
Workow Patterns

W.M.P. van der Aalst1∗, A.H.M. ter Hofstede2†, B. Kiepuszewski2†, and A.P. Barros3‡

1Department of Technology Management, Eindhoven University of Technology

GPO Box 513, NL-5600 MB Eindhoven, The Netherlands, e-mail: w.m.p.v.d.aalst@tm.tue.nl;
2Centre for Information Technology Innovation, Queensland University of Technology

GPO Box 2434, Brisbane Qld 4001, Australia, e-mail: a.terhofstede@qut.edu.au, bkiepuszewski@infovide.pl;
3Distributed Systems Technology Centre, The University of Queensland

Brisbane Qld 4072, Australia, e-mail: abarros@dstc.edu.au.

Abstract

Di�erences in features supported by the various contemporary commercial workow
management systems point to di�erent insights of suitability and di�erent levels of expres-
sive power. The challenge, which we undertake in this paper, is to systematically address
workow requirements, from basic to complex. Many of the more complex requirements
identi�ed, recur quite frequently in the analysis phases of workow projects, however their
implementation is uncertain in current products. Requirements for workow languages are
indicated through workow patterns. In this context, patterns address business require-
ments in an imperative workow style expression, but are removed from speci�c workow
languages. The paper describes a number of workow patterns addressing what we believe
identify comprehensive workow functionality. These patterns provide the basis for an in-
depth comparison of a number of commercially available workowmanagement systems. As
such, this paper can be seen as the academic response to evaluations made by prestigious
consulting companies. Typically, these evaluations hardly consider the workow modeling
language and routing capabilities, and focus more on the purely technical and commercial
aspects.

∗Part of this work was done at CTRG (University of Colorado, USA) during a sabbatical leave.
†This research was partially supported by an ARC SPIRT grant \Component System Architecture for an

Open Distributed Enterprise Management System with Con�gurable Workow Support" between QUT and
Mincom.

‡Part of this work was supported by CITEC, an agency within the Queensland State Government.

1

1 Introduction

Background

Workow technology continues to be subjected to on-going development in its traditional
application areas of business process modeling and business process coordination, and now in
emergent areas of component frameworks and inter-workow, business-to-business interaction.
Addressing this broad and rather ambitious reach, a large number of workow products, mainly
workow management systems (WFMS), are commercially available, which see a large variety
of languages and concepts based on di�erent paradigms (see e.g. [Aal98a, AH02, EN93, GHS95,
JB96, Kie02, Kou95, LR99, Law97, Sch96, WFM99, DKTS98]).

As current provisions are compared and as newer concepts and languages are embarked upon,
it is striking how little, other than standards glossaries, is available for central reference. One
of the reasons attributed to the lack of consensus of what constitutes a workow speci�ca-
tion is the variety of ways in which business processes are otherwise described. The absence
of a universal organizational \theory", and standard business process modeling concepts, it
is contended, explains and ultimately justi�es the major di�erences in workow languages -
fostering up a \horses for courses" diversity in workow languages. What is more, the compar-
ison of di�erent workow products winds up being more of a dissemination of products and
less of a critique of workow language capabilities - \bigger picture" di�erences of workow
speci�cations are highlighted, as are technology, typically platform dependent, issues.

Workow speci�cations can be understood, in a broad sense, from a number of di�erent per-
spectives (see [AH02, JB96]). The control-ow perspective (or process) perspective describes
activities and their execution ordering through di�erent constructors, which permit ow of
execution control, e.g. sequence, choice, parallelism and join synchronization. Activities in ele-
mentary form are atomic units of work, and in compound form modularize an execution order
of a set of activities. The data perspective layers business and processing data on the control
perspective. Business documents and other objects which ow between activities, and local
variables of the workow, qualify in e�ect pre- and post-conditions of activity execution. The
resource perspective provides an organizational structure anchor to the workow in the form
of human and device roles responsible for executing activities. The operational perspective
describes the elementary actions executed by activities, where the actions map into underlying
applications. Typically, (references to) business and workow data are passed into and out
of applications through activity-to-application interfaces, allowing manipulation of the data
within applications.

Clearly, the control ow perspective provides an essential insight into a workow speci�cation's
e�ectiveness. The data ow perspective rests on it, while the organizational and operational
perspectives are ancillary. If workow speci�cations are to be extended to meet newer pro-
cessing requirements, control ow constructors require a fundamental insight and analysis.
Currently, most workow languages support the basic constructs of sequence, iteration, splits

2

(AND and OR) and joins (AND and OR) - see [AH02, Law97]. However, the interpretation
of even these basic constructs is not uniform and it is often unclear how more complex re-
quirements could be supported. Indeed, vendors are a�orded the opportunity to recommend
implementation level \hacks" such as database triggers and application event handling. The re-
sult is that neither the current capabilities of workow languages nor insight into more complex
requirements of business processes is advanced.

Problem

Even without formal quali�cation, the distinctive features of di�erent workow languages al-
lude to fundamentally di�erent semantics. Some languages allow multiple instances of the
same activity type at the same time in the same workow context while others do not. Some
languages structure loops with one entry point and one exit point, while in others loops are
allowed to have arbitrary entry and exit points. Some languages require explicit termination
activities for workows and their compound activities while in others termination is implicit.
Such di�erences point to di�erent insights of suitability and di�erent levels of expressive power.

The challenge, which we undertake in this paper, is to systematically address workow re-
quirements, from basic to complex, in order to 1) identify useful routing constructs and 2) to
establish to what extent these requirements are addressed in the current state of the art. Many
of the basic requirements identify slight, but subtle di�erences across workow languages, while
many of the more complex requirements identi�ed in this paper, in our experiences, recur quite
frequently in the analysis phases of workow projects, and present grave uncertainties when
looking at current products. Given the fundamental di�erences indicated above, it is tempting
to build extensions to one language, and therefore one semantic context. Such a strategy is
rigorous and its results would provide a detailed and unambiguous view into what the exten-
sions entail. Our strategy is more practical. We wish to draw a more broader insight into the
implementation consequences for the big and potentially big players. With the increasing ma-
turity of workow technology, workow language extensions, we feel, should be levered across
the board, rather than slip into \yet another technique" proposals.

Approach

We indicate requirements for workow languages through workow patterns. As described in
[RZ96], a pattern \is the abstraction from a concrete form which keeps recurring in speci�c
nonarbitrary contexts". Gamma et al. [GHJV95] �rst catalogued systematically some 23 design
patterns which describe the smallest recurring interactions in object-oriented systems. The
design patterns, as such, provided independence from the implementation technology and at
the same time independence from the essential requirements of the domain that they were
attempting to address (see also e.g. [Fow97]).

3

For our purpose, patterns address business requirements in an imperative workow style ex-
pression, but are removed from speci�c workow languages. Thus they do not claim to be the
only way of addressing the business requirements. Nor are they \alienated" from the workow
approach, thus allowing a potential mapping to be positioned closely to di�erent languages
and implementation solutions. Along the lines of [GHJV95], patterns are described through:
conditions that should hold for the pattern to be applicable; examples of business situations;
problems, typically semantic problems, of realization in current languages; and implementation
solutions.

To demonstrate solutions for the patterns, our recourse is a mapping to existing workow lan-
guage constructs. In some cases support from the workow engine has been identi�ed, and we
briey sketch implementation level strategies. Among the contemporary workow management
systems considered in this paper, none supports all the patterns. For those patterns that were
supported, some had a straightforward mapping while others were demonstrable in a minority
of tools.

It is important to note that the scope of our patterns is limited to static control ow, i.e.,
we do not consider patterns for resource allocation [KAV02], case handling [AB01], exception
handling [CCPP98, KDB00], and transaction management [SAA99, GHS95].

Related work

Many languages have been proposed for the design and speci�cation of workow processes.
Some of these languages are based on existing modeling techniques such as Petri nets and
State charts. Other languages are system speci�c. Any attempt to give a complete overview of
these languages and the patterns they support is destined to fail. Throughout this paper we
will give pointers to concrete languages without striving for completeness. To our knowledge
no other attempts have been made to collect a structured set of workow patterns. This paper
builds on [AHKB00a] where only four patterns are introduced. A previous version of this paper
(evaluating only 12 systems but addressing more patterns) is available as a technical report
[AHKB00b]. Moreover, the \Workow Patterns Home Page" [AHKB] has been used to invite
researcher, developers, and users to generate feedback. As a result, several authors have used
our patterns to evaluate existing workow management systems or newly designed workow
languages, e.g., in [Lav00] the OmniFlow environment is evaluated using 10 of our patterns,
in [Hir01] our patterns are used to evaluate the CONDIS Workow Management System, and
in [VO01, VO02] the frequency of each of our patterns in real-life situations is investigated.
Some of the patterns presented in this paper are related to the control-ow patterns described
in [JB96]. However, the goal of [JB96] is to develop a workow management systems that
can be extended with new patterns rather than structuring and evaluating existing patterns.
Our work is also related to investigations into the expressive power of workow languages, cf.
[BW99]. Other authors have coined the term workow patterns but addressed di�erent issues.
In [WAH00] a set of workow patterns inspired by Language/Action theory and speci�cally

4

aiming at virtual communities is introduced. Patterns at the level of workow architectures
rather than control ow are given in [MB97]. Collaboration patterns involving the use of data
and resources are described in [Lon98].

For more information about the evaluations of the individual workow systems, we refer to
[AHKB02]. For a more fundamental discussion on the various control-ow mechanisms used in
various systems the reader is referred to [Kie02].

The organization of this paper is as follows. First, we describe the workow patterns, then
we present the comparison of contemporary workow management systems using the patterns
(except the most elementary ones, as they are supported by all workow management systems).
Finally, we conclude the paper and identify issues for further research.

2 Workow Patterns

The design patterns range from fairly simple constructs present in any workow language
to complex routing primitives not supported by today's generation of workow management
systems. We will start with the more simple patterns. Since these patterns are available in
the current workow products we will just give a (a) description, (b) synonyms, and (c) some
examples. In fact, for these rather basic constructs, the term \workow pattern" is not very
appropriate. However, for the more advanced routing constructs we also identify (d) the problem
and (e) potential implementation strategies. The problem component of a pattern describes
why the construct is hard to realize in many of the workow management systems available
today. The implementation component, also referred to as solutions, describes how, assuming
a set of basic routing primitives, the required behavior can be realized. For these more complex
routing constructs the term \pattern" is more justi�ed since non-trivial solutions are given for
practical problems encountered when using today's workow technology.

Before we present the patterns, we �rst introduce some of the terms that will be used through-
out this paper. The primary task of a workow management system is to enact case-driven
business processes by allowing workow models to be speci�ed, executed, and monitored.
Workow process de�nitions (workow schemas) are de�ned to specify which activities need
to be executed and in what order (i.e. the routing or control ow). An elementary activity is
an atomic piece of work. Workow process de�nitions are instantiated for speci�c cases (i.e.
workow instances). Examples of cases are: a request for a mortgage loan, an insurance claim,
a tax declaration, an order, or a request for information. Since a case is an instantiation of
a process de�nition, it corresponds to the execution of concrete work according to the spec-
i�ed routing. Activities are connected through transitions and we use the notion of a thread
of execution control for concurrent executions in a workow context. Activities are under-
taken by roles which de�ne organizational entities, such as humans and devices. Control data
are data introduced solely for workow management purposes, e.g. variables introduced for
routing purposes. Production data are information objects (e.g. documents, forms, and tables)

5

whose existence does not depend on workow management. Elementary actions are performed
by roles while executing an activity for a speci�c case, and are executed using applications

(ranging from a text editor to custom built applications to perform complex calculations).

Each workow language can be formally described by a set of primitive modeling constructs,
syntactical rules for composition, and the semantics of these constructs. In this paper, we will
not present a new modeling language. Instead, we focus on workow patterns that originate
from business requirements. The semantics of these patterns are much less formal because
we cannot assume a (formal) language. Moreover, the patterns are context-oriented, i.e., a
workow pattern typically describes certain business scenarios in a very speci�c context. The
semantics of the pattern in this context is clear, while the semantics outside the context is
unde�ned. Workow patterns are typically realized in a speci�c language using one or more
constructs available for this language. Please note the di�erence between the semantics of the
pattern and the realization using a speci�c language. Sometimes workow constructs available
for a given language are not suÆcient to realize a given pattern and workow implementers
have to resort to programming techniques such as event queuing, database triggers, etc to
circumvent the limitations of a given workow tool.

Patterns should be interpreted in a given context, i.e., assumptions about the environment
which embeds the pattern are highly relevant. Consider for example the basic synchronization
pattern (Pattern 3) often referred to as AND-join. It is a simple and well-understood pattern
that describes a point in a workow where multiple parallel subprocesses/activities converge
into one single thread of control, thus synchronizing multiple threads. It is important to un-
derstand though that this pattern is clear and well-de�ned only in a very speci�c context, i.e.
when we expect only one trigger from each of the incoming branches that we want to syn-
chronize. This context is indeed the most common one, however not the only one possible and
the simple synchronization pattern does not specify how synchronization should occur in a
di�erent context. Realizing the simple synchronization pattern is straightforward and involves
usage of a language-speci�c synchronization construct, for example synchronizer in Verve, ren-
dezvous in FileNet's Visual WorkFlo, join in MQSeries/Workow, etc. However, each of these
language-speci�c synchronization constructs behaves di�erently if this assumption about the
context is dropped.

2.1 Basic Control Flow Patterns

In this section patterns capturing elementary aspects of process control are discussed. These
patterns closely match the de�nitions of elementary control ow concepts provided by the
WfMC in [WFM99]. The �rst pattern we consider is the sequence.

Pattern 1 (Sequence)
Description An activity in a workow process is enabled after the completion of another
activity in the same process.

6

Synonyms Sequential routing, serial routing.
Examples

- Activity send bill is executed after the execution of activity send goods.

- An insurance claim is evaluated after the client's �le is retrieved.

- Activity add air miles is executed after the execution of activity book ight.

Implementation

- The sequence pattern is used to model consecutive steps in a workow process and is
directly supported by each of the workow management systems available. The typical
implementation involves linking two activities with an unconditional control ow arrow.

2

The next two patterns can be used to accommodate for parallel routing.

Pattern 2 (Parallel Split)
Description A point in the workow process where a single thread of control splits into
multiple threads of control which can be executed in parallel, thus allowing activities to be
executed simultaneously or in any order.
Synonyms AND-split, parallel routing, fork.
Examples

- The execution of the activity payment enables the execution of the activities ship goods
and inform customer.

- After registering an insurance claim two parallel subprocesses are triggered: one for
checking the policy of the customer and one for assessing the actual damage.

Implementation

- All workow engines known to us have constructs for the implementation of this pat-
tern. One can identify two basic approaches: explicit AND-splits and implicit AND-splits.
Workow engines supporting the explicit AND-split construct (e.g. Visual WorkFlo) de-
�ne a routing node with more than one outgoing transition which will be enabled as
soon as the routing node gets enabled. Workow engines supporting implicit AND-splits
(e.g. MQSeries/Workow) do not provide special routing constructs - each activity can
have more than one outgoing transition and each transition has associated conditions. To
achieve parallel execution the workow designer has to make sure that multiple condi-
tions associated with outgoing transitions of the node evaluate to True (this is typically
achieved by leaving the conditions blank).

7

2

Pattern 3 (Synchronization)
Description A point in the workow process where multiple parallel subprocesses/activities
converge into one single thread of control, thus synchronizing multiple threads. It is an as-
sumption of this pattern that each incoming branch of a synchronizer is executed only once (if
this is not the case, then see Patterns 13-15 (Multiple Instances Requiring Synchronization)).
Synonyms AND-join, rendezvous, synchronizer.
Examples

- Activity archive is enabled after the completion of both activity send tickets and activity
receive payment.

