
 1

Advanced Topics in Workflow Management:
Issues, Requirements, and Solutions

Wil M.P. van der Aalst
Department of Information and Technology
Eindhoven University of Technology
PO Box 513, NL-5600 MB Eindhoven
w.m.p.v.d.aalst@tm.tue.nl

Mathias Weske
Hasso Plattner Institute for Software Systems Engineering
Prof. Dr.-Helmert-Straße 2-3, D-14482 Potsdam, Germany
weske@hpi.uni-potsdam.de

Guido Wirtz
Distributed Systems Group
Department of Computer Science
Westfälische Wilhelms-Universität Münster
Einsteinstrasse 62, D-48149 Münster
guidow@math.uni-muenster.de

This paper surveys and investigates the strengths and weaknesses of a number of recent approaches to advanced
workflow modelling. Rather than inventing just another workflow language, we briefly describe recent workflow
languages, and we analyse them with respect to their support for advanced workflow topics. Object Coordination
Nets, Workflow Graphs, WorkFlow Nets, and an approach based on Workflow Evolution are described as
dedicated workflow modelling approaches. In addition, the Unified Modelling Language as the de facto standard
in object-oriented modelling is also investigated. These approaches are discussed with respect to coverage of
workflow perspectives and support for flexibility and analysis issues in workflow management, which are today
seen as two major areas for advanced workflow support. Given the different goals and backgrounds of the
approaches mentioned, it is not surprising that each approach has its specific strengths and weaknesses. We
clearly identify these strengths and weaknesses, and we conclude with ideas for combining their best features.

Keywords: Applied workflow systems, flexible workflow management, workflow analysis

1. Introduction

In recent years, a variety of approaches to modelling and executing workflows have been proposed,
based on different workflow languages, methods, and tools, and aiming at supporting different aspects
in workflow management [Georgakopoulos et al. (1995), Leymann et al. (1994), Jablonski et al.
(1996), Weske et al. (1998)]. Rather than inventing just another workflow language, this paper briefly
describes and analyses existing workflow languages with respect to their support for advanced
workflow topics. In addition to dedicated workflow modelling approaches, the de facto standard in
object-oriented modelling and design, the Unified Modelling Language, is investigated, specifically
the UML extensions for workflow process modelling [OMG (2000c)]. The dedicated workflow
modelling approaches include Object Coordination Nets [Giese (2001), Wirtz et al. (2000)], Workflow
Graphs [Weske (2000)], WorkFlow Nets [Aalst (1998)], and an approach based on Workflow
Evolution [Casati et al. (1998a)]. These approaches are discussed with respect to coverage of
workflow perspectives and their support for flexibility and analysis issues in workflow management.
Given different goals and backgrounds, it is not surprising that each approach has its specific strengths

mailto:w.m.p.v.d.aalst@tm.tue.nl
mailto:weske@hpi.uni-potsdam.de
mailto:guidow@math.uni-muenster.de

 2

and weaknesses. Based on a common sample workflow process, we clearly identify these strengths
and weaknesses, and we conclude with ideas for combining the best features of the approaches.
This paper is organized as follows. Section 2 introduces a set of requirements for advanced workflow
modelling. It introduces necessary capabilities for modelling dynamic behaviour in general and for
modelling workflow processes in particular. Workflow perspectives are used to characterize the
fundamental requirements; flexibility issues in workflow management and analysis features are two
advanced topics in workflow management, which are discussed next. Section 3 introduces the
approaches to workflow modelling and execution, namely the Unified Modelling Language, Object
Coordination Nets, Workflow Graphs, and WorkFlow Nets. Section 4 compares the four approaches
based on the required capabilities identified in Section 2. Concluding remarks complete this paper.

2. Requirements for Modelling Dynamic Behaviour

This section discusses requirements for modelling and executing workflows. We start with a set of
fundamental requirements, based on dimensions, which have to be considered in workflow modelling;
these dimensions are called workflow perspectives. To proceed to advanced topics, flexible workflow
management and workflow analysis are discussed. While these topics do not cover the whole
workflow area, we believe that some of the most important requirements for advanced workflow
technology are addressed.

2.1. Workflow Perspectives

Workflow management deals with modelling and controlling the execution of application processes in
heterogeneous organizational and technical environments [Georgakopoulos et al. (1995)]. Workflow
management systems are proactive software systems which support modelling and controlling the
execution of the automated parts of business processes, i.e., workflows [Leymann, Altenhuber (1994)].
To achieve this goal, a workflow management system needs information about the business process
and the organizational and technical environment in which the process should be performed. This
information is organized into a set of workflow perspectives [Jablonski, Bussler (1996)]. For the
purpose of this paper, we consider functional perspective, process perspective, organizational
perspective, informational perspective, and operational perspective. Workflows are expressed in
workflow languages [Vossen, Weske (1998)], which provide dedicated language constructs to cover
these perspectives.
The functional perspective characterizes the activities that have to be performed during a workflow
execution. In addition it specifies how these activities are decomposed into smaller units, i.e., it
specifies the functional decomposition of a workflow, often represented by a hierarchical structure.
The leaves of that structure are logical units of work, called tasks (or atomic workflows). The internal
nodes represent complex workflows. The root is referred to as the top-level workflow; business
processes are typically represented by top-level workflows. For instance, in a credit request top-level
workflow, filling in forms, assessing risks of granting the credit request and preparing and mailing
documents can be represented by individual tasks. Note that the functional perspective prescribes what
has to be done. However, it does not specify when and under which conditions the tasks are carried
out, nor does it specify who performs a given task and which data and applications are used. The other
workflow perspectives cover these aspects.
In the process perspective, execution conditions are specified, namely start conditions and execution
order conditions. These concepts are used to specify if (start condition) and when (execution order) a
given workflow should be executed, respectively. The process perspective and the functional
perspective are commonly represented by workflow process definitions. An example of a workflow
process definition in a banking environment is CreditRequest, which models the activities to process a
credit request by a customer. This workflow may be composed of tasks PutCreditRequest, AssessRisk,
GrantCreditRequest, and RejectCreditRequest. The ordering of these tasks and their causal
interrelationships are specified by the workflow process definition. For example, the top level
workflow starts with PutCreditRequest, which is the first task to be executed for that workflow,
followed by AssessRisk and—depending on the outcome of the risk assessment task—either a

 3

GrantCreditRequest or RejectCreditRequest task, which shows the use of both execution order
constraints and start conditions. Note that the workflow process definition is instantiated for specific
workflow cases, i.e., individual workflow instances are handled according to routing specified in the
process perspective.
To control the execution of workflow instances, the workflow management system needs information
on the organizational structure and the population in which the workflow is executed, covered by the
organization perspective. Typically the structure of an organization is defined by roles, groups and
other artefacts clarifying organizational issues, for example responsibility and availability of persons.
In the banking example, for instance, CreditClerk and Secretary are roles, while specific persons may
be selected at runtime to play these roles based on availability and skills. The functionality of a
workflow management system to determine persons available and competent to perform certain tasks
during a workflow instance is known as role resolution [Leymann, Altenhuber (1994)].
The information perspective covers data, partitioned in control data and production data. Control data
are introduced solely for workflow management purposes, e.g., variables introduced for routing. On
the other hand production data is represented by information objects (e.g., documents, forms, and
tables) whose existence does not depend on workflow management. The information perspective
assigns input and output parameters to single tasks and, hence, covers data dependencies between
them. For example, data generated by the PutCreditRequest task is used as input data by the
AssessRisk task. This form of data dependencies is called data flow, and it is an important
functionality of a workflow management system to guide and control data transfer between related
workflow tasks.
The operation perspective describes the elementary operations performed by resources and
applications. Typically, these operations are used to create, read, or modify control and production
data. Depending on the technical environment of the workflow application, operations are
implemented by legacy applications or by business objects. Business objects are information system
representations of real-world entities, which have a meaning in the business domain. Examples of
business objects include business partner, order, and invoice. Depending on the workflow
management system, each task, i.e., a leaf in the functional perspective may be implemented by a
single application or by multiple applications, whose ordering may be controlled by a script language
(cf. traditional workflow management systems such as Staffware and COSA).
A workflow schema is the specification of a workflow covering all perspectives. Typically, workflow
management systems have two parts: The build-time part allows for the specification of workflow
schemas; the run-time part takes care of the actual enactment of the workflow in the given technical
and organizational environment.

2.2. Flexibility

Enhancing the flexibility of business applications has been one of the main motivations for workflow
management from the beginning. In traditional workflow management, the main mechanism to
achieve this goal is to extract process information from applications with the aim of representing it
explicitly to be able to improve the structure of the business process with little effort [Hammer,
Champy (1993), Leymann, Altenhuber (1994)]. While this aspect is important for workflow
applications, it falls short of supporting highly dynamic business processes, which are typically
occurring in the networked global economy [Sheth et al. (1999)]. One of the main obstacles for the use
of traditional workflow technology in this context is the fixed structure of workflows, meaning that
once a workflow has started, changes to the process structure are no longer feasible. In dynamically
changing settings (for example in highly competitive markets or long-running workflows), this
limitation of contemporary workflow management systems makes the use of workflow technology in
these settings very hard or prevents it altogether. This observation has triggered considerable work on
flexible workflow management, for example [Ellis et al. (1995), Casati et al. (1998), Reichert et al.
(1998), Aalst et al. (1999), Weske (2001)].
Flexibility in general and the need for workflow change in particular can be classified according to
different aspects [Aalst, Jablonski (2000)]. First of all, there may be different reasons for workflow
change, for instance changes due to the business context, the legal, or the technical context of the
workflow. Next, workflow changes can be classified according to the workflow perspectives involved.

