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Abstract: As supply chains become more dynamic it is important to be able to model them formally as 
business processes. In particular, there is a need for a sense and respond capability to react to events in a 
real-time manner. In this paper, we propose time Petri nets as a formalism for doing so.  Hence, we 
describe seven basic patterns that are used to capture modeling concepts that arise commonly in supply 
chains.  Next, we show how to combine these patterns to build a complete Petri net and analyze it using 
reachability analysis, dependency graphs and simulation. 
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1. Introduction 

The pressures of global competition and the need for extensive inter-organizational collaboration are 
forcing companies to streamline their supply chains and make them agile, flexible and responsive. 
Consequently, a supply chain must be able to handle large numbers of events, both expected and 
unexpected. The unexpected events, also called exceptions, typically arise because there is usually a gap 
between supply chain planning and execution [4]. Supply chain planning sets a target that can be achieved 
based on a given set of constraints at a given time. In a dynamic supply chain environment, the constraints 
are always changing, so exceptions or deviations from plans occur almost regularly.  Examples of 
exceptions are inaccurate forecast, product out-of-stock, shipment delayed etc., and they are costly. 
Moreover, events tend to propagate in collaborative supply chains across partners, resulting in the well-
known bullwhip effect [8]. Such risks have given rise to the new field of Supply Chain Event 
Management (SCEM).  The goal of SCEM is to introduce a control mechanism for managing events, in 
particular, exceptions, and responding to them dynamically.  

A supply chain event is “any individual outcome (or non-outcome) of a supply chain cycle, (sub) process, 
activity, or task” [3]. Events are correlated with each other to form a “cloud” of events; some events have 
significant consequences and therefore they must be monitored closely, while others are of lesser 
importance. The critical problem lies in extracting the significant events and responding to them in real-
time.  Doing so requires an ability to monitor them proactively, simulate them to help decision-making, 
and use them to control and measure business processes [10].  In this paper, we present a methodology 
that uses a Petri net approach to formulating supply chain event rules and analyzing the cause-effect 
relationships between events.  

Petri-nets are a powerful modeling technique for problems involving coordination in a variety of domains.  
A variant of Petri-nets called time Petri-nets allows us to model time intervals also.  Considering the 
dynamic characteristic of supply chain events, such Petri nets are useful for describing the time 
constraints associated with events. Through this approach, we can detect events, perform cause-effect 
analysis, forecast their consequences and prioritize them. More importantly, this approach can be used to 
create an event engine that can monitor the status of a supply chain and intelligently react to events.  



2. Overview of Supply Chain Events 

When supply chain partners are integrated, events at one partner may have impact on other partners, and 
their responses to these events may cause a storm of events. Therefore, causality analysis is the key to 
controlling such a storm. Our analysis begins with events and event rules. 

In general, events in an organization can come from the following three sources: (1) Task status related 
events, such as the end of a task or the beginning of a task. These events are usually regular; (2) Events 
produced by a task: for example, events “stock partially available” or "out of stock" are the result of the 
“check availability” task; and, (3) External events which may arrive from other supply chain partners or 
from the external environment, e.g., new order arrival, inbound shipment delay, import policy change etc.  

These types of events are captured directly during a process, and called simple or primitive events as 
opposed to composite events. Composite events are derived from simple events by event aggregation. A 
composite event A is deduced when a group of simple events occurs [9]. A group of simple events may 
together reveal potential problems. For example, if a product is out of stock once in a month, perhaps it is 
quite normal and an alarm should not be generated, but if this stock out happens two times in a week, 
then it may reflect some underlying problems in the product supply chain and this should be recognized 
by generating an event. As another example, a group of stock trading events, related by accounts, timing 
and other data, taken together, may constitute a violation of a policy or regulations [9]. Event aggregation 
is a mechanism to filter simple events and extract meaningful information from them by setting up alarms 
in advance and reacting to possible crises.   

Thus, event aggregation extracts value from a management point of view out of trivial and unorganized 
simple events. In order to achieve this objective, it is important to recognize event patterns and set up 
aggregation rules. Besides aggregation rules, business rules must also be considered. Business rules 
capture the causal relationships between events. For example, if an order is delayed for more than time T, 
then it is automatically cancelled. Therefore, we need a rule to express the idea that the event “order 
delayed by T” is the cause of event “order cancelled”.  

Moreover, a supply chain is viewed as a series of synchronous and asynchronous interactions among 
trading partners. Usually, when an event, particularly an exception, happens, the trading partner 
responsible for it may react to this event within a reasonable resolution time to resolve it.   For instance, 
suppose an order is delayed for delivery. If the delay is within an acceptable range specified by the 
customer, the customer is notified of the delay and the order is processed. However, if the delay exceeds 
the acceptable tolerance (also called expiration time), the order should be automatically cancelled, and 
hence, the event “order delay” is not relevant in this case. On the other hand, a series of new actions arises 
because of this new event, such as canceling the order, removing any reservations made, refunding any 
payments, etc. Therefore, to model events and event rules precisely, our modeling approach should be 
able to capture such temporal constraints correctly.  

