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Abstract Conformance checking techniques quantify correspondence
between a process’s execution and a reference process model using event
data. Alignments, used for conformance statistics, are computationally
expensive for complex models and large datasets. Recent studies show
accurate approximations can be achieved by selecting subsets of model
behavior. This paper presents a novel approach deriving error bounds
for conformance checking approximation based on arbitrary activity se-
quences. The proposed approach allows for the selection of relevant sub-
sets for improved accuracy. Experimental evaluations validate its ef-
fectiveness, demonstrating enhanced accuracy compared to traditional
alignment methods.

Keywords: Process mining · Conformance checking approximation ·
Alignments · Edit distance · Instance selection · Sampling

1 Introduction

Conformance checking, a sub-field of process mining, assesses the alignment be-
tween a process model and recorded event data [1]. Alignments, an established
class of conformance checking artifacts [2], quantify deviations between recorded
process execution and the intended behavior modeled by the process model.

Information systems generate vast amounts of event data that require efficient
analysis. This big event data, combined with complex process models, leads to
long computation times for alignments, limiting their practical application. How-
ever, in many cases, obtaining an approximate value is sufficient for meaningful
conclusions instead of exact alignment values. For instance, genetic process dis-
covery [3], evaluating generations of candidate process models based on an event
log requires impractical exact alignment results. Yet, determining if a newly
generated process model improves alignment results is sufficient. Therefore, fast
alignment approximation techniques with guaranteed error are valuable.

Various approaches for alignment approximation have been proposed re-
cently [4–8]. In our previous work [4], we utilize subsets of the process model’s
behavior for alignment approximation [4]. Initially, we construct alignments for a
subset of the process behavior and estimate the alignment cost for the remaining
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traces based on these alignments and edit distances, providing bounds for the ap-
proximated costs [4]. The quality of these subset-based approximations depends
on the selected subset of model behavior [4]. Thus, quantifying the quality of an
approximation based on a chosen subset aids in identifying suitable approxima-
tion subsets [4]. This paper therefore supports these approaches by introducing
a novel approach for quantifying the quality of alignment approximations, which
improves the error bounds introduced in our previous work [4].
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Figure 1: A process model M represents
a process P generating an event log L.
Existing approaches compute exact or ap-
proximate conformance checking results
using the language of the model L(M). We
propose quantifying error bounds for ap-
proximations by an arbitrary proxy-set Ω.

Fig. 1 presents a schematic
overview of the proposed approach.
A process model M models a pro-
cess P that generates an event
log L. Existing approaches compute
exact or approximate conformance
checking results by considering the
language of the model L(M) (pos-
sibly infinite), or, a relevant finite
subset thereof. Our method com-
putes error bounds for alignment
approximation using a proxy-set Ω.
From Ω, we derive the relevant
subset of process model behavior
LF (M) and use it to approximate
alignment costs of traces in L. We
also provide bounds on the intro-
duced approximation error.

We evaluate our new error
bound estimation technique using
real event logs. Our experiments confirm a correlation between the maximum
error bounds calculated a-priori and the eventual approximation error. The ac-
curacy improves by using more suitable subsets of process model behavior with
lower error bounds. Additionally, the computation time for error bounds is neg-
ligible compared to exact alignments.

2 Related Work

Conformance checking techniques have been well-studied in the literature. In [1],
different methods for conformance checking and its applications are covered.
Alignments, introduced in [9] have rapidly developed into the standard con-
formance checking technique. In [10], decomposition technique is proposed for
improving the performance of the alignment computation. In the context of
stream-based process analytics, in [5] the authors propose to incrementally com-
pute prefix-alignments.

Few papers consider the use of sampling in process mining. In [11], the au-
thors recommend a trace-based statistical sampling method to decrease the re-
quired time for process discovery. Moreover, in [12], we analyzed random and
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biased sampling methods with which we are able to adjust the size of the sampled
data for process discovery.

Some research has focused on alignment approximation. General approxima-
tion schemes for alignments, i.e., the computation of near-optimal alignments,
have been proposed in [13]. [6] proposes to incrementally sample the event
log and check conformance on the sampled data. The approach incrementally
increases the sample size until the approximated conformance value converges.
The authors of [14] propose a conformance approximation method, that ap-
plies relaxation labeling methods on a partial order representation of a process
model generated in a pre-processing step to produce alignments that are close
to an optimal alignment. Furthermore, subset selection of model behaviors using
instance selection [4] and simulation [15] have been proposed. The tool that sup-
ports these ideas is presented in [8]. In this context, in [7], the authors show, that
a trie encoding of these selected subsets yields further runtime improvements.