 4

While in general all of the abovementioned perspectives can be subject to change, modifications to the
process structure are the most important ones, since the dynamic aspect of workflow execution control
is concerned. In this context, the scope of a dynamic change is important. In general, a modification
can apply to a single workflow instance, or a modification of a workflow schema can apply to all
future workflow instances. An interesting question is raised if active workflow instances should also
be changed to the new workflow schema, known as dynamic adaptation (or migration) of workflow
instances to new workflow schemas.
The need for flexibility raises many challenging scientific and technical questions. In this paper, we
focus on three issues related to flexibility in workflow management: constrained flexibility, instance
change, and instance migration.
! Constrained flexibility. For many applications, flexibility is required for a smooth workflow.

However, unlimited flexibility results in chaos. Therefore, workflow management systems should
offer support for constrained change. Given a former version of the workflow process definition,
the new or modified workflow process definition should preserve certain properties, e.g., certain
tasks in the original workflow should not be deleted. Constrained flexibility is particularly relevant
for mission-critical workflows: Only by restricting change it is possible to guarantee certain
execution properties of workflows like, e.g., overall consistency.

! Instance change. The vast majority of workflow management systems does not support change at
an instance level. InConcert is one of the few systems, which supports instance change, i.e., the
workflow of a specific instance can be changed on the fly. To support instance change, there
should be a private process definition for each instance.

! Instance migration. Most workflow management systems only provide a process definition at the
schema level. If process definitions are at a type level, instance migration becomes relevant.
Instance migration is concerned with transferring a workflow instance from one workflow process
definition to another. Instance migration is far from trivial because the state of the instance in the
old workflow may not correspond to any of the states of the new workflow. As shown in [Ellis et
al. (1995)], the so-called “dynamic change bug” can occur. The dynamic-change bug refers to
errors introduced by migrating a workflow instance from an old process definition to a new one,
which can lead to undesired situations like duplication of work, skipping of tasks, deadlocks, and
livelocks.

2.3. Analysis

Workflow management systems are typically used to improve mission critical business processes of an
organization. Hence, the correctness, effectiveness, and efficiency of business processes supported by
the workflow management system are vital to the organization. A workflow process definition, which
contains errors, may lead to angry customers, backlog, damage claims, and loss of goodwill. Flaws in
the design of a workflow may also lead to high throughput times, low service levels, and a need for
excess capacity. This is why it is important to analyse workflow process definitions before putting
them into production. Basically, there are three types of analysis: validation, i.e., testing whether the
workflow behaves as expected, verification, i.e., establishing the correctness of a workflow, and
performance analysis, i.e., evaluating the ability to meet requirements with respect to throughput
times, service levels, and resource utilization [Aalst (1998), Sheth et al. (1999)].
! Validation is mainly concerned with the gap between the specified workflow and the intended

workflow. Validation needs to be done by domain experts and analysis is context dependent.
Workflow management systems can provide simulation and animation tools, which allow the easy
tracing of processes with the aim of detecting errors.

! Verification is concerned with the logical correctness of workflow process definitions. Depending
on the workflow language used, there may be different properties, which have to be satisfied.
Today’s workflow management systems only support some syntactical checks, i.e., workflow
processes with potential deadlocks and never-ending loops can be put into production without any
warnings at design time. Techniques such as model checking and structural analysis based on the
graph structure can be used to detect inconsistencies.

! Well-established techniques for performance analysis are simulation and queuing theory. Both
types of techniques can be used to detect potential bottlenecks. A prerequisite for this activity is

 5

that durations for the execution of tasks and the arrival pattern of new cases are known. Together
with the role information and information on the number of persons able to fill these roles in
specified time intervals, which can be viewed as the resources available, the system can detect
bottlenecks. For business reasons it is of vital importance to detect potential bottlenecks before the
system goes operational.

3. Recent Workflow Modelling Approaches

This section introduces recent approaches to modelling dynamic behaviour of application systems in
general and workflows in particular. Starting with the Unified Modelling Language (UML)
[Rumbaugh et al. (1999), Rational (2000)], a general-purpose object modelling language is
investigated with respect to the capabilities it provides for process modelling. The Object Coordination
Net approach uses a Petri net formalism to add process-modelling capabilities to UML [Wirtz et al.
(2000)]. Workflow graphs can be regarded as the traditional approach to specify workflows; different
flavours of workflow graphs are supported by commercial workflow management systems (e.g., IBM
MQSeries Workflow [IBM (2000)] as well as university prototypes, e.g. WASA [Weske (2000),
Weske (2001)]). WorkFlow Nets are Petri nets tailored towards modelling workflows. Based on a
strong theoretical foundation, they focus on properties of workflows and the application of inheritance
concepts.

3.1. Unified Modelling Language

In the last few years, the Unified Modelling Language (UML) has gained enormous attention in the
software engineering area as the de facto standard for modelling during object-oriented analysis and
design. There are two main reasons for this success. Firstly, the extensive usage of a rich set of visual
formalisms, which are generally assumed to be easy to use and, more importantly, to communicate
among customers, designers and developers. Secondly, the standardization efforts that resulted in the
UML notations were an answer to the highly pressing needs of the software industry, especially for
tool builders. Although the first UML versions had a number of deficiencies, the insight that the UML
notations are useful for business process modelling and, hence, could also be adopted to the workflow
area were present right from the beginnings of the UML; see [Hruby (1998), Wiegert (1998)] for an
in-depth discussion.
The importance of the UML for workflow modelling is due to the fact that the early analysis and
design phases of modern software engineering, e.g., obtaining relevant use cases, are in fact closer to
business process modelling than to programming. Moreover, the operational perspective of workflows
is situated in a context, which is governed by legacy applications that have been developed using OOA
(Object-Oriented Analysis)/OOD (Object-Oriented Design), maybe even tools based on the UML.
Using similar techniques simplifies the integration of applications into the workflow context. Details
from the information perspective like, e.g., basic data types and classes used to model production
data, may be reused without change of input and output parameters of applications.
Most recent approaches to model workflows with the UML are grouped around only a few kinds of
UML diagrams. Use-case diagrams are well suited to describe roles (like customer or clerk), involved
in a business process, their interaction via top-level processes as well as the relationships between
different use-cases. A use-case may involve other use-cases (<<include>>), build upon others
(<<extend>>) and so on. In this manner, a coarse-grained model of all relevant top-level processes—
called the use-case model—is obtained that can be refined afterwards by describing the different
processes in more detail. This is done using four types of UML diagrams: sequence diagrams,
collaboration diagrams, statechart diagrams, and activity diagrams. UML statecharts are based in the
process modelling technique introduced in [Harel (1987)]. Statecharts are useful to describe the life-
cycle of a specific system or subsystem in a reactive way. UML sequence diagrams, also referred to as
message sequence charts, are used to visualize specific instantiations of a use-case. With the UML
Version 1.3, activity diagrams, which are a combination of statecharts and Petri nets, have been made
more expressive to match most of the needs of modelling the process perspective of workflows: Start
and end states for complex processes including sequential, alternative and parallel routing can be

 6

extended by object flow using different kinds of arcs for routing control flow and data flow. The
different roles involved are visualized by so-called swim lines, which partition the diagrams from top
to bottom into areas where specific system parts take the responsibility for all actions occurring in
their partition. Pre- and post-conditions from the process perspective can be specified by adding
Object Constraint Language (OCL) expressions, which allow for time constraints and so on. Extensive
use of OCL expressions, however, puts important information into text and reduces the benefits of the
UML as a visual notation. Besides activity diagrams, a more structure-oriented view is supported by
collaboration diagrams, which visualize the flow of control through a numbering scheme in the
context of classes and their static relations in structure diagrams. The numbering scheme as well as the
swim lines in activity diagrams have the major drawback that they do not scale for real-life complex
processes involving more than up to, e.g., 5-6 roles or nested parallelism. The description of a method
for business process modelling along the lines sketched above that is supported by a powerful toolset
can be found in [Rational (2000)]. The method supports a set of predefined UML stereotypes that is
part of a specific UML profile for business modelling.
The UML has much more potential regarding the organizational perspective but almost all approaches
developed so far ignore the chances of OOA and OOD for structural modelling using packages,
subsystems and strict interface-based interaction in the context of workflow modelling with the UML
(as detailed in the next section). Closely related to this observation is the lack of an adequate resource
concept. Most of these deficiencies have been recognized by the UML community, and recent OMG
Request for Proposals [OMG (2000a)] or submissions to the committee [OMG (2000b)] discuss the
abovementioned aspects like resource assignment and organizational structure. Moreover, a new set of
consistent UML extensions for workflow process definition in general are under development [OMG
(2000c)].
While the UML provides some mechanisms to model workflows, flexibility is hard to achieve in the
current situation, given the UML semantics. In general, workflow instance migration may be possible
through advanced typing and type changes at runtime (facilitated by casts) but instance change does
not fit well into the class-instantiation context of object-oriented modelling. Even migration or other
forms of constrained flexibility, which should be based on inheritance notions respecting behaviour,
are hard to implement in a context where diagrams essential for the modelling process have no clear
formal semantics in isolation or in overall combination, as shown in [Giese et al. (1999)]. For the same
reason, analysis in the sense of formal verification is hopeless but validation through test cases and
simulation, e.g., generating message sequence charts for typical system runs that is quite standard in
software development can be used in the workflow context, too.

To illustrate the use of UML for workflow modelling, we use the process of ordering a book from an
electronic bookstore. We will use this process to illustrate the four types of UML diagrams mentioned
before (sequence diagrams, collaboration diagrams, statechart diagrams, and activity diagrams). We
will also use this example to illustrate the other approaches.

customer bookshop publisher

Order_book()
Query()

In_stock()
Confirm_order()

Payment()

Deliver_book()

Notify()
Bill()

Payment()

customer bookshop publisher

Order_book()
Query()

Out_of_stock()
Reject_order()

Figure 1: Two UML sequence diagrams.