- Insurance claims are evaluated after the policy has been checked and the actual damage
has been assessed.

Implementation

- All workow engines available support constructs for the implementation of this pattern.
Similarly to Pattern 2 one can identify two basic approaches: explicit AND-joins (e.g.
Rendez-vous construct in Visual WorkFlo or Synchronizer in Verve) and implicit joins
in an activity with more than one incoming transition (as in e.g. MQSeries/Workow or
Fort�e Conductor).

2

The next two patterns are used to specify conditional routing. In contrast to parallel routing
only one selected thread of control is activated.

Pattern 4 (Exclusive Choice)
Description A point in the workow process where, based on a decision or workow control
data, one of several branches is chosen.
Synonyms XOR-split, conditional routing, switch, decision.
Examples

- Activity evaluate claim is followed by either pay damage or contact customer.

- Based on the workload, a processed tax declaration is either checked using a simple
administrative procedure or is thoroughly evaluated by a senior employee.

Implementation

- Similarly to Pattern 2 (Parallel split) there are a number of basic strategies. Some work-
ow engines provide an explicit construct for the implementation of the exclusive choice

8

pattern (e.g. Sta�ware, VisualWorkFlo). In some workow engines (MQSeries/Workow,
Verve) the workow designer has to emulate the exclusiveness of choice by specifying ex-
clusive transition conditions. In another workow product, Eastman, a post-processing
rule list can be speci�ed for an activity. After completion of the activity, the transition
associated with the �rst rule in this list to evaluate to true is taken.

2

Pattern 5 (Simple Merge)
Description A point in the workow process where two or more alternative branches come to-
gether without synchronization. It is an assumption of this pattern that none of the alternative
branches is ever executed in parallel (if this is not the case, then see Pattern 8 (Multi-merge)
or Pattern 9 (Discriminator)).
Synonyms XOR-join, asynchronous join, merge.
Examples

- Activity archive claim is enabled after either pay damage or contact customer is exe-
cuted.

- After the payment is received or the credit is granted the car is delivered to the customer.

Implementation

- Given that we are assuming that parallel execution of alternative threads does not
occur, this is a straightforward situation and all workow engines support a construct
that can be used to implement the simple merge. It is interesting to note here that
some languages impose a certain level of structuredness to automatically guarantee that
not more than one alternative thread is running at any point in time. Visual WorkFlo
for example requires the merge construct to always be preceded by a corresponding
exclusive choice construct (combined with some other requirements this then yields the
desired behavior). In other languages workow designers themselves are responsible for
the design not having the possibility of parallel execution of alternative threads.

2

2.2 Advanced Branching and Synchronization Patterns

In this section the focus will be on more advanced patterns for branching and synchronization.
As opposed to the patterns in the previous section, these patterns do not have straightforward
support in most workow engines. Nevertheless, they are quite common in real-life business
scenarios.

Pattern 4 (Exclusive choice) assumes that exactly one of the alternatives is selected and exe-
cuted, i.e. it corresponds to an exclusive OR. Sometimes it is useful to deploy a construct which

9

can choose multiple alternatives from a given set of alternatives. Therefore, we introduce the
multi-choice.

Pattern 6 (Multi-choice)
Description A point in the workow process where, based on a decision or workow control
data, a number of branches are chosen.
Synonyms Conditional routing, selection, OR-split.
Examples

- After executing the activity evaluate damage the activity contact �re department or the
activity contact insurance company is executed. At least one of these activities is exe-
cuted. However, it is also possible that both need to be executed.

Problem In many workow management systems one can specify conditions on the transi-
tions. In these systems, the multi-choice pattern can be implemented directly. However, there
are workow management systems which do not o�er the possibility to specify conditions on
transitions and which only o�er pure AND-split and XOR-split building blocks (e.g. Sta�ware).
Implementation

- As stated, for workow languages that assign transition conditions to each transition
(e.g. Verve, MQSeries/Workow, Fort�e Conductor) the implementation of the multi-
choice is straightforward. The workow designer simply speci�es desired conditions for
each transition. It may be noted that the multi-choice pattern generalizes the parallel
split (Pattern 2) and the exclusive choice (Pattern 4).

- For languages that only supply constructs to implement the parallel split and the ex-
clusive choice, the implementation of the multi-choice has to be achieved through a
combination of the two. Each possible branch is preceded by an XOR-split which de-
cides, based on control data, either to activate the branch or to bypass it. All XOR-splits
are activated by one AND-split.

- A solution similar to the previous one is obtained by reversing the order of the parallel
split pattern and the exclusive choice pattern. For each set of branches which can be
activated in parallel, one AND-split is added. All AND-splits are preceded by one XOR-
split which activates the appropriate AND-split. Note that, typically, not all combinations
of branches are possible. Therefore, this solution may lead to a more compact workow
speci�cation. Both solutions are depicted in Figure 1.

2

It should be noted that there is a trade-o� between implementing the multi-choice as in Work-
ow A of Figure 1 or as in Workow C of this �gure. The solution depicted in Workow
A (assuming that the Workow language allows for such an implementation) is much more
compact and therefore more suitable for end-users. However, automatic veri�cation of the

10

A

B C

x<5 y>7

A

B C

x<5 y>7

AND

XOR

y<=7

x>=5

A

x>=5 & y<=7

B

XOR

B C

AND

x<5 & y>7

x<5 & y<=7

x>=5 & y>7

C
XOR

Workflow A Workflow B Workflow C

Figure 1: Design patterns for the multi-choice.

workow (i.e. checking for existence of deadlocks, etc.) is not possible for such solutions with-
out additional knowledge of dependencies between the transition conditions (in Workow C,
the workow designer has typically eliminated impossible combinations; this transformation is
necessary, though not necessarily suÆcient in itself, for enabling automatic veri�cation).

Today's workow products can handle the multi-choice pattern quite easily. Unfortunately, the
implementation of the corresponding merge construct is much more diÆcult to realize. This
merge construct, the subject of the next pattern, should have the capability to synchronize
parallel ows and to merge alternative ows. The diÆculty is to decide when to synchronize and
when to merge. As an example, consider the simple workow model shown in Figure 2. After
activity A �nishes, either B or C, or both B and C, or neither B nor C will be executed. Hence,
we would like to achieve the following traces: ABCD,ACBD,ABD,ACD, andA (these should
be all the possible completed traces). The use of a simple synchronization construct leads to
potential deadlock, while the use of a merge construct as provided by some workow engines
may lead to multiple execution of activity D (in case both B and C were executed).

A

B

C

D???Multi-
choice

Figure 2: How do we want to merge here?

Pattern 7 (Synchronizing Merge)
Description A point in the workow process where multiple paths converge into one single

11

thread. If more than one path is taken, synchronization of the active threads needs to take place.
If only one path is taken, the alternative branches should reconverge without synchronization.
It is an assumption of this pattern that a branch that has already been activated, cannot be
activated again while the merge is still waiting for other branches to complete.
Synonyms Synchronizing join.
Examples

- Extending the example of Pattern 6 (Multi-choice), after either or both of the activities
contact �re department and contact insurance company have been completed (depending
on whether they were executed at all), the activity submit report needs to be performed
(exactly once).

Problem The main diÆculty with this pattern is to decide when to synchronize and when
to merge. Generally speaking, this type of merge needs to have some capacity to be able to
determine whether it may (still) expect activation from some of its branches.
Implementation

- The two workow engines known to the authors that provide a straightforward construct
for the realization of this pattern are MQSeries/Workow and InConcert. As noted ear-
lier, if a synchronizing merge follows an OR-split and more than one outgoing transition
of that OR-split can be triggered, it is not until runtime that we can tell whether or
not synchronization should take place. MQSeries/Workow works around that problem
by passing a False token for each transition that evaluates to False and a True token
for each transition that evaluates to True. The merge will wait until it receives tokens
from each incoming transition. InConcert does not use a False token concept. Instead it
passes a token through every transition in a graph. This token may or may not enable
the execution of an activity depending on the entry condition. This way every activity
having more than one incoming transition can expect that it will receive a token from
each one of them, thus deadlock cannot occur. The careful reader may note that these
evaluation strategies require that the workow process does not contain cycles.

- In Eastman, \non-parallel work items routed to Join worksteps bypass Join Processing"
(p. 109 of [Sof98]), hence an XOR-split followed by an AND-join does not have to lead
to deadlock. For example, if in the workow of Figure 2 the multi-choice is replaced by
an XOR-split and the merge construct by an AND-join, activity D would be reached.
However, in Eastman, if an XOR-split is placed after activity B which leads to the AND-
join but also to an empty (�nal) task, then activity D would not be reached if after
executing B a choice is made for this empty task and the workow would be in deadlock.
Hence, joins require some information about how many active threads to expect under
certain circumstances.

- In other workow engines the implementation of the synchronizing merge typically is not
straightforward. The only solution is to avoid the explicit use of the OR-split that may
trigger more than one outgoing transition and implement it as a combination of AND-

12

splits and XOR-splits (see Pattern 6 (Multi-choice)). This way we can easily synchronize
corresponding branches by using AND-join and standard merge constructs.

2

The next two patterns can be applied in contexts where the assumption made in Pattern 5
(Simple merge) does not hold, i.e. they can deal with merge situations where multiple incoming
branches may run in parallel. As an example, consider the simple workow model depicted in
Figure 3. If a standard synchronization construct (Pattern 3 (Synchronization)) is used as a
merge construct, activity D will be started once, only after activities B and C are completed.
Then, all possible completed traces of this workow are ABCD and ACBD. There are situ-
ations though where it is desirable that activity D is executed once, but started after either
activity B or activity C is completed (as to avoid waiting unnecessarily for the other activity
to �nish). All possible completed traces would then be ABCD, ACBD, ABDC, ACDB. Such
a pattern will be referred to as a discriminator. Another scenario which may occur is one
where activity D is to be executed twice, after activity B is completed and also after activity
C is completed. All possible completed traces of this workow will be ABCDD, ACBDD,
ABDCD, and ACDBD. Such a pattern will be referred to as a multi-merge.

A

B

C

D???AND

Figure 3: How do we want to merge here?

Pattern 8 (Multi-merge)
Description A point in a workow process where two or more branches reconverge without
synchronization. If more than one branch gets activated, possibly concurrently, the activity
following the merge is started for every activation of every incoming branch.
Examples

- Sometimes two or more parallel branches share the same ending. Instead of replicating
this (potentially complicated) process for every branch, a multi-merge can be used. A
simple example of this would be two activities audit application and process application
running in parallel which should both be followed by an activity close case.

Problem The use of a standard merge construct as provided by some workow products
to implement this pattern often leads to undesirable results. Some workow products (e.g.
Sta�ware, I-Flow) will not generate a second instance of an activity if another instance is still
running, while e.g. HP Changengine will never start a second instance of an activity. Finally,
in some workow products (e.g. Visual WorkFlo, SAP R/3 Workow) it is not even possible

13

to use a merge construct in conjunction with a parallel split as in the workow of Figure 3 due
to syntactical restrictions that are imposed.
Implementation

- The merge constructs of Eastman, Verve Workow and Fort�e Conductor can be used
directly to implement this pattern.

- If the multi-merge is not part of a loop, the common design pattern for languages that
are not able to create more than one active instance of an activity is to replicate this
activity in the workow model (see Figure 4 for a simple example). If the multi-merge
is part of a loop, then typically the number of instances of an activity following the
multi-merge is not known during design time. For a typical solution to this problem,
see Pattern 14 (Multiple Instances with a Priori Runtime Knowledge) and Pattern 15
(Multiple Instances Without a Priori Runtime Knowledge).

- An interesting solution is o�ered by the case-handling system FLOWer. FLOWer allows
for dynamic subplans. A dynamic subplan is a subprocess with a variable number of
instances. Moreover, the number of instances can be controlled dynamically through a
variable. This way it is possible to indirectly model the multi-merge.

2

A

B C

AND

DE

Merge

A

B C

AND

D

E

D

E

Figure 4: Typical implementation of multi-merge pattern.

Pattern 9 (Discriminator)
Description The discriminator is a point in a workow process that waits for one of the
incoming branches to complete before activating the subsequent activity. From that moment on
it waits for all remaining branches to complete and \ignores" them. Once all incoming branches
have been triggered, it resets itself so that it can be triggered again (which is important
otherwise it could not really be used in the context of a loop).
Examples

14

- To improve query response time, a complex search is sent to two di�erent databases
over the Internet. The �rst one that comes up with the result should proceed the ow.
The second result is ignored.

Problem Most workow engines do not have a construct that can be used for a direct
implementation of the discriminator pattern. As mentioned in Pattern 8 (Multi-merge), the
standard merge construct in some workow engines (e.g. Sta�ware, I-Flow) will not generate
the second instance of an activity if the �rst instance is still active. This does not provide a
solution for the discriminator, however, since if the �rst instance of the activity �nishes before
an attempt is made to start it again, a second instance will be created (in terms of Figure 3
this would mean that e.g. a trace like ABDCD is possible).
Implementation

- A regular join construct in Changengine has a semantics similar to that of the discrim-
inator.

- There is a special construct that implements the discriminator semantics in Verve (in
fact we adopted this term from this product). This construct has many incoming branches
and one outgoing branch. When one of the incoming branches �nishes, the subsequent
activity is triggered and the discriminator changes its state from \ready" to \waiting".
From then on it waits for all remaining incoming branches to complete. When that
has happened, it changes its state back to \ready". This construct provides a direct
implementation option for the discriminator pattern, however, it does not work properly
when used in the context of a loop (once waiting for the incoming branches to complete,
it ignores additional triggers from the branch that �red it).

- In SAP R/3 Workow (version 4.6C) for forks (a combination of an AND-split and an
AND-join) it is possible to specify the number of branches that have to be completed for
the fork to be considered completed. Setting this number to one realizes a discriminator
except that 1) the branches that have not been completed receive the status \logically
deleted" and 2) the fork restricts the form that parallelism/synchronization can take.

- The discriminator semantics can be implemented in products supporting Custom Trig-

gers. For example in Fort�e Conductor a custom trigger can be de�ned for an activity that
has more than one incoming transition. Custom triggers de�ne the condition, typically
using some internal script language, which when satis�ed should lead to execution of
a certain activity. Such a script can be used to achieve a semantics close to that of a
discriminator (again, in the context of a loop such a script may be more complicated).
The downside of this approach is that the semantics of a join that uses custom triggers
is impossible to determine without carefully examining the underlying trigger scripts. As
such, the use of custom triggers may result in models that are less suitable and hard to
understand.

- Some workow management systems (e.g., FLOWer) allow for data-dependent execu-

15

tions. In FLOWer it is possible to have a so-called milestone which waits for a variable
to be set. The moment the variable is set, processing of the parallel thread containing
the milestone will continue. The reset functionality is realized through using so-called
sequential/dynamic subplans rather than iteration.

- Typically, in other workow engines the discriminator is impossible to implement directly
in the workow modeling language supplied.

2

To realize a discriminator that behaves properly in loops is quite complicated and this may be
the reason why it has not been implemented in its most general form in any of the workow
products referred to in this paper. The discriminator needs to keep track of which branches
have completed (and how often in case of multiple activations of the same branch) and resets
itself when it has seen the completion of each of its branches.

