
Pattern Based Analysis of BPEL4WS

Petia Wohed1? Wil M.P. van der Aalst2 Marlon Dumas3

Arthur H.M. ter Hofstede3

1 Department of Computer and Systems Sciences
Stockholm University/The Royal Institute of Technology, Sweden

petia@dsv.su.se
2 Department of Technology Management

Eindhoven University of Technology, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

3 Centre for Information Technology Innovation
Queensland University of Technology, Australia

{m.dumas, a.terhofstede}@qut.edu.au

Abstract. Web services composition is an emerging paradigm for en-
abling application integration within and across organisational bound-
aries. A landscape of languages and techniques for web services composi-
tion has emerged and is continuously being enriched with new proposals
from different vendors and coalitions. However, little or no effort has been
dedicated to systematically evaluating the capabilities and limitations of
these languages and techniques. The work reported in this paper is a
first step in this direction. It presents an in-depth analysis of the Busi-
ness Process Execution Language for Web Services (BPEL4WS). The
framework used for this analysis is based on a collection of workflow and
communication patterns.

Keywords: business process modelling, web services composition, BPEL4WS

1 Introduction

Web Services is a rapidly emerging paradigm for architecting and imple-
menting business collaborations within and across organisational bound-
aries. In this paradigm, the functionalities provided by business appli-
cations are encapsulated within web services: software components de-
scribed at a semantical level, which can be invoked by application pro-
grams or by other services through a stack of Internet standards including
HTTP, XML, SOAP, WSDL, and UDDI [6]. Once deployed, web services
provided by various organisations can be inter-connected in order to im-
plement business collaborations, leading to composite web services.

Business collaborations require long-running interactions driven by an
explicit process model [1]. Accordingly, a current trend is to express the
? Research conducted while at the Queensland University of Technology.

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 2

logic of a composite web service using a business process modelling lan-
guage tailored for web services. Recently, many of these languages have
emerged, including WSCI [17], BPML [4], BPEL4WS [7], and BPSS [16],
with little effort spent on their evaluation with respect to a common
benchmark. Such a comparative evaluation will contribute to establish
their overlap and complementarities, to delimit their capabilities and lim-
itations, and to detect inconsistencies and ambiguities.

As a first step in this direction, this paper reports an in-depth analysis
of one of these emerging languages, namely BPEL4WS (Business Process
Execution Language for Web Services). It is expected that a similar anal-
ysis will be conducted for other alternative languages in the future.

The reported analysis is based on a framework composed of a set of
patterns: abstracted forms of recurring situations found at various stages
of software development [10]. Specifically, the framework brings together
a set of workflow patterns documented in [3], and a set of communication
patterns documented in [14].

The workflow patterns (WPs) have been compiled from an analysis
of existing workflow languages and they capture typical control flow de-
pendencies encountered in workflow modelling. More than 12 commercial
Workflow Management Systems (WFMS) as well as the UML Activity
Diagrams, have been evaluated in terms of their support for these pat-
terns [3, 8]. The WPs are arguably suitable for analysing languages for
web services composition, since the situations they capture are also rele-
vant in this domain.

The Communication Patterns (CPs) on the other hand, are related
to the way in which system modules interact in the context of Enter-
prise Application Integration (EAI). They are structured according to
two dichotomies: synchronous vs. asynchronous, and point-to-point vs.
multicast. They are arguably suitable for the analysis of the communica-
tion modelling abilities of web services composition languages, given the
strong overlap between EAI and web services technologies.

Two other frameworks for analysing and comparing business process
modelling languages have been proposed by Rosemann & Green [13] and
Söderström et al. [15]. While these two frameworks are motivated by the
same problem that motivates this paper, i.e. the continuously increasing
number of process modelling languages and the need to understand and
compare them, they differ from the pattern-based framework in that they
target a different audience namely, IS/IT-managers, business strategists
and other business stakeholders involved in business process management.
Accordingly, they adopt a higher level of granularity.

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 3

The rest of the paper is structured as follows. Section 2 provides an
overview of the BPEL4WS language. In sections 3 and 4 the BPEL4WS
language is analyzed using the set of workflow and communication pat-
terns respectively. Finally, section 5 concludes the work.

2 BPEL4WS

BPEL4WS builds on IBM’s WSFL (Web Services Flow Language) and
Microsoft’s XLANG (Web Services for Business Process Design) and com-
bines accordingly the features of a block structured language inherited
from XLANG with those for directed graphs originating from WSFL.
The language is intended to support the modelling of two types of pro-
cesses: executable and abstract processes. An abstract, (not executable)
process is a business protocol, specifying the message exchange behaviour
between different parties without revealing the internal behaviour for any-
one of them. An executable process, which is also the focus of this paper,
specifies the execution order between a number of activities constituting
the process, the partners involved in the process, the messages exchanged
between these partners, and the fault and exception handling specifying
the behaviour in cases of errors and exceptions.

