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Abstract
Process mining techniques can help organizations to improve their operational
processes. Organizations can benefit from process mining techniques in finding
and amending the root causes of performance or compliance problems. Con-
sidering the volume of the data and the number of features captured by the
information system of today’s companies, the task of discovering the set of
features that should be considered in causal analysis can be quite involving.
In this paper, we propose a method for finding the set of (aggregated) fea-
tures with a possible causal effect on the problem. The causal analysis task
is usually done by applying a machine learning technique to the data gath-
ered from the information system supporting the processes. To prevent mixing
up correlation and causation, which may happen because of interpreting the
findings of machine learning techniques as causal, we propose a method for
discovering the structural equation model of the process that can be used
for causal analysis. We have implemented the proposed method as a plu-
gin in ProM and we have evaluated it using real and synthetic event logs.
These experiments show the validity and effectiveness of the proposed methods.

Keywords: Process mining, Causality inference, Root cause analysis

1 Introduction
Organizations aim to improve operational processes to serve customers better and to
become more profitable. To this goal, they can utilize process mining techniques in
many steps, including identifying friction points in the process, finding what causes a
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friction point, estimating the possible impact of changing each factor on the process
performance, and also planning process enhancement actions. Finding the set of fea-
tures that cause (effect) another feature, i.e., the set of features that change the value
of any of the former ones can change the value of the latter one, is the core of the
process improvement process. Today, there are several robust techniques for process
monitoring and finding their friction points, but little work on causal analysis. In this
paper, we focus on causal analysis and investigating the impact of interventions.

Processes are complicated entities involving many steps, where each step itself
may include many influential factors and features. Moreover, not just the steps but
also the order of the steps that are taken for each process instance may vary, which
results in several process instance variants. This makes it quite hard to identify the
set of features that influence a problem. However, in the literature related to causal
analysis in the field of process mining, it is usually assumed that the user provides the
set of features that have a causal relationship with the observed problem in the pro-
cess (see for example [1, 2]). To overcome this issue, we investigate the application
of feature selection methods to find the set of features that may have a causal rela-
tionship with the problem. Moreover, we use a method based on information gain to
identify the values of these features that are more prone to causing the problem.

Traditionally, the task of finding the root cause of a problem in a process is done
in two steps; first gathering process data, and then applying data mining and machine
learning techniques. It is easy to find correlations, but very hard to determine cau-
sation. Although the goal is to perform causal analysis, a naive application of such
approaches often leads to a mix-up of correlation and causation. Consequently, pro-
cess enhancement based on the results of such approaches does not always lead to
any process improvements.

Consider the following three scenarios:
(i) In an online shop, it has been observed that in many delayed deliveries certain

employees were responsible.
(ii) In a consultancy company, there are deviations in those cases done by the most

experienced employees.
(iii) In an IT company, it has been observed that the higher the number of resources

assigned to a project, the longer it takes.
The following possibly incorrect conclusions can be made by considering the
observed correlations as causal relationships.
• In the online shop scenario, the responsible employees are causing the delays.
• In the second scenario, we may conclude that over time the employees get more

and more reckless, and consequently the rate of deviations increases.
• In the IT company, we may conclude that the more people working on a

project, the more time is spent on team management and communication, which
prolongs the project unnecessarily.

However, correlation does not mean causation. We can have a high correlation
between two events when they both are caused by a possibly unmeasured (hidden)
common cause (set of common causes), which is called a confounder. For example,
in the first scenario, the delayed deliveries are mainly for the bigger size packages
which are usually assigned to specific employees. Or, in the second scenario, the
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Fig. 1: The general structural equation model discovery approach. Each step is anno-
tated with a number which is corresponding to the number of the item dedicated to
explaining that step in the overview of the method in Section 1.

deviations happen in the most complicated cases that are usually handled by the most
experienced employees. In the third scenario, maybe both the number of employees
working on a project and the duration of a project are highly dependent on the com-
plexity of the project. As it is obvious from these examples, changing the process
based on the observed correlations not only leads to no improvement but also may
aggravate the problem or create new ones.

Two general frameworks for finding the causes of a problem are (1) randomized
experiments and the (2) theory of causality [3, 4] . A randomized experiment pro-
vides the most robust and reliable method for making causal inferences and statistical
estimates of the effect of an intervention, i.e., intentionally changing the value of a
feature. This method involves randomly setting the values of the features that have a
causal effect on the observed problem and monitoring the effects. Applying random-
ized experiments in the context of processes is usually too expensive (and sometimes
unethical) or simply impossible. The other option for anticipating the effect of any
intervention on the process is using a structural equation model [3, 4]. In this method,
first, the causal mechanism of the process features is modeled by a conceptual model,
and then this model is used for studying the effect of changing the value of a process
feature.

The main benefit of modeling the relationships among the process feature using
a structural equation model, over those methods that are based on mere correlations,
is the possibility to investigate the distribution of unseen data. Using a structural
equation model, we can study the effect of interventions on one of the process features
on the other features.
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This paper is an extension of [5], where we have proposed a method for causal
analysis using structural equation modeling. Here we address one of the main issues
in this method. Finding the features that may have a causal effect on the problem
often requires substantial domain knowledge. Moreover, considering the variety of
the feature values in a process, even in the presence of extensive domain knowledge,
it may not be easy to determine those values of the features that have the strongest
effect on the problem. So, we propose a simple yet effective method for finding a
set of features and feature value pairs that may contribute the most to the problem.
Applying causal inference on a smaller set of features not only increases the time
efficiency of the causal inference but also results in simpler and consequently more
understandable structural equation models. Moreover, we add aggregated features
to the features that can be extracted from the event log, which makes the method
capable of analyzing more scenarios. The method explained in this paper includes
the following five steps:

1. As a preprocessing step, the event log is enriched by several process-related
features. These features are derived from different data sources like the event
log, the process model, and the conformance checking results. Also, here we
consider the possibility of adding aggregated features to the event log regarding
the time window provided by the user.

2. In the second step, based one the class and descriptive features (denoted in
Figure 1 as class situation feature and descriptive situation features) provided by
the user a class-dependent data table is created, which we call situation feature
table.

3. A set of pairs of the form (feature, feature value) are recommended to the user
where the set of recommended features is a subset of descriptive features in
the situation feature table created in the second step. Such pairs include the
descriptive features that might have a causal relationship with the problem and
those values of them that possibly contribute more to the problem. Users can
modify this set of features that have been identified automatically or simply
ignore it and provide another set of features to create a new situation feature
table (or trim the situation feature table).

4. The fourth step involves generating a graphical object encoding the structure
of causal relationships among the process features. This graphical object can
be provided by the customer or be inferred from the observational data (the
situation feature table from the previous step) using a causal structure learn-
ing algorithm, also called search algorithm. The user can modify the resulting
graphical object by adding domain knowledge as input to the search algorithm
and repeating this step or by modifying the discovered graph.

5. The last step involves estimating the strength of each discovered causal rela-
tionship and the effect of an intervention on any of the process features on the
identified problem.

In Figure 1, the general overview of the proposed approach for structural equation
model discovery is presented. The remainder of the paper is organized as follows.
In Section 2, we start with an example. We use this example as the running exam-
ple throughout this paper. In Section 3, we present some of the related work. In
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section 4, we present the approach at a high level. The corresponding process mining 
and causal inference theory preliminaries are presented in Section 5 and, in Section 
6, an overview of the proposed approaches for feature recommendation and causal 
equation model discovery is presented. In Section 7, the assumptions and the design 
choices in the implemented plugin and the experimental results of applying it on 
synthetic and real event logs are presented. Finally, in Section 8, we summarize our 
approach and its applications.

2 Motivating Example
As the running example, we use an imaginary IT company that implements software 
for its customers. However, they do not do the maintenance of the released software. 
Here, each process instance is corresponding to the process of implementing one 
software. This process involves the following activities: business case development, 
feasibility study, product backlog, team charter, development, test, and release. The 
Petri net for this process is shown in Figure 2. We refer to the sub-model including 
two transitions “Development” and “Test” (the two blue activities in Figure 2) as the 
implementation phase.

The manager of the company is concerned about the duration of the imple-
mentation phase of projects. She wants to know what features determine the 
implementation phase duration. And also, if there is any way to reduce the implemen-
tation phase duration. If so, what would be the effect of changing each feature? These 
are valid questions to be asked before planning for re-engineering and enhancing the 
process. The manager believes that the following features of a project might have a 
causal effect on the duration of i ts implementation phase ( i.e., she believes that by 
changing the value of these features, the duration of the implementation phase will 
also change.):
• “Priority” which is a feature of business case development indicating how

urgent the software is for the customer,
• “Team size” which is a feature of team charter specifying the number of

resources working on a project,
• “Duration” of product backlog activity, a feature of product backlog activity,

which indicates its duration.
Analyzing the historical data from the company shows that there is a high correla-
tion between every one of these three features and the duration of the implementation
phase. We consider “Complexity” (the complexity and hardness of a project) as
another feature that is not recorded in the event log but has a causal effect on the
duration of the implementation phase.

The structure of the causal relationship among the features has a high impact
on designing the steps to enhance the process. In Figures 3, 4, and 5, three possi-
ble structures of the causal relationship among the features of the IT company are
depicted1.

1In these three figures and other figures in this paper that visualize networks of feature, labels of the nodes (vertices)
are either of form Attribute name, Trace if the attribute name is related to a trace-level attribute, or of form Attribute name,
Activity name if the attribute name is related to an event-level attribute. In the former case, the activity name indicated the
activity name of the event that the attribute belongs to.
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Fig. 2: The Petri net model of the process of IT company.

Fig. 3: A possible causal structure for
the IT company.

According to Figure 3, just team size
and priority of a project have a causal
effect on the duration of the implemen-
tation phase. But the duration of product
backlog does not have any causal effect on
it even though they are highly correlated.
Consequently, changing product backlog
duration does not have any impact on the
duration of the implementation phase.

According to Figure 4, all three fea-
tures priority, product backlog duration, and team size influence the duration of
the implementation phase. Thus, by changing each of these three features, one can
influence the duration of the implementation phase.

Fig. 4: Another possible causal struc-
ture for the IT company.