Note that the discriminator pattern can easily be generalized for the situation when an activity
should be triggered only after n out of m incoming branches have been completed. Similarly to
the basic discriminator all remaining branches should be ignored. In the literature, this type of
discriminator has been referred to as a partial join (cf. [CCPP95]). Implementation approaches
to this pattern are similar to those for the basic discriminator when custom triggers can be
used and SAP R/3 Workow's approach already allowed the number of branches that need
to be completed to be more than one. In languages that provide direct support for the basic
discriminator (e.g. Verve Workow) an n-out-of-m join can be realized with the additional use
of a combination of AND-joins and AND-splits (the resulting workow de�nition becomes large
and complex though). An example of the realization of a 2-out-of-3 join is shown in Figure 5.

A

AND

B2B1

2-out-of-3

C

B3

A

AND

B2B1

Disc.

C

B3

AND AND AND

AND AND AND

Figure 5: Implementation of a 2-out-of-3-join using the basic discriminator.

16

2.3 Structural Patterns

Di�erent workow management systems impose di�erent restrictions on their workow models.
These restrictions (e.g. arbitrary loops are not allowed, only one �nal node should be present
etc) are not always natural from a modeling point of view and tend to restrict the speci�cation
freedom of the business analyst. As a result, business analysts either have to conform to the
restrictions of the workow language from the start, or they model their problems freely and
transform the resulting speci�cations afterwards. A real issue here is that of suitability. In
many cases the resulting workows may be unnecessarily complex which impacts end-users
who may wish to monitor the progress of their workows. In this section two patterns are
presented which illustrate typical restrictions imposed on workow speci�cations and their
consequences.

Virtually every workow engine has constructs that support the modeling of loops. Some of the
workow engines provide support only for what we will refer to as structured cycles. Structured
cycles can have only one entry point to the loop and one exit point from the loop and they
cannot be interleaved. They can be compared to WHILE loops in programming languages
while arbitrary cycles are more like GOTO statements. This analogy should not deceive the
reader though into thinking that arbitrary cycles are not desirable as there are two important
di�erences here with \classical" programming languages: 1) the presence of parallelism which
in some cases makes it impossible to remove certain forms of arbitrariness and 2) the fact that
the removal of arbitrary cycles may lead to workows that are much harder to interpret (and
as opposed to programs, workow speci�cations also have to be understood at runtime by their
users).

Pattern 10 (Arbitrary Cycles)
Description A point in a workow process where one or more activities can be done repeat-
edly.
Synonyms Loop, iteration, cycle.
Problem Some of the workow engines do not allow arbitrary cycles - they have support for
structured cycles only, either through the decomposition construct (MQSeries/Workow, In-
Concert,FLOWer) or through a special loop construct (Visual WorkFlo, SAP R/3 Workow).
Implementation

- Arbitrary cycles can typically be converted into structured cycles unless they contain
one of the more advanced patterns such as multiple instances (see Pattern 14 (Multiple
Instances With a Priori Runtime Knowledge)). The conversion is done through auxiliary
variables and/or node repetition. An analysis of such conversions and an identi�cation of
some situations where they cannot be done can be found in [KHB00]. Figure 6 provides an
example of an arbitrary workow converted to a structured workow. Such a structured
workow can be implemented directly in workow engines such as MQSeries/Workow or
Visual WorkFlo that do not have direct support for arbitrary cycles. Note that auxiliary

17

variables � and � are required as we may not know which activities in the original
workow set the values of � and �.

2

A

C

D

Merge

F

B

EXOR

GXOR

Merge

XOR

α

∼α

β

∼β

χ∼χ

A

C

D

Θ:=True

C

F

GXOR

XOR

α

∼α

Θ∼Θ

B

Merge

Φ:=β

XOR

Θ:=χ

Φ ∼Φ

Merge

XOR

E

Φ

∼Φ

Structured cycle (only one
entry and one exit point)

Figure 6: Example of implementation of arbitrary cycles.

Remark 2.1
The rightmost workow in Figure 6 requires a slight adaptation, shown in Figure 7, in
order to be realizable in block structured languages such as MQSeries Workow. This

adaptation is required as � is the post-condition for this block. If � evaluates to false,

the block should start again, and the next activity should be the initial activity of the

block (but the activity named C which follows the evaluation of � is not initial). The

transformation though is straightforward and always possible for structured cycles.

2

Note that some authors (e.g., [AM00]) claim that any loop is an exception and should not be
modeled explicitly. As an alternative, typically a facility to jump back to any previous state
in the workow (cf. the backward linear jumps in [AM00]) is proposed. This approach has
been implemented in FLOWer [AB01]. In FLOWer any activity has a so-called \redo role".
The redo role speci�es who is allowed to undo the activity and jump backwards in the process.
This allows for the implicit modeling of loops.

Another example of a requirement imposed by some workow products is that the workow
model is to contain only one ending node, or in case of many ending nodes, the workow model

18

A

C

D

Θ:=True

C

F

G

XOR

XOR

α

∼α

Θ

∼Θ

B

Merge

Φ:=β

XOR

Θ:=χ

Φ ∼Φ

Merge

XORE Φ ∼Φ

Merge

exit condition:

Θ

block
activity

Figure 7: Transformation of structured cycle of Figure 6 to block structure in
MQSeries/Workow.

will terminate when the �rst of these ending nodes is completed. Again, many business models
do not follow this pattern - it is more natural to think of a business process as terminated once
there is nothing else to be done.

Pattern 11 (Implicit Termination)
Description A given subprocess should be terminated when there is nothing else to be done.
In other words, there are no active activities in the workow and no other activity can be made
active (and at the same time the workow is not in deadlock).
Problem Most workow engines terminate the process when an explicit Final node is reached.
Any current activities that happen to be running at that time will be aborted.
Implementation

- Some workow engines (Eastman, Sta�ware, MQSeries/Workow, InConcert) support
this pattern directly as they would terminate a (sub)process when there is nothing else
to be done.

- For workow products that do not support this pattern directly, the typical solution
to this problem is to transform the model to an equivalent model that has only one
terminating node. The complexity of that task depends very much on the actual model.
Sometimes it is easy and fairly straightforward, typically by using a combination of

19

di�erent join constructs and activity repetition. However, there are situations where it
is diÆcult or even impossible to do so. A model that involves multiple instances (see
section 2.4) and implicit termination is typically very hard to convert to a model with
explicit termination. A detailed analysis of which workow model can be converted to an
equivalent model that has only one terminating node is beyond the scope of this paper.

2

2.4 Patterns involving Multiple Instances

The patterns in this subsection involve a phenomenon that we will refer to asmultiple instances.
From a theoretical point of view the concept is relatively simple and corresponds to multiple
threads of execution referring to a shared de�nition. From a practical point of view it means
that an activity in a workow graph can have more than one running, active instance at the
same time. As we will see, such behavior may be required in certain situations. The fundamental
problem with the implementation of these patterns is that due to design constraints and lack
of anticipation for this requirement most of the workow engines do not allow for more than
one instance of the same activity to be active at the same time.

When considering multiple instances there are two types of requirements. The �rst require-
ments has to do with the ability to launch multiple instances of an activity or a subprocess.
The second requirement has to do with the ability to synchronize these instances and continue
after all instances have been handled. Each of the patterns needs to satisfy the �rst require-
ment. However, the second requirement may be dropped by assuming that no synchronization
of the instances launched is needed. This assumption is somewhat related to patterns 8 (Multi-
merge) and 11 (Implicit Termination). The Multi-merge also allows for the creation of multiple
instances without any synchronization facilities. If instances that are created are not synchro-
nized, then termination of each of these instances is implicit and not coordinated with the
main workow.

If the instances need to be synchronized, the number of instances is highly relevant. If this
number is �xed and known at design time, then synchronization is rather straightforward. If
however, the number of instances is determined at run-time or may even change while handling
the instances, synchronization becomes very diÆcult. Therefore, we identify three patterns with
synchronization. If no synchronization is needed, the number of instances is less relevant: Any
facility to create instances within the context of a case will do. Therefore, we only present one
pattern for multiple instances without synchronization.

Pattern 12 (Multiple Instances Without Synchronization)
Description Within the context of a single case (i.e., workow instance) multiple instances
of an activity can be created, i.e., there is a facility to spawn o� new threads of control. Each
of these threads of control is independent of other threads. Moreover, there is no need to
synchronize these threads.

20

Synonyms Multi threading without synchronization, Spawn o� facility
Examples

- A customer ordering a book from an electronic bookstore such as Amazon may order
multiple books at the same time. Many of the activities (e.g., billing, updating customer
records, etc.) occur at the level of the order. However, within the order multiple in-
stances need to be created to handle the activities related to one individual book (e.g.,
update stock levels, shipment, etc.). If the activities at the book level do not need to be
synchronized, this pattern can be used.

Implementation

- The most straightforward implementation of this pattern is through the use of the
loop and the parallel split construct as long as the workow engine supports the use
of parallel splits without corresponding joins and allows triggering of activities that are
already active. This is possible in languages such as Fort�e and Verve. This solution is
illustrated by Workow A in Figure 8.

- Some workow languages support an extra construct that enables the designer to create a
subprocess or a subow that will \spawn-o�" from the main process and will be executed
concurrently. For example, Visual WorkFlo supports the Release construct while I-Flow
supports the Chained Process Node. COSA has a similar facility, one workow may
contain multiple concurrent ows that are created through an API and share information.

- In most workow management systems the possibility exists to create new instances of
a workow process through some API. This allows for the creation of new instances by
calling the proper method from activities inside the main ow. Note that this mecha-
nism works. However, the system maintains no relation between the main ow and the
instances that are spawned o�.

2

Pattern 12 is supported by most workow management systems. The problem is not to gen-

erate multiple instances, the problem is to coordinate them. As explained before, it is not
trivial to synchronize these instances. Therefore, we will present three patterns involving the
synchronization of concurrent threads.

The simplest case is when we know, during the design of the process, the number of instances
that will be active during process execution. In fact, this situation can be considered to be a
combination of patterns 2 (Parallel Split) and 3 (Synchronization) were all concurrent activities
share a common de�nition.

Pattern 13 (Multiple Instances With a Priori Design Time Knowledge)
Description For one process instance an activity is enabled multiple times. The number of

21

instances of a given activity for a given process instance is known at design time. Once all
instances are completed some other activity needs to be started.
Examples

- The requisition of hazardous material requires three di�erent authorizations.

Implementation

- If the number of instances is known a priori during design time, then a very simple
implementation option is to replicate the activity in the workow model preceding it
with a construct used for the implementation of the parallel split pattern. Once all
activities are completed, it is simple to synchronize them using a standard synchronizing
construct.

2

It is simple enough to model multiple instances when their number is known a priori, as one
simply replicates the task in the process model. However, if this information is not known,
and the number of instances cannot be determined until the process is running, this technique
cannot be used. The next two patterns consider the situation when the number of instances
is not known at design time. The �rst pattern considers the situation where it is possible to
determine the number of instances to be started before any of these instances is started.

Pattern 14 (Multiple Instances With a Priori Runtime Knowledge)
Description For one case an activity is enabled multiple times. The number of instances
of a given activity for a given case varies and may depend on characteristics of the case or
availability of resources [CCPP98, JB96], but is known at some stage during runtime, before
the instances of that activity have to be created. Once all instances are completed some other
activity needs to be started.
Examples

- In the review process of a scienti�c paper submitted to a journal, the activity re-

view paper is instantiated several times depending on the content of the paper, the
availability of referees, and the credentials of the authors. Only if all reviews have been
returned, processing is continued.

- For the processing of an order for multiple books, the activity check availability is ex-
ecuted for each individual book. The shipping process starts if the availability of each
book has been checked.

- When booking a trip, the activity book ight is executed multiple times if the trip in-
volves multiple ights. Once all bookings are made, the invoice is to be sent to the client.

- When authorizing a requisition with multiple items, each item has to be authorized indi-
vidually by di�erent workow users. Processing continues if all items have been handled.

22

Problem As the number of instances of a given activity is not known during the design we
cannot simply replicate this activity in a workow model during the design stage. Currently
only a few workow management systems allow for multiple instances of a single activity at a
given time, or o�er a special construct for the multiple activation of one activity for a given
process instance, such that these instances are synchronized.
Implementation

- If the workow engine supports multiple instances directly (cf. Fort�e and Verve), we can
try and use the solution illustrated in Workow A in Figure 8. However, activity E in this
model will possibly be started before all instances of activity B are completed. To achieve
proper synchronization one needs to resort to techniques well beyond the modeling power
of these languages. For example, it may be possible to implement activity B such that
once it is completed, it sends an event to some external event queue. Activity E can be
preceded by another activity that consumes the events from the queue and triggers E
only if the number of events in the queue is equal to the number of instances of activity
B (as pre-determined by activity A). This solution is very complex, may have some
concurrency problems, and for the end-user it is totally unclear what the true semantics
of the process is.

- Similar problems occur when using the Release construct of VisualWorkFlo, the Chained
Process Node of I-Flow, the multiple subows of COSA, or some API to invoke the
subprocess as part of an activity in a process. In each of these systems, it is very diÆcult
to synchronize concurrent subprocesses.

- Some workow engines o�er a special construct that can be used to instantiate a given
number of instances of an activity. An example of such a construct is the Bundle concept
that was available in FlowMark, version 2.3 (it is not available in MQSeries/Workow
version 3.3). Once the desired number of instances is obtained (typically by one of the
activities in the workow) it is passed over via the available data ow mechanism to a
bundle construct that is responsible for instantiating a given number of instances. Once
all instances in a bundle are completed, the next activity is started. The bundle construct
provides a very clear and straightforward solution to the problem (see Workow D in
Figure 8). A similar concept is provided in SAP R/3 Workow through \Table-driven
Dynamic Parallel Processing".

- If there is a maximum number of possible instances, then a combination of AND-splits
and XOR-splits can be used to obtain the desired routing. An XOR-split is used to
select the number of instances and triggers one of several AND-splits. For each number
of possible instances, there is an AND-split with the corresponding cardinality. The
drawback of this solution is that the resulting workow model can become large and
complex and the maximum number of possible instances needs to be known in advance
(see Workow C in Figure 8).

- As in many cases, the desired routing behavior can be supported quite easily by making

23

it more sequential. Simply use iteration (cf. Pattern 10 (Arbitrary Cycles)) to activate
instances of the activity sequentially. Suppose that activity A is followed by n instantia-
tions of B followed by E. First execute A, then execute the �rst instantiation of B. Each
instantiation of B is followed by an XOR-split to determine whether another instanti-
ation of B is needed or that E is the next step to be executed. This solution is fairly
straightforward. However, the n instantiations of B are not executed in parallel but in
a �xed order (see workow B in Figure 8). In many situations this is not acceptable.
Recall the example of the refereeing process of papers. Clearly, it is not acceptable that
the second referee has to wait until the �rst referee completes his/her review, etc.

2

Finally, we would like to present a pattern which is typically the hardest to implement. In
it the number of instances in a process is determined in a totally dynamic manner rendering
solutions such as e.g. the use of the Bundle concept inappropriate.

Pattern 15 (Multiple Instances Without a Priori Runtime Knowledge)
Description For one case an activity is enabled multiple times. The number of instances of
a given activity for a given case is not known during design time, nor is it known at any stage
during runtime, before the instances of that activity have to be created. Once all instances are
completed some other activity needs to be started. The di�erence with Pattern 14 is that even
while some of the instances are being executed or already completed, new ones can be created.
Examples

- The requisition of 100 computers involves an unknown number of deliveries. The number
of computers per delivery is unknown and therefore the total number of deliveries is not
known in advance. After each delivery, it can be determined whether a next delivery is
to come by comparing the total number of delivered goods so far with the number of the
goods requested. After processing all deliveries, the requisition has to be closed.

- For the processing of an insurance claim, zero or more eyewitness reports should be
handled. The number of eyewitness reports may vary. Even when processing eyewitness
reports for a given insurance claim, new eyewitnesses may surface and the number of
instances may change.

