
A Framework for Automated Abstraction
Class Detection for Event Abstraction

Chiao-Yun Li1,2(B), Sebastiaan J. van Zelst1,2, and Wil M.P. van der Aalst2

1 Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany
{chiao-yun.li,sebastiaan.van.zelst}@fit.fraunhofer.de

2 RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. Process mining enables companies to extract insights into
the process execution from event data. Event data that are stored in
information systems are often too fine-grained. When process mining
techniques are applied to such system-level event data, the outcomes
are often overly complex for human analysts to interpret. To address
this issue, numerous (semi-)automated event abstraction techniques that
“lift” event data to a higher level have been proposed. However, most
of these techniques are supervised, i.e., the knowledge of which low-level
event data or activities need to be abstracted into a high-level instance
or concept is explicitly given. In this paper, we propose a fully unsu-
pervised event abstraction framework for partially ordered event data,
which further enables arbitrary levels of abstraction. The evaluation
shows that the proposed framework is scalable and allows for discov-
ering a more precise process model.

Keywords: Process mining · Event abstraction · Partial orders

1 Introduction

Nowadays organizations execute their processes with the support of information
systems. Historical records of the process execution are stored as event data
in the systems. Process mining [1] provides techniques to extract knowledge of
such data to enhance the performance and the compliance of said processes.
For example, process discovery techniques detect the relations of activities in a
process, i.e., well-defined process steps, and represent the identified behavior as
a process model [3,6].

Most process mining techniques are directly applied on event data as recorded
in information systems. Figure 1 shows how a human analyst translates the system-
level event data into activities performed at the business-level. Such system-level
event data often present an overly fine granularity that is too detailed to under-
stand a process at the business-level. In case of a large or flexible process, the com-
plexity further causes challenges in interpreting process mining results. Therefore,
the principle of abstraction is often applied to lift event data to a higher level, i.e.,
referred to as event abstraction, which aggregates activities or low-level event data
to which process mining techniques are applied.

A Framework for Automated Abstraction Class Detection 127

Fig. 1. A motivating example of interpreting sensor data, i.e., system-level event data,
to business-level executions. The same shapes of event data at the system-level reflect
the executions performed as time intervals, e.g., door 1 is opened from door1 (open) until
door1 (close). The activities with the same pattern define a concept at the business-
level.

Existing event abstraction techniques assume that event data are recorded
and ordered chronologically. Meanwhile, most of the techniques operate in a
semi- or fully supervised manner. In practice, both assumptions are often not
applicable. Activities are often executed in time intervals and, thus, partially
ordered. For example, an office worker can drink coffee during a meeting after a
break. Furthermore, the application of event abstraction in real-life varies in the
abstraction level required, which often depends on scenarios and stakeholders.
One can apply the abstraction iteratively to construct a hierarchy of abstractions;
however, it requires a technique to be able to deal with interleaving intervals as
shown in the business-level executions in Fig. 1, where the break overlaps with
the meeting in time. Moreover, a (semi-)supervised approach requires domain
knowledge of event data to abstract; yet, such information is often not present
and it takes a tremendous amount of time and effort to label event data. If
a different level of abstraction is required, further domain knowledge must be
provided and the event data need to be relabeled.

In this paper, we propose a framework that tackles the two aforementioned
issues, i.e., a fully unsupervised framework for partially ordered event data. Mean-
while, the support for partial orders inherently yields iterative applicability to
construct a hierarchy of abstractions for various stakeholders. The framework
detects concepts at the higher level, namely abstraction classes, which are defined
by activities based on their observed execution context. The paper is compati-
ble with the generic partial-order-based abstraction framework proposed in [9]
and we further extend and define such context. The framework is evaluated
using event data based on two real-life processes as in [9]. Additionally, we com-
pare the proposed framework with two other event abstraction techniques. The
experiments show that the proposed framework is the most applicable in prac-
tice for its scalability, robustness against infrequent activities, and effectiveness
of abstraction, which is quantitatively and qualitatively evaluated and reasoned
based on the process models discovered.