Based on Figure 5, we can conclude
that the complexity, which is a hidden
feature in the model (depicted by the
gray dashed rectangle), causally influ-
ences both implementation phase duration
and product backlog duration. Therefore,
the correlation among them is because of
having a common cause. Grounded in this
causal structure, it is not possible to influ-
ence the duration of the implementation
phase by forcing product backlog activity
to take place in a shorter or longer amount
of time.

It is worth noting that not all the features are actionable, i.e., in reality, it is not
possible to intervene on some of the features. For example, in the context of this
IT company, we can imagine that the manager intervenes on team size by assigning
more or fewer people to a project; but he cannot intervene in the complexity of a
project. Judging whether a feature can be intervened requires using common sense
and domain knowledge.

In the rest of this paper, we show how to answer such questions posed by the
manager of our imaginary IT company. We first mention how to extract data in a
meaningful way regarding the class feature (implementation phase duration in this
example), and then we show how to discover the causal relationships between the
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process features and the structural equation model of the features that may affect 
the class feature using our method. Finally, we demonstrate how questions related to 
investigating the effect of an intervention on the c lass feature are answered in this 
framework. In Section 7.2, we show the results of applying our method for answering 
the questions of the IT company manager in this example.

3 Related Work

Fig. 5: Another possible causal struc-
ture for the IT company.

In the literature, there is plenty of work
in the area of process mining dedicated to
finding the root causes of a performance
or compliance problem. The causal analy-
sis approach of the proposed methods usu-
ally involves classification [1, 6], and rule
mining [7]. The main problem of these
approaches is that the findings of these
methods are based on correlation which
does not necessarily imply causation.

The theory of causation based on the
structural causal model has been studied
deeply [4]. Also, a variety of domains
benefit from applying causal inference
methods (e.g. [8, 9]). However, there is lit-
tle work on the application of the theory of causality in the area of process mining.
There are some works in process mining that use causality theory. These include:
• In [10], the authors propose an approach for discovering causal relationships

between a range of business process characteristics and process performance
indicators based on time-series analysis. The idea is to generate a set of
time series using the values of performance indicators, and then apply the
Granger causality test on them, to investigate and discover their causal relation-
ships. Granger test is a statistical hypothesis test to detect predictive causality;
consequently, the causal relationships using this approach might not be true
cause-and-effect relationships.
• In [11], the authors use the event log and the BPMN model of a process to

discover the structural causal model of the process features. They first apply
loop unfolding on the BPMN model of the process and generate a partial order
of features. They use the generated partial order to guide the search algorithm.
In this work, it is assumed that the BPMN model of a process is its accurate
model, which is not always the case.

There is also some work devoted to the case level causal analysis [2, 12]. In [12]
a method for case-level treatments recommendation has been proposed. The authors
identify treatments using an action rule mining technique, and then they use uplift
trees to discover subgroups of cases for which a treatment has a high causal effect.
In [2], the authors have utilized the causal structure model of the whole process and
an optimization method to explain the reason for an undesirable outcome in the case
level.
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It is worth mentioning that all the process-level causal inference approaches that
have been presented above are based on statistical tests for discovering causal rela-
tionships. Consequently, these approaches are not feasible when there are a huge
number of features. However, none of them provides a method for feature recom-
mendation. Yet, there is some work on influence analysis that aims at finding feature
values that correlate with a specific property of the process [13–15]. These methods
utilize the frequency of the concurrence of each one of the process feature values
with the problematic cases to determine their influence.

4 Overview of the Method
In this section, we informally describe the method.

Data extraction.
Process mining techniques start from an event log extracted from an information sys-
tem. The building block of an event log is an event. An event indicates that a specific
activity happened at a point in time for a process instance. A set of events that are
related to a specific process instance are called a trace. We can look at an event log
as a collection of traces. An event log may include three different levels of attributes:
log-level attributes, trace-level attributes, and event-level attributes. However, there is
much more performance and conformance-related information encoded in the event
log that might be helpful for causal inference and root cause analysis. For example,
we can add deviation information, the number of log moves, and the trace duration
as additional trace-level features and event duration and next activity as event-level
features to enrich the event log. If we are interested in the aggregated feature, such
as average trace duration or process workload, then we need to enrich the event log
with aggregated features. For that, given k ∈ N as the number of time intervals, we
divide the time-span of the event log into k consecutive equal length time intervals.
The value of an aggregated feature for an event (trace) is the value of that aggre-
gated feature in the time interval that includes its timestamp (the timestamp of its last
event).

Example 1 An event log with two traces for the IT company in Section 2 is presented in Table
1. This event log has been enriched by adding the duration attribute to its events (duration of
each event) and the implementation phase duration attribute to the traces.

One of the fundamental rules of cause and effect is their time precedence. So,
assuming negligible recording time while gathering the data by the information sys-
tem of the companies, we have to extract the data from the part of the trace that
happens before the occurrence of the class feature. Thus that data should be extracted
from a prefix of the trace which has been recorded before the occurrence of the class
feature. We call a prefix of a trace and its (trace-level) attributes a situation. Depend-
ing on the type of class feature, we can define different types of situations such
as:
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case ID Activity name Timestamp Priority Team size Duration Responsible Implementation phase duration
1 Business case development 20,10,2018 2 Alice 324
1 Feasibility study 15.1.2019 87 Alice 324
1 Product backlog 19.2.2019 35 Alice 324
1 Team charter 19.3.2019 21 28 Alice 324
1 Development 19.11.2019 245 Alice 324
1 Test 6.2.2020 79 Alice 324
1 Release 8.2.2020 2 Alice 324
2 Business case development 20.2.2019 1 Alex 807
2 Feasibility study 22.2.2019 33 Alex 807
2 Product backlog 26.4.2019 63 Alex 807
2 Team charter 3.5.2019 33 7 Alex 807
2 Development 3.2.2020 276 Alex 807
2 Test 17.4.2020 74 Alex 807
2 Release 25.4.2020 8 Alex 807
2 Development 31.3.2021 340 Alex 807
2 Test 26.7.2021 117 Alex 807
2 Release 29.7.2021 3 Alex 807

Table 1: An event log with two traces for the IT company in Section 2.

• Trace situation, when the class feature is one of the trace features, e.g., trace
delay, and each situation is a trace.
• Event situation, when the class feature is one of the event features, e.g., the

duration of activity “Test” (in the context of IT company in Section 2), and each
situation is a prefix of a trace and its trace-level attributes. In this example, each
situation includes a prefix of a trace in the IT company event log ending with an
event with the activity name “Test” and the trace-level attributes of that trace.

An interesting subclass of event situations includes those when the class feature
refers to the decision in one of the choice places of the process. In this case, each
situation would be a prefix of a trace where the last event is the one that happened
before the chosen choice place (and the trace-level attributes of that trace). Such a
situation is suitable for analyzing the causes of the decision made in a choice place.

To extract the data, we need to know the exact features. However, it is possible to
have the same attribute names in several events of the same trace. For example, we
might be interested in the “timestamp” of the event with the activity name “Test” and
not other events. To overcome this hurdle, we use situation feature notation, which
is identified by a pair including an attribute name and a group of events for which
we are interested in the attribute value. The group of events is determined in terms of
the property that they have in common. However, if we are interested in a trace-level
attribute, we leave the second element of the situation feature empty. For example, a
situation feature may refer to:
• the duration of the trace,
• the timestamp of events with activity name “Test”,
• the duration of the events with activity name “Development”, or
• the resource of the events that took longer than 80 days.

Moreover, given a situation and a situation feature, we assign the corresponding trace-
level attribute value to the situation feature if it is a trace-level situation feature (i.e.,
the second term of the situation feature is empty). In the case of the event-level sit-
uation feature, we assign the corresponding event-level attribute value of the latest
event in that situation that belongs to the specified event group (satisfies the required
event group properties) to it. For example, considering the second trace of the event
log in Table 1 as a situation, we have:
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• the duration of the trace is 807 days,
• the timestamp of the event with activity name “Test” is 117,
• the duration of the event with activity name “Development” is 340 days, and
• the resource of the events that took longer than 80 is Alex which is the one for

activity “Test” with duration 117 days.
Knowing the situation feature that represents the class feature (which in the rest

of the paper we call class situation feature), we can turn an event log into a collec-
tion of situations with respect to that class situation feature. Here we consider those
collection of all situations extracted from an event log in which each situation is:
• a trace if the second term of the class situation feature is empty. In other words,

the first element of the class situation feature is a trace-level attribute name.
• a prefix of a trace and its trace-level attributes in the event log ending with an

event that belongs to the event group specified by the second term of the class
situation feature. In this case, class situation feature is an event-level situation
feature.

Having the set of descriptive situation features and the class situation feature, we can
simply map each situation to a data point which we call an instance. We call a data
table which is a collection of instances driven from a subset of situations (of an event
log) a situation feature table.

Feature recommendation.
We can extract an astronomical number of situation features from a given event log.
Thus a piece of valuable information that can help the process owners in causal infer-
ence is the set of situation features that may have causal relationships with the class
situation feature. Moreover, considering the variety of the values that can be assigned
to a situation feature, another advantageous piece of information is those values of
the selected situation features that contribute more to the problem. To provide the
stakeholders with such information, We use a method based on information gain for
situation feature and value recommendation. Knowing which values of the class sit-
uation feature are undesirable, we compute the information gain of each descriptive
situation feature value (we use binning technique in case of numerical situation fea-
tures). Then those pair of situation features and values are recommended to the user
with information gain bigger than a given threshold.

Information gain quantifies the amount of information gained about the class
situation feature from a descriptive situation features. It measures the reduction in
information entropy of class situation feature by conditioning on a descriptive sit-
uation feature. The number of situation features considered as possible causes of
the class situation feature is more using information gain than other more enhanced
techniques for feature recommendation. However, based on our experiments, more
enhanced techniques are more prone to fail to discover the whole set of parents and
ancestors of the class situation feature (descriptive situation features connected to
class situation feature by a directed path longer than one).
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Causal inference.
We can encode the causal relationships among the situation features of a given sit-
uation feature table, in the form of a set of equations which are called Structural 
Equation Model (SEM). In other words, a SEM encodes how the data has been gen-
erated and hence the observational distribution (the distribution that the data come 
from). To discover the SEM of the data, we need to know the structure of the causal 
relationships among the situation features, as well as the strength of each causal 
relationship.