3 Preliminaries

This section introduces conformance checking terminology and notation.
We let B(X) denote the set of all possible multisets over X.

Given b∈B(X), b={x|b(x)>0}. X∗ denotes the set of all sequences
over X. Let X ′⊆X and let σ∈X∗, σ↓X′ returns the projected se-
quence of σ on set X ′, e.g., ⟨a, b, c, b, d⟩↓{b,d}=⟨b, b, d⟩. Let X1, X2, . . ., Xn

be n arbitrary sets and let X1×X2· · ·×Xn denote the correspond-
ing Cartesian product. Let σ∈(X1×X2· · ·Xn)

∗ be a sequence of tuples,
πi(σ) returns the sequence of elements in σ at position 1≤i≤n, e.g.,

πi(⟨(x1
1, x
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i , . . .x

|σ|
i ⟩.

Given σ, σ′∈X∗, δ(σ, σ′)∈N≥0 represents the edit distance (only using in-
sertions and deletions) between σ and σ′, i.e., the minimum number of edits
required to transform σ into σ′, e.g., δ(⟨w, x, y⟩, ⟨x, y, z⟩)=2 (delete w and add
z). Note that δ(σ, σ′)=δ(σ′, σ) (δ is symmetrical) and δ(σ, σ′′)≤δ(σ, σ′)+δ(σ′, σ′′)
(triangle inequality applies to δ). Given a sequence σ∈X∗ and a set of sequences
S⊆X∗, we define ∆(σ, S)= min

σ′∈S
δ(σ, σ′).

Event logs are collections of events that represent the execution of multiple
process instances. They serve as the foundation for process mining algorithms.
These events capture the timing of activities, denoted by their starting and fin-
ishing times, for each instance of the process identified by Case. In certain cases,
such as alignment computation, only the control-flow information, which refers
to the sequences of executed activities within a process instance, is necessary.
Thus, we utilize the aforementioned mathematical model of an event log.

Definition 1 (Event Log). Let Σ denote the universe of activities. A trace σ
is a sequence of activities (σ∈Σ∗). An event log L∈B(Σ∗) is a bag of traces.

Process models are used to describe the behavior of a process. They can take
the form of simple conceptual drawings or more complex mathematical concepts
such as Petri nets and BPMN diagrams. An example of a process model is shown
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Figure 2: A process model M1 and an event log L1. The optimal alignment of
the last trace of L1 and M1 is shown in the middle of the figure.

in Fig. 2 that uses BPMN notation. In this paper, we do not assume a specific
modeling notation, but rather that process models describe activity sequences.

Definition 2 (Process Model). Let Σ denote the universe of activities. A
process model M describes the intended behavior of a process. We refer to the
behavior described by model M as its language ∅⊂L(M)⊆Σ∗, i.e., a collection
of activity sequences.

ForM1 in Fig. 2, we have L(M1)={⟨a, b, e⟩, ⟨a, b, c, e⟩, ⟨a, c, b, e⟩, ⟨a, b, d, b, e⟩, . . .}.
Due to the existence of loops, the language of a process model may be infinite.

To quantify whether an event log conforms to a process model, we use align-
ments. An alignment between a trace and a model describes which events in the
trace can be “aligned with activities described by the process model”. Further-
more, alignments indicate whether an event cannot be explained by the model
or whether an activity as described by the model was not observed. In Fig. 2,
an alignment of trace ⟨b, d, e⟩, and the given process model is provided. Observe
that the trace does not contain activity a, which should always be present ac-
cording to the model. In the alignment, this is visualized by the first column ≫

a .
Similarly, after the observed d-activity, no second b-activity was observed. As
such, in this alignment, the occurrence of d is rendered obsolete, i.e., visualized
as d

≫ . We formally define alignments as follows.

Definition 3 (Alignment). Let Σ denote the universe of activities, let M be
a process model with corresponding language ∅⊂L(M)⊆Σ∗ and let σ∈Σ∗ be a
trace. An alignment γ of σ and M , is a sequence, characterized as γ∈((Σ∪{≫
})×(Σ∪{≫}))∗, s.t., π1(γ)↓Σ

=σ and π2(γ)↓Σ
∈L(M). The set of all possible

alignments of trace σ and model language L(M) is denoted as Γ (σ,L(M)).

