
Towards a Simple and Extensible Standard for
Object-Centric Event Data (OCED) — Core
Model, Design Space, and Lessons Learned

Dirk Fahland1, Marco Montali2, Julian Lebherz3, Wil M.P. van der Aalst4,
Maarten van Asseldonk5, Peter Blank6, Lien Bosmans7, Marcus Brenscheidt8,
Claudio di Ciccio9, Andrea Delgado10, Daniel Calegari10, Jari Peeperkorn11,

Eric Verbeek1, Lotte Vugs5, and Moe Thandar Wynn12⋆

1 Eindhoven University of Technology, the Netherlands,
{d.fahland,h.m.w.verbeek}@tue.nl

2 Free University of Bozen-Bolzano, Italy, montali@inf.unibz.it
3 Standard Chartered Bank, Singapore, julian.lebherz@sc.com

4 Process and Data Science Chair, RWTH Aachen University, Aachen, Germany,
wvdaalst@pads.rwth-aachen.de

5 Konekti, Eindhoven, the Netherlands, {maarten,lotte}@getkonekti.io
6 PwC, Switzerland, peter.blank@pwc.ch

7 Randstad Digital, Leuven, Belgium, lienbosmans@live.com
8 Mbrenscheidt@outlook.de

9 Utrecht University, The Netherlands, c.diciccio@uu.nl
10 Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República,

Uruguay, {adelgado,dcalegar}@fing.edu.uy
11 Research Center for Information Systems Engineering (LIRIS), KU Leuven,

Belgium, jari.peeperkorn@kuleuven.be
12 Queensland University of Technology, Australia, m.wynn@qut.edu.au

Abstract. Process mining is shifting towards use cases that explicitly
leverage the relations between data objects and events under the term of
object-centric process mining. Realizing this shift and generally simpli-
fying the exchange and transformation of data between source systems
and process mining solutions requires a standardized data format for such
object-centric event data (OCED). This report summarizes the activities
and results for identifying requirements and challenges for a community-
supported standard for OCED. (1) We present a proposal for a core
model for object-centric event data that underlies all known use cases.
(2) We detail the limitations of the core model wrt. a broad range of
use cases and discuss how to overcome them through conventions, usage
patterns, and extensions of OCED, exhausting the design-space for an
OCED data model and the inherent trade-offs in representing object-
centric event data. (3) These insights are backed by five independent
OCED implementations which are presented alongside a series of lessons
learned in academic and industrial case studies. The results of this re-
port provide guidance to the community to start adopting and building

⋆ Moe Thandar Wynn and Julian Lebherz coordinated the efforts of the OCED work-
ing group 2021-2024 which led to the results presented in this report.

ar
X

iv
:2

41
0.

14
49

5v
1

 [
cs

.D
B

]
 1

8
O

ct
 2

02
4

2 Fahland, Montali, Lebherz et al.

new process mining use cases and solutions around the reliable concepts
for object-centric event data, and to engage in a structured process for
standardizing OCED based on the known OCED design space.

Keywords: event data, process mining, standardization

1 Introduction

Rationale behind OCED In the past decade, Process Mining has not only
seen tremendous growth in the academic arena, but also started to establish
itself as one of the predominant approaches to improving processes for larger
companies of virtually any industry. Process Mining and related services have
become a sizeable business - for software vendors, professional service firms, and
commercial end user alike.

Such a trajectory naturally spurs substantial investment and advancement;
however, it is also typical that – in an attempt to safeguard intellectual property –
many new features, products and services are being shielded off from usage by
other players in the ecosystem. Especially when this affects areas that are of
concern to all market participants, such silos impede competition, innovation and
the pace of further development. In many industries that are heavily reliant on
the exchange of something, standardizing terms and conditions of such exchange
led to a great leap forward for the entire ecosystem – think containers for global
trade, internet protocol for global communication.

Process Mining itself is heavily reliant on the exchange of data, which typ-
ically originates from systems that were not designed around this use case and
hence requires substantial transformation. Market participants have created dif-
ferent approaches to reduce the effort required for data transformation, but so
far no data exchange format has seen enough adoption to be nominated as a
de-facto standard. The relevance and magnitude of this bottleneck as one of the
predominant effort drivers in process mining projects has been reconfirmed by
the IEEE Task Force on Process Mining (TFPM)13.

With the IEEE eXtensible Event Stream (XES) [20,4,21] initiated in 2010,
academia has established a data exchange format, which fueled tremendous
growth in process mining research. Standardizing how tools capture, transfer,
load, and interpret event data continues to pay dividends. XES is supported
by several commercial tools, and all tools support the main concepts identified
in the XES meta-model (e.g., concepts like event, trace, timestamp, and at-
tribute). However, the specific XML file format is not widely used in practice.
Moreover, process mining adoption by business entities and scientific progress
in the past decade changed the requirements towards an up-to-date standard
substantially. The discipline is moving from case-centric event data to object-
centric event data [1], making XES less relevant. Therefore, the IEEE TFPM
decided in 2021 to initiate a community process to co-design the XES successor

13 https://www.tf-pm.org/

https://www.tf-pm.org/

Towards Simple and Extensible OCED 3

Object-Centric Event Data (OCED) as a data exchange format to stan-
dardize and thereby facilitate system interoperability within process mining and
adjacent areas, like process automation, process simulation, and Business Pro-
cess Management. OCED shall:

1. spur innovation and competition by lowering the barrier for new ideas
and market participants to access and enter the eco-system

2. improve the Return on Investment (ROI)
(a) for all market participants by improving the security of investments

with standardized eco-system access,
(b) for commercial end users and professional service firms by al-

lowing them to focus more on business value creation and less on data
transformation,

(c) for software vendors by allowing them to focus on differentiating func-
tionality rather than developing yet another data transformation engine,
and

3. create a new marketplace for source system-specific adapter modules,
translating source data into/from OCED.

Balancing Simplicity and Expressivity This report summarizes the com-
munity efforts and results in developing proposals for establishing a new stan-
dard for Object-Centric Event Data. Section 2 briefly documents the events and
activities organized by the IEEE Task Force on Process Mining in eliciting re-
quirements and proposals for OCED. A key challenge emerging from this process
was that OCED has to be, both:

1. conceptually simple to facilitate implementation and adoption in practice,
and

2. conceptually expressive to allow supporting a large number of use cases (con-
sidering both forms and types of data in source systems and analysis objec-
tives over this data)

Feedback on initial proposals for OCED (included in Appendices A and B)
shared with the community led to the consensus that any standard model for
OCED should start from a core of essential concepts necessary in all use cases.
The core in turn should be easily extensible to cover a wider range of use cases.

Section 3 documents the proposal for such a core model for OCED, that can
be seen as the common denominator of the initial proposals for OCED, as well
as its limitations.

Section 4 summarizes the arguments made around the need for extending
OCED beyond its core as well as the implications and challenges when one at-
tempts to do so. These challenges concern basic principles of conceptual modeling
and data modeling as well as implementation considerations. Overcoming these
challenges requires to establish further conventions and best practices around
OCED.

Section 5 complements these challenges with reports on concrete results and
experiences gathered from four independent implementations of OCED (its core

4 Fahland, Montali, Lebherz et al.

and extensions). Besides highlighting several practical challenges in implement-
ing OCED and how these have been overcome, this section also provides pointers
to resources for working with OCED and its further development.

The concluding Section 6 summarizes how the core model for OCED forms a
reliable basis for building an eco-system of process mining around object-centric
event data but also the potential sources of ambiguity that still hinder inter-
operability. It also outlines the open challenges and a possible roadmap to make
OCED more robust for advanced use cases.

This report thus summarizes the lessons learned on identifying core concepts
of OCED and its extensions, but does not formulate a standard14 for OCED.
Rather, its contents shall inform the next steps in the process of developing a
community standard for OCED.

2 The Path to OCED

The community process initiated by the IEEE TFPM on co-designing OCED
involved several steps.

Requirements gathering. The requirements for OCED were gathered through
an online survey with 289 participants and a XES 2.0 workshop co-located with
the 3rd International Conference on Process Mining (Eindhoven, 2021) [22]. This
led to the following three observations

1. the single-case-notion is very limiting, leading to a disconnect between reality
and the represented events,

2. the XES standard is too complex and many of its extensions are rarely used,
and

3. XES is associated with a particular XML storage format making it imprac-
tical for many real-life use cases.

Learning from the problems associated with XES, OCED needs to be

1. object-centric (i.e., an event may refer to any number of objects instead of
a single case) [1,2,12],

2. as simple as possible, and
3. have a meta-model decoupled from a particular storage format.

Proposal development. A core OCED working group of eight experts from
academia and industry was formed to develop an initial proposal for the OCED
Meta-Model (OCED-MM). Diverse views and opinions were solicited and dis-
cussed among the core team in striking the right balance between expressivity
of the model and its simplicity. The resulting meta-model captures the concepts

14 This document deliberately does not refer to any of the data models or meta-models
for OCED presented in this report as “standard” as these currently do not meet the
associated requirements.

Towards Simple and Extensible OCED 5

that have a majority vote. The meta-model resulting from this discussion, con-
sisting of a Base Model and a Full Model, is included in Appendix A.

It was circulated for feedback in two runs: a first run on August, 2nd 2022 to
respondents of the 2021 survey, registered attendees of the 2021 XES Workshop
as well as the TFPM steering committee and advisory board, and a second run
on September, 9th 2022 to all subscribers of the TFPM newsletter.

As part of the 4th International Conference on Process Mining (Bolzano,
2022) an XES Symposium was held, in which the OCED-MM was presented
and discussed. Many interesting thoughts and ideas had been brought to the at-
tention of the OCED working group during this meeting; specifically, symposium
participants stated that OCED-MM was, both,

– not expressive enough as it does not natively support a number of use cases
considered relevant by the participants, essentially asking to extend OCED-
MM further, and

– being too complex in the concepts that need to be considered and imple-
mented, hindering adoption.

This feedback underlined the difficulty of striking the right balance between
expressivity and simplicity. Yet, the core concepts of the OCED-MM Base Model
remained in consensus.

Call for Reference Implementations In order to get further clarity and
feedback on the effort and challenges in implementing an object-centric event
data model and exchange format the OCED working group issued on March 10,
2023 a Call for Reference Implementations of the OCED-MM Based Model or
the OCED-MM Full Model.

As part of the 5th International Conference on Process Mining (Rome, 2023),
an OCED Symposium was held at which 4 independent implementations were
presented and discussed:

– an implementation of theOCED-MM Base Model by the company Konekti15,
further described in Sect. 5.1;

– an implementation of the OCED-MM Base Model called OpenOCED by
Delgado et al. [8], further described in Sect. 5.2;

– an implementation of the OCED-MM Full Model by Swevels et al. [18],
further described in Sect. 5.3; and

– an implementation of a variation of the OCED-MM Full Model called Object
Centric Event Log V2 (OCEL 2.0)16 by Koren et al. [5,14]; the core ideas
of the OCEL 2.0 model are shown in App. B, the implementation is further
described in Sect. 5.4.

A fifth independent implementation has recently been published:

15 https://getkonekti.io/
16 https://www.ocel-standard.org/

https://getkonekti.io/
https://www.ocel-standard.org/

6 Fahland, Montali, Lebherz et al.

– an implementation of the OCED-MM Full Model and OCEL 2.0 by Bosmans
et al. called Stack’t, further described in Sect. 5.5

Alongside the implementations, several datasets in OCED, OCEL 1.0, and OCEL
2.0 format were made available to the community for exploration and adoption
(see Sect. 5).

While the independent implementations confirmed that the core ideas of
OCED-MM are viable, the discussion among the presenters and participants of
the OCED symposium noted a need for, both,

– clarifying the relations and compatibility between the different implementa-
tions, and

– clarifying the core concepts of the OCED-MMBase Model and the extensions
in the OCED-MM Full Model and OCEL 2.0,

before the proposal can enter a formal standardization process.

In order to facilitate this clarification and pave the way towards standard-
ization, the OCED working group concluded to:

1. derive a minimal OCED-MM Core Model which lies at the intersection of
all prior proposals and implementations while supporting all essential core
concepts, and

2. clarify towards the community the lessons learned and open challenges in
extending this OCED-MM Core Model to more expressive OCED models
and their implementation.

The remainder of this document presents the results of these efforts and dis-
cussions. Section 3 describes the OCED-MM Core Model. Section 4 details the
challenges in implementing and extending the OCED-MM Core Model. Section 5
summarizes the lessons learned of implementing OCED in the independent im-
plementations.

3 OCED Meta-Model - Core Model

The OCED-MM Core Model shown in Fig. 1 is the simplest17 model for object-
centric event data that the OCED working group could identify. Section 3.1
describes the model which is illustrated by an example in Section 3.2. Sec-
tion 3.3 highlights non-trivial aspects in the interpretation of the object concept
in OCED.

Section 3.4 lists the known limitations of this minimal model, also highlight-
ing the interests of the process mining community for more expressivity in an
OCED model.