Problem Some workow engines provide support for generating multiple instances only if the
number of instances is known at some stage of the process. This can be compared to a \for"
loop in procedural languages. However, these constructs are of no help to processes requiring
\while" loop functionality.
Implementation

- FLOWer is one of the few systems directly supporting this pattern. In FLOWer it is
possible to have dynamic subplans. The number of instances of each subplan can be
changed at any time (unless speci�ed otherwise).

24

A

Merge

B i:=i+1

XOR

E

i<NumInst
i>=NumInst

A

Merge

B

i:=i+1

XOR

E

i<NumInst
i>=NumInst

AND

Task A: Determine
the number of required
instances of B

Solution for languages supporting multiple
instances

Sequential simulation

Solution using Bundle construct

A

B

Workflow A

B

B

AND

A

XOR

B
AND

B

B

1 instance

2 instances

3 instances

Task A: Determine
the number of required
instances of B

AND
AND

Merge

E

B

Workflow B

Workflow C

Workflow D

Solution for number of instances <= 3

E

Bundle

i:=0 i:=0

Figure 8: Design patterns for multiple instances.

- This pattern is a generalization of Pattern 14 (Multiple Instances With a Priori Run-
time Knowledge). Some implementation strategies are also applicable here. Speci�cally,
the creation part of this pattern may easily be implemented if the engine supports mul-
tiple instances directly. Similarly we may also provide an implementation using special
constructs for \spawning o�" new processes or using APIs to do that. However, as with
Pattern 14, synchronization of the instances is very hard to achieve, in fact in this pattern

25

it is even harder as there is no count of spawned-o� activities readily available. Consider
for example Workow A in Figure 9. Since NumInst may vary while instances of B are
executed, the implementation of this construct is more involved. Dynamically, the num-
ber of instances (to be) activated needs to be compared with the number of instances
completed. This can be implemented by a precondition and an event queue connected
to E which counts the number of completed instances of B, i.e., each instance of B gen-
erates an event for E when it completes. Activity E has a precondition comparing the
number of instances launched and the number of instances completed.

- If the language supports multiple instances and supports a decomposition concept with
implicit termination (hence a decomposition is only considered to be �nished when all
its activities are �nished), then multiple instances can be synchronized by placing the
workow sub-ow containing the loop generating the multiple instances inside the de-
composition block (see Workow B in Figure 9). Here, activity B will be invoked many
times, and activity C is used to determine if more instances of B are needed. Once all
instances of B are completed, the subprocess will complete and activity E can be pro-
cessed. Implicit termination of the subprocess is used as the synchronizing mechanism for
the multiple instances of activity B. We �nd this approach to be a very natural solution
to the problem, however, none of the languages included in our review supports both
multiple instances and a decomposition concept with implicit termination.

- Similarly to Pattern 14, the desired routing behavior can be supported quite easily by
making it sequential.

2

Merge

B

C

XOR

E

More instances needed

No more instances needed

AND

Solution for languages supporting multiple
instances

Task C: Determine
if more instances of B
are needed

Sub

Merge

B

C

XORE
More instances needed

No more instances needed

AND Task C: Determine
if more instances of B
are needed

Workflow A Workflow B

Figure 9: Design patterns for multiple instances.

As a side note to multiple instances patterns we would like to point out an interesting problem
associated with the use of Pattern 3 (Synchronization) and Pattern 8 (Multi-merge). Consider
the simple workow shown in Figure 10. The multi-merge construct will cause both activities

26

A and B to be instantiated twice. We would then like activity C to be instantiated twice
as well. Di�erent engines, however, behave di�erently when a synchronization construct is
used in a process where multiple triggering of activities is allowed. For example, workow
products such as Verve and HP Changengine support a synchronizer notion whereby multiple
triggering by the same activity is ignored. So in this example the synchronizer will ignore
termination of instances of activity A if it has already seen one such instance and is waiting
for the termination of an instance of activity B. As a result, activity C may be performed once
or twice depending on the sequence of completion of instances of A and B. In Sta�ware the
problem is even more complicated by the fact that Sta�ware's AND-join is not commutative.
As input of an AND-join, there is a transition (graphically represented by a solid line) that
waits till other transitions are released and there are transitions (graphically represented by
dashed lines) that represent threads that have to be waited upon. Multiple signals from the
former type of transition are ignored, while multiple signals from the latter type of transition
are remembered.

Amulti
merge

multi
merge B

synch C

Figure 10: Workow depicting a basic synchronization problem.

2.5 State-based Patterns

In real workows, most workow instances are in a state awaiting processing rather than
being processed. Many computer scientists, however, seem to have a frame of mind, typically
derived from programming, where the notion of state is interpreted in a narrower fashion and
is essentially reduced to the concept of data. As this section will illustrate, there are real
di�erences between work processes and computing and there are business scenarios where an
explicit notion of state is required. As the notation we have deployed so far is not suitable
for capturing states explicitly, we will use the well-known Petri-net notation [RR98, Aal98b]
when illustrating the patterns in this section. Petri nets provide a possible solution to modeling
states explicitly (examples of commercial workow management systems based on Petri nets
are COSA [SL99] and Income [Pro98]).

27

Moments of choice, such as supported by constructs as XOR-splits/OR-splits, in workow
management systems are typically of an explicit nature, i.e. they are based on data or they are
captured through decision activities. This means that the choice is made a-priori, i.e. before the
actual execution of the selected branch starts an internal choice is made. Sometimes this notion
is not appropriate. Consider Figure 11 adopted from [Aal98b]. In this �gure two workows are
depicted. In both workows, the execution of activity A is followed by the execution of B or
C. In Workow A the moment of choice is as late as possible. After the execution of activity
A there is a \race" between activities B and C. If the external message required for activity
C (the envelope notation denotes that activity C requires an external trigger) arrives before
someone starts executing activity B (the arrow above activity B indicates it requires human
intervention), then C is executed, otherwise B. In Workow B the choice for either B or C is
�xed after the execution of activity A. If activity B is selected, then the arrival of an external
message has no impact. If activity C is selected, then activity B cannot be used to bypass
activity C. Hence, it is important to realize that in Workow A, both activities B and C were,
at some stage, simultaneously scheduled. Once an actual choice for one of them was made, the
other was disabled. In Workow B, activities B and C were at no stage scheduled together.

c1

implicit XOR
split

B

C

c5

c6

D c7A c2

Workflow A

c1

c3 CB

explicit XOR
split

B

Cc4

c5

c6

D c7

CC

A c2

Workflow B

Figure 11: Illustrating the di�erence between implicit (Workow A) and explicit (Workow B)
XOR-splits.

For the readers familiar with Petri nets, the di�erence between both workows becomes clear
when considering the places in Figure 11. In Workow A each case in-between A and B or C
is in the state represented by place c2. In this state both B and C are enabled. In Workow
B each case in-between A and B or C is either in the state represented by place c3 or in the
state represented by place c4. If place c3 is marked, only B is enabled. If place c4 is marked,
only C is enabled. The only way to distinguish both situations is by explicitly considering

28

the states in between subsequent activities. The modeling languages used by contemporary
workow management systems typically abstract from states between subsequent activities,
and hence have diÆculties modeling implicit choices.

Pattern 16 (Deferred Choice)
Description A point in the workow process where one of several branches is chosen. In
contrast to the XOR-split, the choice is not made explicitly (e.g. based on data or a decision)
but several alternatives are o�ered to the environment. However, in contrast to the AND-split,
only one of the alternatives is executed. This means that once the environment activates one
of the branches the other alternative branches are withdrawn. It is important to note that the
choice is delayed until the processing in one of the alternative branches is actually started, i.e.
the moment of choice is as late as possible.
Synonyms External choice, implicit choice, deferred XOR-split.
Examples

- At certain points during the processing of insurance claims, quality assurance audits are
undertaken at random by a unit external to those processing the claim. The occurrence
of an audit depends on the availability of resources to undertake the audit, and not on
any knowledge related to the insurance claim. Deferred Choices can be used at points
where an audit might be undertaken. The choice is then between the audit and the next
activity in the processing chain. The audit activity triggers the next activity to preserve
the processing chain.

- Consider activity A in Figure 11 to represent the activity send questionnaire, and activi-
ties B and C, the activities time out and process questionnaire respectively. The activity
time out requires a time trigger, while the activity process questionnaire is only to be
executed if the complainant returns the form that was sent (hence an external trigger is
required for its execution). Clearly, the moment of choice between process questionnaire

and time out should be as late as possible. If this choice was modeled as an explicit
XOR-split (Pattern 4), it is possible that forms which are returned in time are rejected,
or cases are blocked if some of the forms are not returned at all.

- After receiving products there are two ways to transport them to the department. The
selection is based on the availability of the corresponding resources. Therefore, the choice
is deferred until a resource is available.

- Business trips require approval before being booked. There are two ways to approve a
task. Either the department head approves the trip (activity A1) or both the project
manager (activity A21) and the �nancial manager (activity A22) approve the trip. The
latter two activities are executed sequentially and the choice between A1 on the one hand
and A21 and A22 on the other hand is implicit, i.e., at the same time both activity A1

and activity A21 are o�ered to the department head and project manager respectively.
The moment one of these activities is selected, the other one disappears.

29

Problem Many workow management systems support the XOR-split described in Pattern 4
but do not support the deferred choice. Since both types of choices are desirable (see examples),
the absence of the deferred choice is a real problem.
Implementation

- COSA is one of the few systems that directly supports the deferred choice. Since COSA
is based on Petri nets it is possible to model implicit choices as indicated in Figure 11(A).
Some systems o�er partial support for this pattern by o�ering special constructs for a
deferred choice between a user action and a time out (e.g., Sta�ware) or two user actions
(e.g., FLOWer).

- Assume that the workow language being used supports cancellation of activities through
either a special transition (for example Sta�ware, see Pattern 19 (Cancel Activity)) or
through an API (most other engines). Cancellation of an activity means that the activ-
ity is being removed from the designated worklist as long as it has not been started yet.
The deferred choice can be realized by enabling all alternatives via an AND-split. Once
the processing of one of the alternatives is started, all other alternatives are canceled.
Consider the deferred choice between B and C in Figure 11 (Workow A). After A, both
B and C are enabled. Once B is selected/executed, activity C is canceled. Once C is
selected/executed, activity B is canceled. Workow A of Figure 12 shows the correspond-
ing workow model. Note that the solution does not always work because B and C can
be selected/executed concurrently.

A

B C

AND

D

Merge

A

cancel

cancel

Workflow A Workflow B

XOR

E

D

Merge

B C

Figure 12: Strategies for implementation of deferred choice.

- Another solution to the problem is to replace the deferred choice by an explicit XOR-
split, i.e. an additional activity is added. All triggers activating the alternative branches
are redirected to the added activity. Assuming that the activity can distinguish between
triggers, it can activate the proper branch. Consider the example shown in Figure 11.
By introducing a new activity E after A and redirecting triggers from B and C to E,

30

the implicit XOR-split can be replaced by an explicit XOR-split based on the origin of
the �rst trigger. Workow B of Figure 12 shows the corresponding workow model. Note
that the solution moves part of the routing to the application or task level. Moreover,
this solutions assumes that the choice is made based on the type of trigger.

2

Typically, Patterns 2 (Parallel Split) and 3 (Synchronization) are used to specify parallel
routing. Most workow management systems support true concurrency, i.e. it is possible that
two activities are executed for the same case at the same time. If these activities share data or
other resources, true concurrency may be impossible or lead to anomalies such as lost updates
or deadlocks. Therefore, we introduce the following pattern.

Pattern 17 (Interleaved Parallel Routing)
Description A set of activities is executed in an arbitrary order: Each activity in the set
is executed, the order is decided at run-time, and no two activities are executed at the same
moment (i.e. no two activities are active for the same workow instance at the same time).
Synonyms Unordered sequence.
Examples

- The Navy requires every job applicant to take two tests: physical test and mental test.
These tests can be conducted in any order but not at the same time.

- At the end of each year, a bank executes two activities for each account: add interest and
charge credit card costs. These activities can be executed in any order. However, since
they both update the account, they cannot be executed at the same time.

Problem Since most workow management systems support true concurrency when using
constructs such as the AND-split and AND-join, it is not possible to specify interleaved parallel
routing.
Implementation

- A very simple, but unsatisfactory, solution is to �x the order of execution, i.e. instead of
using parallel routing, sequential routing is used. Since the activities can be executed in
an arbitrary order, a solution using a prede�ned order may be acceptable. However, by
�xing the order, exibility is reduced and the resources cannot be utilized to their full
potential.

- Another solution is to use a combination of implementation constructs for the sequence
and the exclusive choice patterns i.e. several alternative sequences are de�ned and before
execution one sequence is selected using a XOR-split. A drawback is that the order is
�xed before the execution starts and it is not clear how the choice is made. Moreover,
the workow model may become quite complex and large by enumerating all possible
sequences. Workow B in Figure 13 illustrates this solution in a case with three activities.

31

- By using implementation strategies for the deferred choice pattern (instead of an explicit
XOR-split) the order does not need to be �xed before the execution starts, i.e. the implicit
XOR-split allows for on-the-y selection of the order. Unfortunately, the resulting model
typically has a \spaghetti-like" structure. This solution is illustrated by Workow C of
Figure 13.

- For workow models based on Petri nets, the interleaving of activities can be enforced
by adding a place which is both an input and output place of all potentially concurrent
activities. The AND-split adds a token to this place and the AND-join removes the token.
It is easy to see that such a place realizes the required \mutual exclusion". See Figure 14
for an example where this construct is applied. Note that, unlike the other solutions, the
structure of the model is not compromised.

2

The expressive power of many workow management systems is restricted by the fact that they
abstract from states, i.e. the state of a workow instance is not modeled explicitly. The solution
shown in Figure 14 is only possible because mutual exclusion can be enforced by place mutex

(i.e. state information shared among the activities). Pattern 16 (Deferred choice) is another
example of a construct which is hard to handle if one abstracts from the states in-between
activities. The next pattern, Pattern 18 (Milestone), allows for testing whether a case has
reached a certain phase. By explicitly modeling the states in-between activities this pattern is
easy to support. However, if one abstracts from states, then it is hard, if not impossible, to
test whether a case is in a speci�c phase.

Example 2.1 Consider the workow process for handling complaints (see Figure 15). First
the complaint is registered (activity register), then in parallel a questionnaire is sent to
the complainant (activity send questionnaire) and the complaint is evaluated (activity
evaluate). If the complainant returns the questionnaire within two weeks, the activity
process questionnaire is executed. If the questionnaire is not returned within two weeks,
the result of the questionnaire is discarded (activity time out). Note that there is a
deferred choice between process questionnaire and time out (Pattern 16). Based on the
result of the evaluation (activity evaluate), the complaint is processed or not. Transitions
skip and processing needed have been added to model the explicit choice. Note that the
choice between skip and processing needed is not o�ered to the environment. This choice
is made by the workow management system, e.g., based on an attribute set in activity
evaluate. The actual processing of the complaint (activity process complaint) is delayed
until the questionnaire is processed or a time-out has occurred. The processing of the
complaint is checked via activity check processing. Again two transitions (OK and NOK)
have been added to model the explicit choice. Finally, activity archive is executed.

2

The construct involving activity process complaint which is only enabled if place c5 contains
a token is called a milestone.

32

Simple
Choice

A

B

C

Interleaved
Sequence

End

Interleaved
Sequence

Begin

Simple
Merge

A B C

A C B

B A C

B C A

C A B

C B A

A

B

C

C

Deferred
Choice

B

A
Deferred
Choice

B

C

A

Deferred
Choice

Deferred
Choice

B

C

C

A

A

B

Simple
Merge

Workflow A

Workflow B

Workflow C

Figure 13: The implementation options for interleaving execution of A, B and C.