Let c : (Σ∪{≫})×(Σ∪{≫})→R be an arbitrary cost function, assigning costs
to the different type of alignments moves, then, given σ∈Σ∗, M⊆Σ∗ and
γ∈Γ (σ,L(M)), we let κc(γ)=

∑
1≤i≤|γ|

c(γ(i)) denote the cost of alignment γ. We

let Γ ⋆
c (σ,L(M))= arg min

γ∈Γ (σ,L(M))

κc(γ) be the set of optimal/minimal alignments,

i.e. the set of alignments, whose corresponding cost under the given cost func-
tion is minimal, and zc(σ,L(M))= min

γ∈Γ (σ,L(M))
κc(γ) be the optimal alignment

cost for trace σ and model M (hence: ∀γ∈Γ ⋆
c (σ,L(M)) (κc(γ)=zc(σ,L(M)))).

In the context of this paper, given γ∈Γ ⋆
c (σ,L(M)), we write φ(γ)=π2(γ)↓Σ

to
refer to the “model behavior” corresponding to σ, i.e., the projection of σ onto
any of the closest possible execution sequence in M .

In the remainder, we assume that c represents the standard cost function, i.e.,
∀a∈Σ, c(a,≫)=c(≫, a)=1, c(a, a)=0, and c(a, a′)=∞ if a ̸= a′, and we omit it
as a subscript.
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4 Estimating Alignment Error Bounds

In this section, we derive error bounds for proxy sets Ω (Section 4.1). The edit
distance between sequences provides upper and lower bounds for trace and model
alignment costs. We also approximate optimal proxy sets that minimize cumula-
tive approximation error (Section 4.2). Finally, we discuss enhancements to the
bounds (Section 4.3).

4.1 Computing the Maximal Alignment Approximation Error

Here, we show that for given traces σ, σ′∈Σ∗ and a model M , the edit distance
∆(σ, σ′) gives a range for the actual optimal alignment value z(σ,L(M)). First,
we show that under the standard cost function, we can use the edit distance for
computing the cost of the optimal alignment between two arbitrary sequences.

Lemma 1 (Edit Distance Quantifies Optimal Alignment Costs). Let Σ
denote the universe of activities, let σ∈Σ∗ be a trace, let M be a process model
and let γ∈Γ ⋆(σ,L(M)) be an optimal alignment of σ and M . Using the standard
cost function, κ(γ)=δ(σ, φ(γ))

Proof. γ only contains (a, a), (a,≫), and (≫, a) elements. Let R be the set of
(a,≫) elements and I be the set of (≫, a) elements. Converting σ into φ(γ) is
done by removing activities in σ and inserting activities represented by R and
I, respectively. Thus, κ(γ)=R+I. Similarly, δ(σ, φ(γ)) indicates the minimum
number of insertions/removals to transform σ into φ(γ). If κ(γ)<δ(σ, φ(γ)),
then δ(σ, φ(γ)) does not represent the minimal number of edits. Likewise, if
κ(γ)>δ(σ, φ(γ)), then γ is not optimal.

Corollary 1 (∆(σ,L(M)) equals z(σ,L(M))). Let Σ denote the universe of
activities, let σ∈Σ∗ be a trace, let M be a process model with corresponding lan-
guage ∅⊂L(M)⊆Σ∗. Using the standard cost function, z(σ,L(M))=∆(σ,L(M)).

Proof. Let γ∈Γ ⋆(σ,L(M)), then, z(σ,L(M))=κ(γ)=δ(σ, φ(γ))=∆(σ,L(M)).

Again, assume the two traces to align to be σ=⟨b, d, e⟩ and φ(σ)=⟨a, b, e⟩ from
Fig. 2. It is easy to see, that the edit distance of the two traces is 2 (insertion of
a and deletion of b in σ), which is equivalent to the alignment cost.

Now, we show that, given an arbitrary sequence with known alignment cost,
we can derive bounds for the possible alignment cost of another activity sequence.
This allows the approximation of said cost without relying on the construction
of alignments.