 7

Figure 1 shows two sequence diagrams. The diagram on the left-hand-side models a scenario which
corresponds to a customer successfully ordering a book. The right-hand-side diagram models the
scenario where a customer order is rejected because the ordered book is not in stock. A sequence
diagram shows for each object or actor a so-called lifeline. In both diagrams shown in Figure 1 there
are three lifelines: the customer lifeline, the bookshop lifeline, and the publisher lifeline. Time is
increasing along each lifeline from top to bottom. A sequence diagram also shows the messages
exchanged. Consider for example the left-hand-side diagram. First, the customer orders a book by
sending the message Order_book. Then, the (on-line) bookshop sends a query to the publisher to see
whether the book is available (message Query). The publisher responds by sending the message
In_stock indicating that the book is available. The bookshop confirms the order (message
Confirm_order) and pays for the book (message Payment). After receiving the payment, the publisher
sends the book to the customer (message Deliver_book) and notifies the bookshop (message Notify).
Triggered by this notification, the bookshop sends a bill (message Bill) and the customer pays for the
book (message Payment).
Note that the left-hand-side diagram does not specify a process but merely one scenario. This scenario
corresponds to handling a customer order successfully. If the book is not in stock, the diagram on the
right-hand-side applies. In the second scenario, the book is not available (message Out_of_stock) and
the customer order is rejected (message Reject_order). Figure 1 illustrates that sequence diagrams can
only be used to model scenarios and are not suitable for making full-fledged process models. The
basic sequence diagram has no provision for routing constructs such as choice, synchronization,
iteration, etc. Sequence diagrams have been extended with features to handle these routing constructs.
However, these extended diagrams become difficult to read and difficult to interpret.

customer

bookshop

publisher

1: Order_book()

4: Confirm_order()
8: Bill()9: Payment()

6:
 D

el
iv

er
_b

oo
k(

)

2: Query()3: In_stock()
5: Payment()7: Notify()

customer

bookshop

publisher

1: Order_book()

4: Reject_order()

2: Query()
3: Out_of_stock()

Figure 2: Two collaboration diagrams.

A collaboration diagram highlights the organization of objects that participate in an interaction.
Compared to sequence diagrams the emphasis is shifted from temporal relations to organizational
relations. From a semantic point of view collaboration diagrams and sequence diagrams are
interchangeable, i.e., semantically equivalent. The lifelines are replaced by numbered sequences.
Consider Figure 2. The two collaboration diagrams correspond to the two sequence diagrams shown in
Figure 1. One can translate a sequence diagram and translate it to a collaboration diagram without any
loss of information (and vice-versa). The order of the messages exchanged is captured by a numbering
scheme. The numbers in Figure 2 indicate the order in which messages are exchanged among the
customer, bookshop and publisher. Collaboration diagrams can be extended with more complex
constructs such as nesting, iteration, and branching. However, just like sequence diagrams,
collaboration diagrams are particularly suited for modelling scenarios, i.e., examples of straight
sequential flows of control. For true process modelling one should use statecharts diagrams or activity
diagrams.

 8

order_created

/ send_query

query_sent
notify_out_of_stock

in_stock out_of_stock

notify_in_stock

order_rejected

/ send_rejection/ send_confirmation

order_accepted

book_delivered payment_received

notify_book_delivery / send_bill

receive_payment

Figure 3: A statechart diagram describing the life-cycle of one order.

Statecharts are an extension of basic state machines. A basic state machine consists of states and
transitions. At any point in time, the system (or object) resides in one of these states. A transition
moves the system from one state to another. The basic state machine corresponds to the class of Petri
nets where each transition has one input and one output place. In a statechart diagram one can have
composite states, orthogonal regions, variables, events, conditions, and actions. Composite states can
be used for nesting. Orthogonal regions can be used to model parallelism. Transitions can be
augmented with so-called ECA (Event-Condition-Action) rules. This means that a transition only
takes place when a specified event occurs and a condition is satisfied. Both the event and condition are
optional. It is also possible to add an action to a transition. This means that the action is executed the
moment the transition takes place. The standard notation for these ECA rules is “event [condition] /
action”.
Figure 3 shows a very simple statechart diagram. This statechart models the lifecycle of an order. The
initial state is modelled by a black dot. The final state is modelled by a black dot within a circle. A
state is modelled by a rounded rectangle. Transitions are modelled by arcs. The transition connected to
the states order_created and query_sent generates the action send_query. In state query_sent two
potential transitions are enabled. One of them is triggered by the event notify_in_stock and leads to
state in_stock. The other one is triggered by the event notify_out_of_stock and leads to state
out_of_stock.

 9

publisherbookshopcustomer

send_order

handle_customer_order

send_query

update_customer_info

handle_query

In_stock

handle_out_of_stock

handle_in_stock

Order

Confirmation

Book

Bill

Payment

Payment

Query

Out_of_stock

Handle_rejection

confirm

pay_publisher

monitor_payment

handle_payment

send_book

notify_bookshop

handle_confirmation

send_bill

receive_book

handle_bill

monitor_payment

handle_payment

Figure 4: An activity diagram describing the whole process.

Statecharts are well-suited for modelling the lifecycle of one object. Unfortunately, statecharts are less
suitable to model the control flow among objects. For this purpose UML offers activity diagrams.
Activity diagrams are close to the workflow languages discussed in this paper. Therefore, it is no
surprise to see that activity diagrams are used for enterprise modelling, workflow modelling, and
business process reengineering. Consider Figure 4. This activity diagram models the process

 10

illustrated by the two sequence/collaboration diagrams. The diagram is divided into three main parts:
customer, bookshop, and publisher. These parts are called swimlanes. A swimlane specifies a locus of
activities and is particularly useful for business modelling. Using swimlanes it is possible to partition
the process into roles or organizational units. Please note that most of the other techniques discussed in
this paper can be extended with swimlanes. Just like in a statechart diagram the initial and final state
are indicated using black dots. Activities (also called activity states) are denoted by rounded
rectangles. Solid lines correspond to control flow. Dashed lines correspond to object flow. The objects
passed are modelled by rectangles. Consider for example the upper left corner of the activity diagram.
Starting in the initial state the activity send_order is executed. After execution of send_order an object
order is passed on to the bookshop which executes handle_customer_order. The thick horizontal lines
in Figure 4 correspond to synchronization bars. A synchronization bar is either a fork or a join. Forks
correspond to AND-splits. Joins correspond to AND-joins. An exclusive OR-split is modelled by a so-
called branch and is depicted by a diamond. The diamond symbol can also be used to model OR-joins.
The activity diagram shown in Figure 4 has one branch. This branch makes the process dependent
upon the availability of the book ordered by the customer. The remainder of the process is self-
explanatory.

3.2. Object Coordination Nets

The Object Coordination Net (OCoN) approach has been developed originally for the area of object-
oriented distributed software systems design [Wirtz et al. 1997]. Many aspects of the approach are
inspired by the idea to provide an OOA/OOD-based method and language that fits well into the
context of distributed and parallel software development. The approach uses structural modelling
techniques (subsystems, interfaces, classes, relations among structural entities) from the UML, but
puts much more emphasis on separation of concerns through a strict abstraction discipline. Abstraction
is supported by extending UML interfaces to become contracts [Meyer (1996)], which describe the
allowed behaviour and the intended usage restrictions of interface operations in a visual manner. The
consistent combination of structural and behavioural modelling is used to introduce a notion of
resources that is needed in the distributed software area as well as in workflow management.
Moreover, severe technical deficiencies, especially the lack of clear guidance regarding the integrated
meaning of different diagrams in a UML model and the absence of an overall consistent semantic
model [Giese et al. (1999)] have led to the usage of a specific kind of high-level object-oriented Petri
nets instead of the various UML interaction diagrams in combination with UML structure diagrams.
These nets are used for specifying the behaviour of interface contracts, the overall handling of
resources, and the detailed flow of control and data for processes on all system levels. OCoNs are
capable of describing all typical control flow situations occurring in workflows [WfMC (1997), Aalst,
Hofstede et al. (2000)].
Object Coordination Nets represent activities by net transitions, which are called actions. An action on
the system level may represent a complete top-level workflow, on subsystem level sub-workflows
performed by a specific part of the overall system or (atomic) calls to an application. We interpret
actions of all levels as services that are provided by entities of a specific level. Hence, the different
levels of functionality available in a system are described with the same mechanism. Actions may only
fire if all pre-conditions specified in the net are fulfilled. These pre-conditions are either typed input
parameters and events representing the flow of control and data through the net or an obligatory
unique carrier of activity, i.e., the resource responsible for executing that action. Such a resource
corresponds at the most detailed level to the instance of a class that provides the service s as a method
self.s(…). At higher levels of abstraction, a resource represents an instance of the (implementation of
a) subsystem that offers the corresponding service in its contract. Preconditions are visualized by arcs
pointing from a place or resource to an action. In contrast to many other net models, e.g., [Brauer et
al. (1987)], firing an OCoN transition consumes time and is more like a call to a (remote) procedure in
taking three steps: synchronous consumption of input parameters, internal processing and synchronous
producing of the resulting output parameters for the post-condition resource and output places. The
output places or post-conditions are visualized by arcs pointing from the action to the corresponding
places. The internal processing may include further hierarchical calls to other services using more
resources and so on. Resources may be used in an exclusive or shared manner, which allows for a