17 in terms of number of concepts and relations included in the model

Towards Simple and Extensible OCED 7

eventevent
type

event
attribute

object
attribute
value

event
attribute
value

object

1

1

1

*

* *

qualifier

time

*

1

*

1

object
attribute

object
type

1

1..* 11..*

1..* 1..*

◄ observed at

◄ value of

instance of ►

value of ►

A B

relation
type

*
*C

◄ instance of observes ►

◄

h
a
s

◄

h
a
s

object
relation ►

Fig. 1. OCED-MM Core Model

3.1 Core Model Concepts

In order to present the OCED-MM Core Model concepts in manageable chunks,
Figure 1 is structured into three groups highlighted in blue.

– Group A describes events, associated attributes and the time construct,
which can be closely related to the XES standard [21] and many non-object
centric process mining solutions in the market.

– Group B describes the objects, associated attributes, as well as object rela-
tions. Inclusion of these concepts directly stems from real-world requirements
collected during the development of the proposal, see Sect. 2.

– Group C connects the concepts of events and objects in groups A and B.

Events. Starting with Group A, the following event-centric concepts are cap-
tured.

1. event —An event describes the occurrence of an observable phenomenon. An
event is atomic, meaning it refers to an observation taking place at exactly one
point in time rather than having a duration. Every event has, viz. is instance
of, exactly one event type (e.g., [purchase order approved] ; captured as string).
It denotes the kind of observation described by the event. In most use cases, the
event type is the process activity that was performed, though other types of ob-
servations can be described as well (e.g., sensor recordings). Each defined event

type has at least one event that instantiates it (e.g., [purchase order approved]
was observed in at least one event [purchase order ID#298374 approved]).

8 Fahland, Montali, Lebherz et al.

2. time — Time describes the moment in time where the event has been
observed at. It captures both a timestamp conforming to ISO 8601-1:2019 and
its resolution (ref. to the precision in which the timestamp was recorded). At a
minimum, the following precisions are to be differentiated: date, hour, minute,
second, millisecond. If the time zone is omitted, all timestamps are treated
as UTC. While the meta-model does not prescribe a method to represent the
timestamp-resolution-pair, the ISO standard 8601-2:2019 proposes uncertainty
classifiers as a way to store both components in one string.

3. event attribute value — Each event has an arbitrary number of event

attribute values (e.g., [USD] and/or [Emirates Airlines]) and corresponding
event attribute names (e.g., [transaction currency] and/or [merchant name])
further describing the observation captured by the event as attribute-value pairs
(e.g., [transaction currency] = [USD] and/or [merchant name] = [Emirates Air-
lines]). Each event attribute value is captured as string, boolean, integer,
real, date, time or timestamp (the latter three in accordance with ISO 8601-
1:2019). Each event attribute value is related to exactly one event (i.e., if two
different events have attributes with the same value, then each event has its
“own copy” of the value). Each defined event attribute name relates to at least
one event attribute value (e.g., [user type] = [manual] or [RPA] or [automated]),
and every event attribute value is value of exactly one event attribute name
(i.e., if two different attributes have the same value, then each attribute name
has its “own copy” of the value). Some information is typically represented with
value-unit-pairs (e.g., price and currency) describing parts of the same logically
connected information. In such cases, it is good practice to indicate their relation
by choosing the unit’s event attribute name as the value’s event attribute name
suffixed with “ unit” (e.g., [price] = [48.76] and [price unit] = [USD]). Please
note that this convention is not prescribed by the meta-model.

Objects and Relations. In Group B, the following object-centric concepts are
captured:

4. object —An object either represents something tangible or abstract. Exam-
ples of tangible objects are persons, locations, machines, documents, document
line items. Examples of abstract objects are legal entities, organizational con-
structs, and electronic documents. To represent objects in accordance with the
model, it is not required to classify them into either of the two. Every object
has exactly one object type (e.g., [sales order] ; captured as string), while each
defined object type relates to at least one object (e.g., [sales order ID#12345]).

5. object attribute value — Each object has an arbitrary number of object
attribute values (e.g., [blue] and/or [1897]) and corresponding object attribute

names (e.g., [color variant] and/or [weight]) further describing the object as
attribute-value pairs (e.g., [color variant] = [blue] and/or [weight] = [1897]).

Towards Simple and Extensible OCED 9

Each object attribute value is captured as string, boolean, integer, real,
date, time or timestamp (the latter three in accordance with ISO 8601-1:2019).
Nested object attribute values are not supported. Each object attribute value

is related to exactly one object (i.e., if two objects have the same attribute value,
then each object has its “own copy” of this value). Every object attribute value is
value of exactly one object attribute name, while each defined object attribute
name relates to at least one object attribute value (i.e., if two different attributes
have the same value, then each attribute name has its “own copy” of the value).
Some information is typically represented with value-unit-pairs describing parts
of the same logical information. In such cases, it is good practice to indicate
their relation by choosing the unit’s object attribute name as the value’s object
attribute name suffixed with “ unit” (e.g., [weight] = [1897] and [weight unit]
= [kg]). Please note that this convention is not prescribed by the meta-model.

6. object relation — An object relation represents a link between a pair of
objects and is represented as as directed relationship from one object (reflecting
the relation’s origin) pointing to one object (reflecting the relation’s target).
Every object relation has exactly one object relation type (e.g., purchase order
line items being related to their parent purchase order ; their object relation
type is [child of] ; captured as string). Possible relation types are CHILD OF and
PARENT OF) but these are not prescribed by the core model and additional object
relation types can be introduced as part of the data capture and used to reflect
semantics of the relation.

Event-to-Object Relations. In Group C, events and objects are connected.

7. observes relation from events to objects — In an object-centric setting,
an event not only observes an activity, viz. event type, but also explicitly
observes (changes to) objects. An event and an object can be related in a
qualified (i.e., association class) manner, meaning their type of relationship is
denoted. Possible qualifiers are CREATE, MODIFY and DELETE but these are not
prescribed by the core model and additional qualifiers can be introduced as part
of the data capture and used to reflect the semantics of the relationship. Each
object can be observed by an arbitrary number of events, while each event can
observe an arbitrary number of objects. This means there can be events without
objects and vice-versa.

3.2 Example

The following shall exemplify how the core meta-model can be applied. For
this, real-world scenarios in the context of a purchase-to-pay process have been
selected.

10 Fahland, Montali, Lebherz et al.

A) PO creation — A purchase order document is created. In this context we
focus on the PO header information only. Hence a PO object is created alongside
a number of object attributes. For simplicity we solely present the PO’s release
status, which is created as non-released. The respective values are marked with
red font in Figure 2, sparing unused parts of the meta-model.

event
[ID#99825]

event
type

[PO created]

object
attribute
value

[]

object
[ID#4289]

qualifier
[CREATE]

time
[20220601

22:00:43.000]

object
attribute

name
[release status]

object
type
[PO]

◄ observed at

◄ instance of

observes ►

instance of ►

value of ►

◄

h
a
s

Fig. 2. Example Scenario A - PO created

B) PO release — The purchase order is released. Data-wise this is reflected
in an updated release status. The object itself does not change, but its object
attribute value does. Please refer to Figure 3 for details.

C) Invoice Receipt — An invoice is received in relation to the PO created
in scenario A. The invoice, one of its invoice line items, as well as their object
relation get recorded. Another object relation is recorded for the link to the
PO. Further PO details (i.e., object attribute values) of the purchase order are
omitted in Figure 4 since they do not change. As per standard practice this
invoice gets recorded with an active payment block. Since this object attribute
value is associated to the invoice (header), it implicitly applies to its children,
i.e., invoice line items, as well.

Towards Simple and Extensible OCED 11

event
[ID#37562]

event
type

[PO released]

object
attribute
value

[X]

object
[ID#4289]

qualifier
[MODIFY]

time
[20220603

09:10:15.000]

object
attribute

name
[release status]

object
type
[PO]

◄ observed at

◄ instance of

observes ►

instance of ►

value of ►

◄

h
a
s

Fig. 3. Example Scenario B - PO released

event
[ID#75121]

event
type

[Invoice receipt]

object
attribute
value

[X]

object
[ID#8990]

qualifier
[CREATE]

time
[20220702

14:21:57.000]

object
attribute

name
[payment block]

object
type

[invoice]

object
[ID#777524]

object
[ID#4289]

object
type
[PO]

object
type

[invoice line item]

◄ observed at

◄ instance of

observes ►

instance of ►

value of ►

◄

h
a
s

instance of ►◄ instance of

o
b
j
e
c
t

r
e
l
a
t
i
o
n

►

o
b
j
e
c
t

r
e
l
a
t
i
o
n
 ►

relation
type

[CHILD_OF]

relation
type

[]

Fig. 4. Example Scenario C - Invoice receipt

12 Fahland, Montali, Lebherz et al.

3.3 Baseline Interpretation of OCED

In OCED, events and objects have distinct roles: an event describes an observa-
tion in time18, whereas an object describes a tangible or abstract entity that is
observed (i.e., via the qualified observes relationship).

– Each object needs a unique object identifier that events and relations can
refer to.

– Likewise, each event needs a unique event identifier that objects can refer
to, but only events carry a timestamp.

– Attributes are “owned” by their parent concept (object, event) and thus
should always be represented/serialized as children of their parent concept
that do not carry their own identifier.

– Relations in the OCED-MM Core Model are not distinct entities carrying
their own identifier; see Sect. 3.4.

The current OCED-MM Core Model allows some room for interpreting these
concepts. The following is a “minimal” baseline interpretation of the concepts
that can be understood as the basis for OCED and all further extensions.

– In an OCED instance (i.e., a concrete dataset), each object, relation, and
attribute is represented once, describing a single state or static view on all
objects, relations, and attributes at an unspecified point in time. This could
be the state of all objects, relations, and attributes at the time of extraction
of the data, but this is subject to how the source system provides the data and
the type of extraction. Therefore, the OCED Core Model does not enforce
this interpretation.

– An observes relation from an event e to an object o is essentially only a
reference of e to the identifier of o denoting that e observed or operated on o
but not denoting what of o has been observed or changed or in which state
o has been.

– In this representation, the semantics of the event e wrt. o, i.e., what e did
with o, lies in the qualifier of the observes relation, e.g., CREATE or a
domain-specific qualifier, and in domain-knowledge about e, e.g., the event‘s
type being [Create Order] or [Change Price] or [Re-assign flight].

Figure 5 visualizes this baseline interpretation on an OCED instance that com-
bines all three scenarios A-C from Sect. 3.2. Note that this representation shows
the latest value of attribute release status of the PO object (after PO re-
leased), but not its initial value (before PO released occured). While this baseline
interpretation limits which process dynamics OCED can describe without fur-
ther domain knowledge, it arguably contains the minimum requirements for all
interpretations of OCED:

– each object, relation, attribute is described,

18 While most events describe observations recorded in the past, an event may also
describe a “future observation” such as a due date of an invoice

Towards Simple and Extensible OCED 13

event
[ID#99825]

event
type

[PO created]

object
attribute
value

[X]

object
[ID#4289]

qualifier
[CREATE]time

[20220601
22:00:43.000]

object
attribute

name
[release status]

object
type
[PO]

◄ observed at

◄ instance of

observes ►

instance of ►

value of ►

◄

h
a
s

event
[ID#37562]

event
type

[PO released]
qualifier
[MODIFY]

time
[20220603

09:10:15.000]
◄ observed at

◄ instance of

observes ►

event
[ID#75121]

event
type

[Invoice receipt]

object
attribute
value

[X]

object
[ID#8990]

qualifier
[CREATE]

time
[20220702

14:21:57.000]

object
attribute

name
[payment block]

object
type

[invoice]

object
[ID#777524]

object
type

[invoice line item]

◄ observed at

◄ instance of

observes ►

instance of ►

value of ►

◄

h
a
s

instance of ►

o
b
j
e
c
t

r
e
l
a
t
i
o
n

►

o
b
j
e
c
t

r
e
l
a
t
i
o
n

►

relation
type

[CHILD_OF]

relation
type

[]

Fig. 5. Baseline representation and interpretation of the Scenarios A-C in a single
OCED instance

14 Fahland, Montali, Lebherz et al.

– each event is described,

– the existence of relations between events and objects is stated

in the minimum required form allowing usage and extension in a variety of use
cases.

Note that the OCED-MM Core Model does not prescribe this baseline inter-
pretation, e.g., it does not prescribe that an object is only represented once in the
data or that event semantics must be deferred to domain knowledge. However,
richer representations and interpretations of data – such as also describing the
different values of the release status attribute – require more care and consensus
as discussed next.

3.4 Known Limitations

The meta-model shall be kept as simple as possible, while retaining relevance
in industry and academia. This implies that there are some known limitations
(and corresponding workarounds) that are also further discussed in Sect. 4:

1. Event atomicity & no relations between events — An event is atomic
(i.e has exactly one timestamp) and it is not possible to directly relate events
to each other, hence, amongst others, causality relations, activities with both
a start and end event and partial orders cannot be stored explicitly; see
Sect. 4.6.

2. No complex attribute values — The data type of any event attribute
value and object attribute value are consistent throughout the whole model,
i.e., all values of the same attribute name can only be of type string, boolean,
integer, real, date, time or timestamp (date, time and timestamp in ac-
cordance with ISO 8601-1:2019). Complex (or nested) data types are not
supported. This affects representing complex values as well as how units of
numeric values are stored; see Sect. 4.5.