Theorem 1 (Edit Distance Provides Approximation Bounds). Let
σ, σ′∈Σ∗ be two traces and let M be a process model with corresponding lan-
guage ∅⊂L(M)⊆Σ∗. The optimal alignment value z(σ,L(M)), is within δ(σ, σ′)
of z(σ′,L(M)), i.e., z(σ′,L(M))−δ(σ, σ′)≤z(σ,L(M))≤z(σ′,L(M))+δ(σ, σ′).

Proof. Let γ∈Γ ⋆(σ,L(M)) and let γ′∈Γ ⋆(σ′,L(M)). Triangle inequality of
edit distance yields δ(σ, φ(γ′))≤δ(σ, σ′)+δ(σ′, φ(γ′)), which we can rewrite (
Lemma 1) to δ(σ, φ(γ′))≤δ(σ, σ′)+z(σ′,L(M)). Since z(σ,L(M))≤δ(σ, φ(γ′)),
we have: z(σ,L(M))≤z(σ′,L(M))+δ(σ, σ′).
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Similarly, δ(σ′, φ(γ))≤δ(σ, σ′)+δ(σ, φ(γ)). We deduce
δ(σ′, φ(γ))≤δ(σ, σ′)+z(σ,L(M)). As z(σ′,L(M))≤δ(σ′, φ(γ)), we deduce
z(σ′,L(M))−δ(σ, σ′)≤z(σ,L(M)). Hence, we obtain z(σ′,L(M))−δ(σ, σ′)≤
z(σ,L(M))≤z(σ′,L(M))+δ(σ, σ′).

In Fig. 2, z(⟨a, c, c, b, d, e⟩,L(M1))=2 and δ(⟨a, c, c, b, d, e⟩, ⟨a, c, b, d, e⟩)=1.
We deduce 1≤z(⟨a, c, b, d, e⟩,L(M1))≤3. If z(⟨a, c, c, b, d, e⟩,L(M1)) is un-
known, δ(⟨a, c, c, b, d, e⟩, ⟨a, c, b, d, e⟩)=1 implies that using it for approximating
z(⟨a, c, b, d, e⟩,L(M1)) yields a maximal absolute approximation error of 1.

4.2 Generating Proxy-Sets

Theorem 1 implies that, given a process model M and traces σ, σ′∈Σ∗, when
using z(σ′,L(M)) for approximating z(σ,L(M)), we obtain an approximation
error ϵ≤δ(σ, σ′), i.e. the maximum approximation error is δ(σ, σ′). Interestingly,
the error bounds on ϵ is determined independently of the model. Furthermore,
σ′ is allowed to be an arbitrary sequence, i.e., it is perfectly fine if σ′ /∈L(M),
and, given some L∈B(Σ∗) s.t. σ∈L, σ′ /∈L. Hence, given an arbitrary set of
sequences Ω⊆Σ∗, arg min

σ′∈Ω
δ(σ, σ′) represents the members of Ω that minimize

the expected maximum error when using z(σ′,L(M)) for approximating (i.e.,
for σ′∈ arg min

σ′∈Ω
δ(σ, σ′)).

For an event log L∈B(Σ∗) and proxy-set Ω⊆Σ∗,

∀σ∈L
(
min
σ′∈Ω

δ(σ, σ′)=0

)
⇔Ω⊇L, i.e., if every member of the log has an

edit distance of 0 w.r.t. the proxy-set, then every member of the event log
is a member of the proxy-set. Clearly, in such a case, using proxy-set Ω
yields optimal alignments, yet, at the same (or even worse) time and memory
complexity as computing conventional optimal alignments.

In the remainder, given an event log L∈B(Σ∗) and proxy-set Ω⊆Σ∗, let
ϵΩ(L)=

∑
σ∈L

L(σ)· min
σ′∈Ω

δ(σ, σ′) be the accumulative approximation error of L

using Ω. Given two proxy-sets Ω,Ω′⊆Σ∗, Ω dominates Ω′ for event log L
if and only if ϵΩ(L)≤ϵΩ′(L) and |Ω|<|Ω|′ and we refer to Ω′ as a redun-
dant proxy-set. A proxy-set Ω is k-optimal for event log L if and only if
∀Ω′∈Σ∗ (|Ω′|=k =⇒ ϵΩ(L)≤ϵΩ′(L)). A k-optimal proxy-set Ω is k-primal if
|Ω|=k. For example, Ω=L is |L|-primal, 1-optimal, 2-optimal, . . ., |L|-optimal.
Furthermore, it is easy to see that any (k-primal) proxy-set Ω with |Ω|>L is
dominated by L and hence redundant. More interestingly, primal proxy-sets that
are smaller than the event log are never redundant.