The BPEL4WS process itself is a kind of flow-chart, where each ele-
ment in the process is called an activity. An activity is either a primitive
or a structured activity. The set of primitive activities contains: invoke,
invoking an operation on some web service; receive, waiting for a message
from an external source; reply, replying to an external source; wait, waiting
for some time; assign, copying data from one place to another; throw, in-
dicating errors in the execution; terminate, terminating the entire service
instance; and empty, doing nothing.

To enable the presentation of complex structures the following struc-
tured activities are defined: sequence, for defining an execution order;
switch, for conditional routing; while, for looping; pick, for race conditions
based on timing or external triggers; flow, for parallel routing; and scope,
for grouping activities to be treated by the same fault-handler. Structured
activities can be nested and combined in arbitrary ways. Within activi-
ties executed in parallel the execution order can further be controlled by
the usage of links (sometimes also called control links, or guarded links),
which allows the definition of directed graphs. The graphs too can be
nested but must be acyclic.

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 4

3 The Workflow Patterns in BPEL4WS

Web services composition and workflow management are related in the
sense that both are concerned with executable processes. Therefore, much
of the functionality in workflow management systems [2, 9, 12] is also rel-
evant for web services composition languages like BPEL4WS, XLANG,
and WSFL. In this section, we consider the 20 workflow patterns pre-
sented in [3], and we discuss how and to what extent these patterns can
be captured in BPEL4WS. Most of the solutions are presented in a sim-
plified BPEL4WS notation, which is rich enough for capturing the key
ideas of the solutions, while at the same time avoiding a detailed coding-
oriented representation.

WP1 Sequence An activity in a workflow process is enabled after the
completion of another activity in the same process.
Example: After the activity order registration the activity customer no-
tification is executed.

Solution, WP1 There are two possible solutions for this pattern in
BPEL4WS: one using the operator sequence inherited from XLANG (see
Listing 1), and one using the concept of control link inherited from WSFL
(see Listing 2). In this case a link needs to be defined first (lines 2 to 4)
and then the activity to be executed first is specified as source activity
for this link (line 6) while the subsequent activity is specified as target
for the link (line 8). All these activities are embedded within a single flow
activity.

Listing 1

1 <sequence>

2 activityA

3 activityB

4 </sequence>

Listing 2

1 <flow>

2 <links>

3 <link name="L"/>

4 </links>

5 activityA

6 <source linkName="L"/> ...

7 activityB

8 <target linkName="L"/> ...

9 </flow>

WP2 Parallel Split A point in the process where a single thread of
control splits into multiple threads of control which can be executed in
parallel, thus allowing activities to be executed simultaneously or in any
order [5].

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 5

Example: After activity new cellphone subscription order the activity
insert new subscription in Home Location Registry application and insert
new subscription in Mobile answer application are executed in parallel.

WP3 Synchronization A point in the process where multiple parallel
branches converge into one single thread of control, thus synchronizing
multiple threads [5]. It is an assumption of this pattern that after an in-
coming branch has been completed, it cannot be completed again while
the merge is still waiting for other branches to be completed. Also, it is
assumed that the threads to be synchronized belong to the same global
process instance (i.e., to the same “case” in workflow terminology).
Example: Activity archive is executed after the completion of both ac-
tivity send tickets and activity receive payment. Obviously, the synchro-
nization occurs within a single global process instance: the send tickets
and receive payment must relate to the same client request.

Solutions, WP2 & WP3 The parallel split is realized by defining the
activities to be run in parallel as components of an activity of type flow
(see Listing 3, lines 2 to 5). If no control link is defined within a flow,
the activities within the flow are executed in parallel. Adding an activity
after the flow, as for example activity B in line 6, yields the solution to
the Synchronization pattern.

Similarly to the solution for WP1, a solution based on control links is
also possible for WP2 and WP3 (see Listing 4). In this solution the links
L1 and L2 are defined in a flow F. Furthermore, F consists of the activities
A1, A2 and B. The sources of L1 and L2 are A1 and A2 respectively (lines
7 and 9) and the target for both links is activity B (lines 12 and 13). To
execute B after both A1 and A2 have been completed successfully an and

joinCondition is defined for activity B (line 11).
Listings 3 and 4 illustrate the two styles of process modelling sup-

ported by BPEL4WS. Listing 3 shows the “XLANG-style” of modelling
(i.e., routing through structured activities). Listing 4 shows the “WSFL-
style” of modelling (i.e., using links instead of structured activities). It is
also possible to mix both styles by having links crossing the boundaries
of structured activities.4 An example is given in Listing 5, where the se-
quences Sa and Sb are defined to run in parallel. The definition of a link
L (lines 3, 7 and 14) implies that activity B2, following after activity B1
in sequence Sb, can be executed first after activity A1 from sequence Sa
4 However, in order to prevent deadlocks, links are not allowed to cross the boundaries

of while loops, serializable scopes, or compensation handlers.