The structure of the causal relationships among the situation features in a situa-
tion feature table can be captured and presented in the form of a graph, which we call 
a causal structure. A causal structure is a Directed Acyclic Graph (DAG) in which 
each vertex is corresponding to a situation feature. If a situation feature is a direct 
cause of another situation feature then there should be a directed edge from the cor-
responding vertex of the former situation feature to the corresponding vertex of later 
one in the causal structure. The causal structure of the data can be provided by the 
user. However, if the user does not have such information, then we can approach the 
causal structure discovery in a data-driven manner by analyzing statistical properties 
of situation features in the situation feature table (observational data).

The number of potential causal structures grows exponentially with the number 
of situation features which indicate the hardness of the causal structure discovery 
problem [16]. Yet, several algorithms have been proposed in the literature with this 
purpose. We can do causal structure inference using a causal structure learning 
algorithm which (also called a search algorithm). The search algorithms use partial 
correlation tests to determine the existence of a potential causal relationship between 
two features2. There are two main types of search algorithms [17]:
• Score-based methods, where the goal is finding a DAG (as the causal structure

of the data) that maximizes the likelihood of the data, according to a fitness
score indicating how good the DAG describes the data. Refer to [18–20] for
some examples of score-based search algorithms.
• Constraint-based methods, where conditional independence tests on data are

used as constraints to construct the DAG structure. Refer to [21–23] for some
examples of construct based search algorithms.

The output of the search algorithm is not always a DAG, but a Partial Ancestral
Graph (PAG) which is a graphical object encoding all statistically supported causal
structures by the data. A PAG is simply a graph with four types of edges. Each edge
type has semantics and encodes a piece of information about the causal structure
of the corresponding situation features in its ends. To turn the discovered PAG into
a causal structure, we can use domain knowledge and common sense. For example
we can guide the search algorithm by adding required and forbidden directions. A
required direction indicates a causal relationship that must exist in the causal structure
whereas, a forbidden direction indicates a causal relationship that should not exist in
the causal structure. Having the causal structure of the data, discovering the SEM is
simply an estimation problem.

2Loosely speaking, a partial correlation test is a statistical test designed to measure the degree of association between
two features (random variables) where the effect of a set of other features (random variables) has been removed.
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Using SEM of the data, we can predict the effect of the interventions on the
process. An (atomic) intervention on a process is done by forcefully setting the value
of one of its situation features to a specific value. An example of an intervention in the
context of the IT company in Section 2 would be setting “Team size” to 5 for all the
projects regardless of their other properties. To predict the effect of an intervention
on a process, we need to replace the equation corresponding to the situation feature
that we intervene on (the equation for “Team size” in the mentioned example) with
the fixed value assignment (i.e., with “Team size = 5”). The distribution induced by
the modified SEM is the interventional distribution describing the behavior of the
process under intervention. If the SEM is the correct model, then all the deduced
interventional distributions correspond to distributions that we would obtain from
randomized experiments [4].

5 Preliminaries
In this section, we describe some of the basic notations and concepts of the process
mining and causal inference theory in a more formal way.

5.1 Process Mining
In the following section, we follow two goals: first, we describe the basic nota-
tions and concepts of the process mining, and second, we show the steps involved in
converting a given event log into a situation feature table.

We start by explicitly defining an event, trace, and event log in a way that reflects
reality and, at the same time, is suitable for our purpose. But first, we need to define
the following universes and functions:
• Uatt is the universe of attribute names, where {actName, timestamp, caseID} ⊆
Uatt. actName indicates the activity name, timestamp indicates the timestamp
of an event, and caseID is an identifier indicating the trace (process instance)
that the event belongs to.
• Uval is the universe of values.
• values ∈ Uatt 7→ P(Uval) is a function that returns the set of all possible values

of a given attribute name3.
• Umap = {m ∈ Uatt ̸7→ Uval | ∀at ∈ dom(m) : m(at) ∈ values(at)} is the universe

of all mappings from a set of attribute names to attribute values of the correct
type.

Also, we define ⊥ as a member ofUval such that ⊥ < values(at) for all at ∈ Uatt.
We use this symbol to indicate that the value of an attribute is unknown, undefined,
or is missing.

Now, we define an event as follows:

Definition 1 (Event) An event is an element of e ∈ Umap, where e(actName) , ⊥,
e(timestamp) , ⊥, and e(caseID) , ⊥. We denote the universe of all possible events by E and

3In this paper, it is assumed that the reader is familiar with sets, multi-sets, and functions. P(X) is the set of non-empty
subsets of set X , ∅. Let X and Y be two sets. f : X ̸7→ Y is a partial function. The domain of f is a subset of X and is
denoted by dom( f ). We write f (x) = ⊥ if x < dom( f ).
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the set of all non-empty chronologically ordered sequences of events that belong to the same 
case (have the same value for caseID) by E+. If ⟨e1, . . . , en⟩ ∈ E+, then for all 1 ≤ i < j ≤ n, 
ei(timestamp) ≤ e j(timestamp) ∧ ei(caseID) = e j(caseID).

Example 2 The events in the following table are some of the possible events for the IT company 
in Section 2.

e1 := {(caseID, 1), (Responsible, Alice), (actName, “Business case development”), (timestamp, 20.10.2018), (Priority, 2)}
e2 := {(caseID, 1), (actName, “Feasibility study”), (timestamp, 15.1.2019)}
e3 := {(caseID, 1), (Responsible, Alice), (actName, “Product backlog”), (timestamp, 19.2.2019), (Duration, 35)}
e4 := {(caseID, 1), (Responsible, Alice), (actName, “Team charter”), (timestamp, 19.3.2019), (Team size, 21)}
e5 := {(caseID, 1), (Responsible, Alice), (actName, “Development”), (timestamp, 19.11.2019), (Duration, 245)}
e6 := {(caseID, 1), (Responsible, Alice), (actName, “Test”), (timestamp, 6.2.2020), (Duration, 79)}
e7 := {(caseID, 1), (Responsible, Alice), (actName, “Release”), (timestamp, 8.2.2020)}
e8 := {(caseID, 2), (Responsible, Alex), (actName, “Business case development”), (timestamp, 20.2.2019), (Priority, 1)}
e9 := {(caseID, 2), (Responsible, Alex), (actName, “Feasibility study”), (timestamp, 22.2.2019)}
e10 := {(caseID, 2), (Responsible, Alex), (actName, “Product backlog”), (timestamp, 26.4.2019), (Duration, 63)}
e11 := {(caseID, 2), (Responsible, Alex), (actName, “Team charter”), (timestamp, 3.5.2019), (Team size, 33)}
e12 := {(caseID, 2), (Responsible, Alex), (actName, “Development”), (timestamp, 3.2.2020), (Duration, 276)}
e13 := {(caseID, 2), (Responsible, Alex), (actName, “Test”), (timestamp, 17.4.2020), (Duration, 74)}
e14 := {(caseID, 2), (Responsible, Alex)(actName, “Release”), (timestamp, 25, 4, 2020)}
e15 := {(caseID, 2), (Responsible, Alex), (actName, “Development”), (timestamp, 31.3.2021), (Duration, 340)}
e16 := {(caseID, 2), (Responsible, Alex), (actName, “Test”), (timestamp, 26.7.2021), (Duration, 117)}
e17 := {(caseID, 2), (Responsible, Alex), (actName, “Release”), (timestamp, 29.7.2021)}

Each event may have several attributes which can be used to group the events. For
at ∈ Uatt, and V ⊆ values(at), we define a group of events as the set of those events
in E that assign a value of V to the attribute at; i.e.

group(at,V) = {e ∈ E | e(at) ∈ V}.

Some of the possible groups of events are:
• the set of events with specific activity names,
• the set of events which are done by specific resources,
• the set of events that start in a specific time interval during the day, or,
• the set of events with a specific duration.

We denote the universe of all event groups by G = P(E).
For the sake of simplicity, we restrict the group of events to be defined based on

conditions expressed on a single attribute. However, in principle, it is not a restriction.
It is possible to define a group of events via multi-attribute conditions. To do so, the
user may enrich the event log by adding a derivative attribute considering the required
conditions on multi-attributes of interest and then use the new derivative attribute to
define a group of events.

Example 3 Here are some possible event groups based on the IT company in Section 2.

G1 B group(actName, {“Business case development”})

G2 B group(actName, {“Product backlog”})

G3 B group(actName, {“Team charter”})

G4 B group(actName, {“Development”})
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G5 B group(team size, {33, 34, 35})

G1, G2, G3, and G4 group the events based on their activity name. For example, event group
G1 is the set of events with activity name “Business case development” (i.e., G1 = {e ∈ E |
e(actName) = “Business case development”}.). However, event group G5 represents the group
of events for which the value of attribute team size is 33, 34, or 35.

Based on the definition of an event, we define an event log as follows:

Definition 2 (Event Log) We define the universe of all event logs as L = E+ ×Umap. We call
each element (σ,m) ∈ L where L ∈ L a trace in which σ represent the sequence of events of
the trace and m is a mapping from the trace-level attribute names to their values (possibly with
an empty domain).

One of our assumptions in this paper is the uniqueness of events in event logs; i.e.,
given an event log L ∈ L, we have ∀(σ1,m1), (σ2,m2) ∈ L : e1 ∈ σ1 ∧ e2 ∈ σ2 ∧ e1 =

e2 =⇒ (σ1,m1) = (σ2,m2) and ∀(⟨e1, . . . , en⟩,m) ∈ L : ∀1 ≤ i < j ≤ n : ei , e j.
This property can easily be ensured by adding an extra identity attribute to the events.

Also, we assume that the uniqueness of the “caseID” value for traces in a
given event log L. In other words, ∀(σ1,m1), (σ2,m2) ∈ L : e1 ∈ σ1 ∧ e2 ∈

σ2 ∧ e1(caseID) = e2(caseID) =⇒ (σ1,m1) = (σ2,m2).

Example 4 LIT = {λ1, λ2} is a possible event log for the IT company in Section 2. LIT includes
two traces λ1 and λ2, where:

λ1 B (⟨e1, . . . e7⟩, {(caseID, 1),(Responsible, Alice),

(implementation phase duration, 324)})

and

λ2 B (⟨e8, . . . e17⟩, {(caseID, 2),(Responsible, Alex),

(implementation phase duration, 807)})

.

