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This paper surveys and investigates the strengths and weaknesses of a number of recent approaches to advanced 
workflow modelling. Rather than inventing just another workflow language, we briefly describe recent workflow 
languages, and we analyse them with respect to their support for advanced workflow topics. Object Coordination 
Nets, Workflow Graphs, WorkFlow Nets, and an approach based on Workflow Evolution are described as 
dedicated workflow modelling approaches. In addition, the Unified Modelling Language as the de facto standard 
in object-oriented modelling is also investigated. These approaches are discussed with respect to coverage of 
workflow perspectives and support for flexibility and analysis issues in workflow management, which are today 
seen as two major areas for advanced workflow support. Given the different goals and backgrounds of the 
approaches mentioned, it is not surprising that each approach has its specific strengths and weaknesses. We 
clearly identify these strengths and weaknesses, and we conclude with ideas for combining their best features. 
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1. Introduction 
 
In recent years, a variety of approaches to modelling and executing workflows have been proposed, 
based on different workflow languages, methods, and tools, and aiming at supporting different aspects 
in workflow management [Georgakopoulos et al. (1995), Leymann et al. (1994), Jablonski et al. 
(1996), Weske et al. (1998)]. Rather than inventing just another workflow language, this paper briefly 
describes and analyses existing workflow languages with respect to their support for advanced 
workflow topics. In addition to dedicated workflow modelling approaches, the de facto standard in 
object-oriented modelling and design, the Unified Modelling Language, is investigated, specifically 
the UML extensions for workflow process modelling [OMG (2000c)]. The dedicated workflow 
modelling approaches include Object Coordination Nets [Giese (2001), Wirtz et al. (2000)], Workflow 
Graphs [Weske (2000)], WorkFlow Nets [Aalst (1998)], and an approach based on Workflow 
Evolution [Casati et al. (1998a)]. These approaches are discussed with respect to coverage of 
workflow perspectives and their support for flexibility and analysis issues in workflow management. 
Given different goals and backgrounds, it is not surprising that each approach has its specific strengths 
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and weaknesses. Based on a common sample workflow process, we clearly identify these strengths 
and weaknesses, and we conclude with ideas for combining the best features of the approaches. 
This paper is organized as follows. Section 2 introduces a set of requirements for advanced workflow 
modelling. It introduces necessary capabilities for modelling dynamic behaviour in general and for 
modelling workflow processes in particular. Workflow perspectives are used to characterize the 
fundamental requirements; flexibility issues in workflow management and analysis features are two 
advanced topics in workflow management, which are discussed next. Section 3 introduces the 
approaches to workflow modelling and execution, namely the Unified Modelling Language, Object 
Coordination Nets, Workflow Graphs, and WorkFlow Nets. Section 4 compares the four approaches 
based on the required capabilities identified in Section 2. Concluding remarks complete this paper. 
 
 
2. Requirements for Modelling Dynamic Behaviour 
 
This section discusses requirements for modelling and executing workflows. We start with a set of 
fundamental requirements, based on dimensions, which have to be considered in workflow modelling; 
these dimensions are called workflow perspectives. To proceed to advanced topics, flexible workflow 
management and workflow analysis are discussed. While these topics do not cover the whole 
workflow area, we believe that some of the most important requirements for advanced workflow 
technology are addressed. 
 

2.1. Workflow Perspectives 
 
Workflow management deals with modelling and controlling the execution of application processes in 
heterogeneous organizational and technical environments [Georgakopoulos et al. (1995)]. Workflow 
management systems are proactive software systems which support modelling and controlling the 
execution of the automated parts of business processes, i.e., workflows [Leymann, Altenhuber (1994)]. 
To achieve this goal, a workflow management system needs information about the business process 
and the organizational and technical environment in which the process should be performed. This 
information is organized into a set of workflow perspectives [Jablonski, Bussler (1996)]. For the 
purpose of this paper, we consider functional perspective, process perspective, organizational 
perspective, informational perspective, and operational perspective. Workflows are expressed in 
workflow languages [Vossen, Weske (1998)], which provide dedicated language constructs to cover 
these perspectives. 
The functional perspective characterizes the activities that have to be performed during a workflow 
execution. In addition it specifies how these activities are decomposed into smaller units, i.e., it 
specifies the functional decomposition of a workflow, often represented by a hierarchical structure. 
The leaves of that structure are logical units of work, called tasks (or atomic workflows). The internal 
nodes represent complex workflows. The root is referred to as the top-level workflow; business 
processes are typically represented by top-level workflows. For instance, in a credit request top-level 
workflow, filling in forms, assessing risks of granting the credit request and preparing and mailing 
documents can be represented by individual tasks. Note that the functional perspective prescribes what 
has to be done. However, it does not specify when and under which conditions the tasks are carried 
out, nor does it specify who performs a given task and which data and applications are used. The other 
workflow perspectives cover these aspects. 
In the process perspective, execution conditions are specified, namely start conditions and execution 
order conditions. These concepts are used to specify if (start condition) and when (execution order) a 
given workflow should be executed, respectively. The process perspective and the functional 
perspective are commonly represented by workflow process definitions. An example of a workflow 
process definition in a banking environment is CreditRequest, which models the activities to process a 
credit request by a customer. This workflow may be composed of tasks PutCreditRequest, AssessRisk, 
GrantCreditRequest, and RejectCreditRequest. The ordering of these tasks and their causal 
interrelationships are specified by the workflow process definition. For example, the top level 
workflow starts with PutCreditRequest, which is the first task to be executed for that workflow, 
followed by AssessRisk and—depending on the outcome of the risk assessment task—either a 
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GrantCreditRequest or RejectCreditRequest task, which shows the use of both execution order 
constraints and start conditions. Note that the workflow process definition is instantiated for specific 
workflow cases, i.e., individual workflow instances are handled according to routing specified in the 
process perspective. 
To control the execution of workflow instances, the workflow management system needs information 
on the organizational structure and the population in which the workflow is executed, covered by the 
organization perspective. Typically the structure of an organization is defined by roles, groups and 
other artefacts clarifying organizational issues, for example responsibility and availability of persons. 
In the banking example, for instance, CreditClerk and Secretary are roles, while specific persons may 
be selected at runtime to play these roles based on availability and skills. The functionality of a 
workflow management system to determine persons available and competent to perform certain tasks 
during a workflow instance is known as role resolution [Leymann, Altenhuber (1994)]. 
The information perspective covers data, partitioned in control data and production data. Control data 
are introduced solely for workflow management purposes, e.g., variables introduced for routing. On 
the other hand production data is represented by information objects (e.g., documents, forms, and 
tables) whose existence does not depend on workflow management. The information perspective 
assigns input and output parameters to single tasks and, hence, covers data dependencies between 
them. For example, data generated by the PutCreditRequest task is used as input data by the 
AssessRisk task. This form of data dependencies is called data flow, and it is an important 
functionality of a workflow management system to guide and control data transfer between related 
workflow tasks. 
The operation perspective describes the elementary operations performed by resources and 
applications. Typically, these operations are used to create, read, or modify control and production 
data. Depending on the technical environment of the workflow application, operations are 
implemented by legacy applications or by business objects. Business objects are information system 
representations of real-world entities, which have a meaning in the business domain. Examples of 
business objects include business partner, order, and invoice. Depending on the workflow 
management system, each task, i.e., a leaf in the functional perspective may be implemented by a 
single application or by multiple applications, whose ordering may be controlled by a script language 
(cf. traditional workflow management systems such as Staffware and COSA). 
A workflow schema is the specification of a workflow covering all perspectives. Typically, workflow 
management systems have two parts: The build-time part allows for the specification of workflow 
schemas; the run-time part takes care of the actual enactment of the workflow in the given technical 
and organizational environment.  

 
2.2. Flexibility 

 
Enhancing the flexibility of business applications has been one of the main motivations for workflow 
management from the beginning. In traditional workflow management, the main mechanism to 
achieve this goal is to extract process information from applications with the aim of representing it 
explicitly to be able to improve the structure of the business process with little effort [Hammer, 
Champy (1993), Leymann, Altenhuber (1994)]. While this aspect is important for workflow 
applications, it falls short of supporting highly dynamic business processes, which are typically 
occurring in the networked global economy [Sheth et al. (1999)]. One of the main obstacles for the use 
of traditional workflow technology in this context is the fixed structure of workflows, meaning that 
once a workflow has started, changes to the process structure are no longer feasible. In dynamically 
changing settings (for example in highly competitive markets or long-running workflows), this 
limitation of contemporary workflow management systems makes the use of workflow technology in 
these settings very hard or prevents it altogether. This observation has triggered considerable work on 
flexible workflow management, for example [Ellis et al. (1995), Casati et al. (1998), Reichert et al. 
(1998), Aalst et al. (1999), Weske (2001)]. 
Flexibility in general and the need for workflow change in particular can be classified according to 
different aspects [Aalst, Jablonski (2000)]. First of all, there may be different reasons for workflow 
change, for instance changes due to the business context, the legal, or the technical context of the 
workflow. Next, workflow changes can be classified according to the workflow perspectives involved. 
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While in general all of the abovementioned perspectives can be subject to change, modifications to the 
process structure are the most important ones, since the dynamic aspect of workflow execution control 
is concerned. In this context, the scope of a dynamic change is important. In general, a modification 
can apply to a single workflow instance, or a modification of a workflow schema can apply to all 
future workflow instances. An interesting question is raised if active workflow instances should also 
be changed to the new workflow schema, known as dynamic adaptation (or migration) of workflow 
instances to new workflow schemas. 
The need for flexibility raises many challenging scientific and technical questions. In this paper, we 
focus on three issues related to flexibility in workflow management: constrained flexibility, instance 
change, and instance migration.  
! Constrained flexibility. For many applications, flexibility is required for a smooth workflow. 

However, unlimited flexibility results in chaos. Therefore, workflow management systems should 
offer support for constrained change. Given a former version of the workflow process definition, 
the new or modified workflow process definition should preserve certain properties, e.g., certain 
tasks in the original workflow should not be deleted. Constrained flexibility is particularly relevant 
for mission-critical workflows: Only by restricting change it is possible to guarantee certain 
execution properties of workflows like, e.g., overall consistency.  