 11

detailed resource usage and dependency model of the entire system even in the case of parallel service
requests. The usage of services and, hence, resources has to be compatible with the export and import
of interfaces by subsystems in the structural model, i.e. all possible dependencies are already
visualized in the organization perspective. The external and internal resources of a subsystem are not
managed by the single service calls, i.e., actions but by a subsystem-global resource allocation net that
receives all calls to the subsystems interfaces, provides the needed resources for each service and
delegates the call. Working in this way, it schedules the combined resource usage of all it’s services
and provides a well-defined point-of-control for analysing the resource situation of a subsystem or
even the entire system.
A typical modelling process starts with a use-case driven analysis to get an insight into the needed
functionality, involved partners (e.g., companies, departments, and specific roles). Use-cases of this
type can be described by UML use-case diagrams, which are refined through Object Coordination
Nets instead of activity diagrams. If already known and intended, responsibilities are assigned to
actions by stating which system resources (represented by resource pools that correspond to subsystem
or class interfaces) should perform a specific action. Combined with knowledge about the problem
domain and the organizational structure of the involved organizations, this provides the knowledge for
a first coarse-grained specification of the organizational perspective. This structure is described by
UML structure diagrams using subsystems, which are related by providing and importing interfaces,
classes with operations and attributes, inheritance, associations and so on. Typically, analysis classes
are obtained for the most important entities flowing through the system during this process, too. These
provide the basic knowledge for describing the informational perspective. The more fine-grained
functional perspective as well as the process perspective are modelled afterwards in the context of the
structural environment specified so far. This can be done top-down, bottom-up or in a mixed style. A
top-down approach refines the already obtained informal nets describing top-level use-cases step-by-
step until detailed workflow schemata depending only on available functionality (leaves) are reached.
In some situations, working bottom-up is much more appropriate: powerful application software or
already available sub-workflows from existing subsystems may provide a rather high-level
functionality and may rule the design decisions. These system parts are encapsulated into subsystems
with interfaces that export all intended functionality. If parts of the provided functionality require
specific execution orders or may not always be available, the syntactical operation and parameter
information is not sufficient to provide enough information for a secure use. In this case, state-
machine-like OCoNs are used to describe the needed application rules, which may be as detailed as
prescribing the permitted operation orders as set of legal sub-workflows. In this manner, the
integration of already working parts of an organization during a re-structuring process, new or already
available legacy code as well as external functionality, i.e., external sub-workflows provided by other
companies in B2B workflow systems, can be integrated as subsystems that are used according to the
rules stated in their interface contracts. Usually, the described procedure will be an iterative process
obtaining more and more detailed information about workflows and structural information.

Figure 5: Ordering a book from an abstract Users view

Figures 5-7 present the usage of OcoNs in the bookstore example at different abstraction levels. Fig. 5
describes the possible states (hexagons), permitted operations (boxes) as well as the required execution
order for ordering an already chosen book. The orderBook call may be successful or not, which is
described using a transition with alternative outputs, and, hence ends in one of the states
[NotAvailable] or [Ordered]; in the latter case, the customer is assumed to await the shipment and is
obliged to pay for the book afterwards. Only after finishing this step, the entire process is finished, too.
The chosen view abstracts completely from explicit notifications and the details of shipment.

 12

The details of orderBook are somewhat more complex from the BookShops view. Figure 6 models the
handling on a level of detail that is close to an object-oriented programming language. A real call of
orderBook provides information about the order as well as the calling customer by means of
parameters (circles in the bar, left-hand-side), uses this information and the BookShop’s customer
management resource to update the customer profile, and calls Publisher.query (yellow transition) for
one of its external publisher resources to obtain the book in parallel. As shown in the details of the
Publisher::query service in Figure 7, this may end without success because the book requested is out
of stock, the entire orderBook sub-process is terminated and the order ends up in state [NotAvailable]
(Fig. 5). Otherwise, a lot of work remains to be done in the BookShop subsystem.

Figure 6: The detailed handling of an order in the BookShop

An external Accountpayment resource is used to pay the publisher, a confirmation is sent to the
customer using a public email service and the internal billing department is used to delegate the details
of invoicing and payment checking. Only after all these steps have been performed, both precondition
event pools for finishing orderBook are filled and the process is able to terminate with it’s lower
alternative (bars in the right-hand-side). This kind of delegation to other subsystems acting in specific
roles can be used for simple stateless operation calls as well as for more advanced usage protocols. A
more complicated handling, for example, is required when using the ShipmentDpt of the publisher
(Fig. 7) because due to a lack of trust between the publisher and the bookshop, the book is only sent to
the customer iff the bookshop has already paid for the book. Hence, the interface contract for using the
shipment department describes a state-based behaviour that allows only for the sequence of steps
described in its so-called protocol-net. The first part of this work, i.e., prepareShipment is done in the
query operation itself, which works only in the initial state [Ready] and changes the protocol state to
[Prepared]. The remaining parts of handling the shipment can be performed as follows: the BillingDpt
confirms the shipment after payment is received, which brings the state to [Confirmed]. Afterwards,
the real shipment, e.g. using an express service or postage can be performed.
Although only a small part of the entire system model has been presented here, the principle of state-
based interaction and the abstraction obtained by breaking a complex system into subsystems offering
and using contracts first in the structural description and using these interfaces as resources afterwards
when describing the behaviour should become clear. Note, that the level of detail in describing the
different sub-processes may vary in a wide range. Entire subsystems modelling, for example, an
external business partner may be reduced to state-based or even stateless contracts on the one hand,
whereas the details of gluing fine-grained application programs together in a visual script-like but
type-safe manner can be described for other parts of the same system. Hence, OCoNs provide a means
for describing the process and functional perspective of workflows embedded in their organisational
and informational context in a seamlessly integrated way.

 13

Figure 7: Processing the query at the Publisher site using the ShipmentDpt protocol

Flexibility of workflow systems is provided at different levels. Regarding the structural context and
the organizational, informational and operational perspectives, strict encapsulation of subsystems,
which permits dependencies through explicitly defined interface-usage only, makes the incorporation
of new subsystems or the exchange of subsystems or applications a manageable task that even allows
for cost estimations. Changing active workflow processes via instance change is not possible but a
controlled change on the level of a subsystems contract is supported by an inheritance notion based on
behavioural properties for contracts [Giese (2001)].
The process is supported by an editor for OCoNs and a simulator that allows for an early evaluation of
a design obtained at a specific point during development [(Giese et al. 2000)]. OCoNs have a clear
formal semantics [Giese (2001)] and can be mapped to the proposed standard for high-level Petri-Nets
[Jensen (1992)]. Hence, some of the tools available for analysing Petri nets can be made available for
this approach. Whereas this is true for interfaces, their usage through embedding and their direct
implementation, i.e., for protocol nets and resource allocation nets, an efficient and complete analysis
of complicated hierarchical high-level nets is not feasible.
Due to their strong interface concept including behaviour and the explicit resource model, the OCoN
workflow specification approach is especially well suited for workflows that are implemented in
complex distributed environments and B2B systems involving more than a single organization. For the
latter application, the contract-centred approach provides a well-defined specification for an analysis
of the complex interrelationships caused by the B2B interaction.

3.3. Workflow Graphs

This section introduces workflow graphs developed in the context of the WASA project [Weske
(2000)]. In this approach, workflow process definitions are based on directed graphs, whose nodes
represent workflows and whose edges represent constraints between workflows. Workflows can be
atomic or complex; while atomic workflows (or tasks) do not have an internal structure, complex
workflows consist of a set of workflows, each of which can be atomic or complex, resulting in a
hierarchical structure. The terms sub-workflow and super-workflow are used to refer to the relative
position of workflows in the hierarchy. Each workflow can have relationships with their respective
sibling workflows, for instance execution order constraints and data dependencies, which are covered
by the process perspective and the information perspective, respectively. In workflow graphs, there are

 14

two language constructs to define the process perspective: Control flow constraints and start
conditions. While control flow specifies execution order, the conditions under which a given workflow
instance is executed are defined by its start condition. By evaluating the start condition, the system can
decide whether the workflow has to be executed in a particular case. Workflow control data as well as
application data can be used In start conditions. For instance, a CreditRequest workflow may have
two sub-workflows for different credit amounts requested. If the amount is less then a defined
threshold then workflow A will be performed, otherwise B will be executed. In this example the start
condition of A will check whether the amount requested is less than the threshold, and the start
condition of workflow B will check if the amount requested exceeds the threshold.
Loops in workflow graphs are not permitted. This is due to the fact that workflow execution control is
based on a technique called dead path elimination [Leymann, Altenhuber (1994)], which allows the
compact representation of processes. By that we mean that only at runtime it is decided whether a
branching is an alternative or a parallel execution, depending on the start conditions of the workflows
involved. To compensate for the lack of loops, WASA supports recursive workflow schemas, i.e., a
workflow schema can be a sub-workflow of its own. Recursion has the same expressive power as
loops, and hence they can be used to simulate cyclic structures in workflow schemas. However, it is
often more natural to specify loops rather than to specify recursive workflows. This limitation of
workflow graphs can be overcome by a suitable front-end, which allows the specification of loops. In
a next step, the cyclic structure can be translated to the recursive structure, which is understood by the
workflow system.
The organizational perspective is covered by roles and agents, which are selected during role
resolution to perform tasks. The role concept is a flexible mechanism to represent a variety of
organizational structures as well as advanced concepts, for instance delegation of work between
persons and case-dependent role resolution, meaning that application data can be used in role
resolution. A popular example in this context is granting request for vacation: A department chair is
allowed to grant the requests of all members of the department, except her own.
The information perspective is based on class definitions, objects, and parameters. In particular, each
workflow is assigned a set of typed input parameters and a set of typed output parameters. Parameters
are typically objects, for instance a credit request form. When starting a workflow, the input
parameters of the workflow are read; on its termination, the results are written into the workflow’s
output parameters. Data dependencies between workflows are specified by data flow, i.e., mappings
between input and output parameters of workflows. Data flow can be defined between sibling
workflows and between a complex workflow and its immediate sub-workflows. Due to the direction
of the data transfer, the kinds of data flow are called horizontal and vertical, respectively.
Flexibility issues in general and dynamic adaptation of running workflow instances in particular have
been among the key issues in the WASA project. We now sketch the formal foundation and
conceptual design of dynamic adaptations; details can be found in [Weske (2000), Weske (2001)]. In
the formal model, workflow schemas and workflow instances are represented by graphs. For each
workflow schema graph, there may be an arbitrary number of workflow instances graph, which are
associated to the workflow schema graph. For example, the workflow instances
CreditRequest(“Smith”, 50.000) and CreditRequest(“Jones”, 75.000) are two workflow instances,
associated with the workflow schema CreditRequest. Notice that associations apply both to complex
workflow schemas and to tasks. Now assume that the structure of the business process has to be
changed, for instance to cope with a new market situation. In this case, the respective workflow
schema is modified and stored as a new version, let this be CreditRequest1. One can think of the new
workflow schema as an improvement of the original one, which aims at improving customer
satisfaction or enhances throughput. In large banks, at each instance hundreds or thousands of
CreditRequest workflow instances are running. Assume that from a business point of view it is
desirable that all new workflow instances but also all currently active workflow instances should make
use of the improved workflow schema. It is easy to see that all future workflow instances can use the
new workflow schema. How about the active ones? It is obvious that not all of these workflow
instances can use the new workflow schema, since the modification may affect parts of the workflow,
which were already executed. Hence, the system has to decide for which of the active workflows the
adaptation to the improved workflow schema is possible and should be performed. In WASA, this
decision is based on the existence of a valid mapping. A valid mapping relates sub-workflow instances