128 C.-Y. Li et al.

The rest of the paper is structured as follows. In Sect. 2, we discuss existing
abstraction techniques in the field of process mining. We introduce the framework
in Sect. 3, which is evaluated in Sect. 4. Finally, Sect. 5 summarizes the framework
and the evaluation and concludes the paper with future work.

2 Related Work

This section reviews the applicability of existing event abstraction techniques
from two perspectives: the level of domain knowledge required and whether a
technique supports partially ordered event data.

Most existing event abstraction techniques require explicit domain knowl-
edge as input. In general, the techniques expect either the behavioral knowledge
of the activities in a process [11,15] or the mapping of activities to high-level
concepts [5,7,14]. In [11], the authors explore all the possible behavior between
activities, so-called local process models (LPMs), and extract event data at a
higher level based on the ones chosen by domain experts. In [15], the authors
search for instances of predefined patterns with a focus on the education field.
Leemans et al. discover hierarchical process models based on the assumption that
a hierarchical mapping of low-level instances to high-level concepts is annotated
in event data [7]. In [5] and [14], statistical models are trained using labeled
event data to predict concepts at a higher level of abstraction.

Unsupervised approach groups low-level concepts or instances by identifying
their relationship in event data and allows for exploration through parameter
tuning. Alharbi et al. discover statistical models to learn activities at a higher
level [2]. Nguyen et al. decompose all activities in a process into sets of activities
by maximizing the modularity measure [12]. In [8], the authors apply classical
clustering techniques by extracting features using frequency- or duration-based
encoding in a session, i.e., a segment of a sequence of event data.

Unsurprisingly, the more domain knowledge is provided, the more precise
the abstraction is; however, this limits the practical applicability of a technique.
Meanwhile, since activities are often performed as time intervals in practice,
it is crucial that a technique supports partially ordered event data. Although
partially ordered event data may be transformed into sequences of executions
by introducing life cycle information, applying existing abstraction techniques
may result in unreasonable outcomes. For example, the start of drink coffee
is considered to be part of a meeting and the complete of drink coffee is an
activity performed during a break. The method proposed in this paper is the
first unsupervised technique focusing on abstracting partially ordered event data.

3 Framework

In this section, we present the proposed framework to detect concepts at a higher
level, namely abstraction classes, from event data. Figure 2 presents an overview
of the framework. First, event data is provided in the format of an event log L.
Next, we extract a preceding and a succeeding context as categorical distributions

A Framework for Automated Abstraction Class Detection 129

Fig. 2. Schematic overview of the framework. The abstraction classes are defined by
activities with similar preceding and succeeding contexts. An event log at the higher
level is then extracted and can be applied as input for the next iteration.

for every activity. The similarity of the activities is calculated accordingly and
the activities that are similar enough define an abstraction class. Finally, an
event log L′ containing only the identified abstraction classes is extracted and
the framework can be iteratively applied to the output to construct a hierarchy
of abstraction.

First, we introduce the mathematical notations applied and define event data
that is more generally applicable in practice. Then, we show how a context is
constructed and the identification of abstraction classes.

Notation. Given an arbitrary set X, P(X)={X ′|X ′⊆X} denotes the powerset
of X. A multiset is a generalization of a set where an element in X may appear
multiple times. For example, [a, b, b]=[a, b2] is a multiset. M(X) denotes all
the possible multisets over X. A sequence σ of length n over X is a function
σ : {1, . . ., n}→X, denoted as σ=〈x1, . . ., xn〉, where 1≤i≤n, xi=σ(i). We write
|σ| to denote the length of a sequence.

3.1 Event Data

A case is a process instance defined by a set of activity instances, i.e., records of
the execution of activities. The collection of cases defines an event log. We define
an activity instance, a case, and an event log as follows.

Definition 1 (Activity Instance). An activity instance records the execution
of an activity and is described by a set of attributes. A is the universe of activity
instances, N is the universe of attribute names, and Un denotes all the possi-
ble values of n∈N . UN = ∪n∈N Un denotes the universe of the values of all the
attributes. Given n∈N and a∈A, we define projection function πn : A � Un,
where πn(a)∈Un if a has a value for n, else πn(a)=⊥. Uact denotes the uni-
verse of activities. Given a∈A, the following attributes are assumed to be always
defined: πact(a)∈Uact for the activity of a; πst(a)∈R

+ for the start time of a;
πct(a)∈R

+ for the complete time of a where πst(a)≤πct(a).