Theorem 2 (Primal Proxy-Sets are Non-Redundant). Let L∈B(Σ∗) be
an event log, Ω⊆Σ∗ be a proxy-set such that |Ω|<|L|, and Ω is k-primal. Ω is
non-redundant.

Proof. Assume that Ω is redundant. Hence, ∃Ω′⊆Σ∗ (|Ω′|<|Ω|∧ϵΩ′(L)≤ϵΩ(L)).
However, observe that, we are able to create Ω′′=Ω′∪L′′ with |L′′|=|Ω|−|Ω′| and
σ∈L′′ =⇒ σ∈L∧σ/∈Ω′ (note that |Ω|=|Ω′′|). Observe that ϵΩ′′(L)<ϵΩ′(L) and
as a consequence ϵΩ′′(L)<ϵΩ(L), contradicting the fact that Ω is k-primal.
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Note, Theorem 2 implies the existence of a k-primal proxy-set Ω for any event
log L∈B(Σ∗) and k∈1, 2, . . ., |L|. This k-primal proxy-set minimizes the accumu-
lative approximation error ϵΩ(L) for size k and can be considered the optimal
proxy-set for that size. However, finding such proxy-sets is an NP-Hard problem
and goes beyond the scope of this paper. Instead, here we focus on proxy-sets
where Ω⊆L. In the following paragraphs, we introduce different methods for
generating proxy-sets and their relation to the optimal primal proxy-sets.

Sampling Proxy-sets can be generated using sampling methods, either directly
from the event log, the given process model, or a mixture thereof. In previous
work, we investigated the sampling of model behavior using uniform distribu-
tions [4] and event-log-guided process model simulation [15].

Strictly sampling the behavior from the process model, i.e., Ω⊆L(M), partic-
ularly when using event log-guided simulation yields (under standard cost func-
tion) z(σ′,L(M))=0, ∀σ′∈Ω, and thus 0≤z(σ,L(M))≤∆(σ, σ′),∀σ∈L. While it
is very unlikely that such a proxy-set is k-primal due to it being closer to the
log behaviour, z(σ′,L(M))=0, ∀σ′∈Ω, can be exploited.

Sampling Ω from the event log is likely to result in a proxy-set that is closer
to a k-primal solution, especially when prioritizing σ∈L, for which L(σ) is high.
Hence, using log-based sampling is more likely to minimize ϵΩ . However, since
the actual z(σ′,L(M)) for σ′∈Ω is unknown, we cannot tighten the estimator.

Centroid-Based Clustering For a given target size k, the optimal proxy-set
is k-primal. As an alternative to sampling, clustering algorithms are suitable
for proxy-set selection. These algorithms group objects into clusters based on
their similarity or distance, often using the edit distance as a metric. Centroid-
based clustering algorithms, such as K-Medoids [16], are particularly relevant as
they assign objects to the centroid with the minimal distance. While clustering
algorithms can be applied to any set of activity sequences, applying them to the
input event log produces proxy-sets close to the k-primal solution. Due to the
time-consuming nature of providing optimal clustering solutions, several faster
approximation techniques have been proposed.

4.3 Improving the Alignment Approximation Bounds

We showed that Ω and proxy-sequence σ′∈Ω can quantify the approximation
error ϵ as ϵ≤δ(σ, σ′) when approximating z(σ,L(M)) with z(σ′,L(M)). Now, we
show how using proxy-sets can improve alignment approximation bounds.

When approximating alignments using Ω, we first compute the alignments
of Ω traces. We derive the bounds of the alignment cost of z(σ,L(M)) by simply
adding/subtracting δ(σ, σ′) to z(σ′,L(M)). Note, when using the standard cost
function, the lower bound of any alignment cannot be lower than 0. In certain
cases, we can derive a tighter lower bound. Let ΣM={a∈Σ|∃σ∈L(M)(a∈σ)},
then, for any σ∈Σ∗, z(σ,L(M))≥|σ↓Σ\ΣM

|, i.e., the elements of σ↓Σ\ΣM
are al-

ways moves of the form a
≫ . Furthermore, in case |σ|< min

σ′∈L(M)
|σ′|, we need at
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Table 1: Statistics regarding the real event logs that are used in the experiment.
Event Log Activities Traces Variants
BPIC-2012 23 13087 4336
BPIC-2018-Inspection 15 5485 3190
BPIC-2019 42 251734 11973
Hospital-Billing 18 100000 1020
Road 11 150370 231
Sepsis 16 1050 846

least |σ′|−|σ| (where σ′∈ arg min
σ′∈L(M)

|σ′|) moves of the form ≫
a . Hence, the theoret-

ical lower-bound of any σ∈Σ∗ is equal to max(0, min
σ′∈L(M)

(|σ′|)−|σ|)+|σ↓Σ\ΣM
|.