 15

of the active workflow with sub-workflow schemas of the new workflow schema. Loosely speaking, a
valid mapping exists if the active workflow can be continued in a way that complies to the improved
workflow schema. We remark that the notion of valid mappings and the meaning of “complies” are
formalized in [Weske (2000)].
The concepts are implemented in a prototypical system, which is based on object technology as far as
design and implementation is concerned. The most prominent feature of the design in the context of
dynamic adaptations is the representation of both workflow schemas and workflow instances by
objects, as opposed to representing workflow schemas by classes and workflow instances by objects of
these classes, which results in complex class evolution and class migration issues on the technical
level. Using this design decision, dynamic adaptations can be performed by changing the association
of a workflow instance object, once a valid mapping was found. In particular, the association of that
object with the original workflow schema object is purged, and an association with the improved
workflow schema object is created. It is obvious that additional steps have to be carried out on the
implementation level, for instance purging no longer required workflow instance objects and creating
new ones. For details of the implementation, the reader is referred to [Weske (2000)].
Syntactic correctness of workflow schemas is defined by a notion of consistency. In particular,
workflow schemas have to satisfy completeness of data flow (it must be possible to fill input
parameters), type compatibility (data connectors must link type compatible parameters), data
availability and acyclic control structures, as discussed above. Verification and validation in this
approach is in the responsibility of the workflow modeller. However, workflow management systems
should provide powerful tools to animate and simulate workflows.
Due to the object-oriented approach, the WASA system is well equipped to support modern business
applications, which are based on business objects. In particular, business objects can be transferred by
data flow, and tasks can make use of business objects methods during task execution. This means that
depending on the particular business object transferred to a task at runtime, a specific implementation
of a method (carried by the business object) is invoked. We mention that rather than transferring large
business objects it suffices to transfer object identifiers, which can then be accessed via the object
middleware.

send
order

receive
status terminate

receive
book pay bill

receive
order

update
cust info

send
query

receive
status

send
status

receive
query

send
status

send
book

receive
payment

terminate

receive
amount

terminate

customer

bookshop

publisher

avail

not
avail

avail

not
avail

avail

not
avail

send
amount

Figure 8: A Workflow Graph Describing the Sample Process.

 16

Figure 8 illustrates workflow graphs by specifying the above mentioned sample process involving
customers, a bookshop and a publisher. Each organizational entity involved is characterized by a
rectangle in which the activities of that particular entity appear. Activities are ordered by control flow;
not to overload the example, data flow is eliminated from the workflow schema. Transition conditions
which mark control flow edges are an important aspect in workflow graphs. Transition conditions are
evaluated if and when the source node of the corresponding control flow edge completes. Typically
the result value of that activity is used to evaluate the transition condition. If no such condition is
provided for an edge then true is assumed. This means that multiple outgoing edges correspond to a
AND split, i.e., the follow-up activities will be executed concurrently. To this end, transition
conditions can be used to describe AND-split (Boolean constant true on all outgoing edges), OR-split
(C and not C as transition conditions) and other forms in a flexible way.
The customer starts the interorganizational process by sending an order (send order) to the bookshop,
nowadays typically implemented by filling a web form and submitting the order. In the side of the
bookshop, receiving an order triggers the process as specified. Customer information is updated and
concurrently a query to the respective publisher is sent out to check for availability of the ordered
books. When the publisher responds, the information is passed to the customer in the send status
activity of the bookshop workflow graph. Depending on the availability—indicated by the transition
condition avail, which evaluates to true if and only if the book is available—, the process at the
publisher, bookshop, and customer are terminated. Of course, this procedure represents a
simplification. However, more sophisticated mechanisms can also be specified using the workflow
graph formalism. The continuation of the process is immediate from the figure.

3.4. WorkFlow Nets

Petri nets have been proposed for modelling workflow process definitions long before the term
”workflow management'” was coined and workflow management systems became readily available.
Consider for example the work on Information Control Nets, a variant of the classical Petri nets, in the
late seventies [Ellis (1979)]. Petri nets constitute a good starting point for a solid theoretical
foundation of workflow management. Clearly, a Petri net can be used to specify the routing of cases
(workflow instances). Tasks are modelled by transitions and causal dependencies are modelled by
places and arcs. In fact, a place corresponds to a condition which can be used as pre- and/or post-
condition for tasks. An AND-split corresponds to a transition with two or more output places, and an
AND-join corresponds to a transition with two or more input places. OR-splits/OR-joins correspond to
places with multiple outgoing/ingoing arcs. A Petri net which models the control-flow dimension of a
workflow, is called a WorkFlow net (WF-net) [Aalst (1998)]. A WF-net has one source place and one
sink place because any case (workflow instance) handled by the procedure represented by the WF-net
is created when it enters the workflow management system and is deleted once it is completely
handled, i.e., the WF-net specifies the life-cycle of a case. An additional requirement is that there
should be no “dangling tasks and/or conditions”, i.e., tasks and conditions which do not contribute to
the processing of cases. Therefore, all the nodes of the workflow should be on some path from source
to sink.
Figure 9 shows a WF-net using some graphical “sugaring”, i.e., the meaning of the symbols is
explained in the right-bottom corner. The WF-net corresponds to the process described in the UML
activity diagram shown in Figure 4 and specifies the handling of orders for an electronic bookstore.
Cases start in the place labelled start. Each case corresponds to one or more tokens. Initially there is
one token in start. After executing task send_order, place order is marked and
handle_customer_order becomes enabled. Note that send_order consumes one token (from place
start) and produces one token (for place order). Task handle_customer_order is an AND-split and its
execution enables two parallel tasks: update_customer_profile and send_query. Using the simple rule
of task enabling (a task is enabled if each/any of its input places is marked) and task execution (firing
a task results in the consumption of the tokens needed to become enabled and the production of tokens
for the output places), Figure 9 unambiguously specifies the workflow process. Therefore, the rest of
the diagram is self-explanatory. Compared to the activity diagram shown in Figure 4, two major

 17

differences can be noted. First, states are made explicit through the representation of tokens in places.
Second, the formalism does not leave room for multiple interpretations.

send_order

handle_customer_
order

update_customer_
profile

handle_query

send_query

in_stockout_of_stock

handle_out_of_stock

handle_rejection

order

start

monitor_payment

handle_in_stock

confirm

query

confirmation

handle_confirmation

receive_book pay_publisher

handle_payment

payment

send_book

book

notify_bookshop

send_bill

bill

monitor_payment

handle_bill

payment

end

handle_payment

AND-split AND-join

OR-split OR-join

Figure 9: A WF-net describing the processing of orders for an electronic bookstore.

 18

The WF-net focuses on the process perspective and abstracts from the functional, organization,
information and operation perspectives. These perspectives can be added using for example high-level
Petri nets, i.e., nets extended with colour (data) and hierarchy. Although WF-nets are very simple,
their expressive power is impressive. WF-nets can be used to model the basic constructs identified by
the Workflow Management Coalition [WfMC (1997)] and used in contemporary workflow
management systems. Moreover, WF-nets support constructs which are often needed but seldom
supported by commercial systems. In [Aalst et al. (2000)] we describe several workflow patterns (e.g.,
the deferred choice and milestone) supported by WF-nets but not by leading workflow management
systems such as Staffware and IBM’s MQ Series. One of the features of WF-nets enabling more
advanced routing constructs is the explicit representation of states through tokens in places.
Although WF-nets by themselves do not offer specific mechanisms for supporting workflow
flexibility, relevant results have been obtained using inheritance of WF-nets [Aalst, Basten (2002)].
Inheritance is one of the key concepts of object-orientation. Classes and objects in object-oriented
design correspond to workflow process definitions and cases in a workflow management context. In
object-oriented design, inheritance is typically restricted to the static aspects (e.g., data and methods)
of an object class. For workflow management, the dynamic behaviour of classes is of prime
importance. Therefore, we developed four notions of workflow inheritance [Aalst, Basten (2002)]. The
four inheritance relations use branching bisimilarity (to compare processes) in combination with the
notions of encapsulation and abstraction. Encapsulation corresponds to blocking tasks, whereas
abstraction corresponds to hiding tasks. The inheritance mechanism allows for the definition of a
subclass which inherits the features of a specific superclass. When adapting a workflow process
definition to specific needs (ad-hoc change) or changing the structure of the workflow process as a
result of reengineering efforts (evolutionary change), inheritance concepts are useful to check whether
the new workflow process inherits some desirable properties of the old workflow process. This way it
is possible to constrain flexibility when desired. Based on the four notions of inheritance, we have
developed inheritance preserving transformation rules for workflow processes [Aalst, Basten (2002)].
These rules correspond to design constructs that are often used in practice, namely choice, iteration,
sequential composition, and parallel composition. If a workflow designer sticks to these rules,
inheritance is guaranteed. The transformation rules can be used to avoid problems such as the
“dynamic-change bug” [Ellis et al. (1995)], as mentioned above. Restricting change to the inheritance-
preserving transformation rules guarantees transfers without any of these problems. This way it is
possible to migrate instances when desired. Moreover, the transformation rules can also be used to
extract aggregate management information in case multiple versions of a workflow process are active.
The inheritance notions allow for the definition of concepts such as a Greatest Common Divisor
(GCD) and Least Common Multiple (LCM) of a set of variants/versions [Aalst, Basten (2002)]. These
concepts can be used to create a condensed overview of the work-in-progress. Clearly, the dynamic-
change problem and the management-information problem are related. By solving the dynamic-change
problem (i.e., instantly migrating all cases to a single version of the process), there is no need to
construct aggregate management information because there is just one active version. However, ad-
hoc changes inevitably lead to multiple variants and, multiple active versions of a workflow process
are typically unavoidable.
The strong theoretical basis of WF-nets allows for powerful analysis techniques. Petri nets have been
studied for four decades and there are dozens of Petri-net-based tools supporting the analysis and
design of processes and systems. Extensions of WF-nets can be used for validation and performance
analysis. For example, the first author has been involved in the development of ExSpect, a Petri-net-
based simulation tool which can be used for validation and performance analysis of workflows.
ExSpect can be used for modelling and analysing workflow processes and it can interface with
workflow management systems such as COSA and BPR-tools such as Protos. Note that validation and
performance analysis through simulation is not unique for WF-nets. The real added value of the results
on WF-nets is in verification. We provide techniques to verify the so-called soundness property
introduced in [Aalst (1998)]. A workflow is sound if and only if, for any case, the process terminates
properly, i.e., termination is guaranteed, there are no dangling references, and deadlock and livelock
are absent. Soundness corresponds to well-known properties such as liveness and boundedness (of the
short-circuited WF-net). Therefore, standard Petri-net-based analysis techniques and tools can be used
to verify soundness. Nevertheless, for a complex WF-net it may be intractable to decide soundness.

