935 0.961 383

DFS start 0.931 0.970 0.961 2154

DFS end 0.943 0.883 0.920 2359

IMf(0.2) 0.982 0.906 0.943 45

traffic frequency 0.967 0.930 0.945 274

BFS start 0.967 0.930 0.945 202

BFS end 0.972 0.720 0.825 388

DFS start 0.991 0.933 0.960 366

DFS end 0.942 0.858 0.903 443

IMf(0.4) 0.904 0.720 0.801 28

Comparing Ordering Strategies for Process Discovery Using Synthesis Rules 51

Model Quality. Table 15 shows the result of the model quality using the
five different ordering strategies. As expected, we observe that the BFS-based
ordering strategies have the lowest computation time in all six event logs. This
corresponds to the findings in the previous section. Moreover, despite the search
space being considerably reduced, the models discovered using BFS-ordering
strategies have the highest F1 score in two out of the six logs.

As for the DFS-based ordering strategies, they have an apparent disadvantage
for computation time but get the highest F1 score in the other four event logs.
The result matches our assumption as search space reduction introduces a trade-
off between the optimal solution and time. Lastly, the frequency ordering strategy
has no significant advantage in model quality and computation time. The results
show that the ordering strategies that take the connections between activities
into consideration can improve the Synthesis Miner than the frequency-based
ordering strategy.

6 Conclusion

In this paper, we introduced five ordering strategies for the process discovery
algorithm using synthesis rules [8]. We investigated the impact of ordering strate-
gies on model quality and computation time. The results show that compared
to the ordering strategy solely based on the frequency of activities, the proposed
ordering strategies considered the connection between activities (Breadth-First-
Search-based and Depth-First-Search-based) have superior performance w.r.t.
time and model quality respectively. It is shown in the result that the introduced
BFS-based ordering strategies can speed up the computation. Nevertheless, the
overall discovery time of the Synthesis Miner is still not comparable to the state
of the art despite being able to discover models with better quality. Therefore, for
future work, we plan to speed up the Synthesis Miner by further exploiting the
log heuristics and investigating more sophisticated ordering strategies. Another
direction for improvement is the ability to cope with infrequent behaviors as we
use the most frequent trace variants to capture the mainstream process. It would
be valuable to introduce a filtering mechanism to the Synthesis Miner so that it
can directly work on the original log without depending on pre-filtering the log.

Acknowledgements. We thank the Alexander von Humboldt (AvH) Stiftung for
supporting our research.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circuits Syst. Comput. 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016)

5 To provide a reference to the state of the art, we also present the results from IMf
(marked by gray color). The best model generated by IMf (w.r.t. F1 score) is selected
from a set of nets using five different values ([0.1, 0.2, 0.3, 0.4, 0.5]) for the filter.

52 T.-H. Huang and W. M. P. van der Aalst

3. van der Aalst, W.M.P.: Using free-choice nets for process mining and business
process management. In: FedCSIS 2021, vol. 25, pp. 9–15 (2021)

4. Augusto, A., et al.: Automated discovery of process models from event logs: review
and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

5. Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40. Cambridge University Press,
Cambridge (1995)

6. Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Prodigy: human-in-the-loop
process discovery. In: RCIS 2018, pp. 1–12. IEEE (2018)

7. van Dongen, B.: BPI Challenge 2017 (2017). https://doi.org/10.4121/uuid:
5f3067df-f10b-45da-b98b-86ae4c7a310b

8. Huang, T.H., van der Aalst, W.M.P.: Discovering sound free-choice workflow nets
with non-block structures. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G.,
Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNCS, vol. 13585, pp.
200–216. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3 12

9. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

10. de Leoni, M.M., Mannhardt, F.: Road Traffic Fine Management Process (2015).
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

11. Mannhardt, F.: Hospital Billing - Event Log (2017). https://doi.org/10.4121/uuid:
76c46b83-c930-4798-a1c9-4be94dfeb741

12. Polato, M.: Dataset belonging to the help desk log of an Italian Company (2017).
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb

13. Schuster, D., Domnitsch, E., van Zelst, S.J., van der Aalst, W.M.P.: A generic trace
ordering framework for incremental process discovery. In: Bouadi, T., Fromont, E.,
Hüllermeier, E. (eds.) IDA 2022. LNCS, vol. 13205, pp. 264–277. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-01333-1 21

14. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of
hierarchical process models. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.)
RCIS 2020. LNBIP, vol. 385, pp. 417–433. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-50316-1 25

