
Using Genetic Algorithms to Mine Process
Models: Representation, Operators and Results

A.K. Alves de Medeiros, A.J.M.M. Weijters and W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{a.k.medeiros, a.j.m.m.weijters, w.m.p.v.d.aalst}@tm.tue.nl

Abstract. The topic of process mining has attracted the attention of
both researchers and tool vendors in the Business Process Management
(BPM) space. The goal of process mining is to discover process models
from event logs, i.e., events logged by some information system are used
to extract information about activities and their causal relations. Several
algorithms have been proposed for process mining. Many of these algo-
rithms cannot deal with concurrency. Other typical problems are the
presence of duplicate activities, hidden activities, non-free-choice con-
structs, etc. In addition, real-life logs contain noise (e.g., exceptions or
incorrectly logged events) and are typically incomplete (i.e., the event
logs contain only a fragment of all possible behaviors). To tackle these
problems we propose a completely new approach based on genetic algo-
rithms. In this paper, we present a new process representation, a fitness
measure and the genetic operators used in a genetic algorithm to mine
process models. Our focus is on the use of the genetic algorithm for min-
ing noisy event logs. Additionally, in the appendix we elaborate on the
relation between Petri nets and this representation and show that genetic
algorithms can be used to discover Petri net models from event logs.

Keywords: process mining, genetic mining, genetic algorithms.

1 Introduction

Buzzwords such as Business Process Intelligence (BPI) and Business Activ-
ity Monitoring (BAM) illustrate the practical interest in techniques to extract
knowledge from the information recorded by today’s information systems. Most
information systems support some form of logging. For example, Enterprise Re-
source Planning (ERP) systems such as SAP R/3, PeopleSoft, Oracle, JD Ed-
wards, etc. log transactions at various levels. Any Workflow Management (WfM)
system records audit trails for individual cases. The Sarbanes-Oxley act is forcing
organizations to log even more information. The availability of this information
triggered the need for process mining techniques that analyze event logs.

The goal of process mining is to extract information about processes from
transaction logs [5]. We assume that it is possible to record events such that
(i) each event refers to an activity (i.e., a well-defined step in the process), (ii)
each event refers to a case (i.e., a process instance), (iii) each event can have
a performer also referred to as originator (the actor executing or initiating the
activity), and (iv) events can have a timestamp and are totally ordered. Table 1
shows an example of a log involving 18 events and 8 activities. In addition to



the information shown in this table, some event logs contain more information
on the case itself, i.e., data elements referring to properties of the case.

case id activity id originator timestamp

case 1 activity A John 9-3-2004:15.01
case 2 activity A John 9-3-2004:15.12
case 3 activity A Sue 9-3-2004:16.03
case 3 activity D Carol 9-3-2004:16.07
case 1 activity B Mike 9-3-2004:18.25
case 1 activity H John 10-3-2004:9.23
case 2 activity C Mike 10-3-2004:10.34
case 4 activity A Sue 10-3-2004:10.35
case 2 activity H John 10-3-2004:12.34
case 3 activity E Pete 10-3-2004:12.50
case 3 activity F Carol 11-3-2004:10.12
case 4 activity D Pete 11-3-2004:10.14
case 3 activity G Sue 11-3-2004:10.44
case 3 activity H Pete 11-3-2004:11.03
case 4 activity F Sue 11-3-2004:11.18
case 4 activity E Clare 11-3-2004:12.22
case 4 activity G Mike 11-3-2004:14.34
case 4 activity H Clare 11-3-2004:14.38

Table 1. An event log (audit trail).

Event logs such as the one shown in Table 1 are used as the starting point
for mining. We distinguish three different mining perspectives: (1) the process
perspective, (2) the organizational perspective and (3) the case perspective. The
process perspective focuses on the control-flow, i.e., the ordering of activities.
The goal of mining this perspective is to find a good characterization of all
possible paths, expressed in terms of a process model (e.g., expressed in terms
of a Petri net [38] or Event-driven Process Chain (EPC) [23, 24]). The orga-
nizational perspective focuses on the originator field, i.e., which performers are
involved and how they are related. The goal is to either structure the orga-
nization by classifying people in terms of roles and organizational units or to
show relation between individual performers (i.e., build a social network [4]).
The case perspective focuses on properties of cases. Cases can be characterized
by their path in the process or by the originators working on a case. How-
ever, cases can also be characterized by the values of the corresponding data
elements. For example, if a case represents a replenishment order it is interest-
ing to know if delayed orders have common properties. The process perspective
is concerned with the “How?” question, the organizational perspective is con-
cerned with the “Who?” question, and the case perspective is concerned with
the “What?” question. In this paper we will focus completely on the process
perspective, i.e., the ordering of the activities. This means that here we ignore
the last two columns in Table 1. For the mining of the other perspectives we
refer to [5] and http://www.processmining.org.