! Instance change. The vast majority of workflow management systems does not support change at 
an instance level. InConcert is one of the few systems, which supports instance change, i.e., the 
workflow of a specific instance can be changed on the fly. To support instance change, there 
should be a private process definition for each instance.  

! Instance migration. Most workflow management systems only provide a process definition at the 
schema level. If process definitions are at a type level, instance migration becomes relevant. 
Instance migration is concerned with transferring a workflow instance from one workflow process 
definition to another. Instance migration is far from trivial because the state of the instance in the 
old workflow may not correspond to any of the states of the new workflow. As shown in [Ellis et 
al. (1995)], the so-called “dynamic change bug” can occur. The dynamic-change bug refers to 
errors introduced by migrating a workflow instance from an old process definition to a new one, 
which can lead to undesired situations like duplication of work, skipping of tasks, deadlocks, and 
livelocks. 

 
2.3. Analysis 
 

Workflow management systems are typically used to improve mission critical business processes of an 
organization. Hence, the correctness, effectiveness, and efficiency of business processes supported by 
the workflow management system are vital to the organization. A workflow process definition, which 
contains errors, may lead to angry customers, backlog, damage claims, and loss of goodwill. Flaws in 
the design of a workflow may also lead to high throughput times, low service levels, and a need for 
excess capacity. This is why it is important to analyse workflow process definitions before putting 
them into production. Basically, there are three types of analysis: validation, i.e., testing whether the 
workflow behaves as expected, verification, i.e., establishing the correctness of a workflow, and 
performance analysis, i.e., evaluating the ability to meet requirements with respect to throughput 
times, service levels, and resource utilization [Aalst (1998), Sheth et al. (1999)]. 
! Validation is mainly concerned with the gap between the specified workflow and the intended 

workflow. Validation needs to be done by domain experts and analysis is context dependent. 
Workflow management systems can provide simulation and animation tools, which allow the easy 
tracing of processes with the aim of detecting errors. 

! Verification is concerned with the logical correctness of workflow process definitions. Depending 
on the workflow language used, there may be different properties, which have to be satisfied. 
Today’s workflow management systems only support some syntactical checks, i.e., workflow 
processes with potential deadlocks and never-ending loops can be put into production without any 
warnings at design time. Techniques such as model checking and structural analysis based on the 
graph structure can be used to detect inconsistencies. 

! Well-established techniques for performance analysis are simulation and queuing theory. Both 
types of techniques can be used to detect potential bottlenecks. A prerequisite for this activity is 
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that durations for the execution of tasks and the arrival pattern of new cases are known. Together 
with the role information and information on the number of persons able to fill these roles in 
specified time intervals, which can be viewed as the resources available, the system can detect 
bottlenecks. For business reasons it is of vital importance to detect potential bottlenecks before the 
system goes operational.  

 
 
3. Recent Workflow Modelling Approaches 
 
This section introduces recent approaches to modelling dynamic behaviour of application systems in 
general and workflows in particular. Starting with the Unified Modelling Language (UML) 
[Rumbaugh et al. (1999), Rational (2000)], a general-purpose object modelling language is 
investigated with respect to the capabilities it provides for process modelling. The Object Coordination 
Net approach uses a Petri net formalism to add process-modelling capabilities to UML [Wirtz et al. 
(2000)]. Workflow graphs can be regarded as the traditional approach to specify workflows; different 
flavours of workflow graphs are supported by commercial workflow management systems (e.g., IBM 
MQSeries Workflow [IBM (2000)] as well as university prototypes, e.g. WASA [Weske (2000), 
Weske (2001)]). WorkFlow Nets are Petri nets tailored towards modelling workflows. Based on a 
strong theoretical foundation, they focus on properties of workflows and the application of inheritance 
concepts. 
 

3.1. Unified Modelling Language 
 
In the last few years, the Unified Modelling Language (UML) has gained enormous attention in the 
software engineering area as the de facto standard for modelling during object-oriented analysis and 
design. There are two main reasons for this success. Firstly, the extensive usage of a rich set of visual 
formalisms, which are generally assumed to be easy to use and, more importantly, to communicate 
among customers, designers and developers. Secondly, the standardization efforts that resulted in the 
UML notations were an answer to the highly pressing needs of the software industry, especially for 
tool builders. Although the first UML versions had a number of deficiencies, the insight that the UML 
notations are useful for business process modelling and, hence, could also be adopted to the workflow 
area were present right from the beginnings of the UML; see [Hruby (1998), Wiegert (1998)] for an 
in-depth discussion. 
The importance of the UML for workflow modelling is due to the fact that the early analysis and 
design phases of modern software engineering, e.g., obtaining relevant use cases, are in fact closer to 
business process modelling than to programming. Moreover, the operational perspective of workflows 
is situated in a context, which is governed by legacy applications that have been developed using OOA 
(Object-Oriented Analysis)/OOD (Object-Oriented Design), maybe even tools based on the UML. 
Using similar techniques simplifies the integration of applications into the workflow context. Details 
from the information perspective like, e.g., basic data types and classes used to model  production 
data, may be reused without change of input and output parameters of applications.  
Most recent approaches to model workflows with the UML are grouped around only a few kinds of 
UML diagrams. Use-case diagrams are well suited to describe roles (like customer or clerk), involved 
in a business process, their interaction via top-level processes as well as the relationships between 
different use-cases. A use-case may involve other use-cases (<<include>>), build upon others 
(<<extend>>) and so on. In this manner, a coarse-grained model of all relevant top-level processes—
called the use-case model—is obtained that can be refined afterwards by describing the different 
processes in more detail. This is done using four types of UML diagrams: sequence diagrams, 
collaboration diagrams, statechart diagrams, and activity diagrams. UML statecharts are based in the 
process modelling technique introduced in [Harel (1987)].  Statecharts are useful to describe the life-
cycle of a specific system or subsystem in a reactive way. UML sequence diagrams, also referred to as 
message sequence charts, are used to visualize specific instantiations of a use-case. With the UML 
Version 1.3, activity diagrams, which are a combination of statecharts and Petri nets, have been made 
more expressive to match most of the needs of modelling the process perspective of workflows: Start 
and end states for complex processes including sequential, alternative and parallel routing can be 
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extended by object flow using different kinds of arcs for routing control flow and data flow. The 
different roles involved are visualized by so-called swim lines, which partition the diagrams from top 
to bottom into areas where specific system parts take the responsibility for all actions occurring in 
their partition. Pre- and post-conditions from the process perspective can be specified by adding 
Object Constraint Language (OCL) expressions, which allow for time constraints and so on. Extensive 
use of OCL expressions, however, puts important information into text and reduces the benefits of the 
UML as a visual notation. Besides activity diagrams, a more structure-oriented view is supported by 
collaboration diagrams, which visualize the flow of control through a numbering scheme in the 
context of classes and their static relations in structure diagrams. The numbering scheme as well as the 
swim lines in activity diagrams have the major drawback that they do not scale for real-life complex 
processes involving more than up to, e.g.,  5-6 roles or nested parallelism. The description of a method 
for business process modelling along the lines sketched above that is supported by a powerful toolset 
can be found in [Rational (2000)]. The method supports a set of predefined UML stereotypes that is 
part of a specific UML profile for business modelling.  
The UML has much more potential regarding the organizational perspective but almost all approaches 
developed so far ignore the chances of OOA and OOD for structural modelling using packages, 
subsystems and strict interface-based interaction in the context of workflow modelling with the UML 
(as detailed in the next section). Closely related to this observation is the lack of an adequate resource 
concept. Most of these deficiencies have been recognized by the UML community, and recent OMG 
Request for Proposals [OMG (2000a)] or submissions to the committee [OMG (2000b)] discuss the 
abovementioned aspects like resource assignment and organizational structure. Moreover, a new set of 
consistent UML extensions for workflow process definition in general are under development [OMG 
(2000c)]. 
While the UML provides some mechanisms to model workflows, flexibility is hard to achieve in the 
current situation, given the UML semantics. In general, workflow instance migration may be possible 
through advanced typing and type changes at runtime (facilitated by casts) but instance change does 
not fit well into the class-instantiation context of object-oriented modelling. Even migration or other 
forms of constrained flexibility, which should be based on inheritance notions respecting behaviour, 
are  hard to implement in a context where diagrams essential for the modelling process have no clear 
formal semantics in isolation or in overall combination, as shown in [Giese et al. (1999)]. For the same 
reason, analysis in the sense of formal verification is hopeless but validation through test cases and 
simulation, e.g., generating message sequence charts for typical system runs that is quite standard in 
software development can be used in the workflow context, too. 
 
To illustrate the use of UML for workflow modelling, we use the process of ordering a book from an 
electronic bookstore. We will use this process to illustrate the four types of UML diagrams mentioned 
before (sequence diagrams, collaboration diagrams, statechart diagrams, and activity diagrams). We 
will also use this example to illustrate the other approaches.  

customer bookshop publisher

Order_book()
Query()

In_stock()
Confirm_order()

Payment()

Deliver_book()

Notify()
Bill()

Payment()

customer bookshop publisher

Order_book()
Query()

Out_of_stock()
Reject_order()

 
Figure 1: Two UML sequence diagrams. 
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Figure 1 shows two sequence diagrams. The diagram on the left-hand-side models a scenario which 
corresponds to a customer successfully ordering a book. The right-hand-side diagram models the 
scenario where a customer order is rejected because the ordered book is not in stock. A sequence 
diagram shows for each object or actor a so-called lifeline. In both diagrams shown in Figure 1 there 
are three lifelines: the customer lifeline, the bookshop lifeline, and the publisher lifeline. Time is 
increasing along each lifeline from top to bottom. A sequence diagram also shows the messages 
exchanged. Consider for example the left-hand-side diagram. First, the customer orders a book by 
sending the message Order_book. Then, the (on-line) bookshop sends a query to the publisher to see 
whether the book is available (message Query). The publisher responds by sending the message 
In_stock indicating that the book is available. The bookshop confirms the order (message 
Confirm_order) and pays for the book (message Payment). After receiving the payment, the publisher 
sends the book to the customer (message Deliver_book) and notifies the bookshop (message Notify). 
Triggered by this notification, the bookshop sends a bill (message Bill) and the customer pays for the 
book (message Payment).  
Note that the left-hand-side diagram does not specify a process but merely one scenario. This scenario 
corresponds to handling a customer order successfully. If the book is not in stock, the diagram on the 
right-hand-side applies. In the second scenario, the book is not available (message Out_of_stock) and 
the customer order is rejected (message Reject_order). Figure 1 illustrates that sequence diagrams can 
only be used to model scenarios and are not suitable for making full-fledged process models. The 
basic sequence diagram has no provision for routing constructs such as choice, synchronization, 
iteration, etc. Sequence diagrams have been extended with features to handle these routing constructs. 
However, these extended diagrams become difficult to read and difficult to interpret. 

customer

bookshop

publisher

1: Order_book()

4: Confirm_order()
8: Bill()9: Payment()

6:
 D

el
iv

er
_b

oo
k(

)

2: Query()3: In_stock()
5: Payment()7: Notify()

customer

bookshop

publisher

1: Order_book()

4: Reject_order()

2: Query()
3: Out_of_stock()

 
Figure 2: Two collaboration diagrams. 