Definition 2 (Case, Event Log). A case is the collection of activity instances
executed in the context of a process instance. Let c⊆A be a case. Given a,a′∈c, we

130 C.-Y. Li et al.

Table 1. An example event log L0. An activity instance is represented in a row and is
described by a set of attributes and the case it belongs to.

ID Activity (Abbreviation) Timestamp Resource

Case Activity Instance Date Start Complete

1 1 receive order (ro) Sep. 6 14:32:21 14:32:21 Peter

1 2 pay in cash (pi) Sep. 6 14:34:02 14:34:02 Mike

1 3 confirm payment (cp) Sep. 6 14:35:40 14:36:14 Peter

1 4 bake pizza (bp) Sep. 6 14:46:21 15:03:56 Sara

1 5 make salad (ms) Sep. 6 14:49:32 15:00:11 Sara

1 6 pack & deliver (pd) Sep. 6 15:15:16 15:27:48 Ethan

2 7 receive order (ro) Sep. 7 15:08:00 15:08:00 Peter

2 8 pay by credit card (pb) Sep. 7 15:09:27 15:09:27 Ben

2 9 confirm payment (cp) Sep. 7 15:10:29 15:10:41 Ethan

2 10 bake pizza (bp) Sep. 7 15:30:38 15:49:40 Sara

2 11 make salad (ms) Sep. 7 15:47:56 15:57:10 Alex

2 12 pack & deliver (pd) Sep. 7 15:55:02 16:17:59 Ethan

write a≺a′ if and only if πct(a)<πst(a′). The transitive reduction over c, writ-
ten as ρ=(c,Î), is the minimum relation Î on c such that ∀a1,a2∈c,a1Îa2
iff a1≺a2 and �a′∈c(a1≺a′∧a′≺a2). Given a1,an∈c, a path from a1 to an

in ρ=(c,Î) is σ=〈(a1,a2), . . ., (an−1,an)〉 s.t. ∀1≤i<n(aiÎai+1). pρ(a1,an)
denotes all the paths between a1 and an in ρ. C⊆P(A) denotes the universe of
cases. An event log L⊆C is a collection of cases where ∀c, c′∈L(c
=c′) =⇒ c∩c′=∅.
As an activity instance is described by a time interval, a case is considered as
a strict partial order of activity instances which is irreflexive, asymmetric, and
transitive. Figure 3 visualizes an event log L0 shown in Table 1.

Definition 3 (Abstraction Class). Let Uact be the universe of activities. An
abstraction class C∈P(Uact) is a non-empty set of activities, i.e., C
=∅.
Note that Definition 3 does not limit an activity to be included in exact one
abstraction class and vice versa. In the proposed framework, we assume that a
partition of activities defines an abstraction class.

3.2 Constructing Preceding and Succeeding Patterns

A preceding and a succeeding pattern form a context of an activity instance.
First, we select activity instances before, namely preceding instances, and after,

Fig. 3. Visualization of L0={c1, c2} in Table 1, where every circle represents an activ-
ity instance, which is labeled with the corresponding activity (abbreviation) and the
identifier, and the arcs present the relation ρ1=(c1,) and ρ2=(c2,).

A Framework for Automated Abstraction Class Detection 131

namely succeeding instances, every activity instance in a case. Next, we construct
a preceding and a succeeding pattern from the instances selected. We define
preceding and succeeding instances of an activity instance as follows.

Definition 4 (Preceding/Succeeding Instances). Let c∈C be a case, where
C is the universe of cases. Given a∈c and A⊂c, we overload the notation ≺
such that A≺a⇔∀a′∈A(a′≺a). We call A preceding activity instances of a and
say that A precedes a. Succeeding activity instances A′⊂c of a∈c is defined
symmetrically, i.e., a≺A′⇔∀a′∈A′(a≺a′).