Pattern 18 (Milestone)
Description The enabling of an activity depends on the case being in a speci�ed state, i.e.
the activity is only enabled if a certain milestone has been reached which did not expire yet.
Consider three activities named A, B, and C. Activity A is only enabled if activity B has been
executed and C has not been executed yet, i.e. A is not enabled before the execution of B
and A is not enabled after the execution of C. Figure 16 illustrates the pattern. The state in
between B and C is modeled by place m. This place is a milestone for A. Note that A does
not remove the token from M : It only tests the presence of a token.
Synonyms Test arc, deadline (cf. [JB96]), state condition, withdraw message.

33

c1

c2

c3

A

B

c5

c7

c8

mutual
exclusion

place

c5

mutex

AND-split AND-join

Cc4

c6

Figure 14: The execution of A, B, and C is interleaved by adding a mutual-exclusion place.

c2

register

c3

c4 c5

send
questionnaire

time out

process
questionnaire

c6

processing
needed

evaluate

skip

c7

c9

c8

c10

c11

process
complaint

archive

OK

NOK check
processing

c1

milestone

Figure 15: The state in-between the processing/time-out of the questionnaire and archiving
the complaint (i.e. place c5) is an example of a milestone.

34

B m C

A

... ...

......

milestone

Figure 16: Schematical representation of a milestone.

Examples

- In a travel agency, ights, rental cars, and hotels may be booked as long as the invoice
is not printed.

- A customer can withdraw purchase orders until two days before the planned delivery.

- A customer can claim air miles until six months after the ight.

- The construct involving activity process complaint and place c5 shown in Figure 15.

Problem The problem is similar to the problem mentioned in Pattern 16 (Deferred Choice):
There is a race between a number of activities and the execution of some activities may disable
others. In most workow systems (notable exceptions are those based on Petri nets) once an
activity becomes enabled, there is no other-than-programmatic way to disable it. A milestone
can be used to test whether some part of the process is in a given state. Simple message passing
mechanisms will not be able to support this because the disabling of a milestone corresponds to
withdrawing a message. This type of functionality is typically not o�ered by existing workow
management systems. Note that in Figure 15 activity process complaint may be executed an
arbitrary number of times, i.e. it is possible to bypass process complaint, but it is also possible
to execute process complaint several times. It is not possible to model such a construct by an
AND-split/AND-join type of synchronization between the two parallel branches, because it is
not known how many times a synchronization is needed.
Implementation

- Consider three activities A, B, and C. Activity A can be executed an arbitrary number
of times before the execution of C and after the execution of B, cf. Workow A in
Figure 17. Such a milestone can be realized using Pattern 16 (Deferred Choice). After
executing B there is an implicit XOR-split with two possible subsequent activities: A
and C. If A is executed, then the same implicit XOR-split is activated again. If C is
executed, A is disabled by the implicit XOR-split construct. This solution is illustrated

35

by Workow B in Figure 17. Note that this solution only works if the execution of A
is not restricted by other parallel threads. For example, the construct cannot be used
to deal with the situation modeled in Figure 15 because process complaint can only be
executed directly after a positive evaluation or a negative check, i.e. the execution of
process complaint is restricted by both parallel threads. Clearly, a choice restricted by
multiple parallel threads cannot be handled using Pattern 16 (Deferred Choice).

- Another solution is to use the data perspective, e.g. introduce a Boolean workow vari-
able m. Again consider three activities A, B, and C such that activity A is allowed to be
executed in-between B and C. Initially,m is set to false. After execution of B m is set to
true, and activity C sets m to false. Activity A is preceded by a loop which periodically
checks whether m is true: If m is true, then A is activated and if m is false, then check
again after a speci�ed period, etc. This solution is illustrated by Workow C in Figure 17.
Note that this way a \busy wait" is introduced and after enabling A it cannot be blocked
anymore, i.e., the execution of C does not inuence running or enabled instances of A.
Using Pattern 19 (Cancel Activity), A can be withdrawn once C is started. More sophis-
ticated variants of this solution are possible by using database triggers, etc. However, a
drawback of this solution approach is that an essential part of the process perspective is
hidden inside activities and applications. Moreover, the mixture of parallelism and choice
may lead to all kinds of concurrency problems.

2

B

C

A

Merge

B

Deferred
Choice

C

A

m:=false

AND

B
m:=true

m:=false

C

Merge

XOR

A

wait

m=false

m=true

Workflow A Workflow B Workflow C

Figure 17: The Milestone pattern in its simplest form: implemented using a Petri net (Workow
A), implemented using a deferred choice (Workow B), and implemented using a busy wait
(Workow C).

It is interesting to think about the reason why many workow products have problems deal-
ing with the state-based patterns. Systems that abstract from states are typically based on

36

messaging, i.e. if an activity �nishes, it noti�es or triggers other activities. This means that
activities are enabled by the receipt of one or more messages. The state-based patterns have
in common that an activity can become disabled (temporarily). However, since states are im-
plicit and there are no means to disable activities (i.e. negative messages), these systems have
problems dealing with the constructs mentioned. Note that the synchronous nature of the
state-based patterns further complicates the use of asynchronous communication mechanisms
such as message passing using \negative messages" (e.g. messages to cancel previous messages).

2.6 Cancellation Patterns

The �rst solution described in Pattern 16 (Deferred Choice) uses a construct where one activity
cancels another, i.e. after the execution of activity B, activity C is withdrawn and after the
execution of activity C activity B is withdrawn. (See Figure 12: The dashed arrows correspond
to withdrawals.) The following pattern describes this construct.

Pattern 19 (Cancel Activity)
Description An enabled activity is disabled, i.e. a thread waiting for the execution of an
activity is removed.
Synonyms Withdraw activity.
Examples

- Normally, a design is checked by two groups of engineers. However, to meet deadlines it
is possible that one of these checks is withdrawn to be able to meet a deadline.

- If a customer cancels a request for information, the corresponding activity is disabled.

Problem Only a few workow management systems support the withdrawal of an activity
directly in the workow modeling language, i.e. in a (semi-)graphical manner.
Implementation

- If the workow language supports Pattern 16 (Deferred Choice), then it is possible to
cancel an activity by adding a so-called \shadow activity". Both the real activity and the
shadow activity are preceded by a deferred choice. Moreover, the shadow activity requires
no human interaction and is triggered by the signal to cancel the activity. Consider for
example a workow language based on Petri nets. An activity is canceled by removing
the token from each of its input places. The tokens are removed by executing another
activity having the same set of input places. Note that the drawback of this solution is
the introduction of activities which do not correspond to actual steps of the process.

- Many workow management systems support the withdrawal of activities using an API
which simply removes the corresponding entry from the database, i.e. it is not possible to
model the cancellation of activities in a direct and graphical manner, but inside activities
one can initiate a function which disables another activity.

37

2

Note that the semantics of this pattern may become ill de�ned if it is used in combination with
multiple instances. We assume that the cancellation of an activity refers to a single instance
of that activity. For the cancellation of an entire case, we assume that all instances of each
activity is cancelled.

Pattern 20 (Cancel Case)
Description A case, i.e. workow instance, is removed completely (i.e., even if parts of the
process are instantiated multiple times, all descendants are removed).
Synonyms Withdraw case.
Examples

- In the process for hiring new employees, an applicant withdraws his/her application.

- A customer withdraws an insurance claim before the �nal decision is made.

Problem Workow management systems typically do not support the withdrawal of an entire
case using the (graphical) workow language.
Implementation

- Pattern 19 (Cancel Activity) can be repeated for every activity in the workow process
de�nition. There is one activity triggering the withdrawal of each activity in the workow.
Note that this solution is not very elegant since the \normal control-ow" is intertwined
with all kinds of connections solely introduced for removing the workow instance.

- Similar to Pattern 19 (Cancel Activity), many workow management systems support
the withdrawal of cases using an API which simply removes the corresponding entries
from the database.

2

3 Comparing Workow Management Systems

3.1 Introduction

The workow patterns described in this paper correspond to routing constructs encountered
when modeling and analyzing workows. Many of the patterns are supported by workow
management systems. However, several patterns are diÆcult, if not impossible, to realize using
many of the workow management systems available today. As indicated in the introduction,
the routing functionality is hardly taken into account when comparing/evaluating workow
management systems. The system is checked for the presence of sequential, parallel, condi-
tional, and iterative routing without considering the ability to handle the more subtle work-
ow patterns described in this paper. The evaluation reports provided by prestigious consulting

38

companies such as the \Big Six" (Andersen Worldwide, Ernst & Young, Deloitte & Touche,
Coopers & Lybrand, KPMG, and Price Waterhouse) typically focus on purely technical issues
(Which database management systems are supported?), the pro�le of the software supplier
(Will the vendor be taken over in the near future?), and the marketing strategy (Does the
product speci�cally target the telecommunications industry?). As a result, many enterprises
select a workow management system that does not �t their needs.

In this section, we provide a comparison of the functionality of 15 workow management
systems (COSA, Visual Workow, Fort�e Conductor, Lotus Domino Workow, Meteor, Mobile,
MQSeries/Workow, Sta�ware, Verve Workow, I-Flow, InConcert, Changengine, SAP R/3
Workow, Eastman, and FLOWer) based on the workow patterns presented in this paper.
We would like to point out that the common practice of choosing workow technology before
a thorough analysis of business processes in an organization may lead to a choice of a workow
product that has inadequate support for workow patterns that could be common in this
organization. In our consulting practice we have found that advanced workow patterns as
presented in this paper are frequently needed. In addition, we would like to stress that the
comparison is based on the information in our possession at the end of 2001 and that we
cannot guarantee the accuracy of product-speci�c information. However, we have found that
most new versions of workow products bring new features in areas of performance, integration
approaches, new platform support, etc and feature minimal changes to the workow modeling
language which forms the core of the product. Therefore, many of the results presented in this
paper will also hold for future versions of the product.

It should be noted that the goal of this section is to demonstrate that there are relevant
di�erences between workow products and that the set of patterns presented in this paper
is a useful tool to compare these products. The goal is not to completely evaluate individual
products.

3.2 Products

Before we compare the products based on the workow patterns presented in this paper, we
briey introduce each product and supply some background information.

Sta�ware [Sta00] is one of the leading workow management systems. Sta�ware is authored
and distributed by Sta�ware PLC. We used Sta�ware 2000, which was released in the last
quarter of 1999, for our evaluation. In 1998, it was estimated by the Gartner Group that
Sta�ware has 25 percent of the global market [Cas98]. The routing elements used by Sta�ware
are the Start, Step, Wait, Condition, and Stop. The Step corresponds to an activity which has
an OR-join/AND-split semantics. The Wait step is used to synchronize ows (i.e. an AND-
join) and conditions are used for conditional routing (i.e. XOR-split). Arbitrary loops are
supported. There is no direct provision for multiple instances nor for the advanced synchro-
nization constructs. There is no need to de�ne explicit termination points, i.e. termination is

39

implicit. Sta�ware does not o�er a state concept. The so-called \withdraw" transition allows
the Cancel Activity pattern to be supported. No support is available for Cancel Case.

COSA [SL99] is a Petri-net-based workow management system developed by Ley GmbH
(formerly operating under the names Software Ley, COSA Solutions, and Baan). Ley GmbH is
a German company based in Pullheim (Germany) and is part of Thiel Logistik AG. COSA is
one of the leading workow management systems in Europe and can be used as a stand-alone
workow system or as the workow module of the Baan IV ERP system. This evaluation is
based on version 3.0. The modeling language of COSA consists of two types of building blocks:
activities (i.e., Petri net transitions) and conditions (i.e. Petri net places). COSA extends the
classical Petri net model with control data to allow for explicit choices based on information
and decisions. Unfortunately, only safe Petri nets are allowed, i.e., it is not allowed to have
multiple tokens in one place. Therefore, COSA is unable to support multiple instances directly.
The only way to deal with multiple instances is to use workow triggers. Every subprocess in
COSA has a unique start activity and a unique end activity. As a result, only highly structured
subprocesses are possible and termination is always explicit. The main feature of the workow
language of COSA is that it allows for the explicit representation of states. As a result, state-
based patterns such as the Deferred Choice, and Interleaved Parallel Routing are supported
in a direct and graphical manner. Tokens can be removed from places, providing support for
Cancel Activity, however COSA does not have an explicit provision for Cancel Case other than
through its API.

InConcert has been established in 1996 as a Xerox fully-owned subsidiary. In 1999 it has
been bought by TIBCO Software. This evaluation is based on InConcert 2000 [Tib00] (ver-
sion 5.1). An InConcert workow de�nition is called a \job". A job can contain none, one or
many activities. An activity is either simple or compound. An activity can be connected to an
arbitrary number of other activities but circular dependencies are not allowed. Each activity
has a perform condition attached to it. The default setting of the perform condition is \true"
such that activities can be executed in general. If the perform condition evaluates to \false",
the activity is skipped. If an activity is skipped, then the subsequent activities are not skipped
automatically. Conditional branching or case branching can be achieved by parallel activities
with di�erent perform conditions. Arbitrary cycles are not supported. An explicit termina-
tion point is not required. There is no direct provision for multiple instances nor for direct
implementation of the state-based patterns. The cancellation patterns are not supported.

Eastman Software o�ers a variety of imaging products. Their software is used to electroni-
cally capture, share, display, fax, print, and store vital document-based information. On top of
their imaging products, Eastman Software also o�ers a workow management system. Enter-
prise Workow 4.0, a component of the Eastman Software Enterprise Work Manager Series,
provides a so-called RouteBuilder tool to design workow processes consisting of di�erent types
of work steps [Sof98]. The following types of work steps (i.e., activity types) are supported:
custom, system, archive, print, OCR, fax, transfer, program, rendezvous, split, and join. The
standard semantics of a work step is an XOR-join/XOR-split semantics. The rendezvous, split,
and join steps have been added to allow for parallel routing. For each join step, the user can

40

indicate how many threads need to be synchronized. Moreover, using techniques based on the
number of active parallel threads, join steps are bypassed if synchronization is not possible.
This leads to constructs similar to the false-token propagation in MQSeries.

FLOWer is Pallas Athena's case handling product [Ath01]. This evaluation is based on ver-
sion 2.05. FLOWer can be used for exibly structured processes, but also supports traditional
production workow functionality. The case handling mechanisms of FLOWer solve many of
the exibility problems of traditional workow management systems. Flexibility is guaranteed
through data-driven workows, redo and skip capabilities, and activity independent forms.
FLOWer consists of a number of components: FLOWer Studio, FLOWer Case Guide, FLOWer
CFM, FLOWer Queues/Queries, FLOWer Integration Facility, and FLOWer Management In-
formation and Case History Logging. FLOWer Studio is the graphical design environment. It is
used to de�ne processes, activities, precedences, data objects, and forms. FLOWer Case Guide
is the client application which is used to handle individual cases. FLOWer queue corresponds
to the worktray, worklist or in-basket of traditional WFM systems. The FLOWer queue pro-
vides a re�ned mechanism to look for cases satisfying speci�ed search criteria. FLOWer CFM
(ConFiguration Management) is used to de�ne users (i.e. actors), work pro�les, and authoriza-
tion pro�les. The pro�les are used to map users onto roles. FLOWer CFM is also available at
the operational level to allow for run-time exibility. FLOWer Management Information and
Case History Logging can be used to store and retrieve management information at various
levels of detail. FLOWer Integration Facility provides the functionality to interface with other
applications. The modeling language of FLOWer is block-structured. Blocks are named plans

can be nested and there are �ve types of plans: static, dynamic, sequential, user decision and
system decision. The static plan is used to specify subprocesses. The dynamic subplan is used
to model multiple instances. The sequential subplan is used to model iteration. The user de-
cision corresponds to the deferred choice and the system decision corresponds to the explicit
choice. In this paper, we do not focus on the case handling facilities. We evaluate FLOWer as
if it is a workow management system. Note that the case handling capabilities may reduce
the need for some of the patterns mentioned in this paper [AB01].