A collaboration diagram highlights the organization of objects that participate in an interaction. 
Compared to sequence diagrams the emphasis is shifted from temporal relations to organizational 
relations. From a semantic point of view collaboration diagrams and sequence diagrams are 
interchangeable, i.e., semantically equivalent. The lifelines are replaced by numbered sequences. 
Consider Figure 2. The two collaboration diagrams correspond to the two sequence diagrams shown in 
Figure 1. One can translate a sequence diagram and translate it to a collaboration diagram without any 
loss of information (and vice-versa). The order of the messages exchanged is captured by a numbering 
scheme. The numbers in Figure 2 indicate the order in which messages are exchanged among the 
customer, bookshop and publisher. Collaboration diagrams can be extended with more complex 
constructs such as nesting, iteration, and branching. However, just like sequence diagrams, 
collaboration diagrams are particularly suited for modelling scenarios, i.e., examples of straight 
sequential flows of control. For true process modelling one should use statecharts diagrams or activity 
diagrams. 
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order_created

/ send_query

query_sent
notify_out_of_stock

in_stock out_of_stock

notify_in_stock

order_rejected

/ send_rejection/ send_confirmation

order_accepted

book_delivered payment_received

notify_book_delivery / send_bill

receive_payment

 
Figure 3: A statechart diagram describing the life-cycle of one order. 

Statecharts are an extension of basic state machines. A basic state machine consists of states and 
transitions. At any point in time, the system (or object) resides in one of these states. A transition 
moves the system from one state to another. The basic state machine corresponds to the class of Petri 
nets where each transition has one input and one output place. In a statechart diagram one can have 
composite states, orthogonal regions, variables, events, conditions, and actions. Composite states can 
be used for nesting. Orthogonal regions can be used to model parallelism. Transitions can be 
augmented with so-called ECA (Event-Condition-Action) rules. This means that a transition only 
takes place when a specified event occurs and a condition is satisfied. Both the event and condition are 
optional. It is also possible to add an action to a transition. This means that the action is executed the 
moment the transition takes place. The standard notation for these ECA rules is “event [condition] / 
action”. 
Figure 3 shows a very simple statechart diagram. This statechart models the lifecycle of an order. The 
initial state is modelled by a black dot. The final state is modelled by a black dot within a circle. A 
state is modelled by a rounded rectangle. Transitions are modelled by arcs. The transition connected to 
the states order_created and query_sent generates the action send_query. In state query_sent two 
potential transitions are enabled. One of them is triggered by the event notify_in_stock and leads to 
state in_stock. The other one is triggered by the event notify_out_of_stock and leads to state 
out_of_stock. 
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publisherbookshopcustomer

send_order

handle_customer_order

send_query

update_customer_info

handle_query

In_stock

handle_out_of_stock

handle_in_stock

Order

Confirmation

Book

Bill

Payment

Payment

Query

Out_of_stock

Handle_rejection

confirm

pay_publisher

monitor_payment

handle_payment

send_book

notify_bookshop

handle_confirmation

send_bill

receive_book

handle_bill

monitor_payment

handle_payment

 
Figure 4: An activity diagram describing the whole process. 

 
Statecharts are well-suited for modelling the lifecycle of one object. Unfortunately, statecharts are less 
suitable to model the control flow among objects. For this purpose UML offers activity diagrams. 
Activity diagrams are close to the workflow languages discussed in this paper.  Therefore, it is no 
surprise to see that activity diagrams are used for enterprise modelling, workflow modelling, and 
business process reengineering. Consider Figure 4. This activity diagram models the process 



 10

illustrated by the two sequence/collaboration diagrams. The diagram is divided into three main parts: 
customer, bookshop, and publisher.  These parts are called swimlanes. A swimlane specifies a locus of 
activities and is particularly useful for business modelling. Using swimlanes it is possible to partition 
the process into roles or organizational units. Please note that most of the other techniques discussed in 
this paper can be extended with swimlanes. Just like in a statechart diagram the initial and final state 
are indicated using black dots. Activities (also called activity states) are denoted by rounded 
rectangles. Solid lines correspond to control flow. Dashed lines correspond to object flow. The objects 
passed are modelled by rectangles. Consider for example the upper left corner of the activity diagram. 
Starting in the initial state the activity send_order is executed. After execution of send_order an object 
order is passed on to the bookshop which executes handle_customer_order.  The thick horizontal lines 
in Figure 4 correspond to synchronization bars. A synchronization bar is either a fork or a join. Forks 
correspond to AND-splits. Joins correspond to AND-joins. An exclusive OR-split is modelled by a so-
called branch and is depicted by a diamond. The diamond symbol can also be used to model OR-joins. 
The activity diagram shown in Figure 4 has one branch. This branch makes the process dependent 
upon the availability of the book ordered by the customer. The remainder of the process is self-
explanatory. 
 

3.2. Object Coordination Nets 
 
The Object Coordination Net (OCoN) approach has been developed originally for the area of object-
oriented distributed software systems design [Wirtz et al. 1997]. Many aspects of the approach are 
inspired by the idea to provide an OOA/OOD-based method and language that fits well into the 
context of distributed and parallel software development. The approach uses structural modelling 
techniques (subsystems, interfaces, classes, relations among structural entities) from the UML, but 
puts much more emphasis on separation of concerns through a strict abstraction discipline. Abstraction 
is supported by extending UML interfaces to become contracts [Meyer (1996)], which describe the 
allowed behaviour and the intended usage restrictions of interface operations in a visual manner. The 
consistent combination of structural and behavioural modelling is used to introduce a notion of 
resources that is needed in the distributed software area as well as in workflow management. 
Moreover, severe technical deficiencies, especially the lack of clear guidance regarding the integrated 
meaning of different diagrams in a UML model and the absence of an overall consistent semantic 
model [Giese et al. (1999)] have led to the usage of a specific kind of high-level object-oriented Petri 
nets instead of the various UML interaction diagrams in combination with UML structure diagrams. 
These nets are used for specifying the behaviour of interface contracts, the overall handling of 
resources, and the detailed flow of control and data for processes on all system levels. OCoNs are 
capable of describing all typical control flow situations occurring in workflows [WfMC (1997), Aalst, 
Hofstede et al. (2000)]. 
Object Coordination Nets represent activities by net transitions, which are called actions. An action on 
the system level may represent a complete top-level workflow, on subsystem level sub-workflows 
performed by a specific part of the overall system or (atomic) calls to an application. We interpret 
actions of all levels as services that are provided by entities of a specific level. Hence, the different 
levels of functionality available in a system are described with the same mechanism. Actions may only 
fire if all pre-conditions specified in the net are fulfilled. These pre-conditions are either typed input 
parameters and events representing the flow of control and data through the net or an obligatory 
unique carrier of activity, i.e., the resource responsible for executing that action. Such a resource 
corresponds at the most detailed level to the instance of a class that provides the service s as a method 
self.s(…). At higher levels of abstraction, a resource represents an instance of the (implementation of 
a) subsystem that offers the corresponding service in its contract. Preconditions are visualized by arcs 
pointing from a place or resource to an action.  In contrast to many other net models, e.g., [Brauer et 
al. (1987)], firing an OCoN transition consumes time and is more like a call to a (remote) procedure in 
taking three steps: synchronous consumption of input parameters, internal processing and synchronous 
producing of the resulting output parameters for the post-condition resource and output places. The 
output places or post-conditions are visualized by arcs pointing from the action to the corresponding 
places. The internal processing may include further hierarchical calls to other services using more 
resources and so on. Resources may be used in an exclusive or shared manner, which allows for a 
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detailed resource usage and dependency model of the entire system even in the case of parallel service 
requests. The usage of services and, hence, resources has to be compatible with the export and import 
of interfaces by subsystems in the structural model, i.e. all possible dependencies are already 
visualized in the organization perspective. The external and internal resources of a subsystem are not 
managed by the single service calls, i.e., actions but by a subsystem-global resource allocation net that 
receives all calls to the subsystems interfaces, provides the needed resources for each service and 
delegates the call. Working in this way, it schedules the combined resource usage of all it’s services 
and provides a well-defined point-of-control for analysing the resource situation of a subsystem or 
even the entire system. 
A typical modelling process starts with a use-case driven analysis to get an insight into the needed 
functionality, involved partners (e.g., companies, departments, and specific roles). Use-cases of this 
type can be described by UML use-case diagrams, which are refined through Object Coordination 
Nets instead of activity diagrams. If already known and intended, responsibilities are assigned to 
actions by stating which system resources (represented by resource pools that correspond to subsystem 
or class interfaces) should perform a specific action. Combined with knowledge about the problem 
domain and the organizational structure of the involved organizations, this provides the knowledge for 
a first coarse-grained specification of the organizational perspective. This structure is described by 
UML structure diagrams using subsystems, which are related by providing and importing interfaces, 
classes with operations and attributes, inheritance, associations and so on. Typically, analysis classes 
are obtained for the most important entities flowing through the system during this process, too. These 
provide the basic knowledge for describing the informational perspective. The more fine-grained 
functional perspective as well as the process perspective are modelled afterwards in the context of the 
structural environment specified so far. This can be done top-down, bottom-up or in a mixed style. A 
top-down approach refines the already obtained informal nets describing top-level use-cases step-by-
step until detailed workflow schemata depending only on available functionality (leaves) are reached. 
In some situations, working bottom-up is much more appropriate: powerful application software or 
already available sub-workflows from existing subsystems may provide a rather high-level 
functionality and may rule the design decisions. These system parts are encapsulated into subsystems 
with interfaces that export all intended functionality. If parts of the provided functionality require 
specific execution orders or may  not always be available, the syntactical operation and parameter 
information is not sufficient to provide enough information for a secure use. In this case, state-
machine-like OCoNs are used to describe the needed application rules, which may be as detailed as 
prescribing the permitted operation orders as set of legal sub-workflows. In this manner, the 
integration of already working parts of an organization during a re-structuring process, new or already 
available legacy code as well as external functionality, i.e., external sub-workflows provided by other 
companies in B2B workflow systems, can be integrated as subsystems that are used according to the 
rules stated in their interface contracts. Usually, the described procedure will be an iterative process 
obtaining more and more detailed information about workflows and structural information. 