We propose two instantiations to select preceding and succeeding instances
of an activity instance within a window of size w∈R

+, namely the distance-based
and the time-based selectors.

Definition 5 (Distance-Based Selector). Let c∈C be a case, where C is

the universe of cases s.t. ρ=(c,Î).
←−
φd

ρ : A×N
+→P(A) defines the distance-based

preceding selector, where
←−
φd

ρ(a, w)={a′|∃σ∈pρ(a′,a) (|σ|≤w)} denotes a set of

preceding instances of a. The succeeding selector
−→
φd

ρ is defined symmetrically.

Definition 6 (Time-Based Selector). Let c∈C be a case, where C is the
universe of cases s.t. ρ=(c,Î).

←−
φt

ρ : A×R
+→P(A) defines the time-based pre-

ceding selector, where
←−
φt

ρ(a, w)={a′|a′≺a∧πst(a′)≥πst(a)−w} denotes a set of

preceding instances of a. The succeeding selector
−→
φt

ρ is defined symmetrically.

Given a set of activity instances in a case, we construct patterns as below.

Definition 7 (Preceding/Succeeding Patterns). Let c∈C be a case, where
C is the universe of cases s.t. ρ=(c,Î). A pattern is a data structure defined by
a set of activity instances A⊆c and an attribute n∈N , where N is the universe
of attribute names. Given A⊆c and n∈N , we define the instantiation functions:

– λs
ρ : P(A)×N→P(UN), where λs

ρ(A, n)={πn(a)|a∈A} is a pattern of type set;
– λm

ρ : P(A)×N→M(UN), where λm
ρ (A, n)=[πn(a)|a∈A] is a pattern of type

multiset;
– λg

ρ : P(A)×N→P(A×UN), where λg
ρ(A, n)={(a, πn(a))|a∈A}. Given a1,

a2∈A and v1=(a1, πn(a1)), v2=(a2, πn(a2))∈λg
ρ(A, n), we overload Î s.t.

v1Îv2⇔a1Îa2. We call such pattern, together with the relation, as type
graph.

We call the attribute to construct a pattern a pattern attribute. We name a
pattern initiated from preceding instances a preceding pattern and, likewise, a
pattern initiated from succeeding instances a succeeding pattern.

In this section, we showed how to construct a context, i.e., a preceding and
a succeeding pattern, of an activity instance. We proposed two instantiations to
select the surrounding instances and three instantiations to construct a pattern
from a set of activity instances.

132 C.-Y. Li et al.

3.3 Computing Activity Similarity

We evaluate the similarity of two activities by comparing how similar their con-
texts are, which are defined as the distributions of preceding and succeeding
patterns of an activity in an event log.

Preceding/Succeeding Context. A preceding context of an activity is a
collection of preceding patterns of the activity instances of an activity in an event
log. We transform such a collection into a categorical distribution of patterns
where every pattern is weighted with its frequency. A succeeding context is
constructed likewise. A context of an activity is defined together by a preceding
and a succeeding context of an activity.

Activity Similarity. The similarity between two activities is quantified based
on their contexts. We initiate the framework using normalized earth mover’s
distance (EMD) to compute the similarity between two distributions [13]. The
metric requires the distance between two patterns. Suppose a context of an
activity is constructed using patterns of type set or multiset, we apply Jaccard
distance for the distance between two patterns. For patterns of type graph, we
apply graph edit distance based on the pattern attribute. The preceding and
the succeeding similarity are the similarities computed based on preceding and
succeeding contexts of two activities, correspondingly. The similarity between
two activities is the average of the preceding and the succeeding similarity.

Identifying Abstraction Classes. The activities that are similar enough
define an abstraction class. The similar activities are the activities whose sim-
ilarity is above a given similarity threshold. Various grouping strategies can be
applied. Figure 4 visualizes the abstraction process initiated with binary group-
ing strategy for L0, i.e., only a pair of the most similar subset of activities in
an abstraction class is identified, e.g., the abstraction class C is abstracted by
first grouping pb and pi as {pb, pi}⊆C and merging cp into {pb, pi} such that
C={pi, pb, cp}. In each iteration of grouping, we update the preceding and the
succeeding contexts by summing up the weight of every pattern. The similarity
between a set of activities and another activity or set of activities can be cal-
culated using EMD likewise. We repeat the procedure until no activities can be
grouped and the final sets of activities define the abstraction classes.