Note that the ProM tool described in this paper is able to mine the other
perspectives and can also deal with other issues such as transactions, e.g., in

2



the ProM tool we consider different event types such as “schedule”, “start”,
“complete”, “abort”, etc. However, for reasons of simplicity we abstract from
this in this paper and consider activities to be atomic as shown in Table 1.

If we abstract from the other perspectives, Table 1 contains the following
information: case 1 has event trace A,B,H, case 2 has event trace A,C,H, case
3 has event trace A,D,E, F,G,H, and case 4 has event trace A,D,F,E,G,H.
If we analyze these four sequences we can extract the following information
about the process (assuming some notion of completeness and no noise). The
underlying process has 8 activities (A, B, C, D, E, F , G and H). A is always the
first activity to be executed and H is always the last one. After A is executed,
activities B, C or D can be executed. In other words, after A, there is a choice
in the process and only one of these activities can be executed next. When B
or C are executed, they are followed by the execution of H (see cases 1 and 2).
When D is executed, both E and F can be executed in any order. Since we do
not consider explicit parallelism, we assume E and F to be concurrent (see cases
3 and 4). Activity G synchronizes the parallel branches that contain E and F .
Activity H is executed whenever B, C or G has been executed. We can use a
Petri net [38] as shown in Figure 1 to model the four cases of the event log in
Table 1.

Petri nets are a formalism to model concurrent processes. Graphically, Petri
nets are bipartite directed graphs with two node types: places and transitions.
The places represent conditions in the process. The transitions represent actions.
The activities in the event logs correspond to transitions in Petri nets. The state
of a Petri net (or process for us) is described by adding tokens (black dots)
to places. The dynamics of the Petri net is determined by the firing rule. A
transition can be executed (i.e. an action can take place in the process) when
all of its input places (i.e. pre-conditions) have at least a number of tokens
that is equal to the number of directed arcs from the place to the transition.
After execution, the transition removes tokens from the input places (one token
is removed for every input arc from the place to the transition) and produces
tokens for the output places (again, one token is produced for every output arc).
Besides, the Petri nets that we consider have a single start place and a single
end place. This means that the processes we describe have a single start point
and a single end point. For the Petri net in Figure 1, the process’ initial state
has only one token in place Start. This means that A is the only transition that
can be executed in the initial state. When A executes (or fires), one token is
removed from the place Start and one token is added to the place p1.

The Petri net shown in Figure 1 is a good model for the event log containing
the four cases. Note that each of the four cases can be “reproduced” by the
Petri net shown in Figure 1, i.e. the Petri net contains all observed behavior.
In this case, all possible firing sequences of the Petri net shown in Figure 1
are contained in the log. Generally, this is not the case since in practice it is
unrealistic to assume that all possible behavior is always contained in the log,
cf. the discussion on completeness in [7].

3



A

B

D

E

C

F

G

H
Start p1

p2

p3

p4

p5

p6 End

Fig. 1. Petri net discovered based on the event log in Table 1.

Existing approaches for mining the process perspective [5, 7, 8, 10, 19, 29, 42]
have problems dealing with issues such as duplicate activities, hidden activities,
non-free-choice constructs, noise, and incompleteness. The problem with dupli-
cate activities occurs when the same activity can occur at multiple places in the
process. This is a problem because it is no longer clear to which activity some
event refers. The problem with hidden activities is that essential routing deci-
sions are not logged but impact the routing of cases. Non-free-choice constructs
are problematic because it is not possible to separate choice from synchroniza-
tion. We consider two sources of noise: (1) incorrectly logged events (i.e., the log
does not reflect reality) or (2) exceptions (i.e., sequences of events corresponding
to “abnormal behavior”). Clearly noise is difficult to handle. The problem of
incompleteness is that for many processes it is not realistic to assume that all
possible behavior is contained in the log. For processes with many alternative
routes and parallelism, the number of possible event traces is typically expo-
nential in the number of activities, e.g., a process with 10 binary choices in a
sequence will have 1024 possible event sequences and a process with 10 activi-
ties in parallel will have even 3628800 possible event sequences. In this paper we
focus on noise and incompleteness.