 
Figure 5: Ordering a book from an abstract Users view  

 
Figures 5-7 present the usage of OcoNs in the bookstore example at different abstraction levels. Fig. 5 
describes the possible states (hexagons), permitted operations (boxes) as well as the required execution 
order for ordering an already chosen book. The orderBook call may be successful or not, which is 
described using a transition with alternative outputs, and, hence ends in one of the states 
[NotAvailable] or [Ordered]; in the latter case, the customer is assumed to await the shipment and is 
obliged to pay for the book afterwards. Only after finishing this step, the entire process is finished, too. 
The chosen view abstracts completely from explicit notifications and the details of shipment. 
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The details of orderBook are somewhat more complex from the BookShops view. Figure 6 models the 
handling on a level of detail that is close to an object-oriented programming language. A real call of 
orderBook provides information about the order as well as the calling customer by means of 
parameters (circles in the bar, left-hand-side), uses this information and the BookShop’s customer 
management resource to update the customer profile, and calls Publisher.query (yellow transition) for 
one of its  external publisher resources to obtain the book in parallel. As shown in the details of the 
Publisher::query service in Figure 7, this may end without success because the book requested is out 
of stock, the entire orderBook sub-process is terminated and the order ends up in state [NotAvailable] 
(Fig. 5). Otherwise, a lot of work remains to be done in the BookShop subsystem. 
 

 
 

Figure 6: The detailed handling of an order in the BookShop 
 
An external Accountpayment resource is used to pay the publisher, a confirmation is sent to the 
customer using a public email service and the internal billing department is used to delegate the details 
of invoicing and payment checking. Only after all these steps have been performed, both precondition 
event pools for finishing orderBook are filled and the process is able to terminate with it’s lower 
alternative (bars in the right-hand-side).  This kind of delegation to other subsystems acting in specific 
roles can be used for simple stateless operation calls as well as for more advanced usage protocols. A 
more complicated handling, for example, is required when using the ShipmentDpt of the publisher 
(Fig. 7) because due to a lack of trust between the publisher and the bookshop, the book is only sent to 
the customer iff the bookshop has already paid for the book. Hence, the interface contract for using the 
shipment department describes a state-based behaviour that allows only for the sequence of steps 
described in its so-called protocol-net. The first part of this work, i.e., prepareShipment  is done in the 
query operation itself, which works only in the initial state [Ready]  and changes the protocol state to 
[Prepared]. The remaining parts of handling the shipment can be performed as follows: the BillingDpt 
confirms the shipment after payment is received, which brings the state to [Confirmed]. Afterwards, 
the real shipment, e.g. using an express service or postage can be performed.  
Although only a small part of the entire system model has been presented here, the principle of state-
based interaction and the abstraction obtained by breaking a complex system into subsystems offering 
and using contracts first in the structural description and using these interfaces as resources afterwards 
when describing the behaviour should become clear. Note, that the level of detail in describing the 
different sub-processes may vary in a wide range. Entire subsystems modelling, for example, an 
external business partner may be reduced to state-based or even stateless contracts on the one hand, 
whereas the details of gluing fine-grained application programs  together in a visual script-like but 
type-safe manner can be described for other parts of the same system. Hence, OCoNs provide a means 
for describing the process and functional perspective of workflows embedded in their organisational 
and informational context in a  seamlessly integrated way. 
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Figure 7: Processing the query at the Publisher site using the ShipmentDpt protocol 
 
Flexibility of workflow systems is provided at different levels. Regarding the structural context and 
the organizational, informational and operational perspectives, strict encapsulation of subsystems, 
which permits dependencies through explicitly defined interface-usage only, makes the incorporation 
of new subsystems or the exchange of subsystems or applications a manageable task that even allows 
for cost estimations. Changing active workflow processes via instance change is not possible but a 
controlled change on the level of a subsystems contract is supported by an inheritance notion based on 
behavioural properties for contracts [Giese (2001)]. 
The process is supported by an editor for OCoNs and a simulator that allows for an early evaluation of 
a design obtained at a specific point during development [(Giese et al. 2000)]. OCoNs have a clear 
formal semantics [Giese (2001)] and can be mapped to the proposed standard for high-level Petri-Nets 
[Jensen (1992)]. Hence, some of the tools available for analysing Petri nets can be made available for 
this approach. Whereas this is true for interfaces, their usage through embedding and their direct 
implementation, i.e., for protocol nets and resource allocation nets, an efficient and complete analysis 
of complicated hierarchical high-level nets is not feasible. 
Due to their strong interface concept including behaviour and the explicit resource model, the OCoN 
workflow specification approach is especially well suited for workflows that are implemented in 
complex distributed environments and B2B systems involving more than a single organization. For the 
latter application, the contract-centred approach provides a well-defined specification for an analysis 
of the complex interrelationships caused by the B2B interaction.  
 