We correspondingly define the Ω-driven lower and upper bound as follows.

Definition 4 (Ω-Driven Alignment Bounds). Let Σ denote the universe of
activities, let M be a process model with corresponding language ∅⊂L(M)⊆Σ∗

and let Ω⊆Σ∗ be a proxy-set. Let ⊤Ω,M : Σ∗→N denote the Ω-driven upper
bound and ⊥Ω,M : Σ∗→N the Ω-driven lower bound, s.t.:

⊤Ω,M (σ)= min
σ′∈Ω

(z(σ′,L(M))+δ(σ, σ′)) (1)

⊥Ω,M (σ)=max(max(0, min
σ′∈L(M)

(|σ′|)−|σ|)+|σ↓Σ\ΣM
|,max

σ′∈Ω
(z(σ′,L(M))−δ(σ, σ′)))

(2)

Finally, given ⊤Ω,M and ⊥Ω,M , we quantify the approximated alignment cost of
σ∈Σ∗ as the average of bounds to minimize the possible approximation error,

i.e., ẑΩ(σ,L(M)), as ẑΩ(σ,L(M))=
⊤Ω,M (σ)−⊥Ω,M (σ)

2 . In theory, it is possible to
assign different weights to bounds based on additional knowledge or bias.

5 Evaluation

To assess the efficacy of the proposed error bounds, we conducted an extensive
evaluation using multiple publicly available event logs. In particular, we explored
the accuracy and the runtime performance of the proposed bounds. First, we
briefly describe the implementation and evaluation setup(Section 5.1), followed
by a discussion of the evaluation results(Section 5.2)

5.1 Experimental Setup

To evaluate the proposed error bounds, we implemented the Conformance Ap-
proximation plug-in in the ProM [17] framework1, including various proxy-set
generation methods (cf. Section 4.2).

The proposed methods were applied to six real event logs, and basic in-
formation about these logs, such as the number of distinct activities, traces,
and variants, is provided in Table 1. For each event log, we apply conformance
checking using process models obtained via the Inductive Miner algorithm [18]

1 svn.win.tue.nl/repos/prom/Packages/LogFiltering

svn.win.tue.nl/repos/prom/Packages/LogFiltering
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Figure 3: Scatter plots of the maximum approximation error and the real ap-
proximation error using different proxy-set generation methods.

with infrequent thresholds of 0.2, 0.4, and 0.6. Four proxy-set generation meth-
ods are used:random sampling, frequency-based sampling, K-Medoids clustering
and K-Center clustering. In random sampling, variants are uniformly sampled
(without replacement) from the event log. In frequency-based sampling, traces
are selected based on their L(σ)-values in descending order. K-Medoids cluster-
ing determines centroids by minimizing pairwise dissimilarity between traces,
while K-Center clustering minimizes the maximum distance between centroids
and traces. Proxy-set sizes were varied using different percentages (5%, %10,
20%, 30%, 50%) of the number of variants in the event logs. Each experiment
was repeated four times.

5.2 Results

First, we analyze the relationship between maximum and actual approximation
error. Next, we examine the time performance of the estimation. Finally, we
assess the effectiveness of the proposed lower bound.

Maximum Approximation Error versus Approximation Error Observe
that minimizing the expected maximum error, e.g., by selecting a seemingly
optimal proxy set, does not guarantee a minimal approximation error. For
example, given some model M , σ∈Σ∗, Ω={σ1, σ2} and Ω′={σ1, σ3}, assume
that δ(σ, σ1)=2, δ(σ, σ2)=3 and δ(σ, σ3)=1. Clearly, the maximal error based
on Ω is 2, and, based on Ω′, it is 1. As such, we intuitively favor Ω′ over
Ω. However, if z(σ1,L(M))=7, z(σ2,L(M))=2 and z(σ1,L(M))=6, we obtain
⊥Ω,M (σ)=⊤Ω,M (σ)=5, whereas ⊥Ω′,M (σ)=5 and ⊤Ω′,M (σ)=7. Hence, from Ω,
we derive that z(σ,L(M))=5 (note ẑΩ(σ,L(M))=5), whereas from Ω′, we de-
rive 5≤z(σ,L(M))≤7 (with ẑΩ′(σ,L(M))=6). Thus, utilizing Ω gives the exact
alignment value, whereas using Ω′ yields an error of 1.