We can consider process mining as a search for the most appropriate process
out of the search space of candidate process models. Mining algorithms can use
different strategies to find the most appropriate model. Two extreme strategies
can be distinguished (i) local strategies primarily based on a step by step building
of the optimal process model based on very local information, and (ii) global
strategies primarily based on an one strike search for the optimal model. Most
process mining approaches use a local strategy. An example of an algorithm
using a local strategy is the α-algorithm [7] where only very local information
about binary relations between events is used. A genetic search is an example of
a very global search strategy; because the quality or fitness of a candidate model
is calculated by comparing the process model with all traces in the event log the
search process becomes very global. For local strategies there is no guarantee that
the outcome of the locally optimal steps (at the level of binary event relations)
will result in a globally optimal process model. Hence, the performance of local
mining techniques can be seriously hampered when the necessary information
is not locally available (e.g. one erroneous example can completely mess up the
derivation of a right model). Therefore, we started to use Genetic Algorithms
(GA).

In this paper, we present a genetic algorithm to discover a Petri net given
a set of event traces. Genetic algorithms are adaptive search methods that try

4



to mimic the process of evolution [15, 31]. These algorithms start with an ini-
tial population of individuals (in this case process models). Populations evolve
by selecting the fittest individuals and generating new individuals using genetic
operations such as crossover (combining parts of two of more individuals) and
mutation (random modification of an individual). Our initial experiences showed
that a representation of individuals in terms of a Petri net is not a very conve-
nient. First of all, the Petri net contains places that are not visible in the log.
Note that in Figure 1 we cannot assign meaningful names to places. Second,
the classical Petri net is not very convenient notation for generating an initial
population because it is difficult to apply simple heuristics. Third, the defini-
tion of the genetic operators (crossover and mutation) is cumbersome. Finally,
the expressive power of Petri nets is in some cases too limited (combinations of
AND/OR-splits/joins). Therefore, we use an new representation named casual
matrix.

The remainder of this paper is organized as follows. Section 2 describes the
process representation used in our GA approach. Section 3 explains the details
of the GA (i.e. the initialization process, the fitness measure, and the crossover
and mutation operations). Section 4 discusses the experimental results. Section 5
discusses some related work. Section 6 has the conclusions and future work. For
the readers familiar with Petri nets, Appendix A explains and formalizes the
relation between the causal matrix and Petri nets.

2 Internal Representation

In this section we first explain the causal matrix that we use to encode individuals
(i.e. processes) in our genetic population. After that we discuss the semantics of
causal matrices.

A process model describes the routing of activities for a given business pro-
cess. The routing shows which activities are a direct cause for other activities.
When an activity is the single cause of another activity, there is a sequential
routing (see Figure 2 - sequence). When an activity enables the execution of mul-
tiple concurrent activities, there is a parallel routing (see Figure 2 - parallelism).
When an activity enables the execution of multiple activities but only one of
these activities can actually be executed, there is a choice routing (see Figure 2
- choice). Note that the basic routing constructs sequence, parallelism and choice
can be combined to model more complex ones (for instance, a loop can be seen
as the combination of a sequence and a choice where the OR-join precedes the
OR-split.). Given these observations about routing constructs, a process model
must express (i) the process’ activities, (ii) which activities cause/enable others,
and (iii) if the causal relation between activities are combined in a sequential,
parallel or choice routing.

2.1 Causal Matrices

A process model is conceptually a matrix with boolean expressions associated
to its rows and columns. The matrix shows the causal relations (→) between

5



a x

a

x

a'

AND-join

a

x

a'

OR-join

a

x

a'

AND-split

a

x

a'

OR-split

(Sequence) (Parallelism) (Choice)

Fig. 2. Petri net building blocks for the three basic routing constructs that are used
when modelling business processes.

the activities in the process. For this reason, we call it the causal matrix. The
causal matrix has size n × n, where n is the number of process’ activities. The
boolean expressions are used to describe the routing constructs. Because the
boolean expressions describe AND/OR-split/join situations, they only contain
the boolean operators and (∧) and or (∨).

As an example, we show how the Petri net in Figure 1 can be described by the
casual matrix shown in Table 2. The Petri net in Figure 1 has 8 activities (A...H),
so the corresponding individual is represented by an 8×8 causal matrix. An entry
(row, column) in the causal matrix describes if there is a causal relation between
two activities. If causal(row, column) = 1, there is such a causal relation. If it
equals 0, there is no such relation. The boolean expressions in the INPUT row
describe which activities should occur to enable the occurrence of an activity
at a column. For instance, consider activity H in Figure 1. This activity can
occur whenever activity B or C or G occurs. Thus, column H has the boolean
expression B ∨ C ∨ G associated to it. Similarly, the boolean expressions in the
OUTPUT column show which activities may execute after the execution of an
activity at a row. For instance, row D has as OUTPUT the boolean expression
E ∧ F .