As a preprocessing step, we enrich the event log by adding many derived features
to its traces and events. There are many different derived features related to any of the
process perspectives; the time perspective, the data flow-perspective, the control-flow
perspective, the conformance perspective, or the resource/organization perspective of
the process. We can compute the value of the derived features from the event log or
possibly other sources.

Moreover, we can enrich the event log by adding aggregated attributes to its
events and traces. We define an aggregated feature as follows:

Definition 3 (Aggregated Attribute) Let L be the universe of event logs, N+ a non-zero nat-
ural number (which indicates the number of time windows), Uatt the universe of attribute
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names, and values(timestamp) the domain of timestamp. We call an attribute name in Uatt an 
aggregated attribute if its value is determined using a function

ξ ∈ L × Uatt × N+ × values(timestamp) → R.

Function ξ(L, ag, k, t) where L ∈ L, ag ∈ Uatt, k ∈ N+, and t ∈ 
values(timestamp), returns the corresponding aggregated value of attribute ag at time 
t where we partition the time between the minimum and maximum timestamp in L 
to k consecutive time windows with equal width. To compute the value of an aggre-
gated attribute ag for and event e ∈ L (in the event-level) considering k time windows, 
we use ξ(L, ag, k, e(timestamp)) while for a trace t = (σ, m) ∈ L (in the event-level) 
considering k time windows, we use ξ(L, ag, k, t) where t = max{e(timestamp) | e ∈ 
σ}.

Some of the possible aggregated attributes are: the number of waiting customers, 
process workload, average service time, average waiting time, number of active 
events with a specific activity name, number of waiting events with a specific activity 
name, average service time, average waiting time of a resource.

While extracting the data from an event log, we assume that the event record-
ing delays by the information system of the process were negligible. Moreover, we 
assume that all the trace-level features were recorded before the execution of the 
trace. Considering the time order of cause and effect, w e h ave t hat o nly t he fea-
tures that have been recorded before the occurrence of a specific feature can have a 
causal effect on it. So the relevant part of a trace to a given feature is a prefix of that 
trace and its trace-level attributes, which we call a situation. Let prfx(⟨e1, . . . , en⟩) = 
{⟨e1, . . . , ei⟩ | 1 ≤ i ≤ n}, a function that returns the set of non-empty prefixes of a 
given sequence of events. Using prfx function we define a situation as follows:

Definition 4 (Situation) Let L be the universe of all event logs. We define the universe of all
situations as Usituation =

⋃
L∈L S L where S L = {(σ,m) | σ ∈ prfx(σ′) ∧ (σ′,m) ∈ L} is the

set of situations of an event log L ∈ L. Moreover, we call each element (σ,m) ∈ Usituation a
situation.

Among the possible subsets of S L of a given event log L, we distinguish two
important situation subset types of S L. The first type is the G-based situation subset
of L where G ∈ G and includes those situations in S L that their last event (the event
with maximum timestamp) belongs to G. The second type is the trace-based situation
subset, which includes the set of all traces of L4.

4If a process includes decision points, then one of the derived attributes that can be added to the event log when
enriching the event log is the choice attribute. A choice attribute is added to the activity that happens before the decision
point and its value indicates which activity has been enabled as the result of the decision that has been made. So we can
use an added choice attribute and its values to group the events in an event log and extract a situation subset based on
the occurrence of that specific choice. We already defined two important types of situation subsets; group-based situation
subsets and trace-based situation subsets. We can also distinguish the choice-based situation subsets where the situation
subset is extracted based on events that have a specific choice attribute. These situation subsets are important as they are
conceptually related to a decision point. However, we do not emphasise on them as they are a subset of G-based situation
subset of L where G ∈ G and can be handled the same way.
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Definition 5 (Situation Subset) Let S L ⊆ Usituation be the set of situations for L ∈ L, and
G ∈ G, we define

• G-based situation subset of L as S L,G = {(⟨e1, . . . , en⟩,m) ∈ S L | en ∈ G}, and

• trace-based situation subset of L as S L,⊥ = L.

Example 5 Three situations s1, s2, and s3, where s1, s2, s3 ∈ S LIT ,G4 (G4 in Example 3,
generated using the traces in Example 4 are as follows:

s1 B (⟨e1, . . . e5⟩, {(caseID, 1), (Responsible, Alice),

(implementation phase duration, 324)})

s2 B (⟨e8, . . . e12⟩, {(caseID, 2), (Responsible, Alex),

(implementation phase duration, 807)})

s3 B (⟨e8, . . . e15⟩, {(caseID, 2), (Responsible, Alex),

(implementation phase duration, 807)})

Note that G4 B group(actName, {“Development”}) and we have {e5, e12, e15} ⊆ G4. In other
words e5(actName) = e12(actName) = e15(actName) = “Development”.

When extracting the data, we need to distinguish trace-level attributes from event-
level attributes. We do that by using situation features which is identified by a group
of events, G (possibly G = ⊥), and an attribute name, at. Each situation feature is
associated with a function defined over the situations. This function returns the proper
value for the situation feature regarding at and G extracted from the given situation.
More formally:

Definition 6 (Situation Feature) We define Usfeature = Uatt × (G ∪ {⊥}) as the universe of
situation features. Each situation feature sf = (at,G) where at ∈ Uatt, and G ∈ G ∪ {⊥} is
associated with a function #sf : Usituation ̸7→ Uval such that:

• if G = ⊥, then #(at,G)((σ,m)) = m(at) and

• if G ∈ G, then #(at,G)((σ,m)) = e(at) where e = arg max
e′∈G∩{e”∈σ}

e′(timestamp)

for (σ,m) ∈ Usituation. We denote the universe of the situation features asUsfeature.

We can consider a situation feature as an analogy to the feature (a variable) in
tabular data. Also, we can look at the corresponding function of a situation feature
as the function that determines the mechanism of extracting the value of the situation
feature from a given situation. Given a situation (σ,m) and a situation feature (at,G),
if G = ⊥, its corresponding function returns the value of at in trace-level (i.e., m(at)).
However, if G , ⊥, then the function returns the value of at in e ∈ σ that belongs
to G and happens last (has the maximum timestamp) among those events of σ that
belong to G.
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Example 6 We can define the following situation features using the information provided in 
the previous examples:

sf 1 B (Team size,G3)

sf 2 B (Duration,G2)

sf 5 B (Implementation phase duration,⊥),

sf 3 B (Priority,G1)

sf 4 B (Duration,G4)

where event groups G1, G2, G3, and G4 has been defined in Example 3.
Also, considering s1 (Example 5), we have:

#sf 1
(s1) = 21

#sf 2
(s1) = 35

#sf 5
(s1) = 324

#sf 3
(s1) = 2

#sf 4
(s1) = 245

where s1 is one of the situations in 5.

We interpret a nonempty set of situation features, which we call it a situation
feature extraction plan, as an analog to the schema of tabular data. More formally;

Definition 7 (Situation Feature Extraction Plan) We define a situation feature extraction plan
as SF ⊆ Usfeature where SF , ∅.

Example 7 A possible situation feature extraction plan for the IT company in Section 2 is as
follows:

SFIT ={(Team size,G3), (Duration,G2), (Priority,G1), (Duration,G4)}

={sf 1, sf 2, sf 3, sf 4}.

We can map each situation to a data point according to a given situation feature
extraction plan. We do that as follows:

Definition 8 (Instance) Let s ∈ Usituation and SF ⊆ Usfeature where SF , ∅. We define the
instance instSF(s) as instSF(s) ∈ SF ̸→ Uval such that ∀sf ∈ SF : (instSF(s))(sf ) = #sf (s).

An instance is a set of pairs where each pair is composed of a situation feature
and a value. With a slight abuse of notation, we define values(sf ) = values(at) where
sf = (at,G) is a situation feature.

Example 8 Considering SFIT from Example 6 and the situations from Example 5. We have:
instSFIT (s1) ={((Team size,G3), 21), ((Duration,G2), 35), ((Priority,G1), 2),

((Duration,G4), 245)} = {(sf 1, 21), (sf 2, 35), (sf 3, 2), (sf 4, 245)}

instSFIT (s2) ={((Team size,G3), 33), ((Duration,G2), 63), ((Priority,G1), 1),

((Duration,G4), 276)} = {(sf 1, 33), (sf 2, 63), (sf 3, 1), (sf 4, 276)}

instSFIT (s3) ={((Team size,G3), 33), ((Duration,G2), 63), ((Priority,G1), 1),

((Duration,G4), 340)} = {(sf 1, 33), (sf 2, 63), (sf 3, 1), (sf 4, 340)}
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Given a situation feature extraction plan SF, we consider one of its situation
features as the class situation feature, denoted as csf and SF \ {csf } as descriptive
situation features. Given SF ⊆ Usfeature, csf ∈ SF where csf = (at,G), and an event
log L, we can generate a class situation feature sensitive tabular data-set. We call
such a tabular data set a situation feature table. To do that, we first generate S L,G

and then we generate the situation feature table which is the bag of instances derived
from the situations in S L,G, regarding SF. Note that choosing S L,G such that G is the
same group in the class situation feature (where we have csf = (at,G)), ensures the
sensitivity of the extracted data to the class situation feature. More formally;

Definition 9 (Situation Feature Table) Let L ∈ L be an event log, SF ⊆ Usfeature a situation
feature extraction plan, and csf = (at,G) ∈ SF. We define a situation feature table TL,SF,(at,G)
(or equivalently TL,SF,csf ) as follows:

TL,SF,(at,G) = [instSF(s) | s ∈ S L,G].

Note that if csf = (at,G) where G ∈ G, then the situation feature table TL,SF,csf

includes the instances derived from the situations in G-based situation subset S L,G.
However, if G = ⊥, then it includes the situations derived from the situations in
trace-based situation subset S L,⊥.

Example 9 Based on Example 8 we have

TLIT ,SFIT ,(Duration,G4) = [instSFIT (s1), instSFIT (s2), instSFIT (s3)].