DominoWorkow [NEG+00] is the workow extension of the widely used groupware product
Lotus Domino/Notes (Lotus/IBM). Clearly, the tight integration with the groupware prod-
uct is one of the attractive features of this product. The marriage between groupware (Lo-
tus Domino/Notes) and workow (Domino Workow) allows for partly structured workows.
There are various types of resource classes, e.g., person (singleton), workgroup (including inher-
itance and many-to-many relationships), department (only one-to-many relationships, however
with inheritance), and roles. Each routing relation is of one of the following types: (1) always
(for AND-split) (2) exclusive choice (for XOR-split made by the user at the end of the activity),
(3) multiple choice (for OR-split made by the user after completing the activity), (4) condition
(automatically evaluated on the basis of data elements), and (5) else (only taken if none of
the other routing relations is activated). Each activity can serve as a join. The type of join is
determined implicitly. Joins are either enabled or disabled. If a join is disabled, it serves as an
XOR-join, i.e., the activity is enabled the moment one of the preceding activities completes.

41

If the join is enabled, it continuously checks whether potentially it can receive more inputs in
the future without activating itself. This way it is possible to make AND-joins or use more
advanced synchronization mechanisms.

Meteor (Managing End-To-End OpeRations) [SKM] is a CORBA-based workow manage-
ment system developed by members of the LSDIS laboratory of the University of Georgia
(USA). Our evaluation is based on the 1999 version of Meteor. Interesting features of Me-
teor are the support for transactional workows and the full exploitation of Web, CORBA,
and Java based distributed computing infrastructures. The Meteor project is funded through
the NIST ATP initiative in Information Infrastructure for Healthcare and involves 17 IT and
healthcare institutions. Meteor has been tested by several industry partners and is in the pro-
cess of being commercialized by Infocosm Inc. A workow in Meteor is de�ned as a collection
of activities and dependencies. An activity can be any combination of AND/XOR-joins and
AND/XOR-splits and there are two types of dependencies: control dependencies and data
dependencies. The focus of Meteor is on transactional features and distribution aspects. The
workow modeling language supports few of the more advanced constructs. For example, it is
not possible to handle any of the state-based patterns, multiple instances are not supported
explicitly, termination is always explicit, and the Synchronization merge, Discriminator and
cancellation are not supported. The Multi-merge and Arbitrary cycles patterns are supported.

Mobile [JB96] is a workow management system developed by members of the Database
Systems group at the University of Erlangen/N�urnberg (Germany). It is a research prototype
with several interesting features, e.g. the system is based on the observation that a workow
comprises many perspectives (cf. [JB96]) and one can reuse each perspective separately. Our
evaluation is based on the 1999 version of Mobile. The control-ow perspective of Mobile
o�ers various routing constructs to link so-called \workow types". A workow type is either
an elementary activity or the composition of other workow types. A powerful feature of
the Mobile language is that the set of control-ow constructs is not �xed, i.e. the language is
extensible. It is possible to add any of the design patterns identi�ed in this paper as a construct.
To add a construct, one can use the Mobile editor MoMo to add the graphical representation
of the construct. The semantics is expressed in terms of Java. Since the Java code has direct
access to the state of the workow instance, all routing constructs can be supported. The fact
that the language is extensible makes the workow language of Mobile hard to compare with
the other languages. To make a fair comparison we only considered the routing constructs
currently available in Mobile. The standard constructs of Mobile include, in addition to the
basic patterns, the N -out-of-M join and Interleaved Parallel Routing.

MQSeries/Workow [IBM99] is the successor of IBM's workow o�ering, FlowMark. Flow-
Mark was one of the �rst workow products that was independent from document management
and imaging services. It has been renamed to MQSeries/Workow after a move from the pro-
prietary middleware to middleware based on the MQSeries product. Our evaluation is based on
version 3.1 of the product. The workow model consists of activities linked by transitions. Other
than a decomposition block, few other special modeling constructs are available. The workow
engine of MQSeries/Workow has a unique execution semantics in that it propagates a False

42

Token for every transition with a condition evaluating to False. This allows for every activity
that has more than one incoming transition to act as a synchronizing merge (see Pattern 7).
Other than the synchronizing merge, which is a natural construct for MQSeries/Workow,
there is no way to directly implement any of the other advanced synchronization patterns.
Support for multiple instances is provided through the Bundle construct although it is not
suitable if the number of instances is not known at any point prior to generating the instances
involved (note that this construct is not supported in version 3.1 of the product). Arbitrary
loops are not supported. An explicit termination point is not required and the workow process
will terminate when \there is nothing else to be executed". There is no direct way to model
the state-based and cancellation patterns.

Fort�e Conductor [For98] is a workow engine that is an add-on to Fort�e's development en-
vironment, Fort�e 4GL (formerly Fort�e Application Environment). Conductor's engine is based
on experimental work performed at Digital Research and its modeling language is powerful
and exible. Fort�e Software has recently (in October 1999) been acquired by Sun Microsystems
and subsequently became part of iPlanet E-Commerce Solutions. In late 2000 version 3.0 of
the product became an integral part of iPlanet Integration Server. Our evaluation is based on
version 1.0 of the product. The workow model in Conductor comprises a set of activities con-
nected with transitions (called Routers). Each transition has associated transition conditions.
Each activity has a trigger that determines the semantics of that activity if it has more than
one incoming transition. The triggers are exible enough for easy speci�cation of OR-join,
AND-join and N -out-of-M join (see also Pattern 9 (Discriminator)) although the semantics of
such a speci�cation is implicit and not visible to the end-user. Arbitrary cycles are supported,
but explicit termination points are required. Fort�e supports creation of multiple instances di-
rectly (through the use of a multi-merge join) but does not support any direct means of their
subsequent synchronization. State-based patterns cannot be realized. Fort�e does not have a
construct for Cancel Activity but Cancel Case is available through its termination semantics
- when an activity is executed which has no other triggers, it will terminate that workow
decomposition.

Verve [Ver00] is a relative newcomer to the workow market as it debuted in 1998. In late
2000 it was acquired by Versata and renamed Versata Integration Server (VIS). Our evalu-
ation is based on version 2.1 of the product that was released just before the acquisition by
Versata. What makes Verve Workow Engine an interesting workow product is that it has
been designed from the ground up as an embeddable workow engine. The workow engine of
Verve is very powerful and amongst other features allows for multiple instances and dynamic
modi�cation of running instances. The Verve workow model consists of activities connected
by transitions. Each transition has an associated transition condition. Extra routing constructs
such as synchronizer and discriminator are supported. Arbitrary loops are supported. An ex-
plicit termination point is required. Multiple instances are directly supported (through the
use of the multi-merge) as long as they do not require subsequent synchronization. There is
no direct way to implement state-based patterns. Of the cancellation patterns, Cancel Case is
supported through the forced termination by the \�rst of the last" activities which terminates.

43

Visual WorkFlo [Fil97, Fil99] is one of the market leaders in the workow industry. It is
part of the FileNet's Panagon suite (Panagon WorkFlo Services) that includes also document
management and imaging servers. Visual WorkFlo is one of the oldest and best established
products on the market. Since its introduction in 1994 it managed to gain a respectable share
of all worldwide workow applications. FileNet as a corporation ranks amongst the top 60
software companies in the world (Software magazine) - with oÆces in 13 countries and over
650 Value Added Resellers building solutions on top of Panagon's suite. Our evaluation is based
on version 3.0 of the product. The workow modeling language of Visual WorkFlo is highly
structured and is a collection of activities and routing elements such as Branch (XOR-split),
While (structured loop), Static Split (AND-split), Rendezvous (AND-join), and Release. Visual
WorkFlo does not directly support any of the advanced synchronization patterns. It requires
the model to have structured loops only and one, explicit, termination node thus limiting
the suitability of the resulting speci�cations. Direct support for Multiple Instances is possible
through the Release construct as long as there is no further synchronization required. There
is no direct way to implement any of the state-based patterns. There is no explicit support for
the cancellation patterns.

Changengine [HP00] is a workow o�ering from HP, the second largest computer supplier
in the world. The �rst major version of the product, 3.0, was introduced in 1998 and it fo-
cused on high performance and support for dynamic modi�cations. In late 2000 the product
changed its name to HP Process Manager to better convey the purpose of the product to the
customers. Our evaluation is based on version 4.0, introduced in early 2000. Workow models
in Changengine consist of a set of work nodes and routers linked by arcs. A work node can
have only one incoming and one outgoing arc. If more transitions are required, they have to
be created explicitly through the router node. Router node semantics is determined by the
set of route rules. Arbitrary loops are allowed. Changengine does not provide any support for
multiple instances. The termination policy is rather unusual: the process will terminate once
all process nodes without outgoing activities (End Points) are reached. There is no direct way
to implement the state-based patterns. A routing rule associated with an activity can be set
to cause termination of a decomposition, thus supporting Cancel Case. The Cancel Activity
pattern is not supported.

I-Flow [Fuj99] is a workow o�ering from Fujitsu that can be seen as a successor of the work-
ow engine from the same company, TeamWare. I-Flow is web-centric and has a Java/CORBA
based engine built speci�cally for Independent Software Vendors and System Integrators. Our
evaluation is based on version 3.5 of the product, introduced in early 2000. As of the begin-
ning of 2002 the latest version of the product is 4.1. The workow model in I-Flow consists
of activities and a set of routing constructs connected by transitions (called Arrows). Rout-
ing constructs include Conditional Node (XOR-split), OR-NODE (Merge), and AND-NODE
(synchronizer). The AND-split can be modeled implicitly by providing an activity with more
than one outgoing transition. Multiple instances can be implemented using the Chained Pro-

cess Node which allows for asynchronous subprocess invocation. Arbitrary loops are allowed
but the process requires an explicit termination point. There is no direct way to implement

44

state-based patterns. Cancel Case but not Cancel Activity is supported.

SAP R/3 Workow [SAP97] SAP is the main player in the market of ERP systems. Its R/3
software suite includes an integrated workow component that we have evaluated indepen-
dently of the rest of R/3. Our evaluation is based on release 3.1 of the product. Note that SAP
workow should not be confused with EPCs (Event-driven Process Chains) found in ARIS
(IDS Prof. Scheer) and in other parts of the SAP system. EPCs there are used entirely for
business process modeling purposes and not for modeling executable workows in the SAP R/3
runtime environment. SAP R/3 Workow imposes a number of restrictions on the use of EPCs.
EPCs that are used for workow modeling consist of a set of functions (activities), events and
connectors (AND, XOR, OR). However, in SAP R/3 Workow not the full expressive power
of EPCs can be used, as there are a number of syntactic restrictions similar in vein to the
restrictions imposed by Filenet Visual Worko (e.g. every workow needs to have a unique
starting and a unique ending point, and-splits are always followed by and-joins, or-splits by
or-joins etc). As such, there is no direct provision for the advanced synchronization constructs
(with one exception: it is possible to specify for the join operator how many parallel branches
it has to wait for, hence its semantics corresponds to the N -out-of-M join), multiple instances,
arbitrary loops, state-based or cancellation patterns.

3.3 Results

Tables 1 and 2 summarize the results of the comparison of the workow management systems
in terms of the selected patterns. For each product-pattern combination, we checked whether
it is possible to realize the workow pattern with the tool. If a product directly supports the
pattern through one of its constructs, it is rated +. If the pattern is not directly supported,
it is rated +/-. Any solution which results in spaghetti diagrams or coding, is considered as
giving no direct support and is rated -.

Note that a pattern is only supported directly if there is a feature provided by the graphical
interface of the tool (i.e., not in some scripting language) which supports the construct without
resorting to any of solutions mentioned in the implementation part of the pattern. For exam-
ple, Pattern 6 (Multi-choice) can be realized using a network of AND/XOR-splits. However,
this does not mean that any workow systems supporting patterns 2 and 4 directly supports
Pattern 6. Consider for example Figure 1. A system that allows for a representation similar
to the one shown in Figure 1 on the left (Workow A) o�ers direct support. The other two
representations (Workow B and Workow C) do not correspond to direct support.

If a pattern is not directly supported or even not supported at all by the workow man-
agement system, this does not imply that it is impossible to realize the functionality. Again
consider Pattern 6 (Multi-choice). It is possible to realize this pattern by creating a network
of AND/XOR-splits (i.e., using patterns 2 and 4). However, if no speci�c support is given for
Pattern 6, it is rated -. An alternative rating could have been based on \implementation e�ort"
rather than direct support (+), partial/indirect support (+/-) or no support (-). However, any

45

attempt to quantify this implementation e�ort is subjective and depends on the expertise of
the designer.

pattern product

Sta�ware COSA InConcert Eastman FLOWer Domino Meteor Mobile1

1 (seq) + + + + + + + +
2 (par-spl) + + + + + + + +
3 (synch) + + + + + + + +
4 (ex-ch) + + +/- + + + + +

5 (simple-m) + + +/- + + + + +
6 (m-choice) - + +/- +/- - + + +
7 (sync-m) - +/- + + - + - -
8 (multi-m) - - - + +/- +/- + -
9 (disc) - - - + +/- - +/- +
10 (arb-c) + + - + - + + -
11 (impl-t) + - + + - + - -
12 (mi-no-s) - +/- - + + +/- + -
13 (mi-dt) + + + + + + + +
14 (mi-rt) - - - - + - - -
15 (mi-no) - - - - + - - -
16 (def-c) - + - - +/- - - -
17 (int-par) - + - - +/- - - +
18 (milest) - + - - +/- - - -
19 (can-a) + + - - +/- - - -
20 (can-c) - - - - +/- + - -

Table 1: The main results for Sta�ware, COSA, InConcert, Eastman, FLOWer, Lotus Domino
Workow, Meteor, and Mobile.

From the comparison it is clear that no tool support all the selected patterns. In fact, many of
these tools only support a relatively small subset of the more advanced patterns (i.e., patterns
6 to 20). Speci�cally the limited support for the discriminator, and its generalization, the N -
out-of-M -join, the state-based patterns (only COSA), the synchronization of multiple instances
(only FLOWer) and cancellation (esp. of activities), is worth noting.

Please apply the results summarized in tables 1 and 2 with care. First of all, the organization
selecting a workow management system should focus on the patterns most relevant for the
workow processes at hand. Since support for the more advanced patterns is limited, one should
focus on the patterns most needed. Second, the fact that a pattern is not directly supported by
a product does not imply that it is not possible to support the construct at all. As indicated
throughout the paper, many patterns can be supported indirectly through mixtures of more
basic patterns and coding. Third, the patterns reported in this paper only focus on the process
perspective (i.e., control ow or routing). The other perspectives (e.g., organizational modeling)

1Note that the modeling language of Mobile is extensible. The results only indicate the standard functionality.
All design patterns described in this paper can be added to Mobile.