INPUT
true A A A D D E ∧ F B ∨ C ∨ G

→ A B C D E F G H OUTPUT

A 0 1 1 1 0 0 0 0 B ∨ C ∨ D

B 0 0 0 0 0 0 0 1 H

C 0 0 0 0 0 0 0 1 H

D 0 0 0 0 1 1 0 0 E ∧ F

E 0 0 0 0 0 0 1 0 G

F 0 0 0 0 0 0 1 0 G

G 0 0 0 0 0 0 0 1 H

H 0 0 0 0 0 0 0 0 true

Table 2. A causal matrix is used for the internal representation of an individual.

6



ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E}, {F}}
E {{D}} {{G}}
F {{D}} {{G}}
G {{E}, {F}} {{H}}
H {{B, C, G}} {}

Table 3. A more succinct encoding of the individual shown in Table 2.

Given the conceptual description of individuals, let us explain how it is ac-
tually encoded in our genetic algorithm1. First of all, the algorithm only keeps
track of an individual’s activities’ INPUT and OUTPUT boolean expressions.
Because the complete causal matrix can be directly derived from the boolean
expressions, the causal matrix is not explicitly stored but only used during the
initialization process. By looking at the boolean expressions you derive which
entries are set to 1 and which are set to 0 in the causal matrix. Second, the
boolean expressions are mapped to sets of subsets. Activities in a subset have an
OR-relation and subsets are in an AND-relation. For instance, the boolean ex-
pression (E ∨F )∧G equals the set representation {{E,F}, {G}}. Table 3 shows
how the conceptual encoding in Table 2 is mapped to the implementation one.
Note that Table 3 assumes a “normal form”, i.e., a conjunction of disjunctions.
This reduces the state space but also limits the expressiveness, cf. Appendix A.

2.2 Parsing Semantics

Our GA mining approach searches for a process model that is in accordance with
the information in the event log. Testing if all traces can be parsed by the mined
process model is one possibility to check this. The parsing semantics of a process
model is relatively simple. It sequentially reads one activity at a time from an
event trace and it checks if this activity can be executed or not. An activity
can execute when its INPUT boolean expression is true (i.e. at least one of the
activities of each subset has the value 1). Let us use an example to clarify how
the parsing works. Consider the parsing of the event trace for case 3 in Table
1 - the trace “A,D,E, F,G,H” - and the process model described in Table 2.
The parsing of this trace is depicted in Figure 3. The element being parsed (see
left column) is in gray. The right column shows which activities’ markings of the
individual have being affected by the previous parsed element (also highlighted
in gray). Note that parsing an element affects the marking of the activities in its
OUTPUT boolean expression. The values (0 or bigger) are used to keep track
of true (= 1) or false (= 0) value of the individual marking elements. Besides,
because start activities have a single input place and end activities have a single
output place, we use two auxiliary elements in the marking: start and end. Row

1 A detailed explanation of the genetic algorithm is given in Section 3

7



(i) shows the initial situation. A is the first activity to be parsed. Its INPUT
boolean expression is true. This means that activity A is a start activity and A
can be executed whenever the start element has the value 1. This is indeed the
situation at row (i). After executing A, the activities’s markings are updated.
In this case, the start element gets value 0 and the activities associated to A’s
OUTPUT get their values increased by 1. Note that during the marking update,
OR-situations are treated in a different way of AND-situations. As an example
of an OR-situation, consider row (ii) in which D is the activity to be parsed. D
can be executed because its INPUT shows that it can be executed whenever A
has the entry D = 1 in its marking. However, the execution of D also affects A’s
marking for activities B and C because A’s OUTPUT describes that activities
B, C and D have an OR-relation. The final result is at row (iii), which contains
an example of an AND-situation. At row (iii), E is the next activity to be parsed.
Note that E can be parsed, but the related activities’ markings are updated in
a different way from the situation just described for the parsing of D. The entry
D : ..., F = 1 is not affected because D’s OUTPUT shows that E and F are in
an AND-situation. Thus, the execution of E does not disable the execution of
F , and vice-versa. As shown in Figure 3, the trace “A,D,E, F,G,H” is indeed
successfully parsed by the individual in Table 2 because the end element is the
only one to be marked 1 when the parsing stops.