Table 2: Pearson correlation coeffi-
cients between the maximum approx-
imation error and the real approxima-
tion errors for different methods.

Given that there is no causal rela-
tion between the maximum approxima-
tion error and the actual error, we in-
vestigate, the strength of the correla-
tion between the maximum approxima-
tion error and the effective approxima-
tion for each of the proposed proxy-set
generation methods. The scatter plots in
Figure 3 illustrate these values for each
method, distinguishing event logs with
different colors.
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Figure 4: Effect of increasing the selected percentage of variants on approximated
alignments’ accuracy for different methods.

Moreover, we present the Pearson correlation coefficients in Table 2. The
K-Center method demonstrates the highest correlation across all event logs.
Notably, strong correlations between the maximum approximation error and
the effective approximation error are observed for frequency-based sampling,
K-Center, and K-Medoids. In contrast, random sampling exhibits a weaker cor-
relation, especially for the Hospital-Billing and Road logs, where representative
variants are limited, and random sampling fails to prioritize them.

In Fig. 4, we demonstrate the impact of various proxy-set generation meth-
ods and trace variant percentages on approximated alignment cost accuracy.
K-Center and K-Medoids show promising results, producing proxy-sets that im-
prove accuracy. Additionally, larger proxy-set sizes reduce alignment cost errors,
although the influence is constrained for similar event log variants.

Conformance Checking Performance Improvement We evaluated the
time performance of the proxy-set generation methods and observed performance
improvements in conformance checking (Fig. 5). To compute the performance
improvement PI, we divide the conventional alignment computation time by
the alignment approximation time, including and excluding proxy-set genera-
tion time. Higher PI values indicate greater performance improvement, while a
PI value less than 1 indicates additional overhead. The frequency-based method
shows the greatest improvement, as it quickly selects variants for proxy-set gen-
eration. The Random method has a lower PI value as it may select variants
that require more time for alignment computation. Increasing the proxy-set size
reduces performance gains. In some cases, the performance does not improve
when considering proxy generation time. Thus, it is important to avoid select-
ing too many traces as a proxy. The proxy generation time for K-Center and
K-Medoids methods is notably higher, especially for larger proxy-set sizes. How-
ever, if we separate the proxy generation time (as explained in Section 1), we
can still improve the efficiency of the conformance checking procedure.

Efficiency of the Proposed Lower Bound Finally, in the
last experiment, we compare the lower bound approximation with-
out M ′, i.e., max(0, min

σ′∈L(M)
(|σ′|)−|σ|)+|σ↓Σ\ΣM

| and the lower

bound that incorporates M ′, i.,e., max
σ′∈Ω

(z(σ′,L(M))−δ(σ, σ′))).
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(a) Performance improvement with consideration of proxy-set generation time.

(b) Performance improvement without consideration of proxy selection time.

Figure 5: Impact of variant selection and proxy methods on performance im-
provement.

Table 3: Average of times
that lower bounds have the
highest value.

Table 3 presents the percentages of traces with
higher values using various bounds. When both
methods yield the highest value, we acknowledge
both. The findings suggest that, in the majority of
situations, employing the proposed lower bound
derived from the proxy-set and its alignments is
satisfactory. This approach yields more precise ap-
proximations of error bounds, leading to more in-
formative evaluations of alignment cost approximations with a given proxy-set.

6 Conclusion

In this paper, we proposed a method to obtain bounds on the approximation er-
ror when alignment costs are approximated using a subset of traces. Evaluations
on real event logs validate the accuracy of different non-optimal instance selec-
tion methods and the proposed error estimation technique, and show a reduction
in error for the approximated alignment costs while reducing the runtime. We
aim to enhance the derivation of k-primal proxy sets to minimize approximation
error and improve selection strategies. This will lead to more accurate alignment
cost approximations, making our methodology valuable for process mining and
alignment analysis.
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