3. Petri nets Preliminaries 

A Petri net is a directed graph consisting two kinds of nodes called places and transitions. In general, 
places are drawn as circles and transitions as boxes or bars. Directed arcs connect transitions and places 
either from a transition to a place or from a place to a transition. Arcs are labeled with positive integers as 
their weight (the default weight is 1). Places may contain tokens. In Figure 1, one token is represented by 
a black dot in place p1. A marking is denoted by a vector M, where its pth element M(p) is the number of 
tokens in place p. The firing rules of Petri nets are [11]: 

(1) A transition t is enabled if each input place of t contains at least w(p,t) tokens, where w(p,t) is the 
weight of the arc from p to t. (By default, w(p,t) is 1.) 

(2) The firing of an enabled transition t removes w(p,t) tokens from each input place p of t, and adds 
w(t,p) tokens to each output place p of t, where w(t,p) is the weight on arc from t to p. 



There is another special type of arc called the inhibitor arc with a small circle rather than arrow at the end. 
An inhibitor from a place to a transition prohibits the transition from being enabled, and thus firing, if 
there is a token in the place. An example of an inhibitor arc will come later. 

 
The above classical Petri nets can be extended by associating a time interval [I1, I2] with each transition, 
where I1 (I2) is the minimum (maximum) time the transition must wait for before firing after it is enabled. 
Such a Petri net is known as Time Petri net (TPN) [12]. If I1 = I2, we just associate one time value with 
each transition. If the interval is not specified, we assume I1 = I2 = 0. Moreover, tokens can be tagged with 
data values (or a color) to create a colored Petri net (CPN) [7]. For example, we use tokens of different 
colors (or values) for each order or product. In a CPN the arcs are also labeled with colors. For example, 
in Figure 1, two tokens colored “q” are consumed if transition t1 fires. The fired transition t1 will put one 
token colored “r” in place p2. Moreover, if there are two tokens colored “q” continuously existing in 
place p1, transition t1 will fire no later than time 4. If there is still a token colored “q” remaining in place 
p1 after time 4 (relative to arrival of this token), transition t2 will fire shortly after time 4 (denoted as 4+∆, 
where ∆ is a very short time period, close to 0) and before or at time 8. Analysis techniques for TPNs are 
discussed in [1,5,12].   

4. Event patterns to model Supply Chain Rules 

We turn now to develop the techniques to formulate event related rules as Petri net structures. In most 
cases, events are not only the triggers but also consequences of supply chain tasks.  Therefore, it is quite 
natural to model events as places of a Petri net.  Thus, the terms events and places are used 
interchangeably. Moreover, time Petri nets offer an attractive choice for modeling the dynamic aspect in 
supply chains. Next we discuss the seven patterns mentioned before.  

Pattern 1 (cause-result pattern): A simple cause-result pattern is the most basic pattern for describing 
event relationships.  It shows that event e1 can cause event e2 within a time period [I1, I2].   

Example 1: If an order is delayed (e1), contact customer (e2) before time T1.  

 
Figure 2 shows the time Petri net model of this example. Note that Order numbers can be considered as a 
color set here, i.e., each order has a different color.  Transition t1 must fire within time T1 after it is 
enabled. Transition t1 corresponds to the action “notify customer”.     

Pattern 2 (Repeat_cause-one_effect pattern): This pattern concerns the case where multiple occurrences 
of one event within a certain time period cause another single event to occur.   

Example 2:  If product s is out of stock (e1) more than once within period T2, contact supply chain 
manager (e2). (Note, s is the product ID)   

This example introduces the notion of expiration time of events. If an event is not consumed (in this case, 
event e1) by a rule, it may expire after a time interval. The Petri net model in Figure 3 represents the time 
constraints pertaining to these events. Whenever tokens arrive at place e′1 and e″1, (as a result of event e1) 
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transition t2 and t3 are enabled, but they cannot fire immediately. When there are two tokens arriving in 
place e′1 and e″1, transition t1 fires immediately and produces the event e2, “Notify SC Manager”. After 
transition t1 fires, two tokens are returned to place e′1, because event e′1 may be used by other rules. 
However, tokens in place e″1 are consumed, so transition t1 cannot fire repeatedly. Since transition firing 
takes no time, t3 is still continuously enabled. If a token stays in place e′1 for time t2 after its arrival, t3 
fires and event e1 expires.  Thus, it is possible that event e′1 expires without t1 firing, if there is only one 
token arriving within interval t2. Simultaneously, transition t2 fires so that e″1 expires. 

 
Pattern 3 (Inclusive choice): The need for this construct arises when multiple, alternative events can 
occur based on temporal conditions.  Example 3 illustrates this pattern.  