3. Limited semantics — Events, object types, and object and event attribute
values may carry semantics specific to selected domains. It is encouraged to
establish such conventions, however these are not enforced by the meta-
model.

4. Binary object relations — Object relations in the meta-model are di-
rected and binary. Even though some of the relationships in real life are
tertiary or of higher order, such relationships are less frequent; see Sect. 4.4.

5. Ambiguous representation of object relations—The meta-model does
not prohibit object attributes to store references to other objects, allowing
ambiguous and inconsistent representations of object relations, see Sect. 4.3.

6. Relations are identified by their objects — Object relations are defined
by their source and target object and their type. While this is sufficient for
expressing static data models, i.e., where object relations do not change,
changes to object relations (creation, modification, deletion) are not unam-
biguously expressible, see Sect. 4.4.

Towards Simple and Extensible OCED 15

7. Limited types and no data schema — Each concept (event, object,
object relation, attribute) has a type, but these types are not related to
each other and some domains may ascribe more than one type to them, see
Sect. 4.7.

8. Meta-model vs. reference implementations — The meta-model does
not prescribe how things are stored or syntactically represented. For example,
there may be one table per event type and one table per object type. The
qualified relations may also correspond to tables. Things will be typed, but
this is outside the scope of the meta-model and needs to be detailed for
reference implementations of this meta-model.

4 Challenges in Standardizing and Extending OCED

Consistent interpretation between producers and consumers. The OCED-
MM Core Model presented in Sect. 3 outlines the core concepts for represent-
ing object-centric event data for exchange and storage. Adoption of OCED in
practice is subject to it fulfilling a role as intermediary between data producers
(e.g., source systems, ETL solutions) and data consumers (e.g., process mining
algorithms, tools, and solutions) for a variety of use cases. Thereby, a standard-
ized OCED format has to codify to both producers and consumers how various
aspects of object-centric event data are to be represented and how various repre-
sentations of object-centric event data are to be interpreted – ultimately allowing
a producer to provide a serialization of OCED that a consumer can unambigu-
ously interpret.

Transport vs. storage vs. analysis. The large variety of forms in which ob-
ject, relations, and event data are stored in source systems, as well as the broad
range of analysis use cases pose a series of challenges for standardizing repre-
sentation and interpretation of OCED. Further, process mining tools consuming
OCED must implement OCED-compliant data structures that internally model
object-centric event data suitable for querying and algorithms. OCED for data
exchange may prioritize fewer concepts to reduce storage footprints (e.g., relying
on implicit semantics and conventions). Instead, OCED for storage, querying,
or algorithms may prefer more explicit representations using more concepts to
improve performance and functionality.

The following sections detail these challenges and also outline how extending
the core model introduces further sources of ambiguities that can be resolved
through agreeing on conventions in representing and interpreting OCED.

4.1 Interpreting and Representing Objects over Time

An essential contribution of OCED is the ability to express how events relate to
and operate on objects over time. If observed objects change over time, OCED
needs a concept to describe changes to objects over time and how different ob-
servations of the same object are related to each other. For instance, in Fig. 2

16 Fahland, Montali, Lebherz et al.

and Fig. 3, PO object ID#4829 changes the value for attribute release status
from [] to [X].

Event attributes. A basic possibility is to encode changes in object attribute
value changes as attributes of the event performing the change, e.g., by includ-
ing event attributes [release status old] and [release status new]. However, this
encoding requires consistent interpretation of event attribute names and cannot
reliably describe value changes of multiple objects observed by an event.

Static objects and attribute values changes. A more reliable possibility
is to interpret an object as a static description of the entire object (e.g., its
full representation at the moment of extraction) while historic changes to the
object are represented elsewhere, e.g., in a series of timestamped attribute values
that is proposed as an extension to OCED in OCEL2.0 and further discussed in
Sect. 4.7).

Object snapshots. Alternatively, one could interpret the concepts in Group B
of Fig. 1 not as a static, singular observation of objects, attributes, and relations,
but allow the same object o to be observed repeatedly (in different states).
In this interpretation, the same tangible or abstract entity o can be observed
multiple times. Each such observation of o is represented as an object that is
interpreted as a “snapshot” of o. The observes relation then describes that an
event observes a specific “snapshot” of o. This idea extends to the attributes
and relations associated with o alike.

Figure 6 illustrates such a “snapshot”-based representation of the events and
objects of Figures 2, 3, and 4 of the example in Sect. 3.2 together.

If such an interpretation is assumed, the following considerations arise:

– Multiple “snapshots” of the same object o must be relatable to each other.
For instance, through an immutable object attribute that uniquely iden-
tifies the object (e.g., [POid], [InvoiceID], and [InvoiceLineID] in Fig. 6) and
all “snapshots” of o carry the same value (e.g., [POId=#4829]).

– At the same time, object identifiers no longer identify objects but snapshots
(e.g., #4289-1 and #4289-2 are different snapshots of the same PO object).

– The moments in time where an object “snapshot” has been observed is de-
scribed through the events that observe the snapshot; the same snapshot can
be observed an arbitrary number of times, i.e., referred to from an arbitrary
number of events.

– An object “snapshot” is not required to enumerate all object attributes but
only those that are relevant for the observation or event, i.e., typically the
changed attribute values.

– An object “snapshot” observed by an event itself may be “empty”, i.e., it
only contains the object identifier but no other object attributes etc. For
example, when an event observes an object but does not change any of its
attribute values (e.g., the event of a user loading a website).

Towards Simple and Extensible OCED 17

event
[ID#99825]

event
type

[PO created]

object
attribute
value

[X]

object
[ID#4289-2]

qualifier
[CREATE]

time
[20220601

22:00:43.000]

object
attribute

name
[release status]

object
type
[PO]

◄ observed at

◄ instance of

observes ►

instance of ►

value of ►

◄

h
a
s

event
[ID#37562]

event
type

[PO released]
qualifier
[MODIFY]

time
[20220603

09:10:15.000]
◄ observed at

◄ instance of

observes ►

event
[ID#75121]

event
type

[Invoice receipt]

object
attribute
value

[X]

object
[ID#8990-1]

qualifier
[CREATE]

time
[20220702

14:21:57.000]

object
attribute

name
[payment block]

object
type

[invoice]

object
[ID#777524-1]

object
type

[invoice line item]

◄ observed at

◄ instance of

observes ►

instance of ►

value of ►

◄

h
a
s

instance of ►

o
b
j
e
c
t

r
e
l
a
t
i
o
n

►

o
b
j
e
c
t

r
e
l
a
t
i
o
n

►

relation
type

[CHILD_OF]

relation
type

[]

object
attribute
value

[]

object
[ID#4289-1]

object
attribute

name
[release status]

object
type
[PO]

instance of ►

value of ►

◄

h
a
s

object
attribute
value
[#4829]

object
attribute

name
[POid]

value of ►

object
attribute
value
[#4829]

object
attribute

name
[POid]

value of ►

object
attribute
value
[#8990]

object
attribute

name
[InvoiceID]

value of ►

object
attribute
value

[#777524]

object
attribute

name
[InvoiceLineID]

value of ►

◄

h
a
s

Fig. 6. Snapshot interpretation of the example of Sect. 3.2

18 Fahland, Montali, Lebherz et al.

– Conversely, each object “snapshot” theoretically could be a complete rep-
resentation of the entire object every time it is observed. While the OCED
concepts do not dictate otherwise, common sense will render this approach
non-viable given the storage footprint.

– This interpretation also includes (and hence generalizes) the minimal inter-
pretation of OCED in Sect. 3.3: there is one “full snapshot” for each object
that events can observe.

With these considerations in mind, Figure 6 describes the creation of a PO ob-
ject with [POid=#4829] and attribute [release status = []] at time 2022-06-01
22:00:43.000 ; the subsequent PO release event changes the PO ’s attribute to
[release status = X] at time 2022-06-03 09:10:15.000. The later Invoice receipt
event at time 2022-07-02 14:21:57.000 creates an Invoice object with [InvoiceID
= #8990] and [payment block = X] having an Invoice Line Item with Invoice-
LineID = #777524. At this time (2022-07-02 14:21:57.000), Invoice #8990 is
related to PO #4829 (in its most recently observed state).

Conclusion. The OCED-MM Core Model described in Sect. 3 does not pre-
scribe how to interpret an object allowing to use it also to describe auxiliary
and proxy objects as discussed in Sect. 4.4, 4.5, 4.6. Thus, a snapshot interpre-
tation of an object is possible. However, the baseline interpretation of an object

describing the object is arguably less ambiguous and complex in comparison.
Generally, describing changes to an object over time either requires an exten-

sion of the OCED model, i.e., timestamped attribute values, or a more involved
interpretation of the object concept. Notably, different use cases may require
different choices.

4.2 Semantics for Qualifiers and Relation Types

OCED allows to qualify the observes relation and giving a relation type to an
object relation. The purpose of defining qualifiers and relations is to provide
semantics to events and object relations that allow consistent interpretation of
object-centric event data across various tools and solutions. For this purpose,
it is beneficial to agree on a set of qualifiers and relation types with agreed on
semantics.

Agreeing on standard qualifiers and relation types. Suggested qualifiers
that are likely to occur in most use cases are CREATE, MODIFY, and DELETE,
while suggested object relation types that are likely to occur in most use cases
are CHILD OF and PARENT OF). The following semantics have been proposed for
these in the past.

Agreeing on standard qualifier semantics. Agreeing on qualifiers allows to
agree on how to interpret how an event changes objects and associated relations.

Towards Simple and Extensible OCED 19

For instance, the semantics of a CREATE or DELETE qualifier on an observes rela-
tion between an event and an object implicitly extends to object relations

the object can be interpreted as follows:

1. Any object relation, if not created explicitly (i.e., after both objects are
in existence), is created implicitly with the CREATE of the second object.

2. Any object relation, if not deleted explicitly (i.e., while both objects
are remaining in existence), is deleted implicitly with the DELETE of either
object.

For example, applying this interpretation on Fig. 4 and Fig. 6 implies that the
relation from Invoice #8990 to PO #4829 is implicitly created by event Invoice
receipt at time 2022-07-02 14:21:57.000. Agreeing on such an interpretation
allows to omit further observes relations between the event and other objects.

Standard relation type semantics wrt. qualifiers. Likewise, agreeing on
the semantics of relation types allows more extensive interpretations of events.
For instance, CHILD OF defines an object relationship, in which an arbitrary
number of child objects are related to exactly one parent object (N:1); the
opposite applies to PARENT OF. The predefined object relation types (CHILD OF,
PARENT OF) result in further implicit semantics between objects and events:

1. When a child object gets DELETEd by an event, its object relation to
the parent object is deleted in unison, however, the parent object itself is
not affected.

2. When a child object gets CREATEd by an event, its object relation to
the parent object is created in unison, however, the parent object itself is
not affected.

3. When a parent object gets DELETEd by an event, all its child objects and
their object relations to the parent are deleted in unison.

4. When a parent object gets CREATEd, its initial child objects (i.e., the ones
without a dedicated related CREATE event) are created in unison (e.g., when
a purchase order is created with ten line items, solely the purchase order ’s
link to the event needs to be captured).

For example, applying this interpretation on Fig. 4 and Fig. 6 implies that Invoice
Line Item #777524 is implicitly created as a CHILD OF Invoice #8990 by
event Invoice receipt at time 2022-07-02 14:21:57.000.

Assigning such semantics allows to omit certain relations in the data, espe-
cially the observes relations from events to a large set of objects, reducing the
data footprint for transmission and storage, while allowing the omitted relations
(and event semantics) to be unambiguously reconstructed.

4.3 Relations between Objects

In the core model, the object relation from object to object only models
the existence of a relation of a particular type between two objects. The relation

20 Fahland, Montali, Lebherz et al.

itself does not bear19 any identifier and thus cannot be referred to. Any object

relation is implicitly and uniquely identified by the pair (source object, target
object) while relation type is only a qualifier for the relation, i.e., describes
the nature of the pair (source object, target object).

A strict interpretation of this concept allows that two objects are related by
at most one kind of relation, but two objects may not be related in two different
ways. For example, assume [Order o] is owned by [Person p], and also [Order o]
has been issued by the same [Person p]. The OCED-MM Core Model can only
represent the binary relation (p, o) –which can exist only once – and qualifies it,
either by “owned by” or by “issued by”. Most source systems do not have this
restriction and identify a relation by the triple (source object, target object,
relation type). This challenge has to be addressed through conventions or
extensions of OCED, e.g., materializing relations as objects (see Sect. 4.4).

Independently of this uniqueness constraint, further aspects of relations have
to be considered. While the OCED meta-model shall be decoupled from any
particular storage format (see Sect. 2), general constraints of serializing OCED in
a representation for storage to data exchange need to be considered. Specifically
wrt. relations, implementations of OCED have to be aware of the following
considerations.