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 6

Listing 3

1 <sequence>

2 <flow>

3 activityA1

4 activityA2

5 </flow>

6 activityB

7 </sequence>

Listing 4

1 <flow name="F">

2 <links>

3 <link name="L1"/>

4 <link name="L2"/>

5 </links>

6 activityA1

7 <source linkName="L1"/>...

8 activityA2

9 <source linkName="L2"/>...

10 activityB

11 joinCondition="L1 AND L2"

12 <target linkName="L1"/>

13 <target linkName="L2"/>...

14 </flow>

have completed its execution. In other words, link L captures an interme-
diate synchronization point between the two parallel threads Sa and Sb.
This inter-thread synchronization cannot be expressed using structured
activities only (for a proof see [11]). Figure 1 illustrates the example in
graphical form.5

Listing 5

1 <flow name="F">

2 <links>

3 <link name="L"/>

4 </links>

5 <sequence name="Sa">

6 activityA1

7 <source linkName="L"/>

8 activityA2

9 </sequence>

10 <sequence name="Sb">

11 activityB1

12 activityB2

13 <target linkName="L"/>

14 </sequence>

15 </flow>

Figure 1

A1

A2

B1

B2

Flow F

Sa Sb

L

Legend:
Activity

Flow

Sequence

Link

WP4 Exclusive Choice A point in the workflow process where, based
on a decision or workflow control data, one of several branches is chosen.
Example: The manager is informed if an order exceeds $ 600, otherwise
not.

5 Since BPEL4WS does not provide a graphical notation, the use of figures is limited
to some patterns only.

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 7

WP5 Simple Merge A point in the workflow process where two or
more alternative branches come together without synchronization. It is
an assumption of this pattern that none of the alternative branches is
ever executed in parallel (if it is not the case, then see the patterns Multi
Merge and Discriminator).
Example: After the payment is received or the credit is granted the car
is delivered to the customer.

Solutions, WP4 & WP5 As in the previous patterns, two solutions
are proposed. The first one relies on the activity switch inherited from
XLANG (Listing 6). Each case specifies the activity to be performed when
a condition is fulfilled. The second solution uses control links (see Listing 7
and Figure 2). The different conditions (C1 and C2 in the example) are
specified as transitionConditions, one for each corresponding link (L1 or
L2). This implies that the activities specified as targets for these links
(A1 and A2 in the example) will be executed only if the corresponding
conditions are fulfilled. An empty activity is the source of links L1 and
L2, implying that conditions C1 and C2 are evaluated as soon as the flow
is initiated. Activity C is the target of links L1s and L2s whose sources
are A1 and A2 respectively, thereby capturing the Simple Merge pattern.

A difference between these two solutions is that in the solution of
Listing 6 only one activity is trigerred, the first one for which the spec-
ified condition evaluates to true. Meanwhile, in the solution of Listing 7
multiple branches may be trigerred if more than one of the conditions
evaluates to true. To ensure that only one of the branches is trigerred,
the conditions have to be disjoint. If this is not the case, Listing 7 rather
provides a solution to the Multi Choice pattern described below.

WP6 Multi-Choice A point in the process, where, based on a decision
or control data, a number of branches are chosen and executed as parallel
threads.
Example: After executing the activity evaluate damage the activity con-
tact fire department or the activity contact insurance company is exe-
cuted. At least one of these activities is executed. However, it is also
possible that both need to be executed.

WP7 Synchronizing Merge A point in the process where multiple
paths converge into one single thread. Some of these paths are “active”
(i.e. they are being executed) and some are not. If only one path is active,
the activity after the merge is triggered as soon as this path completes.
If more than one path is active, synchronization of all active paths needs

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 8

Listing 6

1 <switch>

2 <case condition="C1">

3 activityA1

4 </case>

5 <case condition="C2">

6 activityA2

7 </case>

8 </switch>

9 activityC

Figure 2

A1 A2

Empty

Flow

L1: C1

C

L2:C2

L1s L2sOR

Listing 7

1 <flow>

2 <links>

3 <link name="L1"/>

4 <link name="L2"/>

5 <link name="L1s"/>

6 <link name="L2s"/>

7 </links>

8 <empty>

9 <source linkName="L1"

10 transitionCondition="C1"/>

11 <source linkName="L2"

12 transitionCondition="C2"/>

13 </empty>

14 activityA1

15 <target linkName="L1">

16 <source linkName="L1s">

17 activityA2

18 <target linkName="L2">

19 <source linkName="L2s">

20 activityC

21 joinCondition="L1s OR L2s"

22 <target linkName="L1s">

23 <target linkName="L2s"> ...