46

pattern product
MQSeries Fort�e Verve Vis. WF Changeng. I-Flow SAP/R3

1 (seq) + + + + + + +
2 (par-spl) + + + + + + +
3 (synch) + + + + + + +
4 (ex-ch) + + + + + + +

5 (simple-m) + + + + + + +
6 (m-choice) + + + + + + +
7 (sync-m) + - - - - - -
8 (multi-m) - + + - - - -
9 (disc) - + + - + - +
10 (arb-c) - + + +/- + + -
11 (impl-t) + - - - - - -
12 (mi-no-s) - + + + - + -
13 (mi-dt) + + + + + + +
14 (mi-rt) - - - - - - +/-
15 (mi-no) - - - - - - -
16 (def-c) - - - - - - -
17 (int-par) - - - - - - -
18 (milest) - - - - - - -
19 (can-a) - - - - - - +
20 (can-c) - + + - + - +

Table 2: The main results for MQSeries, Fort�e Conductor, Verve, Visual WorkFlo,
Changengine, I-Flow, and SAP/R3 Workow.

47

should also be taken into account. Moreover, additional features of the tool may reduce the
need for certain routing constructs. For example, Lotus Domino Workow is embedded in a
complete groupware system which reduces the need for certain constructs. Another example is
the case handling tool FLOWer. The case-handling paradigm allows for implicit routing which
reduces the need some of the constructs (e.g., arbitrary loops and advanced synchronization
constructs).

4 Epilogue

This paper presented an overview of workow patterns, emphasizing the control perspective,
and discussed to what extent current commercially available workow management systems
could realize such patterns. Typically, when confronted with questions as to how certain com-
plex patterns need to be implemented in their product, workow vendors respond that the
analyst may need to resort to the application level, the use of external events or database
triggers. This however defeats the purpose of using workow engines in the �rst place.

Through the discussion in this paper we hope that we not only have provided an insight into
the shortcomings, comparative features and limitations of current workow technology, but
also that the patterns presented can provide a direction for future developments.

Recently we evaluated �ve workow projects conducted by ATOS/Origin (Utrecht, The Nether-
lands) to get quantitative data about the frequency of patterns [VO01, VO02]. Each of these
projects involved multiple processes with processes ranging from dozens of activities to hun-
dreds of activities. The projects used three of the workow products mentioned in this paper
(Eastman, Sta�ware, and Domino Workow) and the results obtained show that in most of
the projects evaluated there is a strong need for the more advanced patterns presented in this
paper. Empirical �ndings show that in many projects workow designers are forced to adapt
the process or need to resort to spaghetti-like diagrams or coding. Another interesting observa-
tion is that there seems to be a correlation between the patterns being used and the workow
product being deployed, e.g., the processes developed in projects using Sta�ware have much
more parallelism than the processes developed in projects using Eastman. Further research
is needed to truly understand the inuence of the workow product on the processes being
supported.

Acknowledgements. We would like to thank the anonymous referees for their useful com-
ments that helped to improve this paper. We also thank the vendors and consultants that
cooperated by reviewing the results. In particular, we thank Kristiaan de Vries, Ton Pijpers,
Hajo Reijers, Jaap Rigter, Eric Verbeek, Dennis Smit, Paul Berens, Dolf Grunbauer, and Oscar
Ommert.

Disclaimer. We, the authors and the associated institutions, assume no legal liability or
responsibility for the accuracy and completeness of any product-speci�c information contained

48

in this paper. However, we made all possible e�orts to make sure that the results presented
are, to the best of our knowledge, up-to-date and correct.

References

[Aal98a] W.M.P. van der Aalst. Chapter 10: Three Good reasons for Using a Petri-net-based
Workow Management System. In T. Wakayama et al., editor, Information and Process
Integration in Enterprises: Rethinking documents, The Kluwer International Series in En-
gineering and Computer Science, pages 161{182. Kluwer Academic Publishers, Norwell,
1998.

[Aal98b] W.M.P. van der Aalst. The Application of Petri Nets to Workow Management. The
Journal of Circuits, Systems and Computers, 8(1):21{66, 1998.

[AB01] W.M.P. van der Aalst and P.J.S. Berens. Beyond Workow Management: Product-Driven
Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International ACM SIG-
GROUP Conference on Supporting Group Work (GROUP 2001), pages 42{51. ACM Press,
New York, 2001.

[AH02] W.M.P. van der Aalst and K.M. van Hee. Workow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

[AHKB] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workow
Patterns Home Page. http://www.tm.tue.nl/it/research/patterns/.

[AHKB00a] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Advanced
Workow Patterns. In O. Etzion and P. Scheuermann, editors, 7th International Confer-
ence on Cooperative Information Systems (CoopIS 2000), volume 1901 of Lecture Notes in
Computer Science, pages 18{29. Springer-Verlag, Berlin, 2000.

[AHKB00b] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workow
Patterns. BETA Working Paper Series, WP 47, Eindhoven University of Technology,
Eindhoven, 2000.

[AHKB02] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workow
Patterns. QUT Technical report, FIT-TR-2002-02, Queensland University of Technology,
Brisbane, 2002. (Also see http://www.tm.tue.nl/it/research/patterns.).

[AM00] A. Agostini and G. De Michelis. Improving Flexibility of Workow Management Sys-
tems. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes
in Computer Science, pages 218{234. Springer-Verlag, Berlin, 2000.

[Ath01] Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands,
2001.

[BW99] P. Barthelmess and J. Wainer. Enhancing workow systems expressive power. (unpub-
lished), 1999.

[Cas98] R. Casonato. Gartner group research note 00057684, production-class workow: A view of
the market. http://www.gartner.com, 1998.

49

[CCPP95] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modeling of Workows. In
M.P. Papazoglou, editor, Proceedings of the OOER'95, 14th International Object-Oriented
and Entity-Relationship Modelling Conference, volume 1021 of Lecture Notes in Computer
Science, pages 341{354. Springer-Verlag, December 1995.

[CCPP98] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workow Evolution. Data & Knowledge
Engineering, 24(3):211{238, January 1998.

[DKTS98] A. Do�ga�c, L. Kalinichenko, M. Tamer �Ozsu, and A. Sheth, editors. Workow Management
Systems and Interoperability, volume 164 of NATO ASI Series F: Computer and Systems
Sciences. Springer, Berlin, Germany, 1998.

[EN93] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes
in Computer Science, pages 1{16. Springer-Verlag, Berlin, 1993.

[Fil97] FileNet. Visual WorkFlo Design Guide. FileNet Corporation, Costa Mesa, CA, USA,
1997.

[Fil99] FileNet. Panagon Visual WorkFlo Architecture. FileNet Corporation, Costa Mesa, CA,
USA, 1999.

[For98] Fort�e. Fort�e Conductor Process Development Guide. Fort�e Software, Inc, Oakland, CA,
USA, 1998.

[Fow97] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, Mas-
sachusetts, 1997.

[Fuj99] Fujitsu. i-Flow Developers Guide. Fujitsu Software Corporation, San Jose, CA, USA, 1999.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachusetts, 1995.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workow Management:
From Process Modeling to Workow Automation Infrastructure. Distributed and Parallel
Databases, 3:119{153, 1995.

[Hir01] A. Hirnschall. Patterns Discusion in the Context of Co-ow, CONDIS Workow Manage-
ment System (in German). Technical report, University of Linz, Austria, 2001.

[HP00] HP. HP Changengine Process Design Guide. Hewlett-Packard Company, Palo Alto, CA,
USA, 2000.

[IBM99] IBM. IBM MQSeries Workow - Getting Started With Buildtime. IBM Deutschland
Entwicklung GmbH, Boeblingen, Germany, 1999.

[JB96] S. Jablonski and C. Bussler. Workow Management: Modeling Concepts, Architecture,
and Implementation. International Thomson Computer Press, 1996.

[KAV02] A. Kumar, W.M.P. van der Aalst, and H.M.W. Verbeek. Dynamic Work Distribution in
Workow Management Systems: How to Balance Quality and Performance? Journal of
Management Information Systems, 18(3):157{193, 2002.

[KDB00] M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workow Systems, volume 9
of Special issue of the journal of Computer Supported Cooperative Work, 2000.

50

[KHB00] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured Workow Mod-
elling. In B. Wangler and L. Bergman, editors, Proceedings of the Twelfth International
Conference on Advanced Information Systems Engineering (CAiSE'2000), volume 1789
of Lecture Notes in Computer Science, pages 431{445, Stockholm, Sweden, June 2000.
Springer-Verlag.

[Kie02] B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workows (submitted). PhD thesis, Queensland University of Technology, Brisbane,
Australia, 2002.

[Kou95] T.M. Koulopoulos. The Workow Imperative. Van Nostrand Reinhold, New York, 1995.

[Lav00] H. Lavana. A Universally Con�gurable Architecture for Taskow-Oriented Design of a
Distributed Collaborative Computing Environment . PhD thesis, Department of Computer
Science, North Carolina State University, Raleigh, NC, USA, 2000.

[Law97] P. Lawrence, editor. Workow Handbook 1997, Workow Management Coalition. John
Wiley and Sons, New York, 1997.

[Lon98] J. Lonchamp. Process Model Patterns for Collaborative Work. In Proceedings of the
15th IFIP World Computer Congress, Telecooperation Conference, Telecoop'98, Vienna,
Austria, July 1998.

[LR99] F. Leymann and D. Roller. Production Workow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, USA, 1999.

[MB97] G. Meszaros and K. Brown. A Pattern Language for Workow Systems. In Proceedings of
the 4th Pattern Languages of Programming Conference, Washington University Technical
Report 97-34 (WUCS-97-34), 1997.

[NEG+00] S.P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze, and J. Roele. Using Lotus Domino
Workow 2.0, Redbook SG24-5963-00. IBM, Poughkeepsie, USA, 2000.

[Pro98] Promatis. Income Workow User Manual. Promatis GmbH, Karlsbad, Germany, 1998.

[RR98] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

[RZ96] D. Riehle and H. Z�ullighoven. Understanding and Using Patterns in Software Development.
Theory and Practice of Object Systems, 2(1):3{13, 1996.

[SAA99] A.P. Sheth, W.M.P. van der Aalst, and I.B. Arpinar. Processes Driving the Networked
Economy: ProcessPortals, ProcessVortex, and Dynamically Trading Processes. IEEE Con-
currency, 7(3):18{31, 1999.

[SAP97] SAP. WF SAP Business Workow. SAP AG, Walldorf, Germany, 1997.

[Sch96] T. Sch�al. Workow Management for Process Organisations, volume 1096 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1996.

[SKM] A. Sheth, K. Kochut, and J. Miller. Large Scale Distributed Information Systems (LSDIS)
laboratory, METEOR project page. http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

[SL99] Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim, Germany, 1999.

51

[Sof98] Eastman Software. RouteBuilder Tool User's Guide. Eastman Software, Inc, Billerica,
MA, USA, 1998.

[Sta00] Sta�ware. Sta�ware 2000 / GWD User Manual. Sta�ware plc, Berkshire, United Kingdom,
2000.

[Tib00] Tibco. TIB/InConcert Process Designer User's Guide. Tibco Software Inc., Palo Alto,
CA, USA, 2000.

[Ver00] Verve. Verve Component Workow Engine Concepts. Verve, Inc., San Francisco, CA,
USA, 2000.

[VO01] K. de Vries and O. Ommert. Advanced Workow Patterns in Practice (1): Experiences
Based on Pension Processing (in Dutch). Business Process Magazine, 7(6):15{18, 2001.

[VO02] K. de Vries and O. Ommert. Advanced Workow Patterns in Practice (2): Experiences
Based on Judicial Processes (in Dutch). Business Process Magazine, 8(1):20{23, 2002.

[WAH00] H. Weigand, A. de Moor, and W.J. van den Heuvel. Supporting the Evolution of Workow
Patterns for Virtual Communities. Electronic Markets, 10(4):264{271, 2000.

[WFM99] WFMC. Workow Management Coalition Terminology & Glossary, Document Number
WFMC-TC-1011, Document Status - Issue 3.0, February. Technical report, Workow
Management Coalition, Brussels, 1999.

52

A Sta�ware

pattern score motivation
1 (seq) + Directly supported.

2 (par-spl) + Supported through a step with multiple output arcs.
3 (synch) + Supported through a so-called wait step. There is an asymmetry which results

in unexpected behavior if multiple synchronizations take place concurrently.
4 (ex-ch) + Supported through a so-called decision. The decision is binary.

5 (simple-m) + Supported through a step with multiple input arcs.
6 (m-choice) - Wait steps are binary and correspond to exclusive OR-splits.
7 (sync-m) - No support.
8 (multi-m) - No support. Note that it is not possible to enable a step twice. The second

thread will cancel the �rst one.
9 (disc) - No support.
10 (arb-c) + There are some syntactical limitations. However, it is possible to have mul-

tiple intertwined cycles.
11 (impl-t) + Directly supported. The workow instance terminates if all of the correspond-

ing branches have terminated.
12 (mi-no-s) - Only through a graphical enumeration of the number of instances.
13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - No support.
15 (mi-no) - No support.
16 (def-c) - There is no state concept. The only way to support this pattern is through a

parallel split and a withdraw. However, this solution is complex and not safe.
17 (int-par) - No support.
18 (milest) - No support.
19 (can-a) + Directly supported.
20 (can-c) - No support, only through API.

53

B COSA

pattern score motivation
1 (seq) + Directly supported.

2 (par-spl) + If no conditions speci�ed, AND-split semantics.
3 (synch) + If no conditions speci�ed, AND-join semantics.
4 (ex-ch) + Through conditions on output arcs of activities.

5 (simple-m) + Through places (named conditions in COSA).
6 (m-choice) + Through conditions on output arcs of activities.
7 (sync-m) +/- The condition on an input arc can be used to state that a token is not needed,

i.e., the standard condition is weakened to avoid full synchronization.
8 (multi-m) - Only safe Petri net diagrams can be used.
9 (disc) - The discriminator can be modeled by using true conditions in input arcs and

extending the network. Unfortunately, the resulting diagram is too complex.
10 (arb-c) + Supported. Any graph structure is allowed.
11 (impl-t) - Not supported, explicit termination is needed.
12 (mi-no-s) +/- COSA has a three level workow model, i.e., workow, ow, and activity.

Flows (i.e., workow instances) can be grouped in one workow and share
information. This combined with a trigger mechanism to create new ows is
a solution.

13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) + Directly supported through places.
17 (int-par) + Directly supported through places and also an optional setting of the work-

ow engine.
18 (milest) + Directly supported through places.
19 (can-a) + Directly supported by removing tokens from input places.
20 (can-c) - Only supported through an API.

54

C InConcert

pattern score motivation
1 (seq) + Directly supported through arrows representing explicit dependencies.

2 (par-spl) + Directly supported through multiple output arcs.
3 (synch) + Directly supported through multiple input arcs.
4 (ex-ch) +/- There is only conditional routing through so-called \perform conditions".

These conditions determine whether an activity or subprocess should be ex-
ecuted. This simpli�es the modeling by end users but results in only partial
support for the pattern.

5 (simple-m) +/- Only indirectly supported through perform conditions.
6 (m-choice) +/- Not directly supported. However, it is possible to use perform conditions in

the top-level process of each branch. Therefore, an intermediate rating is
given.

7 (sync-m) + Any split is an AND-split and any join is an AND-join. Therefore, the pattern
is supported through perform conditions.

8 (multi-m) - Since every join in InConcert is an AND-join, there is no merge and no way
to start a branch twice.

9 (disc) - Since every join is an AND-join, there is no way to continue before all
branches have completed.

10 (arb-c) - There are no loops.
11 (impl-t) + Directly supported: any acyclic graph will do.
12 (mi-no-s) - Not supported.
13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - There is no state concept. It is also not possible to withdraw an activity. How-

ever, the perform condition can be set to bypass activities in other branches.
17 (int-par) - Not supported: the perform condition does not block processing (instead

activities are skipped).
18 (milest) - Not supported: there is no state concept.
19 (can-a) - Users can cancel activities. However, there is no way to structure this and

have one activity cancel another one.
20 (can-c) - Users can cancel cases given proper authorization. However, there is no way

to do this automatically.