Note that in this example, the class situation feature is csf = sf 4 = (Duration,G4). Another
way to present TLIT ,SFIT ,(Duration,G4) is as follows:

sf 1 = (Team size,G3) sf 2 = (Duration,G2) sf 3 = (Priority,G1) sf 4 = (Duration,G4)
21 35 2 245
33 63 1 276
33 63 1 340

In this table, each row includes the values of the situation features in SFIT (Example
7) extracted from one of the situations s1, s2, and s3. The first row is corresponding to
the instSFIT (s1), the second row is corresponding to the instSFIT (s2), and the third row is
corresponding to the instSFIT (s3).

5.2 Structural Equation Model
A structural equation model is a data-generating model in the form of a set of
equations. Each equation encodes how the value of one of the situation features is
determined by the value of other situation features5. It is worth noting that these
equations are a way to determine how the observational and the interventional dis-
tributions are generated and should not be considered as normal equations. More
formally6;

5In the case of nominal situation features, each equation determines the distributions of one of the situation feature
values based on the value of other situation features.

6Definition 10 and 12 are based on [4].
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Definition 10 (Structural Equation Model ( SEM)) Let T L,SF,csf be a  s ituation feature table, 
in which L ∈ L, SF ⊆ Usfeature, and csf ∈ SF. The SEM of TL,SF,csf is defined as E Q ∈ 
SF → Expr(SF) where for each sf ∈ S F, Expr(sf ) is an expression of the situation features 
in SF\{sf } and possibly some noise Nsf . It is needed that the noise distributions Nsf of sf ∈ SF 
be mutually independent.

We need SF to be causal sufficient, which means SF includes all relevant situa-
tion features. We assume that SEMs are acyclic; i.e., given a SEM EQ over the SF 
of a situation feature table TL,SF,csf , for each sf ∈ SF, the right side of expression 
sf = Expr(SF) in EQ does not include sf .

Given EQ over the SF of a situation feature table TL,SF,csf , the parents of the 
sf ∈ SF is the set of situation features that appear in the right side of expression 
EQ(sf ). The set of parents of a situation feature includes those situation features with 
a direct causal effect on it.

Example 10 A possible SEM for the situation feature table shown in Example 9 is as follows:
(Priority,G1) = N(Priority,G1) N(Priority,G1) ∼ Uni f orm(1, 3)
(Team size,G3) = 10(Priority,G1) + N(Team size,G3) N(Team size,G3) ∼ Uni f orm(1, 15)
(Duration,G2) = 2(Team size,G3) + N(Duration,G2) N(Duration,G2) ∼ Uni f orm(−5, 5)
(Duration,G4) = 5(Duration,G2) + 10(Priority,G1) N(Duration,G4) ∼ Uni f orm(−100, 100)

+(Team size,G3) + N(Duration,G4)

The structure of the causal relationships between the situation features in a SEM
can be encoded as a directed acyclic graph, which is called causal structure. Given
a SEM EQ on a set of situation features SF, each vertex in its corresponding causal
structure is analogous to one of the situation features in SF. Let sf 1, sf 2 ∈ SF, there is
a directed edge from sf 1 to sf 2 if sf 1 appears in the right side of expression EQ(sf 2).
More formally,

Definition 11 (Causal Structure) Let EQ be the SEM of the situation feature table TL,SF,csf .
We define the corresponding causal structure of EQ as a directed acyclic graph (U,↠) where
U = SF and (sf 1, sf 2) ∈↠ if sf 1, sf 2 ∈ SF and sf 1 appears in the right side of expression
EQ(sf 2).

In the rest of this paper, we use sf 1 ↠ sf 2 instead of (sf 1, sf 2) ∈↠.
Having a situation feature table TL,SF,csf , the structural equation model of its sit-

uation features can be provided by a customer who possesses the process domain
knowledge or in a data-driven manner.

Example 11 The causal structure of the SEM in Example 10 is as depicted in Figure 6.

To predict the effect of manipulating one of the situation features on the other
situation features, we need to intervene on the SEM by actively setting the value of
one (or more) of its situation features to a specific value (or a distribution). Here,
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Fig. 6: The causal structure of the SEM in Example 10.

we focus on atomic interventions where the intervention is done on just one of the
situation features by actively forcing its value to be a specific value.

Definition 12 (Atomic Intervention) Given an SEM EQ over SF where sf ∈ SF \ {csf }, and
c ∈ values(sf ), the SEM EQ′ after the intervention on sf is obtained by replacing EQ(sf ) by
sf = c in EQ.

Note that the corresponding causal structure of EQ′ (after intervention on sf ) is
obtained from the causal structure of EQ by removing all the incoming edges to sf
[4]. When we intervene on a situation feature, we just replace the equation of that
situation feature in the SEM and the others do not change as causal relationships are
autonomous under interventions [4].

Example 12 We can intervene on the SEM introduced in Example 10 by forcing the team size
to be 13. For this case, the SEM under the intervention is as follows:

(Priority,G1) = N(Priority,G1) N(Priority,G1) ∼ Uni f orm(1, 3)
(Team size,G3) = 13
(Duration,G2) = 2(Team size,G3) + N(Duration,G2) N(Duration,G2) ∼ Uni f orm(−5, 5)
(Duration,G4) = 5(Duration,G2) + 10(Priority,G1) N(Duration,G4) ∼ Uni f orm(−100, 100)

+(Team size,G3) + N(Duration,G4)

Please note that in Definition 12 (and consequently in Example 12), we just
consider atomic interventions in the sense of forcefully setting one of the situation
features to a fixed value regardless of the value of other features. In general, it is
possible to intervene on a situation feature by intentionally assigning values from
a specific distribution. As an example, in Example 12, it is possible to replace the
equation for (Team size,G3) (in the SEM presented in Example 11) by

(Team size,G3) = 20(Priority,G1).

The above intervention captures the situation where the number of resources assigned
to a project is 20 times its priority.

6 Approach
Observing a problem in the process, we need to find a set of situation features SF
which not only include csf (the situation feature capturing the problem) but also
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be causal sufficient (i .e., no  hi dden co nfounder ex ists). Th e ex pressiveness of  the 
discovered SEM is highly influenced b y S F ( even t hough S EMs, i n g eneral, can 
deal with latent variables). Considering the variety of the possible situation features 
captured by the event log and the derived ones, finding the proper set S F and also 
those values of the situation features (or combination of values) that contribute more 
to the problem is a complicated task and needs plenty of domain knowledge.

We know that correlation does not mean causation. On the other hand, if a sit-
uation feature is caused by another situation feature (set of situation features), this 
implies that there is a correlation between the given situation feature and its parents. 
We use this simple fact for the automated situation feature recommendation. It is 
worth noting that there are many situation recommendation methods possible. The 
automated situation feature recommendation method and the SEM discovery process 
are described in the following:

6.1 Automated Situation Feature Recommendation
Given an event log L ∈ L and the class situation feature name csf = (at, G), we 
consider a situation feature name sf a possible cause of csf if there exists a value 
v ∈ values(sf ) that appears more in the situations with the undesirable (problematic) 
result for csf . In other words, we are looking for those descriptive situation features 
such that at least for one of the values in their domain the probability of having an 
undesirable result for class situation feature increases. To identify such a situation 
feature and situation feature values, we use the information gain concept. But first, we 
need to turn the situation feature table into a binary situation feature table in which 
the class situation feature is binary (based on being a desirable or an undesirable 
outcome).

Let TL,SF,csf be a situation feature table where csf = (at, G) and SF = 
(sf 1, . . . , sf n, csf ). Moreover, let values(csf )↓ be the set of undesirable values of 
csf . We can define T bL,SF,csf ,values(csf ) ↓ as a  s ituation feature table with binary class 
situation feature as follows:

T bL,SF,csf ,values(csf )↓ =[{#sf 1 (s), . . . , #sf n (s), 1} | s ∈ S L,G ∧ #csf (s) < values(csf )↓]⊎
[{#sf 1 (s), . . . , #sf n (s), 0} | s ∈ S L,G ∧ #csf (s) ∈ values(csf )↓].

We can derive this binary situation feature table from TL,SF,csf by replacing the 
class situation feature value in every instance by 0 or 1 depending on being desirable 
or undesirable. Now, we define the potential intervention set of situation feature and 
situation value pairs as follows:

Definition 1 3 ( potential I ntervention p airs) L et L  ∈  L  b e a n e vent l og, S F ⊆  U sfeature a 
nonempty set of descriptive features, and csf = (at, G) the class situation feature where csf ∈ 
SF and G ∈ G ∪ {⊥}. Moreover, consider α as a threshold where 0 < α ≤ 1 and values(csf )↓ ⊂ 
val(csf ) as the set of undesirable values for csf . We call a pair (sf , v) where sf ∈ SF \ {csf } and 
v ∈ values(sf ) a potential intervention pair if

IGL,SF,csf ,values(csf )↓ (sf , v) ≥ α
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in which IGL,SF,csf ,values(csf )↓ (sf , v) is the information gain of splitting the instances in the
binary situation feature table TbL,SF,csf ,values(csf )↓ by sf = v and sf , v.

We present the set of the potential causes to the user as a set of tuples (sf , v) where
sf ∈ Usfeature and v ∈ values(sf ) in the descending order regarding the information
gain of splitting the binary situation feature table by sf = v and sf , v. This way, the
first tuples in the order are those values of those situation features that intervention on
them may have (potentially) the most effect on the value of the class situation feature.
The choice of the value α depends on the application and is determined by the user.

The selected set of situation features by this method is the set of situation features
for which the information gain is more than the given threshold α. The user can use
this set as the descriptive set of situation features in the situation feature extraction
plan to generate a situation feature table with fewer situation features. Let’s call such
a situation feature table which contains just the selected set of situation features a
trimmed situation feature table.

6.2 SEM Inference
Here we show how to infer the SEM of a given situation feature table in two steps:
• The first step is causal structure discovery, which involves discovering the

causal structure of the situation feature table. This causal structure encodes
the existence and the direction of the causal relationships among the situation
features in the situation extraction plan of the given situation feature table.
• The second step is causal strength estimation, which involves estimating a set of

equations describing how each situation feature is influenced by its immediate
causes. Using this information we can generate the SEM of the given situation
feature table.