3.3. Workflow Graphs 
 
This section introduces workflow graphs developed in the context of the WASA project [Weske 
(2000)]. In this approach, workflow process definitions are based on directed graphs, whose nodes 
represent workflows and whose edges represent constraints between workflows.  Workflows can be 
atomic or complex; while atomic workflows (or tasks) do not have an internal structure, complex 
workflows consist of a set of  workflows, each of which can be atomic or complex, resulting in a 
hierarchical structure. The terms sub-workflow and super-workflow are used to refer to the relative 
position of workflows in the hierarchy. Each workflow can have relationships with their respective 
sibling workflows, for instance execution order constraints and data dependencies, which are covered 
by the process perspective and the information perspective, respectively. In workflow graphs, there are 
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two language constructs to define the process perspective: Control flow constraints and start 
conditions. While control flow specifies execution order, the conditions under which a given workflow 
instance is executed are defined by its start condition. By evaluating the start condition, the system can 
decide whether the workflow has to be executed in a particular case. Workflow control data as well as 
application data can be used In start conditions.  For instance, a CreditRequest workflow may have 
two sub-workflows for different credit amounts requested. If the amount is less then a defined 
threshold then workflow A will be performed, otherwise B will be executed. In this example the start 
condition of A will check whether the amount requested is less than the threshold, and the start 
condition of workflow B will check if the amount requested exceeds the threshold.  
Loops in workflow graphs are not permitted. This is due to the fact that workflow execution control is 
based on a technique called dead path elimination [Leymann, Altenhuber (1994)], which allows the 
compact representation of processes. By that we mean that only at runtime it is decided whether a 
branching is an alternative or a parallel execution, depending on the start conditions of the workflows 
involved. To compensate for the lack of loops, WASA supports recursive workflow schemas, i.e., a 
workflow schema can be a sub-workflow of its own. Recursion has the same expressive power as 
loops, and hence they can be used to simulate cyclic structures in workflow schemas. However, it is 
often more natural to specify loops rather than to specify recursive workflows. This limitation of 
workflow graphs can be overcome by a suitable front-end, which allows the specification of loops. In 
a next step, the cyclic structure can be translated to the recursive structure, which is understood by the 
workflow system. 
The organizational perspective is covered by roles and agents, which are selected during role 
resolution to perform tasks. The role concept is a flexible mechanism to represent a variety of 
organizational structures as well as advanced concepts, for instance delegation of work between 
persons and case-dependent role resolution, meaning that application data can be used in role 
resolution. A popular example in this context is granting request for vacation: A department chair is 
allowed to grant the requests of all members of the department, except her own. 
The information perspective is based on class definitions, objects, and parameters. In particular, each 
workflow is assigned a set of typed input parameters and a set of typed output parameters. Parameters 
are typically objects, for instance a credit request form. When starting a workflow, the input 
parameters of the workflow are read; on its termination, the results are written into the workflow’s 
output parameters. Data dependencies between workflows are specified by data flow, i.e., mappings 
between input and output parameters of workflows. Data flow can be defined between sibling 
workflows and between a complex workflow and its immediate sub-workflows. Due to the direction 
of the data transfer, the kinds of data flow are called horizontal and vertical, respectively.  
Flexibility issues in general and dynamic adaptation of running workflow instances in particular have 
been among the key issues in the WASA project. We now sketch the formal foundation and 
conceptual design of dynamic adaptations; details can be found in [Weske (2000), Weske (2001)]. In 
the formal model, workflow schemas and workflow instances are represented by graphs. For each 
workflow schema graph, there may be an arbitrary number of workflow instances graph, which are 
associated to the workflow schema graph. For example, the workflow instances 
CreditRequest(“Smith”, 50.000) and CreditRequest(“Jones”, 75.000) are two workflow instances, 
associated with the workflow schema CreditRequest. Notice that associations apply both to complex 
workflow schemas and to tasks. Now assume that the structure of the business process has to be 
changed, for instance to cope with a new market situation. In this case, the respective workflow 
schema is modified and stored as a new version, let this be CreditRequest1. One can think of the new 
workflow schema as an improvement of the original one, which aims at improving customer 
satisfaction or enhances throughput. In large banks, at each instance hundreds or thousands of 
CreditRequest workflow instances are running. Assume that from a business point of view it is 
desirable that all new workflow instances but also all currently active workflow instances should make 
use of the improved workflow schema. It is easy to see that all future workflow instances can use the 
new workflow schema. How about the active ones? It is obvious that not all of these workflow 
instances can use the new workflow schema, since the modification may affect parts of the workflow, 
which were already executed. Hence, the system has to decide for which of the active workflows the 
adaptation to the improved workflow schema is possible and should be performed. In WASA, this 
decision is based on the existence of a valid mapping. A valid mapping relates sub-workflow instances 
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of the active workflow with sub-workflow schemas of the new workflow schema. Loosely speaking, a 
valid mapping exists if the active workflow can be continued in a way that complies to the improved 
workflow schema. We remark that the notion of valid mappings and the meaning of “complies” are 
formalized in [Weske (2000)].  
The concepts are implemented in a prototypical system, which is based on object technology as far as 
design and implementation is concerned. The most prominent feature of the design in the context of 
dynamic adaptations is the representation of both workflow schemas and workflow instances by 
objects, as opposed to representing workflow schemas by classes and workflow instances by objects of 
these classes, which results in complex class evolution and class migration issues on the technical 
level. Using this design decision, dynamic adaptations can be performed by changing the association 
of a workflow instance object, once a valid mapping was found. In particular, the association of that 
object with the original workflow schema object is purged, and an association with the improved 
workflow schema object is created. It is obvious that additional steps have to be carried out on the 
implementation level, for instance purging no longer required workflow instance objects and creating 
new ones. For details of the implementation, the reader is referred to [Weske (2000)]. 
Syntactic correctness of workflow schemas is defined by a notion of consistency. In particular, 
workflow schemas have to satisfy completeness of data flow (it must be possible to fill input 
parameters), type compatibility (data connectors must link type compatible parameters), data 
availability and acyclic control structures, as discussed above. Verification and validation in this 
approach is in the responsibility of the workflow modeller. However, workflow management systems 
should provide powerful tools to animate and simulate workflows. 
Due to the object-oriented approach, the WASA system is well equipped to support modern business 
applications, which are based on business objects. In particular, business objects can be transferred by 
data flow, and tasks can make use of business objects methods during task execution. This means that 
depending on the particular business object transferred to a task at runtime, a specific implementation 
of a method (carried by the business object) is invoked. We mention that rather than transferring large 
business objects it suffices to transfer object identifiers, which can then be accessed via the object 
middleware. 
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Figure 8: A Workflow Graph Describing the Sample Process. 
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Figure 8 illustrates workflow graphs by specifying the above mentioned sample process involving 
customers, a bookshop and a publisher. Each organizational entity involved is characterized by a 
rectangle in which the activities of that particular entity appear. Activities are ordered by control flow; 
not to overload the example, data flow is eliminated from the workflow schema. Transition conditions 
which mark control flow edges are an important aspect in workflow graphs. Transition conditions are 
evaluated if and when the source node of the corresponding control flow edge completes. Typically 
the result value of that activity is used to evaluate the transition condition. If no such condition is 
provided for an edge then true is assumed. This means that multiple outgoing edges correspond to a 
AND split, i.e., the follow-up activities will be executed concurrently.  To this end, transition 
conditions can be used to describe AND-split (Boolean constant true on all outgoing edges), OR-split 
(C and not C as transition conditions) and other forms in a flexible way. 
The customer starts the interorganizational process by sending an order (send order) to the bookshop, 
nowadays typically implemented by filling a web form and submitting the order. In the side of the 
bookshop, receiving an order triggers the process as specified. Customer information is updated and 
concurrently a query to the respective publisher is sent out to check for availability of the ordered 
books. When the publisher responds, the information is passed to the customer in the send status 
activity of the bookshop workflow graph. Depending on the availability—indicated by the transition 
condition avail, which evaluates to true if and only if the book is available—, the process at the 
publisher, bookshop, and customer are terminated. Of course, this procedure represents a 
simplification. However, more sophisticated mechanisms can also be specified using the workflow 
graph formalism. The continuation of the process is immediate from the figure. 
 
 

3.4. WorkFlow Nets 
 
Petri nets have been proposed for modelling workflow process definitions long before the term 
”workflow management'” was coined and workflow management systems became readily available. 
Consider for example the work on Information Control Nets, a variant of the classical Petri nets, in the 
late seventies [Ellis (1979)]. Petri nets constitute a good starting point for a solid theoretical 
foundation of workflow management. Clearly, a Petri net can be used to specify the routing of cases 
(workflow instances). Tasks are modelled by transitions and causal dependencies are modelled by 
places and arcs. In fact, a place corresponds to a condition which can be used as pre- and/or post-
condition for tasks. An AND-split corresponds to a transition with two or more output places, and an 
AND-join corresponds to a transition with two or more input places. OR-splits/OR-joins correspond to 
places with multiple outgoing/ingoing arcs. A Petri net which models the control-flow dimension of a 
workflow, is called a WorkFlow net (WF-net) [Aalst (1998)]. A WF-net has one source place and one 
sink place because any case (workflow instance) handled by the procedure represented by the WF-net 
is created when it enters the workflow management system and is deleted once it is completely 
handled, i.e., the WF-net specifies the life-cycle of a case. An additional requirement is that there 
should be no “dangling tasks and/or conditions”, i.e., tasks and conditions which do not contribute to 
the processing of cases. Therefore, all the nodes of the workflow should be on some path from source 
to sink. 
Figure 9 shows a WF-net using some graphical “sugaring”, i.e., the meaning of the symbols is 
explained in the right-bottom corner. The WF-net corresponds to the process described in the UML 
activity diagram shown in Figure 4 and specifies the handling of orders for an electronic bookstore. 
Cases start in the place labelled start. Each case corresponds to one or more tokens. Initially there is 
one token in start. After executing task send_order, place order is marked and 
handle_customer_order becomes enabled. Note that send_order consumes one token (from place 
start) and produces one token (for place order). Task handle_customer_order is an AND-split and its 
execution enables two parallel tasks: update_customer_profile and send_query. Using the simple rule 
of task enabling (a task is enabled if each/any of its input places is marked) and task execution (firing 
a task results in the consumption of the tokens needed to become enabled and the production of tokens 
for the output places), Figure 9 unambiguously specifies the workflow process. Therefore, the rest of 
the diagram is self-explanatory. Compared to the activity diagram shown in Figure 4, two major 
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differences can be noted. First, states are made explicit through the representation of tokens in places. 
Second, the formalism does not leave room for multiple interpretations. 
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Figure 9: A WF-net describing the processing of orders for an electronic bookstore. 
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The WF-net focuses on the process perspective and abstracts from the functional, organization, 
information and operation perspectives. These perspectives can be added using for example high-level 
Petri nets, i.e., nets extended with colour (data) and hierarchy. Although WF-nets are very simple, 
their expressive power is impressive. WF-nets can be used to model the basic constructs identified by 
the Workflow Management Coalition [WfMC (1997)] and used in contemporary workflow 
management systems. Moreover, WF-nets support constructs which are often needed but seldom 
supported by commercial systems. In [Aalst et al. (2000)] we describe several workflow patterns (e.g., 
the deferred choice and milestone) supported by WF-nets but not by leading workflow management 
systems such as Staffware and IBM’s MQ Series. One of the features of WF-nets enabling more 
advanced routing constructs is the explicit representation of states through tokens in places. 
Although WF-nets by themselves do not offer specific mechanisms for supporting workflow 
flexibility, relevant results have been obtained using inheritance of WF-nets [Aalst, Basten (2002)]. 
Inheritance is one of the key concepts of object-orientation. Classes and objects in object-oriented 
design correspond to workflow process definitions and cases in a workflow management context. In 
object-oriented design, inheritance is typically restricted to the static aspects (e.g., data and methods) 
of an object class. For workflow management, the dynamic behaviour of classes is of prime 
importance. Therefore, we developed four notions of workflow inheritance [Aalst, Basten (2002)]. The 
four inheritance relations use branching bisimilarity (to compare processes) in combination with the 
notions of encapsulation and abstraction. Encapsulation corresponds to blocking tasks, whereas 
abstraction corresponds to hiding tasks. The inheritance mechanism allows for the definition of a 
subclass which inherits the features of a specific superclass. When adapting a workflow process 
definition to specific needs (ad-hoc change) or changing the structure of the workflow process as a 
result of reengineering efforts (evolutionary change), inheritance concepts are useful to check whether 
the new workflow process inherits some desirable properties of the old workflow process. This way it 
is possible to constrain flexibility when desired. Based on the four notions of inheritance, we have 
developed inheritance preserving transformation rules for workflow processes [Aalst, Basten (2002)]. 
These rules correspond to design constructs that are often used in practice, namely choice, iteration, 
sequential composition, and parallel composition. If a workflow designer sticks to these rules, 
inheritance is guaranteed. The transformation rules can be used to avoid problems such as the 
“dynamic-change bug” [Ellis et al. (1995)], as mentioned above. Restricting change to the inheritance-
preserving transformation rules guarantees transfers without any of these problems. This way it is 
possible to migrate instances when desired. Moreover, the transformation rules can also be used to 
extract aggregate management information in case multiple versions of a workflow process are active. 
The inheritance notions allow for the definition of concepts such as a Greatest Common Divisor 
(GCD) and Least Common Multiple (LCM) of a set of variants/versions [Aalst, Basten (2002)]. These 
concepts can be used to create a condensed overview of the work-in-progress. Clearly, the dynamic-
change problem and the management-information problem are related. By solving the dynamic-change 
problem (i.e., instantly migrating all cases to a single version of the process), there is no need to 
construct aggregate management information because there is just one active version. However, ad-
hoc changes inevitably lead to multiple variants and, multiple active versions of a workflow process 
are typically unavoidable. 
The strong theoretical basis of WF-nets allows for powerful analysis techniques. Petri nets have been 
studied for four decades and there are dozens of Petri-net-based tools supporting the analysis and 
design of processes and systems. Extensions of WF-nets can be used for validation and performance 
analysis. For example, the first author has been involved in the development of ExSpect, a Petri-net-
based simulation tool which can be used for validation and performance analysis of workflows. 
ExSpect can be used for modelling and analysing workflow processes and it can interface with 
workflow management systems such as COSA and BPR-tools such as Protos. Note that validation and 
performance analysis through simulation is not unique for WF-nets. The real added value of the results 
on WF-nets is in verification. We provide techniques to verify the so-called soundness property 
introduced in [Aalst (1998)]. A workflow is sound if and only if, for any case, the process terminates 
properly, i.e., termination is guaranteed, there are no dangling references, and deadlock and livelock 
are absent. Soundness corresponds to well-known properties such as liveness and boundedness (of the 
short-circuited WF-net). Therefore, standard Petri-net-based analysis techniques and tools can be used 
to verify soundness. Nevertheless, for a complex WF-net it may be intractable to decide soundness. 
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For arbitrary WF-nets liveness and boundedness are decidable but also EXPSPACE-hard [Aalst 
(2000)]. Fortunately, for most of the contemporary workflow management systems, the soundness 
property can be checked in polynomial time using state-of-the-art analysis techniques. These 
techniques exploit the structure of the WF-net without exploring the state space. These so-called 
structural techniques also help identifying suspicious constructs which may endanger the correctness 
of a workflow. The techniques presented in [Aalst (2000)] also allow for the compositional 
verification of workflows, i.e., the correctness of a process can be decided by partitioning it into sound 
sub-processes.  
To support the application of the results mentioned, we have developed a Petri-net-based  workflow 
analyser called Woflan [Verbeek, Aalst (2000)]. Woflan is a workflow management system 
independent analysis tool which interfaces with Staffware, COSA, Protos, and Meteor. Woflan can be 
used for verification: It checks whether the WF-net is sound and generates detailed diagnostics if the 
WF-net is not sound. Moreover, Woflan supports the four inheritance notions mentioned: It can check 
whether one WF-net is a subclass of another WF-net. This enables intriguing possibilities. It is 
possible to check whether a workflow implemented using the workflow management system COSA 
realizes (i.e., is a subclass of) a workflow specified using the BPR-tool Protos. 
 