Serializing References. When serializing any actual instance of OCED, an
object relation can be serialized as follows:

– As an explicit triple (source, target, type). However, a relation in such a
representation is inherently “static”, i.e., it denotes that such a relation
exists between the source and target object but no event can refer to such
a tuple to express changes to the relation. Sect. 3.1 discusses in which cases
the semantics of observing CREATE or DELETE of an object implies creation
and deletion of associated object relations. But OCED cannot express,
for instance, changes to relations due to MODIFY events (e.g., reassigning
a [package] object from one [delivery] object to another [delivery] object).
Expressing such dynamics requires to “objectify” the relation, see Sect. 4.4.

– As an implicit triple stored as attribute at one of the objects, i.e., similar
to a foreign-key attribute, an object attribute (both, name and value) is
explicitly marked as “reference attribute” of the source object having as

• object attribute name the relation type

• object attribute value the identifier of the target object (see Sect. 3.3).

Thereby, usual principles of data serialization apply.

19 While strictly speaking the relation may have a technical identifier, the relation is
already fully identified by the pair of source and target node. This is due to a non-
trivial and relevant detail of conceptual modeling: a conceptual model as in Fig. 1
describes a family of graphs. Concepts describe the allowed nodes, relations describe
the allowed edges that may be present between two nodes in this graph, i.e., pairs of
nodes. As such there cannot be two distinct edges between the same pair of nodes.

Towards Simple and Extensible OCED 21

• Serializing a 1:N relation, requires the objects at the N-side to store the
reference attribute to the object at the 1-side20.

• An N:M relation cannot be serialized in this way, but requires either
storage of all relations as triples or reification of the relation into an
object (Sect. 4.4).

Reference Attributes vs Relations: Source of Potential Inconsisten-
cies. The alternative forms for serializing object relations described above is a
source of potential inconsistencies in OCED instances that any implementation
of OCED (both producers and consumers of OCED) have to address:

1. Source data may contain object attributes which explicitly or implicitly refer
to other objects, i.e., model relations. In OCED these should either by fully
expressed and serialized in the way object relations are serialized, or the
object reference attribute and the relation must state the same values (i.e.,
there are no two conflicting descriptions of a relation).

2. Attributes not marked as relation references must not be interpreted as re-
lation references.

Events referring to multiple objects. Also events can be a source of in-
consistency in relations. Events referring to multiple objects may (implicitly)
suggest relations between these objects that are not explicitly represented in
the data. Consider the following example: “Event [#e17 Clear Invoice] observes
object [Payment P1] and objects [Invoice I1] and [Invoice I2]”, i.e., payment
P1 is used to clear Invoices I1 and I2. Depending on the semantics of the event
and the involved objects, this may constitute a relation between P1 and I1 and
between P1 and I2. The current OCED-MM Core Model does not state whether
these relations also have to be described and whether any integrity constraints
between object relations and objects observed together at events apply.

Future developments of OCED must provide clear conventions to producers
and consumers of OCED wrt. implicit and explicitly represented relations.

4.4 Relations as Objects

In the OCED-MM Core Model, only objects and events are required to be
uniquely identified, allowing to describe how objects change over time (see Sect. 3.3
for the associated interpretations and design decisions and Sect. 4.1 for describ-
ing changes of objects over time).

Changes to object relations. As object relations do not carry identifiers, the
OCED-MM Core Model is limited wrt. describing how object relations change
over time.

For example, suppose an OCED instance records

20 Storing a reference to N objects at the 1-side would violate the requirement that
attribute values do not have complex structures in themselves

22 Fahland, Montali, Lebherz et al.

– objects [student S], [supervisor M], and [supervisor D],

– an event e1 observing [student S] with a [supervises] relation to [supervisor
M], and

– a second event e2 observing [student S] with a [supervises] relation to [su-
pervisor D].

It is not possible to conclude whether the supervisor of student S changed from
M to D, and that the prior relation from S to M no longer holds. It may be
equally possible that M and D both supervise S but no single event observes
this, or that M and D alternate supervision.

Generally, an event e observing an object o1 with a relation R to an object
o2 only states that, at the moment of e, the relation R from o1 to o2 has been
“observed”. No further interpretation is possible: Observing the relation R from
o1 to o2 by event e for the first time does not imply that it has been created at
that point. Neither does observing it by event e for the last time imply that is
has been deleted.

Usage pattern or explicit extension. Reliably and unambiguously tracking
object relation across multiple observations in time requires to assign identifiers
to object relations. This was proposed in the OCED-MM Full Model (see Sect. A)
but can also be achieved within the OCED-MM Core Model by materializing
(also called reifying) an object relation (source, target, T) into an object on its
own. In other words, by introducing an “artificial” object R of type T that has a
from and a to relation to the source and target objects, see Fig. 9. This artificial
relation object now carries an identifier and can be explicitly observed by events
through qualified relations.

Note that materializing a relation is a potential source of inconsistencies and
ambiguities in OCED, see Sect. 4.8.

4.5 Attributes as Objects

Object attributes are limited to basic types and are not required to carry an
identifier.

Complex data types. Use cases that require to represent complex data types
can do this by introducing a proxy object which in turn can have a collection of
object attributes (or refer to further objects). For example, an attribute repre-
senting a numeric value and a unit can be stored as a proxy object containing
solely the numeric value and the unit (as text) and then be related to the orig-
inal object. Alternatively, such compound values can be represented through a
collection of object attributes with consistent naming conventions, e.g., price
and price unit.

Towards Simple and Extensible OCED 23

Object attribute changes. Some use cases require expressing that an event
operated on a specific object attribute or in which way.

In some cases, naming conventions for object attributes can help express
the semantics of an event with respect to object attributes. For instance, if
an event [Price Change] changed attribute [price] of object [Order#17], then
naming conventions for event attributes can help expressing the semantics
of an event without the need for creating proxy objects, e.g., [price old] and
[price new].

However, it may be inconvenient to represent a series of multiple attribute-
value changes of an object in this way as one rather wants to express that
the event directly (and only) operated on the particular attribute. This either
requires extending OCED, see (Sect. 4.7) or materializing attributes as objects.
That is, turn a particular attribute of an object o into a uniquely identifiable
object A that in itself carries the value as an attribute-value pair. Then, events
can explicitly refer to A through different qualified relations.

Fine-grained semantics. Also, there may be use cases requiring to express
event semantics on a more fine-grained level, e.g., when (as a result of more
complex database transaction) an event e is, both, READ-ing an attribute a of an
object o, DELETE-ing o, and CREATE-ing another object o2 whose values depend
on a. Also, in this case, materializing the attribute as an object A would allow
to express the semantics of e.

Note that materializing an object attribute is a potential source of inconsis-
tencies and ambiguities in OCED, see Sect. 4.8.

4.6 Other Process Concepts as Objects

Further limitations of the OCED-MM Core Model (listed in Sect. 3.4) can be
addressed through introducing artificial objects.

Events may be indirectly related through shared (abstract) objects, however
such semantics are not prescribed by the meta-model. Examples:

– duration of an activity can be achieved through an (abstract) proxy object
linking to exactly two events: start and end,

– transaction types can be represented through an (abstract) proxy object link-
ing to multiple events (e.g., [scheduled], [started], [completed], [archived]),
or

– grouping of events can be achieved through an (abstract) proxy object linking
to multiple events (i.e., groups of events).

The limitation of non-complex data types can be overcome by defining (ab-
stract) proxy objects that are related to the main object via an object relation
(e.g., CHILD OF). With object attribute values of the child objects, nesting can
be mimicked.

While the OCED-MM Core Model supports the creation of artificial objects
and proxy objects to describe more complex structures in event data and objects,

24 Fahland, Montali, Lebherz et al.

clear conventions must be established to ensure interoperability between OCED
producers and consumers. For instance, in case a proxy object A relates multiple
events e1, . . . , ek to each other to describe a long running activity operating on
several objects o1, . . . , ol, can each event ei refer to any object oj , or do all events
refer to all objects, or may only e1 or ek refer them, etc.?

4.7 Strict OCED extensions

Timestamped Attribute Values. Events are considered atomic and have a
timestamp. Therefore, event attributes are fixed. Objects may evolve over time
and be involved in multiple events. Therefore, object attributes may change as
illustrated in Sect. 3.2 in Fig. 2 and Fig. 3. The baseline interpretation of the
OCED-MM Core Model cannot describe such changes as explained in Sect. 4.1

One possible way to handle this is to extend object attributes with a times-
tamp. OCEL 2.0 supports so-called dynamic attribute values that can change
over time [5,14]. Instead of having a single, fixed value, an object attribute may
have a value that changes over time. The smallest timestamp in OCEL 2.0 is
1970-01-01 00:00 UTC. This is the default time of an attribute value. Later val-
ues for the same attribute should be seen as updates. For example, if an object
attribute weight has a value of 80 kilograms with timestamp 2023-01-01 00:00
UTC, a value of 90 kilograms with timestamp 2024-01-01 00:00 UTC, and a
value of 85 kilograms with timestamp 2025-01-01 00:00 UTC, then the weight
of the object is assumed to be 80 kilograms throughout the year 2023 and 90
kilograms throughout the year 2024. The timestamps may coincide with the
timestamps of events, allowing for some form of event correlation. However, this
is not mandatory.

Figure 7 illustrates this extension by extending the baseline interpretation
of the running example in Fig. 5 with timestamped attributes values: the PO
object now has two object attribute values for the object attribute re-
lease status. Value [] has been observed at time 2002-06-01 22:00:43.000 while
value [X] has been observed at time 2002-06-03 09:10:15.000. Together, they
describe that and when the attribute value changed, which is not described in the
baseline interpretation in Fig. 5. Note that while these timestamps coincide with
timestamps of the event creating and releasing the PO, and thereby implicitly
are correlated with them, this correlation is not mandatory.

Data Schemas. The OCED-MM Core Model describes the existence of type in-
formation for events and event attributes, and for objects and object attributes,
but does not describe relations between event type and event attribute and
object type and object attribute. It also does not allow to express which
types of object relations may exist between which object types. Such in-
formation, typically documented in a data schema, informs tools about which
attributes are reliably present in all instances of a particular event or object,
allowing algorithms and statistics to draw on them. Further, object, events, and
relations may in practice carry more than one type, for instance when expressing

Towards Simple and Extensible OCED 25

event
[ID#99825]

event
type

[PO created]

object
attribute
value

[X]

object
[ID#4289]

qualifier
[CREATE]

time
[20220601

22:00:43.000]

object
attribute

name
[release status]

object
type
[PO]

◄ observed at

◄ instance of

observes ►

instance of ►

value
of ►

h
a
s
 ►

event
[ID#37562]

event
type

[PO released]

qualifier
[MODIFY]

time
[20220603

09:10:15.000]
◄ observed at

◄ instance of

ob
se
rv
es
 ►

event
[ID#75121]

event
type

[Invoice receipt]

object
attribute
value

[X]

object
[ID#8990]

qualifier
[CREATE]

time
[20220702

14:21:57.000]

object
attribute

name
[payment block]

object
type

[invoice]

object
[ID#777524]

object
type

[invoice line item]

◄ observed at

◄ instance of

observes ►

instance of ►

value of ►

◄

h
a
s

instance of ►

o
b
j
e
c
t

r
e
l
a
t
i
o
n

►

o
b
j
e
c
t

r
e
l
a
t
i
o
n

►

relation
type

[CHILD_OF]

relation
type

[]

object
attribute
value

[]

time
[20220601

22:00:43.000]

time
[20220603

09:10:15.000]

observed at ►

observed at ►

value of ►

Fig. 7. Running Example with OCEL 2.0 timestamped attribute values

26 Fahland, Montali, Lebherz et al.

generalization and specialization or when describing different functions of them
(e.g., a specific employee can be a resource as well as a role).

Data schemas cannot be expressed through (repurposing) existing concepts of
the OCED-MM Core Model and requires a true extension. Two such extensions
have been explored in OCED implementations (see Sect. 5).

– OCEL 2.0 allows for the specification of the possible event attributes per
event type and the possible object attributes per object type. This is
also reflected in the OCEL 2.0 meta-model.

– The OCED-PG implementation [18] (cf., Sect. 5.3) of OCED argues that any
instance of OCED has to be accompanied by an OCED-compliant domain-
specific schema of the data. This schema should specify the specific types
of objects, relations, and events present in the data and how they are re-
lated to each other. Similar to OCEL 2.0, OCED-PG extends the OCED
Meta-Model to also specify attributes of objects and events, but also in-
cludes relations. The extended OCED Meta-Model can then be refined into
a domain-specific OCED-compliant schema. But current implementations do
not support checking consistency of an OCED instance to a given schema.

4.8 Cycles and Ambiguity through Extensions

Materializing relations or attributes in artificial objects introduces cycles in the
data model that involve the observed relation between events and objects. Also
other extensions, such as assigning timestamps to other concepts introduce cy-
cles. These cycles are a possible source of inconsistency in representing and
interpreting OCED.

Overloading the object concept. The preceding sections presented various
use cases for a flexible interpretation of the object concept besides the tangible
and abstract entities present in the process itself. These interpretations of ob-
jects include “snapshots” (Sect. 4.1), relations (Sect. 4.4), attributes (Sect. 4.5),
and other process concepts such as activities or transactions (Sect. 4.6). Allowing
these interpretations overloads the object concept itself. Consistent interpreta-
tion across producers and consumers requires conventions and mechanisms to
clearly distinguish what exactly an object stands for.