6.2.1 Causal Structure Discovery.

The causal structure of the situation features in a given situation feature table can
be determined by an expert who possesses domain knowledge about the underlying
process and the causal relationships between its features. But having access to such
knowledge is quite rare. Hence, we support discovering the causal structure in a data-
driven manner.

Several search algorithms have been proposed in the literature (e.g., [22, 24, 25]).
The input of a search algorithm is observational data in the form of a situation feature
table (and possibly knowledge) and its output is a graphical object that represents a
set of causal structures that cannot be distinguished by the algorithm. One of these
graphical objects is Partial Ancestral Graph (PAG) introduced in [26].

A PAG is a graph whose vertex set is V = SF but has different edge types,
including→,↔,�→,�. Similar to ↠, we use infix notation for→,↔,�→,�. Each
edge type has a specific meaning. Let sf 1, sf 2 ∈ V. The semantics of different edge
types in a PAG are as follows:
• sf 1 → sf 2 indicates that sf 1 is a direct cause of sf 2.
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• sf 1 ↔ sf 2 means that neither sf 1 nor sf 2 is an ancestor of the other one, even
though they are probabilistically dependent (i.e., sf 1 and sf 2 are both caused by
one or more hidden confounders).
• sf 1�→sf 2 means sf 2 is not a direct cause of sf 1.
• sf 1 � sf 2 indicates that there is a relationship between sf 1 and sf 2, but nothing

is known about its direction.
The formal definition of a PAG is as follows [26]:

Definition 14 (Partial Ancestral Graph (PAG)) Let SF ⊆ Usfeature be a situation feature extrac-
tion plan. A PAG is a tuple (V,→,↔,�→,�) in which V = SF and →,↔,�→,�⊆ V × V
such that→,↔,�→, and� are mutually disjoint.

The discovered PAG by the search algorithm represents a class of causal struc-
tures that satisfies the conditional independence relationships discovered in the
situation feature table and ideally, includes its true causal structure. Each edge in
the discovered PAG indicates a statistically supported (potential) causal relationship
among the situation features in the situation feature table. This graph can be used as
initial insight into the causal relationships of the situation features by the user.

Example 13 Two possible PAGs for the SEM in Example 10 are shown in Figure 7.

(a) (b)

Fig. 7: Two possible PAGs for the SEM presented in Example 10.

Now, it is needed to modify the discovered PAG to a compatible causal structure.
To transform the output PAG to a compatible causal structure, which represents the
causal structure of the situation features in the situation feature table, domain knowl-
edge of the process and common sense can be used. This information can be applied
by directly modifying the discovered PAG or by adding them to the search algorithm,
as an input, in the form of required directions or forbidden directions denoted as Dreq

and D f rb, respectively. Dreq,D f rb ⊆ V × V and Dreq ∩ D f rb = ∅. Required directions
and forbidden directions influence the discovered PAG as follows:
• If (sf 1, sf 2) ∈ Dreq, then we have sf 1 → sf 2 or sf 1�→sf 2 in the output PAG.
• If (sf 1, sf 2) ∈ D f rb, then in the discovered PAG it should not be the case that

sf 1 → sf 2.
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We assume no hidden common confounder exists, so we expect that in the PAG,
relation ↔ be empty. If ↔, ∅, the user can restart the procedure after adding more
situation features to the situation feature table. We can define the compatibility of a
causal structure with a PAG as follows:

Definition 15 (Compatibility of a Causal Structure With a Given PAG) Given a PAG (V,→,↔
,�→,�) in which↔= ∅, we say a causal structure (U,↠) is compatible with the given PAG if
V = U, (sf 1 → sf 2∨sf 1�→sf 2) =⇒ sf 1 ↠ sf 2, and sf 1 � sf 2 =⇒ (sf 1 ↠ sf 2⊕sf 2 ↠ sf 1),
where ⊕ is the XOR operation and sf 1, sf 2 ∈ V 7.

It is worth noting that the assumption of the absence of hidden confounders plays
an important role in the definition of compatibility of a causal structure with a PAG.
For example, it enables us to infer sf 1 ↠ sf 2 from sf 1�→sf 2 while this implication
might not be true in general as it may signifies the existence of a confounder (one or
more) which causes both sf 1 and sf 2.

Example 14 The causal structure shown in Figure 6 is compatible with both PAGs demon-
strated in Figure 7.

6.2.2 Causal Strength Estimation.

The final step of discovering the causal model is estimating the strength of each
direct causal effect using the observed data. We do that by estimating each situation
feature by a function of its parents and a noise function. We can estimate the strength
of the causal relationships in the following manner. Let D be the causal structure
of a situation feature table TL,SF,csf . As D is a directed acyclic graph, we can sort
its vertices in a topological order γ. Now, we can statistically model each situation
feature as a function of the noise terms of those situation features that appear earlier
in the topological order γ. In other words, sf = f

(
(Nsf ′)sf ′:γ(sf ′)≤γ(sf )

)
[4]. The set of

these functions, for all sf ∈ SF, is the SEM of SF. Note that the set of situation
features that appear earlier than a situation feature in the topological order γ of D
includes the parents of that situation feature and non of its descendants.

Finally, we want to answer questions about the effect of an intervention on any
of the situation features on the class situation feature. We can do the intervention as
described in Definition 12. The resulting SEM (after intervention) demonstrates the
effect of the intervention on the situation features.

Note that, if there is no directed path between sf ∈ SF and csf , in the causal
structure of a situation feature table TL,SF,csf , they are independent and consequently,
intervention on sf by forcing sf = c has no effect on csf .

7Please note that even though according to this definition the causal structure may just have the causal relationships
compatible with the discovered PAG, in the implemented plugin the user can freely modify causal relationships by adding
or removing edges in the discovered PAG or provide the causal structure starting from an empty graph.
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7 Experimental Results
We have implemented the proposed approach as a plugin in ProM that is available 
in the nightly build of ProM under the name Causal Inference Using Structural 
Equation Model. ProM is an open-source and extensible platform for process min-
ing [27]. The inputs of the implemented plugin are an event log, the Petri net model 
of the process, and the conformance checking results of replaying the given event log 
on the given model. In the rest of this section, first, we mention some of the imple-
mentation details and design choices that we have made, and then we present the 
results of applying the plugin on a synthetic and several real-life event logs.

7.1 Implementation Notes
In the implemented plugin, we first enrich the event log by adding some attributes. 
Some of the features that can be extracted from the event log using the implemented 
plugin are as follows:
• Time perspective: timestamp, activity duration, trace duration, trace delay, sub-

model duration.
• Control-flow perspective: next activity, previous activity.
• Conformance perspective: deviation, number of log moves, number of model

moves.
• Resource organization perspective: resource, role, group.
• Aggregated features (regarding a given time window):

– Process perspective: the number of waiting cases, process workload.
– Trace perspective: average service time, average waiting time.
– Event perspective: number of active events with a specific activity name,

number of waiting events with a specific activity name.
– Resource perspective: average service time, average waiting time

Let L ∈ L be an event log, k ∈ N (a non-zero natural number) the number of
time windows, tmin the minimal timestamp, and tmax the maximum timestamp in L,
we divide the time span of L into k consecutive time windows with equal length
(the length of each time window is (tmax − tmin)/k and compute the value of aggre-
gated attributes for each of these k time windows. We define ξ : L × Uatt × N ×
values(timestamp)→ R as a function that given an event log, an aggregated attribute
name, the number of time windows, and a timestamp returns the value of the given
aggregated attribute in the time window that includes the timestamp. We can use ξ
for aggregated attributes at both the event and the trace-level. More precisely, given
L ∈ L, (σ,m) ∈ L, e ∈ σ, k ∈ N, and at ∈ Uatt where at is an aggregated
attribute, we define e(at) = ξ(L, at, k, e(timestamp)) and m(at) = ξ(L, at, k, t′) where
t′ = max{e(timestamp) | e ∈ σ}.

In other words, we can use any of the (process, trace event, and resource per-
spective) aggregated features in both event and trace levels. At the event-level, we
compute the value of the aggregated feature in the time window including the times-
tamp of the event. While in the trace-level, we compute its value for the time window
that includes the timestamp of the last event of the trace. It is worth noting that there
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are different possible design choices on how to compute and enrich the event log with
aggregated features.

As the second step, the user needs to specify csf and SF. The user can specify
SF by manually selecting the proper set of situation features or use the implemented
situation feature and value recommendation method on an initial situation feature
table (for example an initial situation feature table in which the descriptive situation
features includes all the implemented situation features) to identify the relevant set
of situation features to csf .

According to the selected SF and csf the proper situation subset of the event
log is generated and the situation feature table is extracted. Then we infer the causal
structure of the situation feature table. For this goal, we use the Greedy Fast Causal
Inference (GFCI) algorithm [25] which is a hybrid search algorithm. The inputs of
GFCI algorithm are the situation feature table and possibly background knowledge.
The output of GFCI algorithm is a PAG with the highest score on the input situation
feature table. In [25], it has been shown that under the large-sample limit, each edge
in the PAG computed by GFCI is correct if some assumptions hold. Also, the authors
of [25], using empirical results on simulated data, have shown that GFCI has the
highest accuracy among several other search algorithms. Some of the assumptions
that need to hold to ensure the correctness of the discovered causal structure of the
situation features by GFCI considering the large sample limits are:
• Independence and identically distribution of the instances in the situation

feature table.
• Causal Markov condition which is a form of local causality [22]. This condition

states that a situation feature is independent of all other situation features except
its decedents, given its direct causes (parents).
• Causal faithfulness condition [22]. This condition states that all the indepen-

dence relationships among the measured situation features are implied by the
causal Markov condition.
• No selection bias which implies that the presence of each instance in the sit-

uation feature table is independent of the values of its measured situation
features.
• The existence of no feedback cycle among the measured situation features.
Assessing the satisfaction of these conditions by the situation feature table is

non-trivial task. For example, for the first condition, we need the instances in the
situation feature table to be independent and identically distributed. This assumption
is probably violated in many cases when the class situation feature is in the form of
(G, at) where G ∈ G. In this case, each trace in the event log may map to multiple
situations (and consequently to several rows of the table) which are not independent.
It is worth noting that even if one or more of these assumptions are violated, the
PAG generated by GFCI algorithm may still include correct edges (but there are no
theoretical guarantees for that).