The framework is generally applicable to partially ordered event data. By
applying the framework iteratively to the output of the previous iteration, one
can construct a hierarchy of abstractions, which allows various stakeholders to
flexibly adjust the level of abstraction required.

A Framework for Automated Abstraction Class Detection 133

Table 2. Quality metrics of flatten process models using the proposed framework,
session-based, and LPM-based techniques. The metrics of the models without abstrac-
tion (represented with -) are provided as baselines.

Event Log Sepsis [10] BPIC12 [4]

Technique – Proposed Session LPM – Proposed Session LPM

Fitness 0.9979 0.8751 0.9538 0.8852 0.9981 0.9962 0.9556 N/A

Precision 0.2140 0.2877 0.2657 0.5090 0.1297 0.1685 0.0939 N/A

F1-Score 0.3524 0.4330 0.4156 0.6463 0.2296 0.2883 0.1710 N/A

Simplicity 0.5584 0.5833 0.5804 0.6634 0.6175 0.6531 0.5245 N/A

*The implementation of the LPM-based technique cannot discover an abstract model

within a reasonable amount of time with BPIC12. Hence, the metrics of the flatten model

are unavailable.

4 Evaluation

We compare the proposed framework with an unsupervised [8] and a semi-
supervised [11] technique on two real-life event logs Sepsis [10] and BPIC12 [4].1

We evaluate the quality of abstraction using process models.2 Apparently, the
framework provides an easier means for human analysts by grouping activities
into disjoint sets. Hence, to fairly compare the effectiveness of different abstrac-
tion techniques, we “flatten” an abstract model discovered from an abstracted
event log to the original level of granularity. The flattening is achieved by replac-
ing every transition labeled with an abstraction class in an abstract model with
a model representing the behavior of the activities defining the corresponding
abstraction class. We name such models as flatten models. Meanwhile, we dis-
cover and provide models without applying abstraction as baselines.

Table 2 shows the quality metrics, i.e., fitness, precision, F1-score, the har-
monic mean of the fitness and the precision, and simplicity, of the flatten models.

Fig. 4. Abstraction process using
binary merging strategy based on L0.
The activities below the dashed lines
define abstraction classes.

Fig. 5. Model without abstraction.

1 We apply DBSCAN with the default setting in the implementation of [8]. For [11],
we select the LPM with the highest score in every group based on the maximal
grouping strategy.

2 We apply Inductive Miner - infrequent & life cycle with noise threshold 0.2 to discover
process models represented using Petri nets [1].

134 C.-Y. Li et al.

(a) Abstract model. (b) Flatten model.

Fig. 6. Models discovered using the proposed framework.

The models without abstraction guarantee the highest fitness, which, however,
compromise the precision. LPM-based technique outperforms other techniques
in terms of other metrics using Sepsis; nevertheless, it is not scalable to BPIC12.
In contrast, the proposed framework strikes a balance between the scalability
and the quality of abstraction based on the metrics.

To qualitatively compare and reason the outcomes of different abstraction
techniques, Figs. 5 to 8 demonstrate the process models discovered based on
Sepsis (as the outcomes are available for all the techniques compared). We color
an abstraction class in an abstract model and the behavior of the activities defin-
ing the abstraction class in the corresponding flatten model the same. Figure 5
presents the model without abstraction. With skipping of activities and long
loops (more than one activity being repetitively executed), the model provides
little to no insights with a high degree of “flower-like” behavior, i.e., the activities
can be executed an unlimited number of times in any order. We highlighted some
constructs that can cause such long loops in Fig. 5. The same flower-like behav-
ior is also identified in the models using the session-based technique in Fig. 7.
In some scenarios, the abstract model in Fig. 7a even allows for none of the
abstraction classes and, thereby, the activities defining the abstraction classes,
being executed. Moreover, the flatten model using the session-based technique
in Fig. 7b exhibits a rather complex behavior, which contradicts the motive of
applying abstraction. In contrast, we do not observe long loops in the models
using the proposed framework while the flatten model contains the same number
of activities as in the event log (see Fig. 6). Hence, we show the effectiveness of
the proposed framework based on the simplicity and the precision of the flatten
models, which is also reflected in Table 2.