Example 3:  If an order, with lead time L2, has not been shipped (i.e., not consumed by some other rule) 
within time L2 after it is confirmed (e0), the order is treated as delayed (e1); however, if an order is 
delayed by more than time T3, it is treated as undeliverable and cancelled (e2). (Perhaps the customer 
does not want it if the delay is more than T3.)  

 
When an order is confirmed (see Figure 4), a token is placed in place e′0 and e″0 as well. Transitions t1, t2, 
and t3 are enabled but do not fire at that moment.  If this token is consumed by the shipment transition t4 
before time L2 (relative to its arrival), transitions t1 and t3 are disabled, but transition t2 will fire at time 
L2+T3+∆ after the token arrival.  Otherwise, if during the time interval [L2, L2+T3], this token remains 
in place e′0, transition t1 will fire. After transition t1 fires, this token is immediately brought back to e′0 
because some other rules (like t3) may use it later. If there is still a token in e′0 after L2+T3, transition t3 
fires and produces event “order cancelled”. Thus, the token in e′0 is consumed. In general, if this rule is 
triggered, it can produce two possible results: order delayed and order cancelled, or only order delayed, 
depending upon the temporal relationships. One can see this rule actually has complex semantics, yet its 
Petri net model offers a relatively simple way for describing such temporal relationships. 

Other patterns: Four other patterns are summarized, each with a brief description and an example, in 
Table 1. They represent other possibilities for modeling event relationships in supply chains.   

Figure 3: Petri net of Example 2 
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Figure 4: Petri net model of an order process 
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5. Analysis, Discussion and Conclusions 

We have developed an approach for modeling event relationships in a supply chain through Petri-nets.  
The formalism consists of 7 basic patterns that capture cause-effect relationships in Petri-nets, where the 
places or circles represent events and the transitions or boxes represent the (possibly delayed) effect of the 
events. The delay is captured by the time intervals on the transition boxes. Although these patterns are not 
exhaustive, they are sufficient for most situations and this formal approach, based on Petri-nets, allows 
new patterns to be constructed when necessary. Moreover, these patterns can be combined together as 
building blocks to create more complex Petri-nets.  As real world events occur, tokens are placed to 
represent them.  Then, we can use Petri-net algorithms for reachability analysis to predict the likely 
consequences of these events and build cause-effect dependency graphs.  In one supply chain model 
created with 14 patterns, we were able to model many intricate interactions between different orders.  For 
instance, product A was out of stock with the distributor and a rush supply order was issued, but this rush 
supply order was rejected by the first alternative vendor because of a production delay.  Then another 
vendor was contacted; nevertheless, order O1 became too late, and was eventually cancelled.  However, 
order O2 shipped on time.  By modifying the scenario slightly, it was possible to ship both orders on time. 
Moreover, by focusing the analysis on the exception orders only, the complexity can be controlled.   

Pattern name Example 

Pattern 4: 1-of-N causes – single effect: 
Alternative causes produce one effect. Here, if 
the order is delayed by more than T4 or 
rejected by one vendor, then alternative 
vendors are contacted.  

Pattern 5: 1 cause –  N results: One cause can 
lead to multiple concurrent effects. If the order 
is delayed, then the customer is notified and 
the shipment rescheduled. 

 
Pattern 6: N causes – 1 result: Multiple causes 
in conjunction can produce one result. If the 
shipper of a confirmed order (e2) is not 
available (e1), find another shipper (e3). 

  

Pattern 7: Non-occurrence of an event: A result 
is produced if an event does not occur. In this 
example, if the out-of-stock event does not 
occur (i.e., there is no token in e2), then t1 can 
fire upon an order arrival. Notice the inhibitor 
arc from e2 to t1. e2 expires after a time T2.  

 

Table 1: Patterns 4, 5, 6 and 7 (name, description and example for each pattern) 

Petri net simulation offers another mature technique for analyzing the Petri net models.  There are many 
available simulation software packages that facilitate the use of simulation for decision-making. By 
adjusting time intervals associated with transitions and other parameter values, it is possible to perform 
various types of scenario analyses. Moreover, we can simulate the effect of proposed changes in supply 
chains by adding new events or event rules.   
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Related research for detailed modeling of supply chains is still limited.  In Casati, et al. [6], Time Petri 
nets are integrated into databases and used for semantic mapping of events in the computer networks 
domain.  The transitions are associated with guard conditions expressed as database constraints.  It is an 
interesting approach with possible applications in supply chains, but harder to implement and verify.  
Other approaches are discussed in [3, 9].  In addition, patterns have been studied systematically in the 
context of workflows [2]. These workflow patterns are somewhat similar to supply chain event patterns, 
but they do not address the complex temporal constraints involved in supply chain event patterns. 

In summary, as supply chains become more tightly integrated across partners, it is becoming increasingly 
important to respond in real-time to events (called sense-and-respond capability).  We described a novel 
approach to model event relationships in a supply chain using Petri-net patterns that can be combined to 
create a complete Petri-net.  The Petri-net can be verified for correctness and algorithms can be used to 
perform cause effect analysis.   
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