In the implemented plugin, we have used the Tetrad [28] implementation of the
GFCI algorithm. To use the GFCI algorithm, we need to set several parameters. We
have used the following settings for the parameters of the GFCI algorithm in the
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experiments: cutoff for p-values = 0.05, maximum path length = -1, maximum degree 
= -1, and penalty discount = 2.

In the implemented plugin, we have assumed linear dependencies among the sit-
uation features and additive noise when dealing with continuous data. In this case, 
given a SEM EQ over SF, we can encode EQ as a weighted graph. This weighted 
graph is generated from the corresponding causal structure of EQ by considering the
coefficient of  sf 2 in  EQ(sf 1)  as  the weight of  the edge from sf 2 to  sf 1.  Using this 
graphical representation of the SEM, to estimate the magnitude of the effect of s f on 
the csf , we can simply sum the weights of all directed paths from sf to csf , where the 
weight of a path is equal to the multiplication of the weights of its edges.

7.2 Synthetic Event Log
For the synthetic data, we use the IT company example in Section 2. The situation 
feature extraction plan is:

{(T eam size, G3), (Duration, G2), (Priority, G1), (Implementation phase duration, ⊥)}

where the class situation feature is (Implementation phase duration, ⊥). We assume 
that the true causal structure of the data is as depicted in Figure 5.

To generate an event log, we first created the Petri-net model of the process as 
shown in 2 using CPN Tools [29]. Then, using the created model, we generated an 
event log with 1000 traces. We have enriched the event log by adding the duration 
of each event to each event and also Implementation phase duration attribute to the 
traces. The later attribute indicates the duration of the sub-model including “devel-
opment” and “test” transitions. When generating the log, we have assumed that the 
true SEM of the process, which we call it EQ1, is as follows:

(Complexity,⊥) = N(Complexity,⊥) N(Complexity,⊥) ∼ Uni f orm(1, 10)
(Priority,G1) = N(Priority,G1) N(Priority,G1) ∼ Uni f orm(1, 3)
(Duration,G2) = 10(Complexity,⊥) + N(Duration,G2) N(Duration,G2) ∼ Uni f orm(−2, 4)
(Team size,G3) = 5(Complexity,⊥) + 3(Priority,G1) + N(Team size,G3) N(Team size,G3) ∼ Uni f orm(−1, 2)
(Implementation phase duration,⊥) = 50(Complexity,⊥)+ N(Implementation phase duration,⊥) ∼ Uni f orm(10, 20)
5(Team size,G3) + N(Implementation phase duration,⊥)

The summary of the generated event log and its trace variants (generated by
ProM) are shown in Figure 8.

Generating situation feature table.
We generate a situation feature table using the above situation feature extraction
plan. A snapshot of the generated situation feature table using the implemented plu-
gin is shown in Figure 9. In this figure, the class situation feature is colored in
pink and the descriptive situation features are colored gray. Please note that in the
pictures of this section, (Duration,G2) is denoted as “Duration, Product backlog”,
(Implementation phase duration,⊥) is denoted as “Implementation phase duration,
Trace”, (Team size,G3) is denoted as “Team size, Team charter”, (Priority,G1)
is denoted as “Priority, Business case study”, and (Complexity,⊥) is denoted as
“Complexity, Trace”.
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Fig. 8: The trace variants in the synthetic event log.

Fig. 9: A snapshot of the situation feature table generated for the synthetic event log.

.

SEM inference.
Applying the implemented plugin on the situation feature extracted from the
event log, the PAG depicted in Figure 10a was discovered. In this PAG,
(Complexity,⊥) has not been considered as a descriptive situation feature.
As a consequence, two potential causal relationships between (Duration,G2)
and (Implementation phase duration,⊥) and also between (Duration,G2) and
(Team size,G3) have been discovered which do not exist in data-generating model
EQ1. The customer may guess that another influential attribute might exist that acts as
a confounder. Considering (Complexity,⊥) as another descriptive situation feature,
then the discovered PAG by the implemented plugin would be as the one in Figure
10b. This PAG is more accurate and includes the true causal structure of the situation
feature table. We have assumed that the complexity of a project is a feature that is not
recorded in the event log. The customer, may assume (based on domain knowledge)
that the duration of “product backlog” is longer in more complex projects and assign
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to the complexity of a project the floor of the value of (Duration, G2) divided by 108. 
Now, using domain knowledge and the chronological order of transitions, we can turn 
the discovered PAG into the causal structure depicted in Figure 10c. After estimating 
the strength of the causal relationships, we obtain the SEM shown in Figure 10d.

(a) The discovered PAG by applying the
implemented plugin on the situation feature
table extracted using the situation feature
extraction plane in this section.

(b) The discovered PAG after adding
(Complexity,⊥) to the situation feature
extraction plan (as one of the descriptive
situation features).

(c) The causal structure which is obtained by
modifying the PAG in 10b based on common
sense and domain knowledge.

(d) The inferred SEM by estimating the
strength of the discovered causal relationships.

Fig. 10: The PAG, causal structure and the SEM discovered using implemented
plugin for the synthetic event log.

Moreover, we can have the inferred SEM in text format. In this case, the output
would be as shown in Figure 11.

By comparing the estimated coefficients of situation features names in the output
of the plugin (and equivalently the weights of the edges in Figure 10d), and those
in the equations of the true SEM of the data, we can see that the estimated and real
strengths of causal relationships are quite close.

Using the discovered SEM, we can answer the question posed by the
manager of the IT company in section 2. For example, we can see that
(Team size,G3), (Priority,G1), and (Complexity,⊥) have a causal effect on
(Implementation phase duration,⊥), but (Duration,G2) does not. To investigate the
effect of an intervention on any of the situation features on the class situation fea-
ture, we can find the equation capturing the effect of intervention by simply clicking
on its corresponding vertex in the causal structure. For example, if we click on the

8Please note that the choice of the denominator has a high effect on the discovered potential causal relationships by
this method (on the discovered PAG).
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Fig. 11: The discovered SEM from the situation feature table extracted from the
synthetic event log after adding (Complexity,⊥) to the situation feature extraction
plan.

Fig. 12: The heat map of the correlation between the situation features of the IT
company.

corresponding vertex of (Team size,G3), we have

(Implementation phase duration,⊥) = 75.0004 × (Complexity,⊥) + noise.

This equation means that by enforcing the complexity of a project to be one
unit more complex, then we expect that its implementation phase takes approx-
imately 75 more days (assuming that the complexity of a project is actionable).
As another example, equation (Implementation phase duration,⊥) = 0.0 ×
(Duration,G2) shows the estimated effect of intervention on (Duration,G2). We
can interpret this equation as “intervention on (Duration,G2) has no effect on
(Implementation phase duration,⊥)”.

The heat map of the correlation among different situation features in this experi-
ment is shown in Figure 12. As it is observed in this figure, there is a high correlation
between (Implementation phase duration,⊥) and (Duration,G2) (Team size,G3),
and (Complexity,⊥). Thus, if we consider situation features with high correlation
with the class situation feature as its causes, then we would consider (Duration,G2)
as one of the causes of (Implementation phase duration,⊥) which is in contradiction
with the data-generating model. On the other hand, we could find the correct causal
relationships using the proposed method.

To investigate the effect of the amount of the noise on the discovered SEM,
we have generated three more synthetic event logs with the true SEM of them
are similar to EQ1 except for the noise functions N(Duration,G2), N(Team size,G3), and
N(Implementation phase duration,⊥)

9. We call these SEMs EQ2, EQ3, and EQ4 where their

9To generate event logs such that their true SEM of the process is similar to EQ1 with customized uniform noise
intervals, you can use the ProM plugin generate event log for IT company with selected noise intervals.
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noise functions are as follows (we add the noise functions of EQ1 to this table for the 
completeness):

N(Complexity,⊥) N(Priority,G1) N(Duration,G2) N(Team size,G3) N(Implementation phase duration,⊥)

EQ1 Uni f orm(1, 10) Uni f orm(1, 3) Uni f orm(−2, 4) Uni f orm(−1, 2) Uni f orm(10, 20)
EQ2 Uni f orm(1, 10) Uni f orm(1, 3) Uni f orm(−2, 58) Uni f orm(−1, 29) Uni f orm(10, 210)
EQ3 Uni f orm(1, 10) Uni f orm(1, 3) Uni f orm(−2, 118) Uni f orm(−1, 59) Uni f orm(10, 310)
EQ4 Uni f orm(1, 10) Uni f orm(1, 3) Uni f orm(−2, 178) Uni f orm(−1, 89) Uni f orm(10, 410)

Figures 13, on the left side, shows the heat map of the correlation between the
situation features of the generated event logs and, on the right side, the PAG discov-
ered by the implemented plugin. Moreover, in this figure, the top, middle, and button
parts demonstrate the result of the experiment where the true SEM of the process are
respectively EQ2, EQ3, and EQ4. The The situation feature extraction plan in all of
these experiments is:

{(Team size,G3),(Duration,G2), (Priority,G1),
(Implementation phase duration,⊥), (Complexity,⊥)}.

As it is shown in Figure 13, top and middle part, with a relatively high noise this
method id capable of finding possibility of potential causal relationships among the
situation features, even though it fails to discover the direction of discovered possi-
ble relationships. However, when the amount of the noise is too high, this method
fails to discover all the possibility of potential causal relationships. This result was
expected as GFCI algorithm utilize partial correlation tests to discover possible causal
relationships in the data.

7.3 Time and Quality Evaluation
Here, we evaluate the time efficiency and quality of the selected situation feature
set by the proposed situation feature and value recommendation method. By the
quality of a selected situation features set, we mean the portion of the causal relation-
ships with the class situation feature that has been preserved in the trimmed situation
feature table.

To evaluate the time efficiency of the selected set of situation features by the
proposed method (which we call it Situation Feature Value Pair Recommendation
(SFVPR)), we compare its performance with two situation feature selection methods;
• Situation Feature Selection using Random Forest (SFSRF) and
• Situation Feature Selection Based on Correlation (SFSBC).

For these two methods, we have used the implementation provided by WEKA [30]
with their default setting. More precisely, for SFSRF, a random forest with 100 trees,
unlimited maximum depth of the tree, minimum of one instance per leaf, and 10 folds
cross validation have been used and. For SFSBC, the backwards search method is
greedy and the merit of the found subset is 0.95.