 
3.5 Workflow Evolution 
 
The workflow evolution approach was developed by Casati and colleagues [Casati (1998), Casati et al. 
(1998a)]. It uses the workflow language developed in the context of the WIDE project [Grefen and 
Pernici (1999)]. Tasks are atomic units of work that are represented by a name, a textual specification, 
a set of information items associated with the task, and a set of roles. Nesting of tasks is supported, 
i.e., each workflow schema can consist of a set of elements which are either (atomic) tasks or sub-
processes. Besides sub-processes, business transactions are another way to model complex processes. 
Business transactions define work that has to be executed in an atomic fashion. Within the WIDE 
project, transactional capabilities are developed to provide execution guarantees for business 
transactions. Tasks (and sub-processes) can be connected by fork and join connectors, which are 
marked with transition conditions.  
Based on this workflow language, workflow schemas, workflow instances, and workflow enactment 
rules are defined in a formal manner. Flexibility is provided by workflow evolution: Given a workflow 
instance with a workflow schema, migrate that workflow instance to a modified workflow schema. 
The approach presented in [Casati et al. (1998a)] uses specific modification operations, which are 
applied to the original workflow schema in order to modify it. A notion of compliance is introduced 
that formally defines which workflow instances can be migrated to the new workflow schema version, 
created by a set of modification operations, called workflow evolution primitives.  
Workflow evolution primitives are partitioned in declaration primitives and flow primitives.  While 
declaration primitives modify the declaration of workflow variables, flow primitives modify the 
control flow structure of workflow schemas. Typical declaration primitives are AddVar and 
RemoveVar (representing adding and removing a workflow variable, respectively), while AppendTask 
and RemoveTask are typical flow primitives to append a task to a given workflow schema and 
removing a given task from a workflow schema. By applying these primitives to workflow schemas, 
the global variables, the task structure, and the control flow constraints of workflow schemas can be 
altered in an evolutionary way.  Evolution means here that based on a given workflow schema by 
incrementally applying workflow evolution primitives the workflow schema is modified in an 
evolutionary way. 
Different policies to handle workflow evolution are discussed. Besides the most obvious ones 
(aborting all active workflow instances and completing all active ones with the original workflow 
schema), the progressive policies “migration to final workflow” and “migration to ad-hoc workflow” 
are proposed. In migration to final workflow, workflow instances that are compliant to the new 
workflow schema are migrated to that schema, possibly after compensation activities, in case they are 
available. If compensating activities are required to migrate a workflow but no compensating activities 
are present then the migration is not possible. In the migrate to ad-hoc workflow policy, the workflow 
administrator can choose to perform ad-hoc changes to the workflow instance, so that from an 



 20

application-specific point of view, the workflow instance can now be migrated to the new workflow 
schema. These operations can generally not be performed automatically, since the expertise and 
semantic knowledge of the workflow administrator is required to decide on the modifications to make 
the migration feasible. This interesting approach presents a formal model to specify workflow 
evolution in the presence of workflow schemas and multiple workflow instances, and different policies 
to handle workflow evolution from an organizational point of view are discussed. 
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Figure 10: Electronic Bookshop Workflow Schema expressed in WIDE Workflow Language. 
 
To illustrate the concepts, the sample workflow process is expressed in the WIDE workflow language 
in Figure 10. The workflow schema representation looks similar to the workflow graph notation as 
shown in Figure 8. However, there are a variety of differences: AND forks always require an 
additional circle, similar to a place in Petri net notation. OR forks associated with transition conditions 
are represented by diamonds, where each outgoing edge is marked with a predicate. Predicates use 
information variables, associated with previously executed tasks. Dedicated symbols mark start and 
end tasks.  
 
4. Evaluation of Approaches 
 
This section evaluates the approaches to modelling and executing workflows with respect to the 
requirements mentioned above by comparing them and stressing their strengths and weaknesses. Some 
general remarks are in order. Each of the approaches introduced has its own background and 
motivation. Hence, it is not surprising that each has its specific strengths and weaknesses. Clearly, 
there is no workflow modelling approach that copes best with the requirements of advanced workflow 
applications. However, by stressing the strengths and weaknesses of the approaches we will try to 
open the door for an integration of research results based on different approaches, as will be discussed 
below. While we do not aim at the best integrated workflow modelling approach, we show potentials 
for integrating the good parts of the proposed approaches, which could open new research directions in 
the near future.  
The requirements of advanced workflow management are used to evaluate the approaches introduced 
above. In particular, we discuss how the workflow perspectives are supported, and how the issues in 
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flexible workflow management and workflow analysis are handled by the approaches. The result of 
the evaluation is summarized in Table 1, which for each approach states the support for workflow 
flexibility and analysis features. As introduced in Section 2.2, flexibility issues include constrained 
flexibility, instance change and instance migration, represented in Table 1 by ConsFlex, InstChge, and 
InstMig, respectively. Workflow analysis contains the features validation (Valid), verification (Veri), 
and performance analysis (Perf). 
 
As detailed in Section 3.1, the Unified Modelling Language (UML) is tailored towards modelling 
structure and behaviour of object-oriented systems.  The structural aspects of systems are supported by 
a rich set of state-of-the-art formalisms. Hence, the information perspective is covered very well. 
Because nowadays workflow systems act in a software context that is built using object-oriented 
techniques, the operation perspective is covered well, too. The UML object constraint language can be 
used similarly to other logic-based formalisms in describing the functional perspective of workflows. 
However, there is no direct support for organizational modelling, so that the generic concepts provided 
by the UML have to be used to model organizational aspects. A set of UML specializations as outlined 
in [Rational (2000)] or the ongoing OMG work on workflow process definition [OMG (2000c)] may 
help to overcome this problem. The UML diagrams intended to model behaviour, esp. activity 
diagrams, may be used to describe the process perspective but have their limitations, both in terms of 
expressive power and lack of a precise semantics. Whereas the latter may even be tolerable regarding 
the process definition phase, it does not allow for any kind of in-depth evaluation. Simple system 
traces may be visualized using MSCs and help the expert to find errors, but a simulation-based 
evaluation that relies on an accepted automatic simulation standard is hard to implement with a 
notation lacking precise semantics.  At the present state, formal verification is not possible at all. For 
the same reasons, controlled and secure flexibility mechanisms are not feasible because there is no 
basis to evaluate whether the original and the changed schema or instance fulfil the required 
compatibility properties. 
 
The Object Coordination Net approach reduces the set of UML diagrams to those that have a clear and 
well-understood semantics, adds object-oriented high-level Petri nets for describing the process 
perspective and provides a guideline how to use all these diagrams for modelling all workflow 
perspectives in an overall consistent manner. Hence, the benefits of the UML for the information, 
operation and functional perspectives apply to OCoNs, too. The contract-based method to model 
structures enhances the modelling of  the organizational perspective and makes it especially useful for 
describing workflow systems that act across organizational boundaries, have to deal with outsourced 
parts and so on. Moreover, the usage of a Petri net formalism, which is seamlessly integrated into the 
UML diagram context, allows for an optimal integration of the process perspective into the more static 
workflow perspectives. Especially the explicit handling of resources in nets provides the link to the 
organizational perspective. This is one of the major benefits of the OcoN approach. The fact that the 
used Petri net formalism has a well-defined formal semantics [Giese (2001)] opens a number of 
possibilities regarding analysis and flexibility issues. Evaluation can be performed on the basis of 
simulating a specified organization for different resource instantiations, which even provides the basis 
for performance analysis. A more powerful simulator for OCoNs that supports the latter is currently 
under development. Verification is also an option, but not planned at the moment due to the high 
complexity of verifying high-level nets in the context of an object-oriented structural environment. 
Due to its overall design philosophy, flexibility in the sense of instance change is not possible with the 
OCoN approach. Constraint flexibility is supported on the level of contract-based abstraction and 
encapsulation by exchanging complete subsystems, i.e., organizational substructures as long as the 
new part supports the same interface regarding structure and behaviour as the replaced part. This 
strategy becomes even more flexible when utilizing inheritance for contracts as developed in [Giese 
(2001)].  Although this notion provides the basis for instance migration, too, the approach has not been 
developed into that direction so far. 
 