24 </flow>

to take place before the next activity is triggered. It is an assumption
of this pattern that a branch that has already been activated, cannot
be activated again while the merge is still waiting for other branches to
complete.
Example: After either or both of the activities contact fire department
and contact insurance company have been completed (depending on whether
they were executed at all), the activity submit report needs to be per-
formed (exactly once).

Solutions, WP6 & WP7 As indicated before the solution of WP5 and
WP6 are identical to the WSFL-style solutions of WP4 and WP5 (List-
ing 7). This follows from the dead-path elimination principle, which states
that the truth value of an incoming link is propagated to its outgoing link.
In the example of Listing 7, if condition C1 (C2) evaluates to true, ac-
tivity A1 (A2) receives a positive value and it is therefore executed. On
the other hand, if condition C1 (C2) evaluates to false, activity A1 (A2)
receives a negative value, and it is not executed but still propagates the
negative value through its outgoing link L1s (L2s). In particular, both A1
and A2 are executed if the two conditions C1 and C2 evaluate to true.

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 9

In any case, the OR joinCondition attached to C, ensures that C is always
executed, provided that one of the activities A1 or A2 is executed.

WP8 Multi-Merge A point in a process where two or more branches
reconverge without synchronization. If more than one branch gets acti-
vated, possibly concurrently, the activity following the merge is started
for every action of every incoming branch.
Example: Sometimes two or more branches share the same ending. Two
activities audit application and process applications are running in parallel
which should both be followed by an activity close case, which should be
executed twice if the activities audit application and process applications
are both executed.

Solution, WP8 BPEL4WS offers no direct support for WP8. Neither
XLANG nor WSFL allow for two active threads following the same path
without creating new instances of another process.

WP9 Discriminator A point in the workflow process that waits for one
of the incoming branches to complete before activating the subsequent
activity. From that moment on it waits for all remaining branches to
complete and ’ignores’ them. Once all incoming branches have been trig-
gered, it resets itself so that it can be triggered again (which is important
otherwise it could not really be used in the context of a loop).
Example: To improve query response time a complex search is sent to
two different databases over the Internet. The first one that comes up
with the result should proceed the flow. The second result is ignored.

Solution, WP9 This pattern is not directly supported in BPEL4WS.
Neither is there a structured activity construct which can be used for
implementing it, nor can links be used for capturing it. The reason for
not being able to use the link construct with an or joinCondition, is the
fact that a joinCondition is evaluated first when the status of all incoming
links are determined and not, as required in this case, when the first
positive link is determined.

WP10 Arbitrary Cycles A point where a portion of the process (in-
cluding one or more activities and connectors) needs to be “visited” re-
peatedly without imposing restrictions on the number, location, and nest-
ing of these points.

Solution, WP10 This pattern is not supported in BPEL4WS. Although
the while activity allows for structured cycles, it is not possible to jump

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 10

back to arbitrary parts of the process, i.e. only loops with one entry point
and one exit point are allowed.6 The restriction made that links can not
cross the boundaries of a loop and that links may not create a cycle
disables support for WP10.

WP11 Implicit Termination A given subprocess is terminated when
there is nothing left to do, i.e., termination does not require an explicit
termination activity.

Solution, WP11 Implicit termination is supported by the flow con-
struct. A structured activity (without flows and links) completes when
its outermost activity completes and therefore corresponds to explicit
termination. Using the flow construct and links, a subprocess can have
multiple sink activities (i.e., activities not being a source of any link)
without requiring one unique termination activity.

WP12 MI without Synchronization Within the context of a single
case multiple instances of an activity may be created, i.e. there is a facility
for spawning off new threads of control, all of them independent of each
other. The instances might be created consecutively, but they will be able
to run in parallel, which distinguishes this pattern from the pattern for
Arbitrary Cycles.
Example: When booking a trip, the activity book flight is executed mul-
tiple times if the trip involves multiple flights.

Solution, WP12 Multiple instances of an activity can be created by
using the invoke activity embedded in a while loop (see Listing 8). The
invoked process, i.e., process B, has to have the attribute createInstance
within its receive activity assigned to “yes” (see Listing 9).