The two main types of feature selection techniques in machine learning are
supervised and unsupervised, where the supervised methods are further divided
into wrapper, filter and intrinsic [31]. Filter-based methods are based on statistical
measures and do not incorporate a specific machine learning algorithm. Wrapper
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Fig. 13: The heat map of the correlations between the situation features and the dis-
covered PAG using implemented plugin for the synthetic event logs generated such
that the true SEMs are EQ2 (the top figures), EQ3 (the middle figures), and EQ4 (the
button figures).

methods, a specific machine learning technique is used to evaluate the best subset of
features and the selected features are optimized for that particular machine learning
technique. Finally, intrinsic methods utilize those machine learning techniques, such
as decision tree and random forest, that perform feature selection automatically as
part of learning the model. The proposed situation feature and value recommendation
method is a supervised method. We have selected SFSRF as an instance of intrinsic
and SFSBC as an instance of a filter method to evaluate our method.

Moreover, we have used the flowing event logs:
• Receipt phase of an environmental permit application process (WABO)

CoSeLoG project (receipt log for short) that has 1434 traces [32].
• A subset of business process intelligence (BPI) challenge 2017 event log that

includes traces of length at least 20 but at most 30. This event log has 11044
traces [33].
• A subset of BPI challenge 2019 event log that includes traces of length at least

8 but at most 10. This event log has 12574 traces [34].
We have used trace-level class situation features in these experiments. So, the num-
ber of instances in the situation feature table is equal to the number of traces in each
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Fig. 14: The time needed for causal structure learning in milliseconds for the whole
situation feature table, and the trimmed situation feature table using the situation
features selected by SFVPR, SFSRF, and SFSBC.

event log. We have used the receipt event log for the first and second experiments,
BPI challenge 2017 event log for the third and fourth experiments, and BPI chal-
lenge 2019 event log for the fifth experiment. Figure 14 shows the results of this
experiment. We can see that considering time efficiency, SFVPR is comparable with
SFSRF and SFSBC. Figure 15 illustrates the number of vertices and edges in the dis-
covered PAGs. Based on Figure 15, we can see that in all cases the complexity of the
discovered PAG in terms of the number of vertices and edges have been reduced.

To evaluate the quality of the recommended situation features, we have gener-
ated 10 synthetic event logs with 1000 traces such that each one of them includes
20 situation features10. These features are generated based on a randomly generated
SEM (that is the true SEM of the data). The causal structures of the randomly gen-
erated SEMs include two connected components with equal number of vertices. We
have applied feature selection using SFVRP as well as SFSBC and SFSRF. We have
created a trimmed situation feature table using the selected set of situation features.
Then we have compared the discovered causal structure with the true causal structure
of the data. Discovering the SEM of the observed data, having its causal structure, is
a simple estimation. So we focus on the differences in the discovered causal struc-
ture. In this experiment, we set the number of bins to 20 and α = 0.01 (in SFVPR).
Moreover, we have considered the mean value of the class situation feature as the
threshold where the values lower than this threshold are undesirable class situation
feature values.

We call the causal structure obtained by projecting the true causal structure on the
set of vertices including the class situation feature and those situation features that
have a causal effect on it effective causal structure. Also, as in the PAG discovered

10The data-generating model and the generated event logs that have been used for this experiment are available in
https://github.com/mahnaz-qafari/Experimental-data-generator.
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Fig. 15: The number of vertices and edges in the PAG discovered from the whole
situation feature table, and in the PAG discovered using the trimmed situation feature
table using selected situation features via applying SFVPR, SFSRF, and SFSBC.

by the implemented plugin the direction of the potential causal relationships (edges)
are not determined (and the discovered PAG has to be modified by the user by mod-
ifying the direction of the discovered potential causal relationship), we consider all
the situation features whose corresponding vertices are connected to the class situa-
tion feature by an edge (regardless of the edge type), the set of potential parents of
the class situation feature in that PAG. Moreover, consider:
• rs f as the set of selected situation features.
• ptcs as the set of parents of the class situation feature in the true causal structure.
• p f cs as the set of potential parents of class situation feature in the PAG

discovered using the trimmed situation feature table.
• etcs as the set of causal relationships (edges) in the effective causal structure.
• e f cs as the set of potential causal relationships (edges regardless of their type)

in the causal structure discovered using the trimmed situation feature table.
We use the following metrics to quantify the difference in the two causal structures.

parent recall =
| ptcs ∩ prs f cs |
| ptcs |

,

parent precision =
| atcs ∩ ars f cs |
| atcs |

,

causal relationship recall =
| (ptcs ∪ atcs) ∩ rs f |

| rs f |
,

causal relationship precision =
| (ptcs ∪ atcs) ∩ rs f |

| rs f |
.

We can interpret the above metrics as follows:
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True causal structure Causal structure of recommended Causal structure of recommended Causal structure of recommended
situation features by SFSRF situation features by SFSBC situation features by SFVPR
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2 19 40 11 5 6 5 6 0.6 1 0.27 0.5 5 6 0.6 1 0.27 0.5 7 8 0.4 0.67 0.18 0.25
3 19 32 12 6 8 6 6 0.33 0.67 0.41 0.83 6 6 0.33 0.67 0.41 0.83 8 10 0.33 0.67 0.58 0.7
4 19 34 15 4 8 3 4 0.2 0.5 0.13 0.5 3 4 0.2 0.5 0.5 0.5 8 14 0.4 0.5 0.47 0.5
5 19 30 11 4 5 3 2 0.25 0.5 0.09 0.5 5 4 0.5 0.5 0.5 0.75 4 4 0.25 0.5 0.18 0.5
6 19 34 6 2 4 3 3 1 1 0.5 1 3 3 1 1 1 1 7 10 1 0.67 0.83 0.5
7 19 37 5 3 4 4 6 1 0.5 0.6 0.5 5 7 1 1 0.5 0.57 7 10 1 1 0.6. 0.3
8 19 38 11 5 6 4 6 0.5 0.5 0.36 0.67 4 6 0.2 0.5 0.36 0.67 10 12 0.8 1 0.72 0.67
9 19 39 9 3 6 4 3 0.33 0.33 0.11 0.33 4 3 0.33 0.33 0.11 0.33 6 10 0.33 0.5 0.56 0.5
10 19 35 6 2 5 3 6 0.33 0.33 0.17 0.17 4 9 0.5 0.33 0.33 0.22 6 12 1 0.67 0.67 0.36

Table 2: The quality evaluation of the selected situation features by FARF (and
FSBC) and SFVPR in terms of parent recall, parent precision, causal relationship
recall, and causal relationship precision.

• parent recall: the portion of parents of the class situation features in the true
causal structure that have been also a potential parent in the PAG discovered
using the trimmed situation feature table.
• parent precision: the portion of potential parents of the class situation feature

in the PAG discovered using the trimmed situation feature table which are also
a parent of the class situation features in the true causal structure of the data.
• causal relationship recall: the portion of causal relationships in the effec-

tive causal structure that have been detected by the PAG discovered using the
trimmed situation feature table. structure.
• causal relationship precision: the portion of potential causal relationships in

the PAG discovered using the trimmed situation feature table which are also a
causal relationship in the effective causal structure.

The results of this comparison is presented at Table 2. The above experiment
shows that:
• In general, except for causal relationship precision, SFVPR achieved better

results than SFSBC and SFSRF. Please note that non of the methods achieved
the best results in all the experiments.
• Considering causal relationship precision, SFVPR achieved weaker results in

comparison with SFSBC and SFSRF. It can be explained by considering that
this method recommends more situation features than the other two methods
which usually results in discovering more potential causal relationships in the
discovered PAG. In addition, to compute the causal relationship precision, we
compare the portion of the potential causal relationships in the discovered PAG
on the trimmed situation feature which are also causal relationships in the effec-
tive causal structure. The effective causal structure includes a subset of the
causal relationships of the connected component of the true causal relationship
that includes the class situation feature. Many of the potential causal relation-
ships present in the discovered PAG on the trimmed situation feature by SFVPR
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method are corresponding to the causal relationships in the connected including
the class situation feature but not in the effective causal structure.
• In none of the experiments the recommended set of situation features by SFVPR

includes a situation feature that does not belong to that connected component
of true causal structure which includes class situation feature. However, in three
experiments both SFSBC and SFSRF recommend situation features that do
not belong to the same connected component of the true causal structure that
includes class situation feature.

8 Conclusion
Distinguishing causal from mere correlational relationships among the process fea-
tures is a vital task when investigating the root causes of performance and/or
conformance problems in a company. The best way to identify the causal relation-
ships is by using randomized experiments. However, this requires implementing
process changes to see their effect. As applying randomized experiments is usually
quite expensive (if not impossible) in the processes, we propose a method for causal
analysis based on the theory of causality which uses a mixture of data analysis and
domain knowledge. The stakeholders can use this method to incorporate both domain
knowledge and potential statistically supported causal effects to find the SEM of the
features and indicators of the process. Moreover, this method helps stakeholders to
investigate the effect of an intervention on the process. This information can be used
to design and order the re-engineering steps.

The validity of a discovered structural equation model (and any other machine
learning technique) is highly influenced by the set of features that have been used
for data extraction and consequently for structural equation model discovery. How-
ever, the complex and dynamic inter-dependencies in processes make the task of
selecting the set of features with a potential causal effect on the observed problem
in the process a challenging task. So, we have proposed a simple yet intuitive and
effective feature recommendation method in this paper. The proposed method pro-
vides the user not just the set of features with the possible causal effect on the class
situation feature but also those values of the features that increase the possibility
of the observed problem in the process more than a given threshold. Moreover, we
have shown the effectiveness of the proposed method in terms of time efficiency and
quality of the selected set of situation features.

As future work, we would like to learn more process-related features that go
beyond individual cases. For example, bottlenecks are caused by competing cases or
a shortage of resources. Also, notions such as blocking, batching, and overtaking are
not captured well. We would also like to make the diagnostics more understandable.
This requires mapping diagnoses related to features back onto the process model
and event log. Finally, we would like to enhance simulation models with SEM-based
rules.
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