 19

For arbitrary WF-nets liveness and boundedness are decidable but also EXPSPACE-hard [Aalst
(2000)]. Fortunately, for most of the contemporary workflow management systems, the soundness
property can be checked in polynomial time using state-of-the-art analysis techniques. These
techniques exploit the structure of the WF-net without exploring the state space. These so-called
structural techniques also help identifying suspicious constructs which may endanger the correctness
of a workflow. The techniques presented in [Aalst (2000)] also allow for the compositional
verification of workflows, i.e., the correctness of a process can be decided by partitioning it into sound
sub-processes.
To support the application of the results mentioned, we have developed a Petri-net-based workflow
analyser called Woflan [Verbeek, Aalst (2000)]. Woflan is a workflow management system
independent analysis tool which interfaces with Staffware, COSA, Protos, and Meteor. Woflan can be
used for verification: It checks whether the WF-net is sound and generates detailed diagnostics if the
WF-net is not sound. Moreover, Woflan supports the four inheritance notions mentioned: It can check
whether one WF-net is a subclass of another WF-net. This enables intriguing possibilities. It is
possible to check whether a workflow implemented using the workflow management system COSA
realizes (i.e., is a subclass of) a workflow specified using the BPR-tool Protos.

3.5 Workflow Evolution

The workflow evolution approach was developed by Casati and colleagues [Casati (1998), Casati et al.
(1998a)]. It uses the workflow language developed in the context of the WIDE project [Grefen and
Pernici (1999)]. Tasks are atomic units of work that are represented by a name, a textual specification,
a set of information items associated with the task, and a set of roles. Nesting of tasks is supported,
i.e., each workflow schema can consist of a set of elements which are either (atomic) tasks or sub-
processes. Besides sub-processes, business transactions are another way to model complex processes.
Business transactions define work that has to be executed in an atomic fashion. Within the WIDE
project, transactional capabilities are developed to provide execution guarantees for business
transactions. Tasks (and sub-processes) can be connected by fork and join connectors, which are
marked with transition conditions.
Based on this workflow language, workflow schemas, workflow instances, and workflow enactment
rules are defined in a formal manner. Flexibility is provided by workflow evolution: Given a workflow
instance with a workflow schema, migrate that workflow instance to a modified workflow schema.
The approach presented in [Casati et al. (1998a)] uses specific modification operations, which are
applied to the original workflow schema in order to modify it. A notion of compliance is introduced
that formally defines which workflow instances can be migrated to the new workflow schema version,
created by a set of modification operations, called workflow evolution primitives.
Workflow evolution primitives are partitioned in declaration primitives and flow primitives. While
declaration primitives modify the declaration of workflow variables, flow primitives modify the
control flow structure of workflow schemas. Typical declaration primitives are AddVar and
RemoveVar (representing adding and removing a workflow variable, respectively), while AppendTask
and RemoveTask are typical flow primitives to append a task to a given workflow schema and
removing a given task from a workflow schema. By applying these primitives to workflow schemas,
the global variables, the task structure, and the control flow constraints of workflow schemas can be
altered in an evolutionary way. Evolution means here that based on a given workflow schema by
incrementally applying workflow evolution primitives the workflow schema is modified in an
evolutionary way.
Different policies to handle workflow evolution are discussed. Besides the most obvious ones
(aborting all active workflow instances and completing all active ones with the original workflow
schema), the progressive policies “migration to final workflow” and “migration to ad-hoc workflow”
are proposed. In migration to final workflow, workflow instances that are compliant to the new
workflow schema are migrated to that schema, possibly after compensation activities, in case they are
available. If compensating activities are required to migrate a workflow but no compensating activities
are present then the migration is not possible. In the migrate to ad-hoc workflow policy, the workflow
administrator can choose to perform ad-hoc changes to the workflow instance, so that from an

 20

application-specific point of view, the workflow instance can now be migrated to the new workflow
schema. These operations can generally not be performed automatically, since the expertise and
semantic knowledge of the workflow administrator is required to decide on the modifications to make
the migration feasible. This interesting approach presents a formal model to specify workflow
evolution in the presence of workflow schemas and multiple workflow instances, and different policies
to handle workflow evolution from an organizational point of view are discussed.

customer

bookshop

publisher

status="avail"

send
order

receive
status

receive
amount

receive
book pay bill

receive
order

update
cust info

send
status

receive
payment

send
book

send
status

receive
status

send
query

receive
query

!(status="avail")

status="avail"

!(status="avail")

status="avail"

!(status="avail")

send
amount

Figure 10: Electronic Bookshop Workflow Schema expressed in WIDE Workflow Language.

To illustrate the concepts, the sample workflow process is expressed in the WIDE workflow language
in Figure 10. The workflow schema representation looks similar to the workflow graph notation as
shown in Figure 8. However, there are a variety of differences: AND forks always require an
additional circle, similar to a place in Petri net notation. OR forks associated with transition conditions
are represented by diamonds, where each outgoing edge is marked with a predicate. Predicates use
information variables, associated with previously executed tasks. Dedicated symbols mark start and
end tasks.

4. Evaluation of Approaches

This section evaluates the approaches to modelling and executing workflows with respect to the
requirements mentioned above by comparing them and stressing their strengths and weaknesses. Some
general remarks are in order. Each of the approaches introduced has its own background and
motivation. Hence, it is not surprising that each has its specific strengths and weaknesses. Clearly,
there is no workflow modelling approach that copes best with the requirements of advanced workflow
applications. However, by stressing the strengths and weaknesses of the approaches we will try to
open the door for an integration of research results based on different approaches, as will be discussed
below. While we do not aim at the best integrated workflow modelling approach, we show potentials
for integrating the good parts of the proposed approaches, which could open new research directions in
the near future.
The requirements of advanced workflow management are used to evaluate the approaches introduced
above. In particular, we discuss how the workflow perspectives are supported, and how the issues in

 21

flexible workflow management and workflow analysis are handled by the approaches. The result of
the evaluation is summarized in Table 1, which for each approach states the support for workflow
flexibility and analysis features. As introduced in Section 2.2, flexibility issues include constrained
flexibility, instance change and instance migration, represented in Table 1 by ConsFlex, InstChge, and
InstMig, respectively. Workflow analysis contains the features validation (Valid), verification (Veri),
and performance analysis (Perf).

As detailed in Section 3.1, the Unified Modelling Language (UML) is tailored towards modelling
structure and behaviour of object-oriented systems. The structural aspects of systems are supported by
a rich set of state-of-the-art formalisms. Hence, the information perspective is covered very well.
Because nowadays workflow systems act in a software context that is built using object-oriented
techniques, the operation perspective is covered well, too. The UML object constraint language can be
used similarly to other logic-based formalisms in describing the functional perspective of workflows.
However, there is no direct support for organizational modelling, so that the generic concepts provided
by the UML have to be used to model organizational aspects. A set of UML specializations as outlined
in [Rational (2000)] or the ongoing OMG work on workflow process definition [OMG (2000c)] may
help to overcome this problem. The UML diagrams intended to model behaviour, esp. activity
diagrams, may be used to describe the process perspective but have their limitations, both in terms of
expressive power and lack of a precise semantics. Whereas the latter may even be tolerable regarding
the process definition phase, it does not allow for any kind of in-depth evaluation. Simple system
traces may be visualized using MSCs and help the expert to find errors, but a simulation-based
evaluation that relies on an accepted automatic simulation standard is hard to implement with a
notation lacking precise semantics. At the present state, formal verification is not possible at all. For
the same reasons, controlled and secure flexibility mechanisms are not feasible because there is no
basis to evaluate whether the original and the changed schema or instance fulfil the required
compatibility properties.

The Object Coordination Net approach reduces the set of UML diagrams to those that have a clear and
well-understood semantics, adds object-oriented high-level Petri nets for describing the process
perspective and provides a guideline how to use all these diagrams for modelling all workflow
perspectives in an overall consistent manner. Hence, the benefits of the UML for the information,
operation and functional perspectives apply to OCoNs, too. The contract-based method to model
structures enhances the modelling of the organizational perspective and makes it especially useful for
describing workflow systems that act across organizational boundaries, have to deal with outsourced
parts and so on. Moreover, the usage of a Petri net formalism, which is seamlessly integrated into the
UML diagram context, allows for an optimal integration of the process perspective into the more static
workflow perspectives. Especially the explicit handling of resources in nets provides the link to the
organizational perspective. This is one of the major benefits of the OcoN approach. The fact that the
used Petri net formalism has a well-defined formal semantics [Giese (2001)] opens a number of
possibilities regarding analysis and flexibility issues. Evaluation can be performed on the basis of
simulating a specified organization for different resource instantiations, which even provides the basis
for performance analysis. A more powerful simulator for OCoNs that supports the latter is currently
under development. Verification is also an option, but not planned at the moment due to the high
complexity of verifying high-level nets in the context of an object-oriented structural environment.
Due to its overall design philosophy, flexibility in the sense of instance change is not possible with the
OCoN approach. Constraint flexibility is supported on the level of contract-based abstraction and
encapsulation by exchanging complete subsystems, i.e., organizational substructures as long as the
new part supports the same interface regarding structure and behaviour as the replaced part. This
strategy becomes even more flexible when utilizing inheritance for contracts as developed in [Giese
(2001)]. Although this notion provides the basis for instance migration, too, the approach has not been
developed into that direction so far.