Materializing relations as objects. When materializing an object relation

as an object R, the attributes and relations of R have to be consistent with
all other representations of this relation in the data which includes (changes
to) reference attributes describing the relation (see Sect. 4.3). For example, as-
sume an object [package #5] has an object attribute [assigned-to] = [deliv-
ery tour #17] which is interpreted as a relation ([package #5],[delivery tour
#17],[assigned-to]). To model changes to this relation, a relation object R is cre-
ated representing this relation ([package #5],[delivery tour #17],[assigned-to]).
Subsequently, an event e changes the delivery tour assigned to an object [pack-
age #5] by updating R into ([package #5],[delivery tour #23],[assigned-to]).

Towards Simple and Extensible OCED 27

An event e observing R has to be consistent with observations of all involved
objects and their attributes along these changes. Note that this can be expressed
in OCED, both, through the “snapshot” interpretation of objects (Sect. 4.1) as
well as through timestamped attribute values of reference attributes (Sect. 4.7
and Sect. 4.3), and hence consistency considerations arise either way.

Materializing attributes as objects. For example, assume an event e ob-
serves object [Order 17] which is related to a materialized attributed object
[Order 17+price]. Should e also have an observes relation to [Order 17+price]
or is this observes relation implicit? Likewise, if e observes, both, [Order 17]
and [Order 17+price], do the qualifiers of both relations have to be identical or
can they differ, e.g., CREATE [Order 17] and MODIFY [Order 17+price]. Extracting
OCED from source systems may result in such cases.

Assigning timestamps to other concepts. OCEL 2.0 proposes to extend the
OCED-MM Core Model to let an object attribute value v have a timestamp
t. While this allows for an efficient representation (and extraction) of a series of
changes to an object attribute a, it introduces an new, implicit representation
of an event e that observes an object attribute value v for attribute a at
time t.

Consumers of OCED with such an extension must be aware of the seman-
tics of this extension and must agree on whether the implicit representation
of an event is to be converted into an explicit representation of the event and
which conventions to follow. For instance, the explicit representation of the event
may require to materialize an object attribute as an artificial object itself (with
all associated considerations discussed above). Further, as illustrated also in
Fig. 7, timestamps of object attribute valuesmay coincide with timestamps
of events that observe the owning object suggesting event correlation, e.g., that
the object attribute value [] has been set by the PO created event that has been
observed at the same time. OCED analysis techniques have to be aware of and
identify such correlations, and more involved consolidations of the implicitly and
explicitly represented events are required to obtain an unambiguous representa-
tion.

5 Initial Implementations and Lessons Learned

Following the “Call for Reference Implementations” for the OCED Meta-Model
proposal, four independent implementations were presented and discussed at
the OCED Symposium of the 5th International Conference on Process Mining
(Rome, 2023) while a fifth implementation was recently published.

5.1 Konekti

Konekti is a commercial data transformation tool for process mining. It reduces
the required effort for process mining, allowing practitioners to focus on higher-
value tasks. Its primary focus is on document-based information systems, such

www.getkonekti.io

28 Fahland, Montali, Lebherz et al.

as ERP, CRM, and WMS platforms. Through our industry experience, we have
identified that the most efficient method for generating case-centric event logs
from document-based systems is by first constructing an object-centric data
model. This model can serve as a staging layer from which to create case-centric
logs or be used for object-centric analysis. Hence, Konekti supports both object-
centric and case-centric analysis.

Key Features of Konekti. Konekti offers several key features that distinguish
it from other process mining tools:

– Guided object-centric meta-modeling ensures that all users follow a
consistent meta-model, promoting collaboration and knowledge transfer. Konekti
also suggests next steps to streamline workflow.

– Built-in data quality checks accelerate the data validation process by
automatically detecting potential issues.

– Conversion to case-centric logs enables users to convert the object-
centric data model into case-centric logs for use in conventional process
mining analysis tools.

– Automated script generation reduces the effort and skill required. Users
follow a low-code workflow to construct the data model, after which Konekti
generates an exportable PostgreSQL or Spark script.

– Interactive object-centric data model visualization improves compre-
hension of the data model and fosters collaboration among users.

OCED-MM Implementation in Konekti. To expedite the production of
case-centric event logs, certain elements from the OCED-MM model are omitted
in Konekti’s implementation:

1. Object-relation types: Konekti does not implement predefined relation
types (such as CHILD OF or PARENT OF) as outlined in Section 3.1. Instead,
relationships are inferred implicitly through their cardinality (1:1, 1:n, n:m),
which is computed by Konekti.

2. Event-to-object relation qualifiers: Konekti omits the predefined qual-
ifiers (CREATE, MODIFY, DELETE) described in Section 3.1 and 4.2. Instead,
event qualifiers are embedded in the activity name (e.g., “create,” “mod-
ify,” or “delete”), and Konekti computes the cardinality of event-to-object
relations (1:1, 1:n, n:m).

As a minor extension, event types in Konekti can have zero events instantiated,
deviating from the event definition in Section 3.1.

Lessons Learned. Our experience of implementing Konekti has led to sev-
eral insights regarding object-centric data modeling. Below, we list our two key
insights:

Towards Simple and Extensible OCED 29

1. Relating event types to a single object type minimizes complex-
ity. Ambiguity often arises regarding which objects should be related to an
event. Although Konekti allows linking an event to multiple object types,
we recommend associating each event type with a single object type. For
example, in this example introduced in Section 4.3:

“Event #e17 [Clear Invoice] observes object Payment P1 and ob-
jects [Invoice I1] and [Invoice I2], where payment P1 is used to clear
invoices I1 and I2.”

We advise to initially link Event #e17 only to Payment P1 and model the
relationship between Payment P1 and the two invoices (I1 and I2) through
an object relation. If required for object-centric analysis, users can later add
additional event-object relations. This way of working reduces the model
complexity.

2. Ambiguity in the definition of objects. In Section 3.1, an object is
defined as a uniquely identifiable entity observed in the world. However, this
definition can be blurred due to several factors:
(a) Objects as attributes: Not every identifiable entity needs to be mod-

eled as an object. For instance, while “Customer” could be an object, it
might also be modeled as attributes (e.g., CustomerId, CustomerName)
of the “Order” object. The decision on whether to treat an entity as an
object or an attribute is context-dependent and determined by the data
modeler.

(b) Hierarchical structures in objects: The level of granularity for mod-
eling objects can vary. A user could model one object “Financial doc-
ument” or decide to split them into multiple objects (e.g., “Invoices”,
“Credit memos”, etc.). The best choice depends on the context, making
it difficult to establish a universal best practice.

(c) Attributes as proxy objects: In some cases, attributes can be mod-
eled as objects. For example, while “Order Status” might seem better
suited as an attribute, it can be modeled as a separate object, align-
ing with systems like SAP ECC, where status information is stored in
separate tables (e.g., table VBUK for sales document statuses).

(d) Relations as proxy objects: Konekti expects relationships between
objects to be modeled through object tables (using primary key-foreign
key combinations). If relations are stored in separate tables, this relation
needs to be modeled as an object (e.g., “Sales Document Flow”), even
though such tables are not real-world entities.

(e) Grouping activities via proxy objects: As described in Section 4.6,
proxy objects can be used to group activities logically within the data
model.

The inherent ambiguity in defining objects contributes to variability in how
process data models are constructed, potentially complicating the under-
standing, modeling, and validation processes.

Conclusion. In short, Konekti streamlines the process of generating object-
centric and case-centric event logs using an OCED-MM implementation. While

30 Fahland, Montali, Lebherz et al.

challenges remain in consistently relating events to objects and defining objects
clearly, our experience with Konekti demonstrates that the model is effective
and practical in real-world applications.

5.2 OpenOCED

OpenOCED is an open source reference implementation using a Model Driven
Engineering (MDE) perspective of the OCED-MM Core Model of Sect. 3. The
MDE approach and first Java library implementation of the OCED base proposal
from March 2023 by the IEEE Task Force on Process Mining was presented in
[8]. To represent OCED models compliant with the Ecore meta-model the XML
Metadata Interchange (XMI) standard (https://www.omg.org/spec/XMI/)
format is used, wich can be trasnformed to JSON and XML OCEL 2.0 files, as
well as CSV files. The OCED-MM Full Model of App. A is also defined as an
extension of the base meta-model using the EMF standard extension mechanism.

Features. The OpenOCED reference implementation provides a Python and a
Java library that includes:

– Ecore-based definition of the OCED meta-model.
– Import/export from/to XMI files of OCED model instances.
– Import/export from/to CSV files of OCED model instances.
– OCED model transformation to OCEL 2.0 (JSON and XML format).
– OCEL 2.0 (JSON and XML format) model transformation to OCED.

OCED-MM implementation in OpenOCED. The OpenOCEDmeta-model
directly represents the original object-centric concepts and expresses relations
through qualified associations represented as pivot elements (e.g., event-object,
object-object) to store its qualifier. The implementation does not enforce pre-
defined qualifiers for the relations and allow navigation from the object-object
relation to its source and target objects and from the object to the relations in
which the object participates. Input files can be in XMI/CSV/OCEL 2.0 JSON
and XML formats, the Java and Python code automatically generated from the
meta-model allows in-memory manipulation of OCED models, which in turn can
be output in XMI/CSV/OCEL 2.0 JSON and XML formats. Initial steps have
also been taken to extend the interoperability with other OCED implementa-
tions, e.g., input/output to OCED-PG.

OpenOCED libraries can be integrated into several Java or Python soft-
ware to serve as an exchange format for existing Object-Centric Process Mining
(OCPM) [1] techniques and tools to support the manipulation of OCED models
and/or to implement new algorithms for the OCPM perspectives. Also, with
the MDE meta-model extension mechanism, the OCED-MM Core Model and
Full Model can be extended to support other approaches directly, for which the
associated code can be automatically generated.

https://www.omg.org/spec/XMI/

Towards Simple and Extensible OCED 31

Lessons Learned. As lessons learned, a key aspect to consider when manipulat-
ing OCEDmodels is information loss when extracting data and representing rela-
tionships between elements or exchanging different representations/implementations
based on mappings. Also, to better exploit object relationships, e.g., in the con-
text of data refinement (e.g., domain-specific filters applied to the model) and
conformance checking (e.g., adding domain rules), the provision or extension of
tools is needed. Current and future work includes applying OpenOCED to case
studies with actual data to further deal with these key aspects, and extend the
capabilities of the libraries to support more functionalities.

Resources. Open OCED code and libraries for Python and Java are available
at (https://open-coal.pages.fing.edu.uy/oced/), as well as the meta-
model (Ecore, PyEcore) definition and examples in .XMI, CSV, and OCEL 2.0
JSON and XML format from (https://ocel-standard.org/event-logs/ov
erview/).

5.3 Event Knowledge Graphs (OCED-PG)

OCED-PG [18] is an open-source library that uses Labeled Property Graphs
(LPGs) to represent and store OCED in a (Neo4j) graph database. OCED-PG
specifically addresses the use case of transforming (arbitrary) source data into an
OCED store without an intermediate OCED-specific data exchange format, and
querying OCED using mature graph query languages, enabling object-centric
process mining using graph databases.

Features. OCED-PG formalizes the OCED meta-model using PG-schema, the
schema definition language for property graphs. Thus, the PG-schema formal-
ization of OCED defines the concepts for storing and querying OCED in a graph
database, enabling the following features:

– Refining the OCED data schema into a domain-specific OCED
data schema, which allows to explicitly document the object types, relation
types, and event types present in the data.

– Pattern-based transformation rules, which allow describing a mapping
from raw source data (in tabular format) into the domain-specific OCED
data schema, the so-called semantic header.

– A fully automated pipeline for loading and transforming raw source data
into OCED.

– Querying OCED using domain-specific concepts by using the graph
database’s native query language over a domain-specific data schema.

OCED-MM implementation in OCED-PG. OCED-PG implements the
OCED-MM Core Model of Sect. 3 and the OCED-MM Full Model of App. A.

https://open-coal.pages.fing.edu.uy/oced/
https://ocel-standard.org/event-logs/overview/
https://ocel-standard.org/event-logs/overview/

32 Fahland, Montali, Lebherz et al.

The OCED core model interpretation is inherent in the model of Event Knowl-
edge Graphs (EKG) [11] on which OCED-PG is based. Refining the EKG con-
cepts allows to express OCED-MM Core Model extensions, which are currently
implemented for the OCED-MM Full Model. The current semantic header al-
lows creation of OCED-MM Full Model instances with some limitations: (1)
All observes relations from one event receive the same qualifier (i.e., cannot
distinguish different qualifiers originating from the same event). (2) Generating
observes relations to object attribute values or object relations uses
relation inference from existing relations (via the object associated to the at-
tribute or relation). While more involved, the latter does ensure semantic con-
sistency between relations, see Sect. 4.8.

Lessons Learned. OCED-PG is based on lessons learned in a series of indus-
trial and academic case studies for extracting and modeling object-centric event
data using graph databases and subsequent process mining analyses.