Workflow graphs have been developed with two goals in mind: To provide a mechanism to model and 
enact workflows in a flexible way and as a basis for the development of a flexible workflow 
management system based on object-oriented technology. Since workflows are represented as nested 
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graphs, the functional decomposition of workflows is supported very well. The process perspective is 
represented by control flow constraints between workflows and start conditions, which are evaluated 
at run time in order to decide on the execution of a particular workflow. The information perspective is 
addressed by business objects, which represent entities of the real world that are relevant from an 
application point of view. The operational perspective is covered by methods provided by business 
objects. As discussed above, legacy systems can be wrapped, i.e., provided with an interface that 
makes them look and behave like a business object. The organizational structure can be represented 
using role information, attached to workflow schemas. In terms of flexibility, workflow graphs 
provide powerful means for constrained flexibility. In particular, dynamic adaptations of workflow 
instances to workflow schemas is constrained to the cases, where the new workflow schema fits nicely 
with the workflow instance, formalized by the notion of valid mapping. Along the lines of this 
discussion, instance change is also facilitated by workflow graphs and the formalisms and 
functionality provided by WASA. Specifically, each workflow instance can be changed. If the future 
parts of a given workflow instance is modified then it is guaranteed that a valid mapping exists and, 
consequently, the instance change is allowed. If schema modifications are involved and all workflow 
instances controlled by a given workflow schema are going to be changed, valid mappings are 
computed for all active workflow instances. For all instances for which such a mapping can be found, 
the instance can be migrated to the new workflow schema. As a result, workflow graphs provide good 
support for these flexibility issues. Analysis properties are rather weak in workflow graphs. There are 
structural properties of workflow schemas, which make sure syntactic properties are guaranteed, for 
instance the absence of loops and compliance of control flow and data flow. The complete consistency 
properties of workflow schemas can be found in [Weske (2000)]. However, verification techniques are 
not present, and performance analysis features are also not supported directly; they rather have to be 
developed on top of the existing workflow graph formalism. 
 
WF-nets focus on control flow, i.e., the process perspective, and do not address the other perspectives. 
As a result, issues related to flexibility and analysis can be dealt with in a concise and rigorous 
manner. Clearly, WF-nets are well equipped to represent workflow processes. WF-nets are based on 
Petri nets and therefore build on a solid and highly expressive formalism. WF-nets allow for the basic 
routing constructs identified by the WfMC [WfMC (1997)], i.e., sequential, parallel, conditional, and 
iterative routing. In addition more advanced constructs involving states and mixtures of choice and 
synchronization are supported [Aalst, Hofstede et al. (2000)]. The basic Petri net model has been 
extended with time, data (colour), and hierarchy [Jensen (1992)]. Clearly WF-nets can be extended in 
this fashion to directly support the functional and information perspectives. These extensions can also 
be used to model the organization and operation perspectives.  
The development of WF-nets was triggered by the lack of verification capabilities in contemporary 
workflow management systems [Aalst (1998)]. Clearly, WF-nets offer powerful verification 
techniques based on state-of-the-art Petri-net-based analysis routines. Safety and liveness properties 
are relevant for workflow processes and have been studied in the context of Petri nets for four decades. 
Tools such as Woflan show that these results can be applied while using commercial workflow 
management systems by translating workflow specifications into WF-nets [Verbeek and Aalst (2000)]. 
WF-nets do not offer direct support for validation and performance analysis. However, it is quite easy 
to extend WF-nets and the associated tools to support validation and performance analysis. For 
example, by adding stochastic delays it is possible to use the results for (Generalized) Stochastic Petri 
nets (GSPN) and enable Markovian performance analysis. It is also possible to use simulation. Tools 
such as ExSpect demonstrate that Petri-net-based simulators can be used to analyse the performance of 
workflow processes.  
WF-nets support workflow flexibility by offering four inheritance notions [Aalst, Basten (2002)]. The 
inheritance notions have been equipped with inheritance-preserving transformation rules and 
migration rules. The inheritance-preserving transformation rules can be used to limit change such that 
certain dynamic properties are preserved. This way WF-nets offer direct support for constraining 
flexibility. The migration rules allow for instance migration as long as there is a subclass-superclass 
relation between the old and the new workflow process. WF-nets and the four inheritance notions do 
not directly support instance change. However, the theoretical results obtained for WF-nets provide a 
good basis for supporting and controlling on-the-fly changes of a workflow instance. 
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Table 1: Strength and Weaknesses of Modelling Approaches 

 
 Wf perspectives Flexibility Analysis 
 Fct Proc Org Inf Op ConsFlex InstChge InstMig Valid Veri Perf 

UML + + 0 ++ + 0 - 0 0 - 0 
OCoN + ++ + ++ + + - 0 + 0 0 

Wf graphs + + 0 + + + + ++ + - 0 
WF-nets 0 ++ 0 0 0 ++ 0 + 0 ++ 0 
Evol. Wf + ++ + + 0 ++ + ++ + 0 0 

Note: ++: designed for, + supported, 0 supported through known extensions, - no immediate support 
 

The Workflow Evolution approach presented in Casati et al (1998a) is based on a workflow language 
that supports the functional perspective by tasks and multi-level nesting of complex workflow. The 
process perspective is covered well, since control flow constraints including join and fork connectors 
as well as transition conditions are provided. Information modelling is based on so called information 
variables that are accessed via forms. Forms present a nice way to restrict access to variables at certain 
states during the process execution. Documents are additional information elements that cannot 
directly be controlled by the workflow management system at hand; they can be regarded as external 
information that, however, is relevant for the workflow process. Documents and forms can be grouped 
to folders. While each task is associated with information elements, data flow is not immediately 
represented. If parallel strands of executions access the same information variable or the same 
document then race conditions may arise, which have to be handled by the WIDE transaction 
mechanism. However, data variables managed by a database may use the database’s own transaction 
processing capabilities.  
Since the approach focuses on a conceptual specification of workflow systems, the operational 
perspective is not adequately addressed. However, operational details could be supported by known 
extensions. To discuss the capabilities of that approach with respect to flexibility, we mention that 
constraint flexibility is supported very well. In fact, the approach offers formal correctness criteria 
which rule if and when a given workflow instance can be migrated to a new workflow schema, which 
evolved from the original workflow schema by applying a set of workflow evolution primitives. By a 
clear separation of workflow schemas and workflow instances and by the feasibility of ad-hoc 
modifications of workflow instances, the instance change property is supported well. The 
abovementioned formal rules concerning workflow instance migration, the instance migration 
property is also supported well. Validation is provided with respect to properties of workflow 
schemas. Verification is mainly defined in connection with evolutionary changes of workflows. For 
additional information on the flexibility of the proposed approach, the reader is referred to the original 
literature. 
 
 
5. Conclusions 
 
This paper describes and analyses contemporary approaches to workflow modelling as well as the 
workflow modelling support provided by the Unified Modelling Language with respect to the 
requirements of advanced workflow management. The evaluation is based on a set of widely 
acknowledged workflow perspectives, as well as advanced workflow modelling features in the areas 
of flexibility and analysis of workflows. As discussed above, each approach has its specific strengths 
and weaknesses. While UML has its main strength in structural object modelling, OCoNs add process 
modelling and validation features to UML structure diagrams. Workflow graphs were developed with 
flexibility in mind; hence, they provide good support for the flexibility aspects mentioned, while 
analysis features of Workflow graphs are rather weak. WF-nets make available to workflow 
management powerful analysis methods from Petri net theory, and they are well equipped to support 
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complex control flow structures and—through the use of inheritance of behaviour—support flexibility 
well, while data modelling and organizational modelling is not their main scope. Workflow evolution 
deals with incremental modifications to existing workflow schemas, and it investigates the formal 
properties of these changes. 
To conclude, we like to point out some general principles of the object-orientation paradigm that can 
be regarded as the basics behind the approaches. In doing this, we have two goals in mind: Firstly to 
find commonalities and differences of the approaches and, secondly, to open the door for future work 
in advanced workflow management. Obviously, the UML is strongly based on object-oriented 
principles, such as inheritance. However, inheritance typically only applies to inheritance of structure, 
not of behaviour. In the workflow context where processes are in the centre of attention, however, 
inheritance of behaviour is a very important and helpful feature. This feature is formalized by WF-nets 
where a variety of application areas are created by inheritance and sub-typing of workflows, for 
instance migration of workflows to more specific workflow schemas. We envision that inheritance of 
behaviour can also be combined with other approaches. Probably the most obvious way of doing this 
is enhancing the notion of refinement of Petri nets in the OCoN approach with a notion of inheritance, 
which not only works on state-machine-like interface protocols but also on the more expressive nets 
used in this approach. Due to the strong connection of OCoNs and structure diagrams of the UML, 
such an approach would improve the development, maintenance, and usability of real-world workflow 
applications.  
The clear separation of schema and instance information is another strong feature of the object-
orientation paradigm. In particular, schema information describes the common properties of a set of 
similar real-world objects, typically represented by a class. When it comes to workflow flexibility, in 
particular the modification of workflow schemas during run-time, it is important that modifications of 
workflow schemas can be performed easily with little effort. The concept of meta-objects helps here. 
In particular, objects, which specify structure, can easily be modified. As discussed above, this 
concept is used in the Workflow graph formalism, where workflow schemas are represented by 
workflow schema objects, such that schema modifications can be performed by value changes (to 
workflow schema objects). In a second step, the set of workflow instances, which rely on the modified 
schema, are investigated to decide about correct adaptations. This approach allows to modify many 
workflows in consequence of the modification of a workflow schema. While this technique is used in 
Workflow graphs, it can also be used in the other formalisms discussed in this paper, to gain good 
support for workflow flexibility.  
The next aspect of object-oriented modelling that we like to raise is overloading and late binding. 
Overloading represents the fact that a single method name is implemented many times, and late 
binding adds the run time aspect to overloading in the sense that only at run-time the system decides 
on the particular implementation. While these concepts are so far not used in the workflow modelling 
approaches mentioned, they can in fact be incorporated, as the following discussion shows: Assume 
the structure of a given application process depends on the client for which the process is being 
executed or, more generally, on a data object manipulated during the process. In this case, the 
implementation of a sub-workflow activity can be resolved late, i.e., the sub-workflow schema is 
bound only during run-time to the workflow instance, making use of late binding in the workflow 
context. For instance, assume the processing of an insurance claim, where a very good customer (e.g., 
a large company) claims the loss of a rather inexpensive part. In order not to lose this customer, you 
may want to process that claim very fast with little or no additional information. If a private customer 
submits the same claim, it would have to undergo complex checks before the loss is compensated for. 
Hence, different implementations of the checking activity can be found in this case. We believe that 
this form of late binding in the workflow context is valuable for a wide range of applications in 
business settings. Just like overloading and late binding in OOD improves development and 
maintenance of programs, it may also improve modelling and maintenance of workflow applications 
considerably. 
Finally, we mention that there is work in workflow exception handling, e.g., [Casati et al (1998b)]. 
The issue of designing exceptions, which can be statically foreseen, is tackled. The set of foreseen 
exceptions, specified as patterns, are maintained in a pattern catalogue. Sample patterns are 
Remainder, Document Revision, and Termination. Patterns are specified using template structures as 
well as guidelines how to use the pattern. There is tool support for specifying exception patterns and 
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for instantiating them in the context of particular workflow instances. Exception patterns can be 
regarded as application-oriented and often application-specific partial workflows, which are used to 
handle foreseen situations during workflow executions. This work is rather generic and independent 
from the underlying workflow language; in particular, it can be expected that it can be used in the 
other workflow languages investigated in this paper as an exception handling facility. 
 