55

D Eastman

pattern score motivation
1 (seq) + Directly supported through arcs connecting worksteps.

2 (par-spl) + Supported by split worksteps.
3 (synch) + Supported by join worksteps.
4 (ex-ch) + The semantics of a \normal" workstep is XOR-split.

5 (simple-m) + The semantics of a \normal" workstep is XOR-join.
6 (m-choice) +/- A small network consisting of a split workstep and an additional workstep

for each branch is needed. However, it is also possible to use preprocessing
conditions in the �rst workstep of each branch. Therefore, an intermediate
rating is given.

7 (sync-m) + Supported.
8 (multi-m) + Directly supported.
9 (disc) + Supported. However, it works only partially. Running instances/threads can

activate the construct before it �nishes.
10 (arb-c) + Directly supported.
11 (impl-t) + Directly supported.
12 (mi-no-s) + Multiple threads can be created and follow the same path in the process.
13 (mi-dt) + Multiple threads can be created and follow the same path in the process.

A join workstep can have an attribute which speci�es how many instances
should be joined.

14 (mi-rt) - The join workstep attribute which speci�es how many instances should be
joined, is �xed.

15 (mi-no) - The join workstep attribute which speci�es how many instances should be
joined, is �xed.

16 (def-c) - No states.
17 (int-par) - There are no states nor semaphore-like facilities.
18 (milest) - Not supported.
19 (can-a) - Not supported. There is a \remove from workow" command and a delete

workstep. Both commands can be used to terminate an instance/thread. How-
ever, one tread can only terminate itself and not other threads.

20 (can-c) - Not supported.

56

E FLOWer

FLOWer is a so-called case-handling system. Since it is mainly data-driven, an evaluation based on the
patterns is not straightforward. Therefore, we provide a more detailed argumentation.

pattern score motivation
1 (seq) + Directly supported through arcs connecting plan elements.

2 (par-spl) + Nodes in a subplan (static, dynamic, and sequential) have an AND-split
semantics.

3 (synch) + Nodes in a subplan (static, dynamic, and sequential) have an AND-join se-
mantics.

4 (ex-ch) + Supported through the plan type system decision (based on data) and the
plan type user decision (based on a user selection on the wavefront).

5 (simple-m) + Supported by the end nodes of the plan type system decision and the plan
type user decision.

6 (m-choice) - Not supported: the decision plan types only allow for a 1-out-of-m selection.
7 (sync-m) - Not supported.
8 (multi-m) +/- It is possible the have multiple concurrent threads using dynamic subplans.

Therefore, there is partial support for the pattern. However, since all networks
are highly structured, it is not possible to have an AND-split/XOR-join type
of situation.

9 (disc) +/- The discriminator is not directly supported. However, dynamic subplans can
have a so-called auto complete condition. This condition allows for emulating
constructs such as the discriminator and the n-out-of-m join.

10 (arb-c) - Not supported. In fact there are no loops and the language is block struc-
tured with AND-type of blocks and XOR-type of blocks. Iteration is achieved
through the sequential subplan and the redo role.

11 (impl-t) - Not supported: every plan has a unique start node and end node.
12 (mi-no-s) + Directly supported through dynamic subplans.
13 (mi-dt) + Directly supported through dynamic subplans and supported through a com-

bination of splits and joins.
14 (mi-rt) + Directly supported through dynamic subplans. One can specify a variable

number of instances.
15 (mi-no) + Directly supported through dynamic subplans. It is possible to create new

instances, while executing.
16 (def-c) +/- There is no explicit notion of states. The plan type user decision (based on a

user selection on the wavefront) can solve the implicit choice in some cases.
The plan type system decision can solve the implicit choice in some other
cases. Note that a system decision blocks until at least one of its conditions
is true. This way \race conditions" based on time or external triggers are
possible. In the latter case triggering is handled through data-dependencies
rather than explicit control-ow dependencies. Moreover, mixtures of system
and user decisions are problematic.

57

pattern score motivation
17 (int-par) +/- Due to the case metaphor there is just one actor working on the case. There-

fore, there is no true concurrency and any parallel routing is interleaved.
Since true concurrency is not possible, an intermediate rating is given.

18 (milest) +/- There is no direct support for milestones since there is no notion of states.
However, in all situations data dependencies can be used to emulate the
construct. Simply introduce for each state (i.e., place in Petri-net terms) a
data element.

19 (can-a) +/- It is possible to skip or redo activities. However, it is not possible to withdraw
an activity in one branch triggered by an activity in another branch. Skip and
redo are explicit user actions. Therefore, they provide only partial support.

20 (can-c) +/- It is possible to skip or redo an entire plan. However, skip and redo actions
are always explicit user actions. Therefore, they provide only partial support.
Note that using a date element named cancel and using this data element
as a precondition for every activity in the ow it is possible to block a case.
Although this is an elegant solution, it is still considered to be indirect.

58

F Domino Workow

pattern score motivation
1 (seq) + Directly supported through routing relations connecting activities.

2 (par-spl) + By making each output routing relation of type \always".
3 (synch) + By setting the join attribute to \enabled".
4 (ex-ch) + By selecting either \condition" or \multiple choice" on output relations.

5 (simple-m) + By selecting \disable join".
6 (m-choice) + By selecting either \condition" or \multiple choice" on output relations.
7 (sync-m) + Supported. Select \enable join". The AND-join will wait as long as something

may arrive.
8 (multi-m) +/- Partially supported. Select \enable join". If instances meet, they are merged.

Therefore, no full support. Note that even if the individual subcases are
merged, they are still visible in the content of the case.

9 (disc) - Not directly supported. Only through scripting.
10 (arb-c) + Supported, only the self-loop is excluded.
11 (impl-t) + Supported, there may be multiple end nodes.
12 (mi-no-s) +/- No graphical support for multiple instances. However, the scripting language

of Domino allows for the creation of parallel instances. Moreover, by selecting
\disable join" it is possible to deal with multiple instances of sequential parts
of the process.

13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - No graphical support for multiple instances. However, the scripting language

of Domino allows for counters waiting for all instances to terminate.
15 (mi-no) - No direct support.
16 (def-c) - No states.
17 (int-par) - For parallel routing, the case is split into identical copies which are

merged/joined at the AND-join. Therefore, only true parallelism is supported.
18 (milest) - No states.
19 (can-a) - Not possible. Note that activities can be rerouted.
20 (can-c) + The activity owner can issue a \request to cancel job". The job owner decides

on the actual deletion of the job.

59

G Meteor

pattern score motivation
1 (seq) + Directly supported. Tasks (i.e., activities) in Meteor have a \to" clause to

model causal dependencies.
2 (par-spl) + Directly supported. The semantics of multiple \to" clauses inside a task is

AND-split.
3 (synch) + Directly supported. Tasks have a \and or" clause which allow for synchro-

nization.
4 (ex-ch) + Directly supported. The \to" clauses of a task can have a condition associated

to them.
5 (simple-m) + Directly supported. Tasks have a \and or" clause which allow for XOR-join

semantics.
6 (m-choice) + Supported through conditional \to" clauses.
7 (sync-m) - Not supported.
8 (multi-m) + Supported. Multi-threaded workows are possible.
9 (disc) +/- Using the \and or" clause it is possible to conditionally synchronize. This

mechanism can also be used for the n-out-of-m. However, there is no garbage
collection. A 2-to-out-10 construct may lead to 5 instances of subsequent
parts of the process.

10 (arb-c) + Directly supported.
11 (impl-t) - Not supported. One unique �nal task (stop task).
12 (mi-no-s) + Supported. Multi-threaded workows are possible.
13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported. There is no state concept.
17 (int-par) - The architecture is highly distributed and parallel branches are completely

independent. There is no mechanism to interleave these branches.
18 (milest) - Not supported. There is no state concept.
19 (can-a) - Not directly supported.
20 (can-c) - Not directly supported.

60

H Mobile

Mobile is extensible. Therefore, it is possible to add new constructs and, in principle, Mobile could
support any of the patterns. In this table, we only list the constructs already available.

pattern score motivation
1 (seq) + Supported through the \sequence" construct.

2 (par-spl) + Supported through the \parallel" construct.
3 (synch) + Supported through the \parallel" construct.
4 (ex-ch) + Supported through the \if then else" construct.

5 (simple-m) + Supported through the \if then else" construct.
6 (m-choice) + Supported through the \case" construct.
7 (sync-m) - Not directly supported.
8 (multi-m) - Not directly supported.
9 (disc) + Supported through the \n-out-of-m" construct.
10 (arb-c) - Not supported. Mobile is a block structured language with an underlying

textual language. Therefore, it is not possible to have arbitrary cycles.
11 (impl-t) - Not directly supported.
12 (mi-no-s) - Not directly supported.
13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - Not directly supported.
15 (mi-no) - Not directly supported.
16 (def-c) - Not directly supported.
17 (int-par) + Supported through the \reihung/anysequence" construct.
18 (milest) - Not directly supported.
19 (can-a) - Not directly supported.
20 (can-c) - No directly support.

61

I MQSeries Workow

pattern score motivation
1 (seq) + Directly supported.

2 (par-spl) + Directly supported through multiple outgoing transitions of an activity.
3 (synch) + Directly supported.
4 (ex-ch) + Supported through the use of exclusive conditions on transitions.

5 (simple-m) + Directly supported.
6 (m-choice) + Supported through the use of non-exclusive conditions on transitions.
7 (sync-m) + Directly supported.
8 (multi-m) - Not supported.
9 (disc) - Not supported.
10 (arb-c) - Not supported.
11 (impl-t) + Directly supported.
12 (mi-no-s) - Not supported.
13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - Used to be supported through a special construct called a \bundle". Sadly,

the bundle construct is curiously missing in the latest version of the product.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) - Not supported.

62

J Fort�e Conductor

pattern score motivation
1 (seq) + Directly supported using activity routers.

2 (par-spl) + Supported by using multiple outgoing routers.
3 (synch) + Supported by specifying a special trigger condition for an activity with mul-

tiple incoming routers.
4 (ex-ch) + Supported by using multiple outgoing routers with router conditions.

5 (simple-m) + Supported by specifying a special trigger condition for an activity with mul-
tiple incoming routers.

6 (m-choice) + Supported by specifying a special trigger condition for an activity with mul-
tiple incoming routers.

7 (sync-m) - Not supported.
8 (multi-m) + Supported by using multiple outgoing routers with router conditions.
9 (disc) + Supported through the use of custom condition and process variables.
10 (arb-c) + Directly supported.
11 (impl-t) - Not supported.
12 (mi-no-s) + Directly supported.
13 (mi-dt) + Directly supported.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - No concept of a state.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) + A �nal, terminating, task could be use to terminate a process instance.

63

K Verve

pattern score motivation
1 (seq) + Directly supported.

2 (par-spl) + Directly supported.
3 (synch) + Supported through a \Synchronizer" construct.
4 (ex-ch) + Supported through exclusive conditions on arcs.

5 (simple-m) + Directly supported.
6 (m-choice) + Supported through non-exclusive conditions on arcs.
7 (sync-m) - Not supported.
8 (multi-m) + Directly supported.
9 (disc) + Supported through a \Discriminator" construct.
10 (arb-c) + Directly supported.
11 (impl-t) - Not supported.
12 (mi-no-s) + Directly supported.
13 (mi-dt) + Supported.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) + Supported through a �nal activity.

64

L Visual WorkFlo

pattern score motivation
1 (seq) + Directly supported.

2 (par-spl) + Directly supported.
3 (synch) + Supported using \Rendezvous" construct.
4 (ex-ch) + Supported using \Branch" construct.

5 (simple-m) + Directly supported.
6 (m-choice) + Supported through a combination of other constructs.
7 (sync-m) - Not supported.
8 (multi-m) - Not supported.
9 (disc) - Not supported.
10 (arb-c) +/- Supported to some extent through the use of \Goto" construct. Note though

that the standard loop in Visual WorkFlo is fully structured.
11 (impl-t) - Not supported.
12 (mi-no-s) + Supported through the \Release" construct.
13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) - Not supported.

65

M Changengine

pattern score motivation
1 (seq) + Directly supported.

2 (par-spl) + Supported through a Route Node with more than one outgoing arcs.
3 (synch) + Supported through a Route Node with more than one incoming arcs.
4 (ex-ch) + Supported through a Route Node with more than one outgoing arcs.

5 (simple-m) + Supported through a Route Node with more than one incoming arcs.
6 (m-choice) + Supported through a Route Node with more than one outgoing arcs.
7 (sync-m) - Not supported.
8 (multi-m) - Not supported.
9 (disc) + Supported through a Route Node with more than one incoming arcs.
10 (arb-c) + Directly supported.
11 (impl-t) - Not supported.
12 (mi-no-s) - Not supported.
13 (mi-dt) + Directly supported.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) + Supported through \Abort Nodes".

66

N I-Flow

pattern score motivation
1 (seq) + Directly supported.

2 (par-spl) + Directly supported.
3 (synch) + Supported through an AND node.
4 (ex-ch) + Supported through a Conditional Node.

5 (simple-m) + Directly supported.
6 (m-choice) + Supported through a combination of other constructs.
7 (sync-m) - Not supported.
8 (multi-m) - Not supported (no concurrent multiple instances are permitted).
9 (disc) - Not supported.
10 (arb-c) + Supported.
11 (impl-t) - Not supported.
12 (mi-no-s) + Supported through chained-process node.
13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) - Not supported.
15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) - Not supported.
20 (can-c) - Not supported.

67

O SAP/R3 Workow

pattern score motivation
1 (seq) + Directly supported.

2 (par-spl) + Supported by a \fork" construct.
3 (synch) + Supported by a \join" construct.
4 (ex-ch) + Supported by a \condition" construct.

5 (simple-m) + Directly supported.
6 (m-choice) + Supported by a \condition" construct.
7 (sync-m) - Not supported.
8 (multi-m) - Not supported.
9 (disc) + Supported by a \join" construct. With SAP one can specify the number of

incoming transitions to be waited for in a \fork" construct. The processing
continues once the speci�ed number of paths is completed. Note though that
the remaining, un�nished, paths are terminated.

10 (arb-c) - Not supported.
11 (impl-t) - Not supported.
12 (mi-no-s) - Not supported.
13 (mi-dt) + Supported through a combination of splits and joins.
14 (mi-rt) +/- Supported through the use of the so-called \table-driven dynamic parallel

processing". This is a very implicit technique for specifying the desired be-
havior of this pattern.

15 (mi-no) - Not supported.
16 (def-c) - Not supported.
17 (int-par) - Not supported.
18 (milest) - Not supported.
19 (can-a) + Supported through a \workow control" construct.
20 (can-c) + Supported through a \workow control" construct.

68

Contents

1 Introduction 2

2 Workow Patterns 5

2.1 Basic Control Flow Patterns . 6

2.2 Advanced Branching and Synchronization Patterns . 9

2.3 Structural Patterns . 17

2.4 Patterns involving Multiple Instances . 20

2.5 State-based Patterns . 27

2.6 Cancellation Patterns . 37

3 Comparing Workow Management Systems 38

3.1 Introduction . 38

3.2 Products . 39

3.3 Results . 45

4 Epilogue 48

A Sta�ware 53

B COSA 54

C InConcert 55

D Eastman 56

E FLOWer 57

F Domino Workow 59

G Meteor 60

H Mobile 61

I MQSeries Workow 62

J Fort�e Conductor 63

69

K Verve 64

L Visual WorkFlo 65

M Changengine 66

N I-Flow 67

O SAP/R3 Workow 68

70