Workflow graphs have been developed with two goals in mind: To provide a mechanism to model and
enact workflows in a flexible way and as a basis for the development of a flexible workflow
management system based on object-oriented technology. Since workflows are represented as nested

 22

graphs, the functional decomposition of workflows is supported very well. The process perspective is
represented by control flow constraints between workflows and start conditions, which are evaluated
at run time in order to decide on the execution of a particular workflow. The information perspective is
addressed by business objects, which represent entities of the real world that are relevant from an
application point of view. The operational perspective is covered by methods provided by business
objects. As discussed above, legacy systems can be wrapped, i.e., provided with an interface that
makes them look and behave like a business object. The organizational structure can be represented
using role information, attached to workflow schemas. In terms of flexibility, workflow graphs
provide powerful means for constrained flexibility. In particular, dynamic adaptations of workflow
instances to workflow schemas is constrained to the cases, where the new workflow schema fits nicely
with the workflow instance, formalized by the notion of valid mapping. Along the lines of this
discussion, instance change is also facilitated by workflow graphs and the formalisms and
functionality provided by WASA. Specifically, each workflow instance can be changed. If the future
parts of a given workflow instance is modified then it is guaranteed that a valid mapping exists and,
consequently, the instance change is allowed. If schema modifications are involved and all workflow
instances controlled by a given workflow schema are going to be changed, valid mappings are
computed for all active workflow instances. For all instances for which such a mapping can be found,
the instance can be migrated to the new workflow schema. As a result, workflow graphs provide good
support for these flexibility issues. Analysis properties are rather weak in workflow graphs. There are
structural properties of workflow schemas, which make sure syntactic properties are guaranteed, for
instance the absence of loops and compliance of control flow and data flow. The complete consistency
properties of workflow schemas can be found in [Weske (2000)]. However, verification techniques are
not present, and performance analysis features are also not supported directly; they rather have to be
developed on top of the existing workflow graph formalism.

WF-nets focus on control flow, i.e., the process perspective, and do not address the other perspectives.
As a result, issues related to flexibility and analysis can be dealt with in a concise and rigorous
manner. Clearly, WF-nets are well equipped to represent workflow processes. WF-nets are based on
Petri nets and therefore build on a solid and highly expressive formalism. WF-nets allow for the basic
routing constructs identified by the WfMC [WfMC (1997)], i.e., sequential, parallel, conditional, and
iterative routing. In addition more advanced constructs involving states and mixtures of choice and
synchronization are supported [Aalst, Hofstede et al. (2000)]. The basic Petri net model has been
extended with time, data (colour), and hierarchy [Jensen (1992)]. Clearly WF-nets can be extended in
this fashion to directly support the functional and information perspectives. These extensions can also
be used to model the organization and operation perspectives.
The development of WF-nets was triggered by the lack of verification capabilities in contemporary
workflow management systems [Aalst (1998)]. Clearly, WF-nets offer powerful verification
techniques based on state-of-the-art Petri-net-based analysis routines. Safety and liveness properties
are relevant for workflow processes and have been studied in the context of Petri nets for four decades.
Tools such as Woflan show that these results can be applied while using commercial workflow
management systems by translating workflow specifications into WF-nets [Verbeek and Aalst (2000)].
WF-nets do not offer direct support for validation and performance analysis. However, it is quite easy
to extend WF-nets and the associated tools to support validation and performance analysis. For
example, by adding stochastic delays it is possible to use the results for (Generalized) Stochastic Petri
nets (GSPN) and enable Markovian performance analysis. It is also possible to use simulation. Tools
such as ExSpect demonstrate that Petri-net-based simulators can be used to analyse the performance of
workflow processes.
WF-nets support workflow flexibility by offering four inheritance notions [Aalst, Basten (2002)]. The
inheritance notions have been equipped with inheritance-preserving transformation rules and
migration rules. The inheritance-preserving transformation rules can be used to limit change such that
certain dynamic properties are preserved. This way WF-nets offer direct support for constraining
flexibility. The migration rules allow for instance migration as long as there is a subclass-superclass
relation between the old and the new workflow process. WF-nets and the four inheritance notions do
not directly support instance change. However, the theoretical results obtained for WF-nets provide a
good basis for supporting and controlling on-the-fly changes of a workflow instance.

 23

Table 1: Strength and Weaknesses of Modelling Approaches

 Wf perspectives Flexibility Analysis
 Fct Proc Org Inf Op ConsFlex InstChge InstMig Valid Veri Perf

UML + + 0 ++ + 0 - 0 0 - 0
OCoN + ++ + ++ + + - 0 + 0 0

Wf graphs + + 0 + + + + ++ + - 0
WF-nets 0 ++ 0 0 0 ++ 0 + 0 ++ 0
Evol. Wf + ++ + + 0 ++ + ++ + 0 0

Note: ++: designed for, + supported, 0 supported through known extensions, - no immediate support

The Workflow Evolution approach presented in Casati et al (1998a) is based on a workflow language
that supports the functional perspective by tasks and multi-level nesting of complex workflow. The
process perspective is covered well, since control flow constraints including join and fork connectors
as well as transition conditions are provided. Information modelling is based on so called information
variables that are accessed via forms. Forms present a nice way to restrict access to variables at certain
states during the process execution. Documents are additional information elements that cannot
directly be controlled by the workflow management system at hand; they can be regarded as external
information that, however, is relevant for the workflow process. Documents and forms can be grouped
to folders. While each task is associated with information elements, data flow is not immediately
represented. If parallel strands of executions access the same information variable or the same
document then race conditions may arise, which have to be handled by the WIDE transaction
mechanism. However, data variables managed by a database may use the database’s own transaction
processing capabilities.
Since the approach focuses on a conceptual specification of workflow systems, the operational
perspective is not adequately addressed. However, operational details could be supported by known
extensions. To discuss the capabilities of that approach with respect to flexibility, we mention that
constraint flexibility is supported very well. In fact, the approach offers formal correctness criteria
which rule if and when a given workflow instance can be migrated to a new workflow schema, which
evolved from the original workflow schema by applying a set of workflow evolution primitives. By a
clear separation of workflow schemas and workflow instances and by the feasibility of ad-hoc
modifications of workflow instances, the instance change property is supported well. The
abovementioned formal rules concerning workflow instance migration, the instance migration
property is also supported well. Validation is provided with respect to properties of workflow
schemas. Verification is mainly defined in connection with evolutionary changes of workflows. For
additional information on the flexibility of the proposed approach, the reader is referred to the original
literature.

5. Conclusions

This paper describes and analyses contemporary approaches to workflow modelling as well as the
workflow modelling support provided by the Unified Modelling Language with respect to the
requirements of advanced workflow management. The evaluation is based on a set of widely
acknowledged workflow perspectives, as well as advanced workflow modelling features in the areas
of flexibility and analysis of workflows. As discussed above, each approach has its specific strengths
and weaknesses. While UML has its main strength in structural object modelling, OCoNs add process
modelling and validation features to UML structure diagrams. Workflow graphs were developed with
flexibility in mind; hence, they provide good support for the flexibility aspects mentioned, while
analysis features of Workflow graphs are rather weak. WF-nets make available to workflow
management powerful analysis methods from Petri net theory, and they are well equipped to support

 24

complex control flow structures and—through the use of inheritance of behaviour—support flexibility
well, while data modelling and organizational modelling is not their main scope. Workflow evolution
deals with incremental modifications to existing workflow schemas, and it investigates the formal
properties of these changes.
To conclude, we like to point out some general principles of the object-orientation paradigm that can
be regarded as the basics behind the approaches. In doing this, we have two goals in mind: Firstly to
find commonalities and differences of the approaches and, secondly, to open the door for future work
in advanced workflow management. Obviously, the UML is strongly based on object-oriented
principles, such as inheritance. However, inheritance typically only applies to inheritance of structure,
not of behaviour. In the workflow context where processes are in the centre of attention, however,
inheritance of behaviour is a very important and helpful feature. This feature is formalized by WF-nets
where a variety of application areas are created by inheritance and sub-typing of workflows, for
instance migration of workflows to more specific workflow schemas. We envision that inheritance of
behaviour can also be combined with other approaches. Probably the most obvious way of doing this
is enhancing the notion of refinement of Petri nets in the OCoN approach with a notion of inheritance,
which not only works on state-machine-like interface protocols but also on the more expressive nets
used in this approach. Due to the strong connection of OCoNs and structure diagrams of the UML,
such an approach would improve the development, maintenance, and usability of real-world workflow
applications.
The clear separation of schema and instance information is another strong feature of the object-
orientation paradigm. In particular, schema information describes the common properties of a set of
similar real-world objects, typically represented by a class. When it comes to workflow flexibility, in
particular the modification of workflow schemas during run-time, it is important that modifications of
workflow schemas can be performed easily with little effort. The concept of meta-objects helps here.
In particular, objects, which specify structure, can easily be modified. As discussed above, this
concept is used in the Workflow graph formalism, where workflow schemas are represented by
workflow schema objects, such that schema modifications can be performed by value changes (to
workflow schema objects). In a second step, the set of workflow instances, which rely on the modified
schema, are investigated to decide about correct adaptations. This approach allows to modify many
workflows in consequence of the modification of a workflow schema. While this technique is used in
Workflow graphs, it can also be used in the other formalisms discussed in this paper, to gain good
support for workflow flexibility.
The next aspect of object-oriented modelling that we like to raise is overloading and late binding.
Overloading represents the fact that a single method name is implemented many times, and late
binding adds the run time aspect to overloading in the sense that only at run-time the system decides
on the particular implementation. While these concepts are so far not used in the workflow modelling
approaches mentioned, they can in fact be incorporated, as the following discussion shows: Assume
the structure of a given application process depends on the client for which the process is being
executed or, more generally, on a data object manipulated during the process. In this case, the
implementation of a sub-workflow activity can be resolved late, i.e., the sub-workflow schema is
bound only during run-time to the workflow instance, making use of late binding in the workflow
context. For instance, assume the processing of an insurance claim, where a very good customer (e.g.,
a large company) claims the loss of a rather inexpensive part. In order not to lose this customer, you
may want to process that claim very fast with little or no additional information. If a private customer
submits the same claim, it would have to undergo complex checks before the loss is compensated for.
Hence, different implementations of the checking activity can be found in this case. We believe that
this form of late binding in the workflow context is valuable for a wide range of applications in
business settings. Just like overloading and late binding in OOD improves development and
maintenance of programs, it may also improve modelling and maintenance of workflow applications
considerably.
Finally, we mention that there is work in workflow exception handling, e.g., [Casati et al (1998b)].
The issue of designing exceptions, which can be statically foreseen, is tackled. The set of foreseen
exceptions, specified as patterns, are maintained in a pattern catalogue. Sample patterns are
Remainder, Document Revision, and Termination. Patterns are specified using template structures as
well as guidelines how to use the pattern. There is tool support for specifying exception patterns and