Figure 8 displays the abstract and flatten models using the LPM-based tech-
nique. The quantitative evaluation in Table 2 suggests a better outcome. How-
ever, despite the same noise threshold of the discovery algorithm applied, some
activities are not identified as shown in the flatten model (see Fig. 8b), revealing
another limitation of the technique that it is more sensitive to frequent behav-
ior. The proposed approach (see Fig. 6), instead, is able to identify abstraction

A Framework for Automated Abstraction Class Detection 135

Long Loop

(a) Abstract model. (b) Flatten model.

Fig. 7. Models discovered using the session-based technique.

(a) Abstract model. (b) Flatten model.

Fig. 8. Models discovered using the LPM-based technique.

classes defined by less frequent activities. Hence, we argue that the proposed
framework is more robust compared to the LPM-based technique.

We evaluated and compared the proposed framework with other abstraction
techniques based on two real-life event logs. The quantitative evaluation showed
that applying abstraction not only provides an easier means for humans to ana-
lyze a process but also allows for discovering a more precise model. By further
reasoning the outcomes based on the models, we argue that the proposed frame-
work is the most applicable in practice as it provides more insights with less
“flower-like” behavior while being scalable and robust to less frequent activities.

5 Conclusion

We proposed a framework to identify concepts at the higher level, i.e., abstraction
classes, for event abstraction based on partially ordered event data. The frame-
work computes the similarity of activities based on their surrounding contexts
and discovers abstraction classes by grouping the activities whose similarity is
higher than a threshold. We evaluated the framework using two real-life event
logs. The experiments showed that the proposed framework outperforms the
other techniques for its robustness, scalability, and effectiveness of abstraction.
For future work, different instantiations will be compared and investigated.

136 C.-Y. Li et al.

References

1. van der Aalst, W.M.P.: Process mining - data science in action (2016)
2. Alharbi, A., Bulpitt, A., Johnson, O.A.: Towards unsupervised detection of process

models in healthcare. Stud. Health Technol. Inform. 247, 381–385 (2018)
3. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner:

automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

4. van Dongen, B.: BPI challenge 2012 (2012)
5. Fazzinga, B., Flesca, S., Furfaro, F., Pontieri, L.: Process discovery from low-level

event logs. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp.
257–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0 16

6. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information
in process discovery. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP,
vol. 256, pp. 204–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42887-1 17

7. Leemans, S.J.J., Goel, K., van Zelst, S.J.: Using multi-level information in hier-
archical process mining: balancing behavioural quality and model complexity. In:
International Conference on Process Mining, pp. 137–144. IEEE (2020)

8. de Leoni, M., Dündar, S.: Event-log abstraction using batch session identification
and clustering. In: Proceedings of the 35th Annual ACM Symposium on Applied
Computing, pp. 36–44 (2020)

9. Li, C., van Zelst, S.J., van der Aalst, W.M.P.: An activity instance based hier-
archical framework for event abstraction. In: International Conference on Process
Mining, pp. 160–167. IEEE (2021)

10. Mannhardt, F.: Sepsis cases - event log (2016)
11. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.:

Guided process discovery-a pattern-based approach. Inf. Syst. 76, 1–18 (2018)
12. Nguyen, H., Dumas, M., ter Hofstede, A.H.M., La Rosa, M., Maggi, F.M.: Stage-

based discovery of business process models from event logs. Inf. Syst. 84, 214–237
(2019)

13. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)

14. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction
for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S.,
Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 15, pp. 251–269. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-56994-9 18

15. Trcka, N., Pechenizkiy, M.: From local patterns to global models: towards domain
driven educational process mining. In: Ninth International Conference on Intelli-
gent Systems Design and Applications, pp. 1114–1119. IEEE (2009)