1. Domain-specific schemata: Industrial use cases benefited from the de-
velopment of a domain-specific data schema in which the OCED core con-
cepts of events, objects, and their relations are refined into domain con-
cepts (e.g., distinguishing object types, relation types, and groups of event
types). [9,10,7,16,15]

2. Structuring Schema-less Source Data: Raw source data is often schema-
less, or available schema information is not aware of events. Extracting
OCED requires to first bring structure to the source data by specifying
which attributes constitute information for which OCED concept, e.g., a
record with a timestamp and an activity allows extracting an event.

3. Disentangling Events and Objects: Source records are not inherently
events or objects but may contain attributes describing multiple concepts
(events, different objects and attributes). Extraction of OCED requires meth-
ods to disentangle them.

4. Some relationships are implicit: Relationships can be established based
on the co-occurrence of two elements (events and/or objects) within a record,
using provenance as a basis (see Sect. 4.3). Additionally, relationships can be
inferred from existing relationships. For example, if a member has borrowed
a book listed in a library catalog, it implies that the member is a member
of the library.

5. Object and relation snapshots: In industrial configuration management,
source data includes snapshots of data objects and relations (describing the
creation and evolution of configuration management data structures), requir-
ing a “snapshot” interpretation of objects and relations (see Sect. 4.1) and
clear qualifier semantics (see Sect. 4.2)21. The results suggest it is beneficial
to generalize timestamped attribute values of Sect. 4.7 to entire “snapshots”,
i.e., time-stamping objects and relations representing their state. [15]

21 https://www.linkedin.com/pulse/boost-your-knowledge-graph-events-gai

n-untapped-martijn-dullaart-wunse/

https://www.linkedin.com/pulse/boost-your-knowledge-graph-events-gain-untapped-martijn-dullaart-wunse/
https://www.linkedin.com/pulse/boost-your-knowledge-graph-events-gain-untapped-martijn-dullaart-wunse/

Towards Simple and Extensible OCED 33

6. Materializing implicit structures: Querying and analyzing OCED ben-
efits from explicitly materializing concepts and relations that otherwise are
encoded implicitly in event or object attributes. For instance, object states
(i.e., “snapshots”, see Sect. 4.1) [7,9], context knowledge such as connec-
tion and layout of objects describing components supporting a physical pro-
cess in manufacturing or logistics [9,10,7,16], or temporal and causal rela-
tions [11,13]. While these should not be stored in OCED for transport, it
requires agreement on the implicit semantics of event, objects, and relations
(see Sect. 4.2) for reliably constructing them.

7. Circular processes: Use (or inference) of a consistent object identifier en-
ables OCED to describe and track objects in circular processes where objects
repeatedly return to the process over extended periods of time. [9]

Resources. OCED-PG is implemented as part of the open-source process min-
ing library PromG (https://github.com/promg-dev) which provides function-
ality to develop process mining analyses over OCED in graph databases [19].
Schemas and transformation rules using OCED-PG are available for five pub-
lic real-life datasets and one educational example [17]. Further, a JSON-based
OCED export from Konekti (Sect. 5.1) can be imported directly into OCED-PG
as an EKG without any data transformation, see https://github.com/PromG

-dev/promg-konekti.

5.4 Object-Centric Event Log (OCEL 2.0)

OCEL, which stands for Object-Centric Event Log, serves as the exchange format
for Object-Centric Event Data (OCED) and is the foundation for a range of
Object-Centric Process Mining (OCPM) techniques and over ten process mining
tools and libraries [2,5,14]. OCEL 2.0 was released in 2023, extending OCEL
1.0 (released in 2020). Appendix B discusses the OCEL 2.0 meta-model (see
Figure 10).

OCEL 2.0 Storage Formats. There are different storage formats for OCEL
2.0: XML, JSON, and SQL. The detailed specifications for these formats can be
found on the OCEL website: https://www.ocel-standard.org/. Also, several
event logs are provided in all three formats. There are also publicly available
tools to check the validity of an OCEL 2.0 dataset, e.g., an XML Schema, a
JSON schema, and an SQL validator.

Lessons Learned. The most important lesson learned is to avoid adding con-
cepts for which there are no analysis techniques or that allow for multiple ways
of representing the same information. For example, there is already a trade-
off between representing event-to-object relations (e.g., observes) and object-
to-object relations. An order may have multiple items (object-to-object), and
an event of type “place order” may include the order and its items (event-to-
object). Further extending the meta-model will lead to even more trade-offs, e.g.,

https://github.com/promg-dev
https://github.com/PromG-dev/promg-konekti
https://github.com/PromG-dev/promg-konekti
https://www.ocel-standard.org/

34 Fahland, Montali, Lebherz et al.

the same information can be represented in many different, possibly redundant,
ways. We first need guidelines for using the existing concepts before adding new
ones.

In the experiments and case studies with OCEL and dozens of process mining
implementations using the Process Intelligence Graph (PIG) of Celonis (which
uses a meta-model similar to OCEL 2.0 to store events and objects), we noted
that object-to-object relations are mostly used for filtering and querying, and
event-to-object relations are mostly used for process discovery and conformance
checking. Due to the similarity, it is possible to load OCEL 2.0 into the Celonis
ecosystem without any problems.

These experiences suggest that, at this stage, there is no need for additional
concepts. XES also suffered from the problem that few of the extensions were
actually being used. Therefore, it is much more important to support existing
concepts well and develop powerful process mining techniques (process discov-
ery, conformance checking, predictive analytics) using both event-to-object and
object-to-object relations. Concepts should only be added if there are mature
analysis techniques exploiting these.

Process Mining Tools and Libraries Supporting OCEL 2.0.

– OCEL 2.0 validators using XML Schema, JSON schema, and an SQL checker,
accessible via https://www.ocel-standard.org/.

– The web-based event log inspector for OCEL Ocelot, accessible via https:

//ocelot.pm/.
– The OCPM (Object-Centric Process Mining) tool, accessible via https://

www.ocpm.info/. OCPM supports object-centric process discovery, object-
centric conformance checking, and object-centric machine learning (using
DFGs and Petri nets).

– The Process Mining for Javascript (PM4JS) implementation (see https:

//www.pm4js.org/.
– The OCELStandard plugin for the ProM framework (https://promtools.

org/).
– TheOCPA library supporting object-centric process discovery, object-centric

conformance checking, object-centric process enhancement, and object-centric
process monitoring, accessible via https://ocpa.readthedocs.io/.

– The Object-Centric Process Insights (OCπ) tool using OCPA. OCπ supports
object-centric process discovery and filtering, and provides elaborate support
for object-centric variants. Download from https://ocpi.ai/.

– Connectors for Celonis, SAP, and Oracle (see https://www.ocel-standar

d.org/).
– The Object-Centric Process Querying (OCPQ) tool to query OCEL 2.0

datasets (supporting the JSON, XML, and SQL formats), see https://

ocpq.aarkue.eu.
– Process Mining for Python (PM4Py) fully supports OCEL 2.0, including

object-centric process discovery and object-centric conformance checking
(using Petri nets, DFGs, and object graphs), accessible via https://pr

https://www.ocel-standard.org/
https://ocelot.pm/
https://ocelot.pm/
https://www.ocpm.info/
https://www.ocpm.info/
https://www.pm4js.org/
https://www.pm4js.org/
https://promtools.org/
https://promtools.org/
https://ocpa.readthedocs.io/
https://ocpi.ai/
https://www.ocel-standard.org/
https://www.ocel-standard.org/
https://ocpq.aarkue.eu
https://ocpq.aarkue.eu
https://processintelligence.solutions/pm4py

Towards Simple and Extensible OCED 35

ocessintelligence.solutions/pm4py and https://github.com/pm4py

/pm4py-core.

The list of tools and libraries illustrates the interoperability achieved by adopting
OCEL 2.0.

5.5 Stack’t

Stack’t is an open-source data transformation tool designed to support data
preparation for object-centric process mining in a dynamic context, i.e., allow-
ing for continuously adding new data while accommodating changes in the pro-
cess data architecture such as new object types, event types, or attributes [6].
The tool’s development is driven by practical data-engineering considerations,
drawing from industry experience of continuously extracting data from source
systems, such as ERP and MES databases, for various analytical purposes.

Features. Similar to Konekti, described in Section 5.1, we opt for a staggered
approach by first mapping the process data to an intermediate data store (hub)
and providing extractors to generate object-centric event logs in various formats
from this. Below is an overview of the current core capabilities of the Stack’t
tool.

– Continuous Ingestion: Supports append-only incremental batch process-
ing of process data.

– Interactive Visuals: Provides interactive visualizations for exploratory
data exploration

– Export Capabilities: Allows exporting to OCEL 2.0, DOCEL, and Neo4j
graph database formats.

– Import from OCEL 2.0: Includes functionality to import event logs for-
matted according to OCEL 2.0.

Stack’t is a modular and flexible data stack (in our implementation using
DuckDB and dbt) in a Docker container, and can be integrated into existing
data architectures. More information, together with the source code, can be
found in the GitHub repository https://github.com/LienBosmans/stack-t.

OCED-MM Changes. As described in [6], Stack’t adopts a flexible meta-
model to extend the longevity of the data store. The implementation supports
the OCED-MM Core Model, but also the OCED-MM Full Model and OCEL
2.0. The flexibility manifests itself in two changes: object-to-object relationships
are allowed to change over time by attaching a timestamp to the relationship
qualifier, and direct relationships between events and object attribute value up-
dates are used to store any known causal relationships between them and thus
support many-to-many relationships. Storing process data that strictly adheres
to the core model can be achieved by imposing restrictions, which are defined as
additional data quality tests in the code:

https://processintelligence.solutions/pm4py
https://processintelligence.solutions/pm4py
https://github.com/pm4py/pm4py-core
https://github.com/pm4py/pm4py-core
https://github.com/LienBosmans/stack-t

36 Fahland, Montali, Lebherz et al.

1. The table storing event-to-object-attribute-value relationships must be empty.
2. The timestamp columns for object attribute values and object-to-object re-

lationships must only contain NULL values.
3. Relationships and attribute values must be uniquely identifiable using their

foreign keys. The existing primary key column is kept, but must be supple-
mented with an additional check to ensure this is the case.

Lessons Learned.

1. Lack of publicly available real-life source data: The absence of publicly
available source data hinders the ability to validate the correctness of a
source-to-target mapping implementation and assess the effect of several
decisions regarding the conversion of raw data into an event log on aspects
such as performance.

2. Scalability and Maintainability in Dynamic Environments: Design-
ing data storage solutions for processes in dynamic or agile environments
requires extra care. For example: even minor modifications such as renam-
ing a type or attribute, can cascade into code-level impacts if not anticipated.
More of these considerations, and how they are tackled by the proposed re-
lational schema can be found in [6].

3. Dynamic Object-to-Object Relations: The OCED-MM Core Model
does not allow object-to-object relationships to evolve over time. Although
visualizing such changes is complex, it remains essential for certain use cases.
Consider an organizational chart for example: roles within a team might
change. When, e.g., retroactively checking for irregularities, it would be im-
portant to know which relationship existed at certain points in time. A po-
tential solution could be allowing dynamic relations between objects (see
Sect. 4.4), but formulating guidelines on how additional restrictions such as
static object-to-object relations should be handled when algorithms cannot
handle dynamic ones as input.

4. Standards and Definitions: The lack of clear definitions for object-centric
event (log) standards creates challenges, especially for those unfamiliar with
the academic field. This was mainly apparent when trying to write connectors
that can transform data from one format into another, as automating this
requires the data to adhere to an unambiguous definition, and therefore
knowing table and column names, as well as their data types, in advance
(and for them to remain consistent over time).

5. Data Anonymization: We have tried to take into account the possible
need for data anonymization with Stack’t. While hiding the descriptions of
types and attributes is rather straightforward, there is no current solution
for masking sensitive information revealed through relationships.

5.6 Further Known Implementations

Further implementations of OCED are under development.

Towards Simple and Extensible OCED 37

– OCEDO — a semantic-web-based ontology for core OCED defining the
OCEDO namespace at https://semsys.ai.wu.ac.at/ocedo/core and
algorithms for converting flat event logs into OCED via semantic technology
https://gitlab.isis.tuwien.ac.at/Ekaputra/ocedo

6 Conclusion

The current consensus and state of discussion on identifying an object-centric
event data format that can succeed XES can be summarized as follows.

1. Core concepts. We identified the core concepts needed to represent object-
centric event data that emerged from the intersection of multiple prior pro-
posals and use cases. These core concepts are described in the OCED-MM
Core Model in Sect. 3.

2. Baseline interpretation and five implementations. We provide a base-
line interpretation for these core concepts in Sect. 3.3 that is shared by all
five existing OCED implementations, demonstrating basic viability of object-
centric event data exchange.

Subsequently, we (1) outline concrete steps that can be undertaken with the cur-
rent OCED-MM Core Model and existing implementations, (2) summarize the
challenges in realizing interoperability with OCED that need to be considered,
and (3) outline general considerations towards standardizing OCED.