WP13-WP15 MI with Synchronization A point in a workflow where
a number of instances of a given activity are initiated, and these instances
are later synchronized, before proceeding with the rest of the process. In
WP13 the number of instances to be started/synchronized is known at
design time. In WP14 the number is known at some stage during run
time, but before the initiation of the instances has started. In WP15 the
number of instances to be created is not known in advance: new instances
are created on demand, until no more instances are required.
6 For a discussion on non-structured cycles that can not be unfolded into structured

cycles see [11].

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 11

Example of WP15: When booking a trip, the activity book flight is exe-
cuted multiple times if the trip involves multiple flights. Once all bookings
are made, an invoice is sent to the client. How many bookings are made
is only known at runtime through interaction with the user.

Solutions, WP13-WP15 If the number of instances to be synchronized
is known at design time (WP13), a simple solution is to replicate the ac-
tivity as many times as it needs to be instantiated, and run the replicas
in parallel by placing them in a flow activity. The solution becomes more
complex if the number of instances to be created and synchronized is only
known at run time (WP14), or not known (WP15) – see Listing 10. In this
solution a pick activity within a while loop is used, enabling repetitive pro-
cessing triggered by three different messages: one indicating that a new in-
stance is required, one indicating the completion of a previously initiated
instance, and one indicating that no more instances need to be created.
Depending on the message received an activity is performed/invoked in
each iteration of the loop. However, this is only a work-around solution
since the logic of these patterns is not directly captured by a BPEL4WS
construct. Instead the logic is encoded by means of a loop and a counter:
the counter is incremented each time that a new instance is created, and
is decremented each time that an instance is completed. The loop is ex-
ited when the value of the counter is zero and no more instances need to
be created.

Listing 8

1 <processA>

2 <while cond="C1">

3 <invoke processB ... >

4 </invoke>

5 </while>

6 </process>

Listing 9

1 <processB>

2 <receive processA ...

3 createInstance="yes">

4 </receive>

5 </process>

Listing 10

1 moreInstances:=True

2 i:=0

3 <while moreInstances OR i>0>

4 <pick>

5 <onMessage StartNewActivityA>

6 invoke activityA

7 i:=i+1

8 </onMessage>

9 <onMessage ActivityAFinished>

10 i:=i-1

11 </onMessage>

12 <onMessage NoMoreInstances>

13 moreInstances:=False

14 </onMessage>

15 </pick>

16 </while>

WP16 Deferred Choice A point in a process where one among several
alternative branches is chosen based on information which is not neces-

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 12

sarily available when this point is reached. This differs from the normal
exclusive choice, in that the choice is not made immediately when the
point is reached, but instead several alternatives are offered, and the
choice between them is delayed until the occurrence of some event.
Example: When a contract is finalized, it has to be reviewed and signed
either by the director or by the operations manager, whoever is available
first. Both the director and the operations manager would be notified that
the contract is to be reviewed: the first one who is available will proceed
with the review.

Solution, WP16 This pattern is realized through the pick construct. The
semantics of pick, i.e. awaiting the receipt of one of a number of messages
and continuing the execution according to the received message, captures
the key idea of this pattern, namely a choice is not made immediately
when a certain point (i.e. the pick activity) is reached, but delayed until
receipt of a message.

WP17 Interleaved Parallel Routing A set of activities is executed
in an arbitrary order. Each activity in the set is executed exactly once.
The order between the activities is decided at run-time: it is not until one
activity is completed that the decision on what to do next is taken. In
any case, no two activities in the set can be active at the same time.
Example: At the end of each year, a bank executes two activities for each
account: add interest and charge credit card costs. These activities can be
executed in any order. However, since they both update the account, they
cannot be executed at the same time.

Solution, WP17 It is possible to capture this pattern in BPEL4WS us-
ing the concept of serializable scopes (see Listing 11). A serializable scope
is an activity of type scope whose containerAccessSerializable attribute is
set to “yes”, thereby guaranteeing concurrency control on shared con-
tainers. The activities to be interleaved are placed in different containers
which all write to a single shared container (container C in Listing 11).
Since the activities are placed in different containers, they can potentially
be executed in parallel. On the other hand, since the serializable scopes
that contain the activities write to the same container, no two of them will
be “active” simultaneously, but instead, they will be executed one after
the other. Three things are worth pointing out with respect to this solu-
tion. First, the semantics of serializable scopes in BPEL4WS is not clearly
defined. The BPEL4WS specification only states that this semantics is

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 13

“similar to the standard isolation level serializable of database transac-
tions”, but it does not specify where does the similarity stop (e.g. how
does the underlying transaction model deal with or prevent serialization
conflicts?). Second, it is not possible in this solution to externally influ-
ence (at runtime) the order in which the activities are executed: this order
is instead fixed by the transaction manager of the underlying BPEL4WS
engine. Finally, since serializable scopes are not allowed to be nested,
this solution is not applicable if one occurrence of the interleaved parallel
routing pattern is embedded within another occurrence.