 
References  
 
Van der Aalst, W.M.P. (1998): The Application of Petri nets to Workflow Management.  

The Journal of Circuits, Systems and Computers, 8(1):21-66 

Van der Aalst, W.M.P. (2000): Workflow Verification: Finding Control-Flow Errors using Petri-net-based Techniques.  In 
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer 
Science, pages 161-183. Springer, Berlin  

Van der Aalst, W.M.P., Basten, T. (2002): Inheritance of Workflows: An Approach to Tackling Problems Related to Change. 
Theoretical Computing Science, 270(1-2):125-203 

Van der Aalst, W.M.P., Jablonski, S. (2000): Dealing with Workflow Change: Identification of Issues and Solutions. 
International Journal of Computer Systems, Science, and Engineering, 15(5):267-276 

Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., and Barros, A.P. (2000):  Advanced Workflow Patterns. In 
O. Etzion and P. Scheuermann, editors, 7th International Conference on Cooperative Information Systems (CoopIS 
2000), volume 1901 of Lecture Notes in Computer Science, pages 18-29. Springer, Berlin 

Brauer, W., W. Reisig, Rozenberg, G., Editors (1987): Petri nets: Central Models (I) / Applications (II), Vol.254/255 of 
Lecture Notes in Computer Science. Springer, Berlin 

Casati, F., Ceri, S., Pernici, B., Pozzi, G. (1998a): Workflow Evolution. Data and Knowledge Engineering,  24(3): 211-238. 

Casati, F. (1998): Models, Semantics, and Formal Methods for the design of Workflows and their Exceptions. Ph.D. thesis 
Politecnico di Milano  

Casati, F., Fugini, M.G., Mirbel, I. (1998b): An Environment for Designing Exceptions in Workflows.   Proc CAiSE'98. pp 
139-157. Springer Lecture Notes in Computer Science 1413. Berlin: Springer 

Ellis, C.A. (1979): Information Control Nets: A Mathematical Model of Office Information Flow. In Proceedings of the 
Conference on Simulation, Measurement and Modelling of Computer Systems. Boulder, Colorado, pages 225-240. 
ACM Press 

Ellis, C.A.,  Keddara, K. and Rozenberg G. (1995): Dynamic change within workflow systems. In N. Comstock and C.A. 
Ellis, editors, Conf. on Organizational Computing Systems, pages 10 - 21. ACM SIGOIS. Milpitas: ACM 

Georgakopoulos, D., Hornick, M., Sheth, A. (1995): An Overview of Workflow Management: From Process Modelling to 
Workflow Automation Infrastructure. Distributed and Parallel Databases, 3:119-153 

Giese, H. (2001): Object-Oriented Design and Architecture for Distributed Systems. Doctoral Dissertation. University of 
Münster 

Giese H.,  Graf  J., Wirtz, G. (1999): Closing the Gap Between Object-Oriented Modelling of Structure and Behaviour. In: 
Proc. of  UML-99  The 2nd Intern. Conf. on The Unified Modelling Language  

Giese, H., Wirtz, G.  (2000): Early Evaluation of Design Options for Distributed Systems. In: Proceedings International 
Symposium on Software Engineering for Parallel and Distributed Systems (PDSE), June 2000, Limerick (Ireland), IEEE 
Press 

Grefen, P., Pernici, B., Sanchez, G. (1999): Database Support for Workflow Management: the WIDE Project. Kluwer 
Academic Publishers, 1999. 

Hammer, M., Champy, J. (1994): Business Reengineering, Frankfurt, New York (2nd) 

http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/p53.pdf


 26

Harel, D. (1987): Statecharts: A Visual Formalism for complex systems. Science of Computer Programming 3 (8): 231 – 274 

Hruby, P. (1998): Specification of Workflow Management Systems with UML. In: Proceedings of the OOPSLA’96 
Workshop on Business Object Design and Implementation, San Jose 

IBM (1999): IBM MQSeries Workflow: Concepts and Architecture, Version 3.2.   Publication No GH12-6285-01 

Jablonski, S., Bussler, C. (1996): Workflow-Management: Modelling Concepts, Architecture and   Implementation.  
International Thomson Computer Press 

Jensen, K. (1992): Coloured Petri nets. Basic Concepts, Analysis Methods and Practical Use, EATCS monographs on 
Theoretical Computer Science, Springer, Berlin 

Leymann, F., Altenhuber, W. (1994): Managing Business Processes as an Information Resource. IBM Systems Journal 33, 
pages 326-347 

Meyer, B. (1997): Object-Oriented Software Construction. Prentice Hall, 1997 (2nd) 

OMG (01/2000):  Workflow Resource Assignment Interfaces (RAI) – Request for Proposal. OMG-document bom/2000-01-
03, Framingham 

OMG (11/2000): Organizational Structure Facility (Revised Submission by 2AB Inc., Gazebo Software Solutions Inc. 
Genesys Software Inc.). OMG Business Object Domain Task Force, OMG-document bom/2000-11-05, Needham 

OMG (12/2000): UML Extensions for Workflow Process Definition – Request for Proposal. OMG-document bom/2000-12-
11, Needham 

Reichert, M., Dadam, P. (1998): Supporting Dynamic Changes of Workflows Without Loosing Control. Journal of Intelligent 
Information Systems, Special Issue on Workflow and Process Management, Vol. 10, No. 2 

Rumbaugh, J., Jacobson, I., Booch, G. (1999): The Unified Modelling Language Reference Manual. Reading, MA: Addison-
Wesley 

Rational (2000): Business Modelling with the UML and Rational Suite AnalystStudio. A Rational Inc. Software White Paper 

Sheth, A.P., van der Aalst, W.M.P., Arpinar, I.B. (1999): Processes Driving the Networked Economy. IEEE Concurrency 
7(3): 18-31 

Verbeek, H.W.M., Van der Aalst, W.M.P. (2000): Woflan 2.0: A Petri-net-based Workflow Diagnosis Tool. In M. Nielsen 
and D. Simpson, editors, Application and Theory of Petri nets 2000, volume 1825 of Lecture Notes in Computer 
Science, pages 475-484.  Springer, Berlin 

Weske, M., Vossen, G. (1998): Workflow Languages. In: P. Bernus, K. Mertins, G. Schmidt (editors): Handbook on 
Architectures of Information Systems. (International Handbooks on Information Systems), pages 359-379. Springer, 
Berlin 

Weske, M. (2000): Workflow Management: Systems: Formal Foundation, Conceptual Design, Implementation Aspects. 
Habilitation Thesis. University of Münster 

Weske, M. (2001): Formal Foundation and Conceptual Design of Dynamic Adaptations in a Workflow Management System. 
Accepted for: Minitrack Internet and Workflow Automation: Technical and Managerial Issues. 34th Hawaii 
International Conference on System Sciences (HICSS-34). 

Wiegert, O. (1998): Business Process Modelling and Workflow Definition with UML – Deficiencies and Actions to Improve. 
Presentation at the OMG Meeting, Manchester, 1998-03-31 

Wirtz, G., Graf, J., Giese, H. (1997): Ruling the Behaviour of Distributed Software Components. In: Proceedings of the 
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), June 1997, Las 
Vegas (USA); CSREA Press 

Wirtz, G., Weske, M., Giese, H. (2000): Extending UML with Workflow Modelling Capabilities. In Proc. of CoopIS-2000, 
7th Intern. Conf. on Cooperative Information Systems (O. Etzion and P. Scheuermann, eds.), vol. 1901 of  LNCS,  
Springer, pages 30-41 



 27

Wodtke, D., Weissenfels, J., Weikum, G., Kotz Dittrich, A. (1996): The Mentor Project: Steps Towards Enterprise-Wide 
Workflow Management. In Proc. 12th IEEE International Conference on Data Engineering (1996), pages 556-565 

Workflow Management Coalition, WfMC (1997). Workflow Handbook. John Wiley in association with Workflow 
Management Coalition 


	Wil M.P. van der Aalst
	w.m.p.v.d.aalst@tm.tue.nl
	Mathias Weske
	
	
	
	
	Figure 5: Ordering a book from an abstract Users view
	Figure 6: The detailed handling of an order in the BookShop
	Figure 7: Processing the query at the Publisher site using the ShipmentDpt protocol

	InstChge


	References