Reliable basis for research and development. While the OCED-MM Core
Model does not yet cover all practical requirements for data exchange in all use
cases, and thus requires further clarification and (careful, limited) extension, it
is adequate for the time being. Specifically, the model and the lessons learned
documented in Sections 4 and 5 provide a reliable basis for the process mining
community to engage with OCED and related use cases, which include:

– Creating more object-centric event data sets to serve as realistic examples.
This specifically includes creating or providing raw source data sets for con-
version into OCED.

– Making sure that existing and future implementations (see Sect. 5) can be
connected, e.g., creating bridges and/or import/export functionality between
OCEL 2.0 and OCED-PG and ensuring data imports and exports of different
tools are compatible/compliant with each other.

– Creating more OCED extractors for various source systems.
– Identifying, documenting, and sharing process mining use cases that benefit

from the analysis of object-centric event data.
– Researching, developing, and sharing process mining algorithms that con-

sume object-centric event data to address OCED-specific use cases.
– Encouraging vendors to support OCED and object-centric process mining

and educating students and users.

These results of these efforts will provide relevant information for a community-
wide adoption of OCED and its standardization.

https://semsys.ai.wu.ac.at/ocedo/core
https://gitlab.isis.tuwien.ac.at/Ekaputra/ocedo

38 Fahland, Montali, Lebherz et al.

Challenges in realizing interoperability with OCEDs. The diversity of
lessons learned in the five independent implementations (see Sect. 5) reveals
the limitations of the OCED-MM Core Model and the different design decisions
made in extending or using OCED in particular ways. Current and further de-
velopments of OCED should be aware of the ambiguities in the OCED-MM Core
Model and the implications of either design decision.

1. While the description of the OCED-MM Core Model allows for a reason-
ably unambiguous interpretation of each individual OCED concept, the de-
scription is not specific enough for interpreting all combinations of concepts
unambiguously, e.g., how are multiple observations of an object represented
(see Sect. 4.1), standardizing qualifiers to provide specific interpretation (see
Sect. 4.2), and can object attributes be used to represent relations between
objects (see Sect. 4.3). This semantic ambiguity needs to be resolved to en-
sure that independent implementations of OCED can produce and consume
object-centric event data with the same interpretation.

2. The minimal concepts in OCED-MM Core Model do not support a number of
use cases (see Sect. 3.4). This requires either re-purposing existing concepts
for additional use cases such as introducing artificial objects for relations,
attributes, and other advanced concepts (see Sect. 4.4, 4.5, 4.6) or extend-
ing the OCED-MM with additional concepts (see Sect. 4.7). Either form of
extension introduces additional ambiguity in interpreting combinations of
OCED concepts that need to be resolved (see Sect. 4.8), or deliberately be
left out of scope of an OCED standard and deferred to later evolution of the
standard or best practices as use cases mature.

3. All mentioned ambiguities and limitations presented in this document can be
resolved by taking design decisions wrt. representation and interpretation of
the various OCED concepts. The existing OCED implementations presented
in Sect. 5 have done so, also including first steps in achieving interoperability
(though with notable limitations).

Towards a community standard. As the current implementations of OCED
differ in the scope and interpretation of OCED, there currently does not exist
an eco-system for producing and consuming OCED.

The exhaustive exploration and discussion of OCED over the previous three
years suggests that the overall space of OCED concepts, ambiguities, and design
decisions for interpreting them is understood. This document can be understood
as an inventory of all ambiguities and open design decisions for OCED. This
suggests that the next step for realizing a community standard for OCED is to
jointly review the known ambiguities design decisions and to form a community
consensus of how to represent and interpret OCED concepts across a variety of
use cases.

Forming consensus for representing and interpreting OCED around use cases
thereby fundamentally requires considering the full life-cycle of object-centric
event data. As each stage in the life-cycle has different constraints wrt. how data

Towards Simple and Extensible OCED 39

can be represented and processed, OCED may have to explicitly acknowledge
different levels of consistency22. For instance:

1. Storage in source systems (from which OCED is to be extracted) is optimized
for usage, often lacking explicit, complete representations of events or ob-
jects, and lossy. Different types of events or objects may have fundamentally
different storage representations.

2. Extracting and providing OCED from source systems requires conversion.
Thereby some conversions may have prohibitive performance costs on the
source system or lead to excessive data, e.g., translating an SAP ERP Change
Table with 100 million records into events observing a modification of an
object attribute.

3. Other conversions may depend on a record’s context, e.g., require to consider
multiple records and additional domain knowledge, to provide a less ambigu-
ous interpretation of an event or an object. This could be considered as a
form of enrichment of OCED that may depend on the analysis objectives.

4. Certain forms of resolving ambiguity in OCED interpretation may no longer
be data (local) conversion tasks but genuine process mining tasks providing
use case-specific interpretations of the data, e.g., mining the Create-Read-
Update-Delete life-cycle of a relation between objects or the identification of
higher-level tasks from lower-level events.

5. Finally, Process Mining solutions working with OCED also have to realize
OCED-compliant data structures and data stores that provide a standard-
ized representation and interpretation of event data for all analysis and min-
ing algorithms. These internal data stores may have higher requirements on
how explicit various concepts and relations are represented and their consis-
tency.

The above non-exhaustive list illustrates a spectrum of different levels of “strict-
ness” regarding representing and interpreting OCED that all originate from
different constraints and requirements for the respective task and objective.

Subsequent steps in standardizing OCED should explicitly consider these
diverse levels of requirements and invite industry practitioners, vendors, and
academic experts to jointly review design decisions wrt. supporting relevant use
cases along the various stages of the OCED life-cycle.

The above considerations suggest that a community-supported OCED stan-
dard may have to explicitly support a (well-defined) spectrum of representations
and interpretations of OCED along the data life-cycle. One possibility is to for-
mulate well-defined levels of OCED consistency and completeness. This could
entail:

– Agreeing on the degree of inconsistency, i.e., kinds of ambiguity or incom-
pleteness in representation and consistency, is allowed at a particular level

22 https://multiprocessmining.org/2022/10/26/data-storage-vs-data-semanti

cs-for-object-centric-event-data/

https://multiprocessmining.org/2022/10/26/data-storage-vs-data-semantics-for-object-centric-event-data/
https://multiprocessmining.org/2022/10/26/data-storage-vs-data-semantics-for-object-centric-event-data/

40 Fahland, Montali, Lebherz et al.

(e.g., timestamped attribute values extracted from source system vs a mini-
mum standard of unique representation of events and associated objects for
process mining algorithms), and

– identifying core principles for increasing the level of consistency and com-
pleteness of OCED by conversion, conventions, or extensions and the asso-
ciated decisions in representation and interpretation of OCED.

Acknowledgments. Thanks to the PADS PhDs and Postdocs that co-developed
OCEL 2.0 and related tools, in particular Alessandro Berti, Istvan Koren, Niklas
Adams, Nina Graves, Gyunam Park, Benedikt Knopp, Marco Pegoraro, Lukas
Liß, Leah Tacke genannt Unterberg, Christopher Schwanen, Aaron Küsters, Dina
Kretzschmann, and Viki Peeva.
Thanks to the team from the Inco,FING,UdelaR (Uruguay) that participated
in the implementation of OpenOCED related tools: Carolina Cortés, José Pedro
De León, Maximiliano Jara and Camilo López.
Thanks to the Master students and PhD students at TU Eindhoven who con-
tributed to OCED-PG and the case studies enabling it, in particular Stefan
Esser, Ava Swevels, Eva Klijn, Maren Buermann, Vi Chu, Adam Broniewski,
and Kadir Marangoz, as well as Francesca Zerbato for her feedback.
The contributions by TU Eindhoven are partially supported by AutoTwin EU
GA n. 101092021.

References

1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence
and convergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) Software En-
gineering and Formal Methods - 17th International Conference, SEFM 2019, Oslo,
Norway, September 18-20, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11724, pp. 3–25. Springer (2019). https://doi.org/10.1007/978-3-030-30446-
1 1, https://doi.org/10.1007/978-3-030-30446-1_1

2. van der Aalst, W.M.P.: Object-centric process mining: Unraveling the fabric of real
processes. Mathematics 11(12) (2023). https://doi.org/10.3390/math11122691, ht
tps://www.mdpi.com/2227-7390/11/12/2691

3. van der Aalst, W.M.P., Berti, A.: Discovering Object-Centric Petri Nets. Funda-
menta Informaticae 175(1-4), 1–40 (2020)

4. Acampora, G., Vitiello, A., Stefano, B.N.D., van der Aalst, W.M.P.,
Günther, C.W., Verbeek, H.M.W.: IEEE 1849: The XES standard: The
second IEEE standard sponsored by IEEE computational intelligence so-
ciety [society briefs]. IEEE Comput. Intell. Mag. 12(2), 4–8 (2017).
https://doi.org/10.1109/MCI.2017.2670420, https://doi.org/10.1109/MCI.20
17.2670420

5. Berti, A., Koren, I., Adams, J.N., Park, G., Knopp, B., Graves, N., Rafiei, M.,
Liß, L., genannt Unterberg, L.T., Zhang, Y., Schwanen, C.T., Pegoraro, M.,
van der Aalst, W.M.P.: OCEL (object-centric event log) 2.0 specification. CoRR
abs/2403.01975 (2024). https://doi.org/10.48550/ARXIV.2403.01975, https:

//doi.org/10.48550/arXiv.2403.01975

https://doi.org/10.1007/978-3-030-30446-1_1
https://www.mdpi.com/2227-7390/11/12/2691
https://www.mdpi.com/2227-7390/11/12/2691
https://doi.org/10.1109/MCI.2017.2670420
https://doi.org/10.1109/MCI.2017.2670420
https://doi.org/10.48550/arXiv.2403.01975
https://doi.org/10.48550/arXiv.2403.01975

Towards Simple and Extensible OCED 41

6. Bosmans, L., Peeperkorn, J., Goossens, A., Lugaresi, G., Smedt, J.D., Weerdt, J.D.:
Dynamic and scalable data preparation for object-centric process mining (2024),
https://arxiv.org/abs/2410.00596

7. Broniewski, A.: Building a digital asset: An event knowledge graph approach for
integrating data and persisting object-centric process mining analysis in baggage
handling systems (2023)

8. Calegari, D., Delgado, A.: A model-driven engineering perspective for the object-
centric event data (OCED) metamodel. In: Weerdt, J.D., Pufahl, L. (eds.) Busi-
ness Process Management Workshops - BPM 2023 International Workshops,
Utrecht, The Netherlands, September 11-15, 2023, Revised Selected Papers. Lec-
ture Notes in Business Information Processing, vol. 492, pp. 508–520. Springer
(2023). https://doi.org/10.1007/978-3-031-50974-2 38, https://doi.org/10.100
7/978-3-031-50974-2_38

9. Chu, V.: Using event knowledge graphs to model multi-dimensional dynamics in a
baggage handling system (2022)

10. Cuprinsu, N.: Extending knowledge graphs to predict system and item behavior
(2022)

11. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. 10, 109–141 (2021)

12. Fahland, D.: Artifact-centric process mining. In: Sakr, S., Zomaya,
A.Y. (eds.) Encyclopedia of Big Data Technologies. Springer (2019).
https://doi.org/10.1007/978-3-319-63962-8 93-1, https://doi.org/10.100

7/978-3-319-63962-8_93-1

13. Khayatbashi, S., Hartig, O., Jalali, A.: Transforming event knowledge graph to
object-centric event logs: A comparative study for multi-dimensional process anal-
ysis. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J.
(eds.) Conceptual Modeling - 42nd International Conference, ER 2023, Lisbon,
Portugal, November 6-9, 2023, Proceedings. Lecture Notes in Computer Science,
vol. 14320, pp. 220–238. Springer (2023). https://doi.org/10.1007/978-3-031-47262-
6 12, https://doi.org/10.1007/978-3-031-47262-6_12

14. Koren, I., Adams, J.N., Berti, A., van der Aalst, W.M.P.: OCEL 2.0 resources
- www.ocel-standard.org. In: van der Werf, J.M.E.M., Cabanillas, C., Leotta,
F., Genga, L. (eds.) Doctoral Consortium and Demo Track 2023 at the Inter-
national Conference on Process Mining 2023 co-located with the 5th Interna-
tional Conference on Process Mining (ICPM 2023), Rome, Italy, October 27,
2023. CEUR Workshop Proceedings, vol. 3648. CEUR-WS.org (2023), https:

//ceur-ws.org/Vol-3648/paper_7195.pdf

15. Marangoz, K.: Capturing multi-dimensional dynamics in a configuration manage-
ment process through event knowledge graphs (2023)

16. Swevels, A., Dijkman, R.M., Fahland, D.: Inferring missing entity identifiers from
context using event knowledge graphs. In: Francescomarino, C.D., Burattin, A.,
Janiesch, C., Sadiq, S. (eds.) Business Process Management - 21st International
Conference, BPM 2023, Utrecht, The Netherlands, September 11-15, 2023, Pro-
ceedings. Lecture Notes in Computer Science, vol. 14159, pp. 180–197. Springer
(2023). https://doi.org/10.1007/978-3-031-41620-0 11, https://doi.org/10.100
7/978-3-031-41620-0_11