To overcome these limitations, a work-around solution using deferred
choice (i.e. pick) as proposed in [3] can be applied (see Listing 12). The
drawback of this solution is its complexity, which increases exponentially
with the number of activities to be interleaved.

Listing 11

1 <flow>

2 <scope name=S1

3 containerAccessSerializable:="yes">

4 <sequence>

5 write to container C

6 activityA1

7 write to container C

8 </sequence>

9 </scope>

10 <scope name=S2

11 containerAccessSerializable:="yes">

12 <sequence>

13 write to container C

14 activityA2

15 write to container C

16 </sequence>

17 </scope>

18 </flow>

Listing 12

1 <pick>

2 <onMessage m1>

3 <sequence>

4 activity A1

5 activity A2

6 </sequence>

7 </onMessage>

8 <onMessage m2>

9 <sequence>

10 activity A2

11 activity A1

12 </sequence>

13 </onMessage>

14 </pick>

WP18 Milestone A given activity E can only be enabled if a certain
milestone has been reached which has not yet expired. A milestone is de-
fined as a point in the process where a given activity A has finished and
an activity B following it has not yet started.
Example: After having placed a purchase order, a customer can with-
draw it at any time before the shipping takes place. To withdraw an order,
the customer must complete a withdrawal request form, and this request
must be approved by a customer service representative. The execution of
the activity approve order withdrawal must therefore follow the activity

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 14

request withdrawal, and can only be done if: (i) the activity place order is
completed, and (ii) the activity ship order has not yet started.

Solution, WP18 BPEL4WS does not provide a direct support for cap-
turing this pattern. Therefore, a work-around solution has to be used (see
Listing 13). Once again the solution is inspired by the ideas in [3]. A de-
ferred choice between executing the activity B, or executing activity E, is
made. A while loop is used to guarantee that as long as B is not chosen,
E can be executed an arbitrary number of times. The limitation of this
solution is that activity E can not be restricted by any parallel treads.

Listing 13

1 activityA

2 B_completed:="false"

3 <while B_completed="false">

4 <pick>

5 <onMessage mE> activityE

6 </onMessage>

7 <onMessage mB>

8 <sequence> B_completed:="true" </sequence>

9 </onMessage>

10 </pick>

11 </while>

12 activityB

WP19 Cancel Activity & WP20 Cancel Case A cancel activity
terminates a running instance of an activity, while cancelling a case leads
to the removal of an entire workflow instance.
Example of WP19: A customer cancels a request for information.
Example of WP20: A customer withdraws his/her order.

Solutions, WP19 & WP20 WP20 is solved with the terminate activity,
which is used to abandon all execution within a business process instance
of which the terminate activity is a part. All currently running activi-
ties must be terminated as soon as possible without any fault handling
or compensation behaviour. WP19 is dealt with using fault and com-
pensation handlers, specifying the course of action in cases of faults and
cancellations.

4 The Communication Patterns in BPEL4WS

In this section we evaluate BPEL4WS according to the communication
patterns presented in [14]. Since communication is realized by exchanging

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 15

messages between different processes, it is explicitly modelled by sending
and receiving messages. Two types of communications are distinguished,
namely synchronous and asynchronous communication.

4.1 Synchronous Communication

CP1 Request/Reply Request/Reply communication is a form of syn-
chronous communication where a sender makes a request to a receiver and
waits for a reply before continuing to process. The reply may influence
further processing on the sender side.

CP2 One-Way A form of synchronous communication where a sender
makes a request to a receiver and waits for a reply that acknowledges the
receipt of the request. Since the receiver only acknowledges the receipt,
the reply is “empty” and only delays further processing on the sender
side.

Solutions, CP1 & CP2 The way in which synchronous communication
is modelled in BPEL4WS is by the invoke activity included in the request-
ing process, process A (see Listing 14) and a couple of receive and reply
activities in the responding process, process B (see Listing 15). Further-
more, two different containers need to be specified in the invoke activity
within process A: one inputContainer, where the outgoing data from the
process is stored (or input data for the communication); and one output-
Container, where the incoming data is stored (or the output data from this
communication). The One-Way pattern differs from Request/Reply only
by B sending its reply (i.e., confirmation) immediately after the message
from A has been received, i.e., no processing is performed between receipt
and reply activities.

Listing 14

1 <process name="processA">

2 <sequence>

3 ...