 25

for instantiating them in the context of particular workflow instances. Exception patterns can be
regarded as application-oriented and often application-specific partial workflows, which are used to
handle foreseen situations during workflow executions. This work is rather generic and independent
from the underlying workflow language; in particular, it can be expected that it can be used in the
other workflow languages investigated in this paper as an exception handling facility.

References

Van der Aalst, W.M.P. (1998): The Application of Petri nets to Workflow Management.

The Journal of Circuits, Systems and Computers, 8(1):21-66

Van der Aalst, W.M.P. (2000): Workflow Verification: Finding Control-Flow Errors using Petri-net-based Techniques. In
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science, pages 161-183. Springer, Berlin

Van der Aalst, W.M.P., Basten, T. (2002): Inheritance of Workflows: An Approach to Tackling Problems Related to Change.
Theoretical Computing Science, 270(1-2):125-203

Van der Aalst, W.M.P., Jablonski, S. (2000): Dealing with Workflow Change: Identification of Issues and Solutions.
International Journal of Computer Systems, Science, and Engineering, 15(5):267-276

Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., and Barros, A.P. (2000): Advanced Workflow Patterns. In
O. Etzion and P. Scheuermann, editors, 7th International Conference on Cooperative Information Systems (CoopIS
2000), volume 1901 of Lecture Notes in Computer Science, pages 18-29. Springer, Berlin

Brauer, W., W. Reisig, Rozenberg, G., Editors (1987): Petri nets: Central Models (I) / Applications (II), Vol.254/255 of
Lecture Notes in Computer Science. Springer, Berlin

Casati, F., Ceri, S., Pernici, B., Pozzi, G. (1998a): Workflow Evolution. Data and Knowledge Engineering, 24(3): 211-238.

Casati, F. (1998): Models, Semantics, and Formal Methods for the design of Workflows and their Exceptions. Ph.D. thesis
Politecnico di Milano

Casati, F., Fugini, M.G., Mirbel, I. (1998b): An Environment for Designing Exceptions in Workflows. Proc CAiSE'98. pp
139-157. Springer Lecture Notes in Computer Science 1413. Berlin: Springer

Ellis, C.A. (1979): Information Control Nets: A Mathematical Model of Office Information Flow. In Proceedings of the
Conference on Simulation, Measurement and Modelling of Computer Systems. Boulder, Colorado, pages 225-240.
ACM Press

Ellis, C.A., Keddara, K. and Rozenberg G. (1995): Dynamic change within workflow systems. In N. Comstock and C.A.
Ellis, editors, Conf. on Organizational Computing Systems, pages 10 - 21. ACM SIGOIS. Milpitas: ACM

Georgakopoulos, D., Hornick, M., Sheth, A. (1995): An Overview of Workflow Management: From Process Modelling to
Workflow Automation Infrastructure. Distributed and Parallel Databases, 3:119-153

Giese, H. (2001): Object-Oriented Design and Architecture for Distributed Systems. Doctoral Dissertation. University of
Münster

Giese H., Graf J., Wirtz, G. (1999): Closing the Gap Between Object-Oriented Modelling of Structure and Behaviour. In:
Proc. of UML-99 The 2nd Intern. Conf. on The Unified Modelling Language

Giese, H., Wirtz, G. (2000): Early Evaluation of Design Options for Distributed Systems. In: Proceedings International
Symposium on Software Engineering for Parallel and Distributed Systems (PDSE), June 2000, Limerick (Ireland), IEEE
Press

Grefen, P., Pernici, B., Sanchez, G. (1999): Database Support for Workflow Management: the WIDE Project. Kluwer
Academic Publishers, 1999.

Hammer, M., Champy, J. (1994): Business Reengineering, Frankfurt, New York (2nd)

http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/p53.pdf

 26

Harel, D. (1987): Statecharts: A Visual Formalism for complex systems. Science of Computer Programming 3 (8): 231 – 274

Hruby, P. (1998): Specification of Workflow Management Systems with UML. In: Proceedings of the OOPSLA’96
Workshop on Business Object Design and Implementation, San Jose

IBM (1999): IBM MQSeries Workflow: Concepts and Architecture, Version 3.2. Publication No GH12-6285-01

Jablonski, S., Bussler, C. (1996): Workflow-Management: Modelling Concepts, Architecture and Implementation.
International Thomson Computer Press

Jensen, K. (1992): Coloured Petri nets. Basic Concepts, Analysis Methods and Practical Use, EATCS monographs on
Theoretical Computer Science, Springer, Berlin

Leymann, F., Altenhuber, W. (1994): Managing Business Processes as an Information Resource. IBM Systems Journal 33,
pages 326-347

Meyer, B. (1997): Object-Oriented Software Construction. Prentice Hall, 1997 (2nd)

OMG (01/2000): Workflow Resource Assignment Interfaces (RAI) – Request for Proposal. OMG-document bom/2000-01-
03, Framingham

OMG (11/2000): Organizational Structure Facility (Revised Submission by 2AB Inc., Gazebo Software Solutions Inc.
Genesys Software Inc.). OMG Business Object Domain Task Force, OMG-document bom/2000-11-05, Needham

OMG (12/2000): UML Extensions for Workflow Process Definition – Request for Proposal. OMG-document bom/2000-12-
11, Needham

Reichert, M., Dadam, P. (1998): Supporting Dynamic Changes of Workflows Without Loosing Control. Journal of Intelligent
Information Systems, Special Issue on Workflow and Process Management, Vol. 10, No. 2

Rumbaugh, J., Jacobson, I., Booch, G. (1999): The Unified Modelling Language Reference Manual. Reading, MA: Addison-
Wesley

Rational (2000): Business Modelling with the UML and Rational Suite AnalystStudio. A Rational Inc. Software White Paper

Sheth, A.P., van der Aalst, W.M.P., Arpinar, I.B. (1999): Processes Driving the Networked Economy. IEEE Concurrency
7(3): 18-31

Verbeek, H.W.M., Van der Aalst, W.M.P. (2000): Woflan 2.0: A Petri-net-based Workflow Diagnosis Tool. In M. Nielsen
and D. Simpson, editors, Application and Theory of Petri nets 2000, volume 1825 of Lecture Notes in Computer
Science, pages 475-484. Springer, Berlin

Weske, M., Vossen, G. (1998): Workflow Languages. In: P. Bernus, K. Mertins, G. Schmidt (editors): Handbook on
Architectures of Information Systems. (International Handbooks on Information Systems), pages 359-379. Springer,
Berlin

Weske, M. (2000): Workflow Management: Systems: Formal Foundation, Conceptual Design, Implementation Aspects.
Habilitation Thesis. University of Münster

Weske, M. (2001): Formal Foundation and Conceptual Design of Dynamic Adaptations in a Workflow Management System.
Accepted for: Minitrack Internet and Workflow Automation: Technical and Managerial Issues. 34th Hawaii
International Conference on System Sciences (HICSS-34).

Wiegert, O. (1998): Business Process Modelling and Workflow Definition with UML – Deficiencies and Actions to Improve.
Presentation at the OMG Meeting, Manchester, 1998-03-31

Wirtz, G., Graf, J., Giese, H. (1997): Ruling the Behaviour of Distributed Software Components. In: Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), June 1997, Las
Vegas (USA); CSREA Press

Wirtz, G., Weske, M., Giese, H. (2000): Extending UML with Workflow Modelling Capabilities. In Proc. of CoopIS-2000,
7th Intern. Conf. on Cooperative Information Systems (O. Etzion and P. Scheuermann, eds.), vol. 1901 of LNCS,
Springer, pages 30-41

 27

Wodtke, D., Weissenfels, J., Weikum, G., Kotz Dittrich, A. (1996): The Mentor Project: Steps Towards Enterprise-Wide
Workflow Management. In Proc. 12th IEEE International Conference on Data Engineering (1996), pages 556-565

Workflow Management Coalition, WfMC (1997). Workflow Handbook. John Wiley in association with Workflow
Management Coalition

	Wil M.P. van der Aalst
	w.m.p.v.d.aalst@tm.tue.nl
	Mathias Weske
	
	
	
	
	Figure 5: Ordering a book from an abstract Users view
	Figure 6: The detailed handling of an order in the BookShop
	Figure 7: Processing the query at the Publisher site using the ShipmentDpt protocol

	InstChge

	References