17. Swevels, A., Fahland, D.: Event data and semantic header for oced-pg (Aug 2023).
https://doi.org/10.5281/zenodo.8296559, https://doi.org/10.5281/zenodo.829
6559

https://arxiv.org/abs/2410.00596
https://doi.org/10.1007/978-3-031-50974-2_38
https://doi.org/10.1007/978-3-031-50974-2_38
https://doi.org/10.1007/978-3-319-63962-8_93-1
https://doi.org/10.1007/978-3-319-63962-8_93-1
https://doi.org/10.1007/978-3-031-47262-6_12
https://ceur-ws.org/Vol-3648/paper_7195.pdf
https://ceur-ws.org/Vol-3648/paper_7195.pdf
https://doi.org/10.1007/978-3-031-41620-0_11
https://doi.org/10.1007/978-3-031-41620-0_11
https://doi.org/10.5281/zenodo.8296559
https://doi.org/10.5281/zenodo.8296559

42 Fahland, Montali, Lebherz et al.

18. Swevels, A., Fahland, D., Montali, M.: Implementing object-centric event data
models in event knowledge graphs. In: Smedt, J.D., Soffer, P. (eds.) Process Mining
Workshops - ICPM 2023 International Workshops, Rome, Italy, October 23-27,
2023, Revised Selected Papers. Lecture Notes in Business Information Processing,
vol. 503, pp. 431–443. Springer (2023). https://doi.org/10.1007/978-3-031-56107-
8 33, https://doi.org/10.1007/978-3-031-56107-8_33

19. Swevels, A., Klijn, E.L., Fahland, D.: Object-centric process mining (and more)
using a graph-based approach with promg. In: van der Werf, J.M.E.M., Cabanil-
las, C., Leotta, F., Genga, L. (eds.) Doctoral Consortium and Demo Track 2023
at the International Conference on Process Mining 2023 co-located with the 5th
International Conference on Process Mining (ICPM 2023), Rome, Italy, Octo-
ber 27, 2023. CEUR Workshop Proceedings, vol. 3648. CEUR-WS.org (2023),
https://ceur-ws.org/Vol-3648/paper_9922.pdf

20. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
Xes, xesame, and prom 6. In: Soffer, P., Proper, E. (eds.) Information Systems
Evolution - CAiSE Forum 2010, Hammamet, Tunisia, June 7-9, 2010, Selected
Extended Papers. Lecture Notes in Business Information Processing, vol. 72, pp.
60–75. Springer (2010). https://doi.org/10.1007/978-3-642-17722-4 5, https://do
i.org/10.1007/978-3-642-17722-4_5

21. Wynn, M.T., van der Aalst, W.M.P., Verbeek, H.M.W., Stefano, B.N.D.:
The IEEE XES standard for process mining: Experiences, adoption, and
revision [society briefs]. IEEE Comput. Intell. Mag. 19(1), 20–23 (2024).
https://doi.org/10.1109/MCI.2023.3333141, https://doi.org/10.1109/MCI.20
23.3333141

22. Wynn, M.T., Lebherz, J., van der Aalst, W.M.P., Accorsi, R., Ciccio, C.D., Ja-
yarathna, L., Verbeek, H.M.W.: Rethinking the input for process mining: Insights
from the XES survey and workshop. In: Munoz-Gama, J., Lu, X. (eds.) Pro-
cess Mining Workshops - ICPM 2021 International Workshops, Eindhoven, The
Netherlands, October 31 - November 4, 2021, Revised Selected Papers. Lecture
Notes in Business Information Processing, vol. 433, pp. 3–16. Springer (2021).
https://doi.org/10.1007/978-3-030-98581-3 1, https://doi.org/10.1007/978-3
-030-98581-3_1

A Appendix: Original OCED-MM Base Model and
OCED-MM Full Model

Before converging on the OCED-MM Core Model described in Sect. 3, the OCED
working group developed and published two predecessors: OCED-MM Based
Model and OCED-MM Core Model. We include these here for reference for
context of the discussion of limitations and extensions of the OCED-MM Core
Model.

A.1 Original OCED-MM Base Model

The original OCED-MM Base Model developed by the OCED working group is
shown in Fig. 8.

It differs from the OCED-MM Core Model described in Sect. 3 by modeling
an object relation as a distinct identifiable entity of an object relation

https://doi.org/10.1007/978-3-031-56107-8_33
https://ceur-ws.org/Vol-3648/paper_9922.pdf
https://doi.org/10.1007/978-3-642-17722-4_5
https://doi.org/10.1007/978-3-642-17722-4_5
https://doi.org/10.1109/MCI.2023.3333141
https://doi.org/10.1109/MCI.2023.3333141
https://doi.org/10.1007/978-3-030-98581-3_1
https://doi.org/10.1007/978-3-030-98581-3_1

Towards Simple and Extensible OCED 43

eventevent
type

event
attribute

object
attribute
value

event
attribute
value

object

1

1

1

*

* *

qualifier

time

*

1

*

1

object
attribute

object
type

1

object
relation

1

*

1

*

from to

object
relation
type

1

1..* 11..*

1..* 1..*

1..*

◄ observed at

◄ instance of

◄ value of

instance of ►

value of ►

instance of ►

observes ►

◄

h
a
s

◄

h
a
s

Fig. 8. Original OCED-MM Base Model (published 22nd August 2022)

type and explicit from and to relationships referring to the objects that are
related to each other.

Section 4.4 discusses the difference between these two choices of modeling
object relations and how the OCED-MM Core Model of Sect. 3 can be extended
to express object relations as distinct entities.

A.2 Original OCED-MM Full Model

The Full OCED-MM Model developed by the OCED working group is shown in
Fig. 8.

It further extends the OCED-MM Base Model by providing additional qual-
ified observes relationships from events to, both, object attribute values

and object relations.

1. event observes object attribute — An event and an object attribute

value can be related in a qualified (i.e., association class) manner, meaning
their type of relationship is denoted. While a minimum set of qualifiers is
predefined (CREATE, MODIFY and DELETE), additional qualifiers can be intro-
duced as part of the data capture and used to reflect the semantics of the
relationship. Each object attribute value can be involved in an arbitrary
number of events, while each event can be related to an arbitrary num-
ber of object attribute values. This means, there can be events without
object attribute values and vice-versa. In order to minimize the need to cap-
ture these relationships, any object attribute value that is not created
explicitly (i.e., after it’s object is in existence), is created implicitly with the
CREATE of the object itself. When objects get deleted, all of their object
attribute values are deleted implicitly.

44 Fahland, Montali, Lebherz et al.

eventevent
type

event
attribute

object
attribute
value

event
attribute
value

object

1

1

1

*

* *

qualifier

time

*

1

*

1

object
attribute

object
type

1

object
relation

1

*

1

*

from to

*

*

qualifier
object
relation
type

1

1..* 1

*

*

qualifier

1..*

1..* 1..*

1..*

◄ observed at

◄ instance of

◄ value of

instance of ►

value of ►

instance of ►

observes ►

observes ►

observes ►

◄

h
a
s

◄

h
a
s

Fig. 9. Original OCED-MM Base Model (published 22nd August 2022)

2. event observes object relation — An event and an object relation

can be related in a qualified (i.e., association class) manner, meaning their
type of relationship is denoted. While a minimum set of qualifiers is prede-
fined (CREATE, MODIFY, and DELETE), additional qualifiers can be introduced
as part of the data capture and used to reflect the semantics of the rela-
tionship. Each object relation can be involved in an arbitrary number of
events, while each event can be related to an arbitrary number of object
relations. This means, there can be events without object relations

and vice-versa. When objects get deleted, all of their object relations

are deleted implicitly.

Section 4.4 discusses how the OCED-MM Core Model of Sect. 3 can be
extended to also express observes relations to object attributes and object
relations.

This extension allows an event to refer to an object, an object attribute
value, and/or an object relation. But an object can also refer to the same object
attribute value and the same object relation. In case a log producer uses multiple
of these linkage options simultaneously, cycles may be introduced leading to
inconsistent data capture. Applying implicit semantics of the qualifiers of the
observes relation and the object relations, e.g, deleting a parent object,
allows to prevent such inconsistency. However, this is not enforced by the meta-
model itself; see Sect. 4.8.

B Appendix: OCEL 2.0

OCEL 1.0 Object-Centric Event Log was released in 2020, prior to the stan-
dardization process described in Section 2. OCEL 1.0 was based on a number

Towards Simple and Extensible OCED 45

of attempts to standardize such event data in the period 2015-2019. See, for
example, the eXtensible Object-Centric (XOC) event log format and a variety
of artifact-centric formats (e.g., proclets). Based on the limited adoption and
support for these formats, OCEL 1.0 started deliberately simple, with a fo-
cus on object-centric discovery and conformance-checking techniques using only
event-to-object (E2O) relationships [2,3]. OCEL 2.0, released in 2023, extends
OCEL 1.0, leveraging experiences gathered while developing and applying these
OCPM techniques [2,5,14]. In OCEL 2.0, Object-to-Object (O2O) relationships
were added, next to qualifiers for both E2O and O2O relationships. Figure 10
shows the OCEL 2.0 meta-model. The design process for the original OCED-
MM Base Model and OCED-MM Full Model (see Sect. 2) explored a number
of design decisions corresponding to variations of the OCED 2.0 meta-model
[2,5,14].

event type

(activity)

1

*

event

attribute

event

attribute

value

event

object

type

object

object

attribute

object

attribute

value

time

1

*

1

*

1

*
*1

1

*

1

*1

** *

has type has name has namehas type

has timestamp has timestamp

has objects

for event for object

qualifier qualifier

related
from to* *

1 * *1
has attrib. has attrib.

Fig. 10. The full OCEL 2.0 meta-model [2,5,14] extending OCEL 1.0 and the OCED-
MM Base Model

Figure 10 shows the OCEL 2.0 meta-model which varies from and extends the
original OCED-MM Base Model in various ways. The main differences are the
ability to define the possible attributes per object and event type, and the ability
to timestamp object attribute values. For an explanation of these concepts, we
refer to Section 5.4 and [5,14,2].

Omitting the has attribute relationships between attributes and types for
events and objects, and the has timestamp relationships from object attribute

values to time results in the reduced OCEL 2.0 meta-model shown in Fig. 11

46 Fahland, Montali, Lebherz et al.

event type

(activity)

1

*

event

attribute

event

attribute

value

event

object

type

object

object

attribute

object

attribute

value

time

1

*

1

*

1

*
*1

1

*

*1

* *

has type has name has namehas type

has timestamp

has objects

for event for object

qualifier qualifier

related
from to* *

Fig. 11. The reduced OCEL 2.0 meta-model without timed object attributes and with-
out the ability to specify possible attributes per object and event type

which is similar to the OCED-MM Core Model of Sect. 3 (up to naming of rela-
tionships). Note that omitting the has attribute relationships makes it more
difficult to store the data in a relational database. When events and objects of
the same type may have arbitrary attributes, it is impractical to store these in
a relational database. See the OCEL 2.0 SQLite format [5] for details.

	Towards a Simple and Extensible Standard for Object-Centric Event Data (OCED) — Core Model, Design Space, and Lessons Learned
	Introduction
	Rationale behind OCED
	Balancing Simplicity and Expressivity

	The Path to OCED
	Requirements gathering.
	Proposal development.
	Call for Reference Implementations

	OCED Meta-Model - Core Model
	Core Model Concepts
	Events.
	1. event
	2. time
	3. event attribute value
	Objects and Relations.
	4. object
	5. object attribute value
	6. object relation
	Event-to-Object Relations.
	7. observes relation from events to objects

	Example
	Baseline Interpretation of OCED
	Known Limitations

	Challenges in Standardizing and Extending OCED
	Consistent interpretation between producers and consumers.
	Transport vs. storage vs. analysis.

	Interpreting and Representing Objects over Time
	Event attributes.
	Static objects and attribute values changes.
	Object snapshots.

	Semantics for Qualifiers and Relation Types
	Relations between Objects
	Serializing References.
	Reference Attributes vs Relations: Source of Potential Inconsistencies.
	Events referring to multiple objects.

	Relations as Objects
	Changes to object relations.
	Usage pattern or explicit extension.

	Attributes as Objects
	Complex data types.
	Object attribute changes.
	Fine-grained semantics.

	Other Process Concepts as Objects
	Strict OCED extensions
	Timestamped Attribute Values.
	Data Schemas.

	Cycles and Ambiguity through Extensions
	Overloading the object concept.
	Materializing relations as objects.
	Materializing attributes as objects.
	Assigning timestamps to other concepts.

	Initial Implementations and Lessons Learned
	Konekti
	OpenOCED
	Event Knowledge Graphs (OCED-PG)
	Object-Centric Event Log (OCEL 2.0)
	Stack't
	Further Known Implementations

	Conclusion
	Reliable basis for research and development.
	Challenges in realizing interoperability with OCEDs.
	Towards a community standard.

	Appendix: Original OCED-MM Base Model and OCED-MM Full Model
	Original OCED-MM Base Model
	Original OCED-MM Full Model

	Appendix: OCEL 2.0