4 <invoke partner="B" ...

5 inputContainer="Request"

6 outputContainer="Response">

7 </invoke>

8 ...

9 </sequence>

10 </process>

Listing 15

1 <process name="processB"> ...

2 <sequence>

3 <receive partner="A" ...

4 container="Request">

5 </receive>

6 ...

7 <reply partner="A" ...

8 container="Response">

9 </reply>

10 </sequence>

11 </process>

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 16

CP3 Synchronous Polling Synchronous Polling communication is a
form of synchronous communication where a sender communicates a re-
quest to a receiver but instead of blocking continues processing. At inter-
vals defined by the developer, the sender checks to see if a reply has been
sent. When it detects a reply it processes it and stops any further polling
for a reply.
Example: During a game session, the system continuously checks if the
customer has terminated the game.

Solution, CP3 This pattern is captured trough utilization of two par-
allel flows: one for the receipt of the expected response, and one for the
sequence of the activities not depending on this response (see Listing 16,
lines 4 to 7). The initiation of the communication is done beforehand
through an invoke action (line 3). To be able to proceed, the invoke action
is specified to send data and not wait for a reply. This is indicated by the
use of an inputContainer and by omitting the specification of an output-
Container. The communication for the responding process is the same as
for the previous pattern (Listing 15).

Listing 16

1 <process name="A"

2 <sequence>

3 <invoke partner="B" ... inputContainer="Request"...> </invoke>

4 <flow>

5 <sequence> ... </sequence>

6 <receive partner="B" ... container="Result" ...> </receive>

7 </flow>

8 access container "Result" ...

9 </sequence>

10 </process>

4.2 Asynchronous Communication

CP4 Message Passing Message passing is a form of asynchronous com-
munication where a request is sent from a sender to a receiver. When the
sender has made the request it essentially forgets it has been sent and
continues processing. The request is delivered to the receiver and is pro-
cessed.
Example: When an order is received, a log is notified, before the system
executes the order.

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 17

Solution, CP4 The solution for this pattern has already been demon-
strated as a part of the solution for CP3, namely an invoke activity with
an inputContainer only (line 3 in Listing 16).

CP5 Publish/Subscribe A form of asynchronous communication where
a request is sent by the sender and the receiver is determined by a decla-
ration of interest by the receiver in the request.
Example: An organization offers information about products to its cus-
tomers. If the customers are interested in receiving such information, they
have to notify a system, which lists interested customers. When product
information is going to be distributed to the customers, the organization
requests the current list, including the customers’ addresses.

CP6 Broadcast A form of asynchronous communication in which a
request is sent to all participants, the receivers, of a network. Each par-
ticipant determines whether the request is of interest by examining the
content.
Example: Before a system is shut down for maintenance, every client
connected to it is informed about the situation.

Solutions, CP5 & CP6 Publish/Subscribe and Broadcast are not di-
rectly supported in BPEL4WS.

5 Conclusion

In this paper a framework based on existing workflow and communication
patterns was used for an in-depth analysis of BPEL4WS. A summary of
the results from the analysis are presented in Table 1. The table also
shows a comparison of BPEL4WS with XLANG, WSFL and two major
Workflow Modelling Languages: Staffware PLC’s Staffware and IBM’s
MQSeries Workflow. The ratings for Staffware and MQSeries Workflow
in the table are taken from [3] where an analysis of more than 12 major
commercial WFMS is provided. Since XLANG and WSFL correspond to
subsets of the BPEL4WS, their ratings are straightforward given the dis-
cussions provided in this paper. Note that we indicate that Staffware and
MQSeries Workflow are assumed to offer no support for the communica-
tion patterns. Although this may not be entirely true (e.g., Staffware has
the concept of an event step), they are not intended for communication
and therefore rated ’–’.

A ’+’ in a cell of the table refers to direct support (i.e. there is a
construct in the language which directly support the pattern). A ’–’ in

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 18

the table refers to no direct support. Sometimes there is a feature that
only partially supports a pattern, e.g., a construct that implies certain
restrictions on the structure of the process. In such cases, the support is
rated as ’+/–’.

pattern product/standard

BPEL XLANG WSFL Staffw. MQS.

Sequence + + + + +
Parallel Split + + + + +
Synchronization + + + + +
Exclusive Choice + + + + +
Simple Merge + + + + +
Multi Choice + – + – +
Synchronizing Merge + – + – +
Multi Merge – – – – –
Discriminator – – – – –
Arbitrary Cycles – – – + –
Implicit Termination + – + + +
MI without Synchronization + + + – –
MI with a Priori Design Time Knowledge + + + + +
MI with a Priori Runtime Knowledge – – – – –
MI without a Priori Runtime Knowledge – – – – –
Deferred Choice + + – – –
Interleaved Parallel Routing +/– – – – –
Milestone – – – – –
Cancel Activity + + + + –
Cancel Case + + + – –

Request/Reply + + + – –
One-Way + + + – –
Synchronous Polling + + + – –
Message Passing + + + – –
Publish/Subscribe – – – – –
Broadcast – – – – –

Table 1. Comparison of BPEL4WS against XLANG, WSFL, Staffware and MQSeries
Workflow using both workflow and communication patterns.

The following observations can now be made from the table: i) As
the first five patterns correspond to the basic routing constructs, they are
naturally supported by all languages. In contrast, the patterns referring
to more advanced constructs are often poorly supported in the different
languages. ii) BPEL4WS as a language integrating the futures of the block
structured language XLANG and the directed graphs of WSFL, indeed
supports all patterns supported by XLANG and WSFL. iii) BPEL4WS

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 19

as a Web Service Composition language provides constructs for communi-
cation modelling which clearly distinguishes it from traditional workflow
modelling languages.

Besides these positive remarks, we would also like to pose two negative
comments. First of all, BPEL4WS is a complex language because it offers
(too) many overlapping constructs. The simple fact that many of the pat-
terns can be realized using “XLANG style” and “WSFL style” illustrates
its complexity. Secondly, the semantics of BPEL4WS is not always clear.
The precise semantics of advanced concepts like serializable scopes leave
room for multiple interpretations thus complicating the adoption of the
language.

Disclaimer. We, the authors and the associated institutions, assume no
legal liability or reponsibility for the accuracy and completeness of any
information about BPEL4WS, XLANG, WSFL, IBM MQSeries Work-
flow, or Staffware, contained in this paper. However, we made all possible
efforts to ensure that the results presented are, to the best of our knowl-
edge, up-to-date and correct.

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. to appear. IEEE Intelligent Systems, Jan/Feb 2003. Electronically ac-
cessible from http://www.tm.tue.nl/it/research/patterns/ieeewebflow.pdf.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT press, Cambridge, Massachusetts, 2002.

3. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Technical report FIT-TR-2002-2, Faculty of IT, Queensland
University of Technology, July 2002. Accessed from http://www.tm.tue.nl/it/

research/patterns. To appear in Distributed and Parallel Databases, Kluwer.

4. BPML.org. Business process modeling language. Accessed November 2002 from
www.bpmi.org/, 2002.

5. Workflow Management Coalition. Terminology and glossary. Document Number
WFMC-TC-1011, Document Status - Issue 3.0, February 1999 http://www.wfmc.

org.

6. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2):86–93, March 2002.

7. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services. http://

dev2dev.bea.com/techtrack/BPEL4WS.jsp.

8. M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as a workflow spec-
ification language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int.
Conference on the Unified Modeling Language (UML01), volume 2185 of LNCS,
pages 76–90, Toronto, Canada, October 2001. Springer Verlag.

Technical Report FIT-TR-2002-04, QUT



Pattern-Based Analysis of BPEL4WS 20

9. L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

10. Hillside.net. Patterns Home Page. http://hillside.net/patterns, 2000–2002.
11. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow

modelling. In B. Wangler and L. Bergman, editors, Proc. of the 12th Int. Confer-
ence on Advanced Information Systems Engineering (CAiSE00), volume 1789 of
LNCS, pages 431–445, Stockholm, Sweden, June 2000. Springer Verlag.

12. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, 1999.

13. M. Rosemann and P. Green. Developing a meta model for the Bunge–Wand–Weber
ontological constructs. Information Systems, 27:75–91, 2002.

14. W.A. Ruh, F.X. Maginnis, and W.J. Brown. Enterprise Application Integration:
A Wiley Tech Brief. John Wiley and Sons, Inc, 2001.

15. E. Söderström, B. Andersson, P. Johannesson, E. Perjons, and B. Wangler. To-
wards a framework for comparing process modelling languages. In A.B. Pidduck,
J. Mylopoulos, C.C. Woo, and M.Tamer Özsu, editors, 14th International Confer-
ence on Advanced Information Systems Engineering, CAiSE 2002, volume 2348 of
LNCS, pages 600–611. Springer, 2002.

16. UN/CEFACT and OASIS. ebxml business process specification schema (version
1.01). Accessed November 2002 from www.ebxml.org/specs/ebBPSS.pdf, 2001.

17. W3C. Web service choreography interface (wsci) 1.0. Accessed November 2002
from www.w3.org/TR/wsci/, 2002.

Technical Report FIT-TR-2002-04, QUT