3 Genetic Algorithm

In this section we explain how our genetic algorithm works. Figure 4 describes its
main steps. The following subsections respectively describe (i) the initialization
process, (ii) the fitness calculation, (iii) the stop criteria and (iv) the genetic
operators (i.e. crossover and mutation) of our genetic algorithm.

3.1 Initialization of the population

If we directly use the INPUT and OUTPUT-subsets for the initialization of our
start population, the number of different possible individuals appears enormous.
If n is the number of activities in the event log, the number of different process
models is roughly (2n × 2n)n. Even for the simple example this results in 2128 dif-
ferent possibilities. Therefore we chose to guide the genetic algorithm during the
building of the initial population by using a dependency measure. The measure-
ments are based on our experience with the heuristic mining tool Little’s Thumb
[42]. In the next paragraph we explain how the dependency measure is used dur-
ing initialization. The main idea is that if the substring “t1t2” appears frequently
and “t2t1” only as an exception, than there is a high probability that t1 and t2
are in a causal relation. We use follows(t1, t2) as an notation for the number of
times that the substring t1t2 appears in the event log, and causal(t1, t2) = 1 to
indicate that the causal matrix has the value 1 in row t1 and column t2. Before
we present our definition of the dependency measure we need two extra nota-
tions for short loops: L1L(t1) indicates the number of times the substring “t1t1”

8



B: H = 0
C: H = 0
D: E = 0, F = 0

B: H = 0
C: H = 0
D: E = 0, F = 0
E: G = 0

A, D, E, F, G, H

Element being
parsed

Individual's current
marking

A, D, E, F, G, H

A: B = 0, C = 0, D = 0
B: H = 0
C: H = 0
D: E = 0, F = 0
E: G = 0

A: B = 1, C = 1, D = 1

A, D, E, F, G, H A: B = 0, C = 0, D = 0

D: E = 1, F = 1

A, D, E, F, G, H A: B = 0, C = 0, D = 0

D: E = 0, F = 1

A, D, E, F, G, H

A, D, E, F, G, H

A: B = 0, C = 0, D = 0

A: B = 0, C = 0, D = 0

A, D, E, F, G, H

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

start = 1
end = 0

start = 0
end = 0

F: G = 0
G: H = 0

F: G = 0
G: H = 0

B: H = 0
C: H = 0

E: G = 0
start = 0
end = 0

F: G = 0
G: H = 0

C: H = 0

E: G = 1
start = 0
end = 0

B: H = 0 F: G = 0
G: H = 0

D: E = 0, F = 0
C: H = 0

E: G = 1
start = 0
end = 0

B: H = 0 F: G = 1
G: H = 0

E: G = 0
start = 0
end = 0

F: G = 0
G: H = 1

A: B = 0, C = 0, D = 0
B: H = 0
C: H = 0
D: E = 0, F = 0
E: G = 0

start = 0
end = 1

F: G = 0
G: H = 0

Fig. 3. Illustration of the parsing process of the event trace A, D, E, F , G, H for case
3 in Table 1 by the process model in Table 2.

9



Step Description
I Read event log
II Calculate dependency relations among activities
III Build the initial population
IV Calculate individuals' fitness
V Stop and return the fittest individuals?
VI Create next population - use genetic operations

start I II III IV

VI

V end
yes

no

Fig. 4. Main steps of our genetic algorithm.

appears in the event log (length-one loop) and L2L(t1, t2) the number of times
the substring “t1t2t1” appears (length-two loop). The dependency measure is
defined as follows:

Definition 3.1. (Dependency Measure) Let t1 and t2 be two activities in
event log T . Then:

D(t1, t2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L2L(t1,t2) + L2L(t2,t1)
L2L(t1,t2) + L2L(t2,t1) + 1 if t1 �= t2 and L2L(t1, t2) > 0

follows(t1,t2) − follows(t2,t1)
follows(t1,t2) + follows(t2,t1) + 1 if t1 �= t2 and L2L(t1, t2) = 0

L1L(t1,t2)
L1L(t1,t2) + 1 if t1 = t2

The “+ 1” in the denominator of Definition 3.1 is used to benefit more frequent
occurrences. Additionally to the dependency measure, we use a start-measure
and an end -measure. These two measures are used to determine the start and
end activity of a mined process model. To calculate them we simple add an
additional activity start and end to each trace. The start measure for activity t
(notation S(t)) is equal to D(start, t) and the end measure (notation E(t)) to
E(t, end).

Building the initial population is a random process driven by the dependency
measures between activities. First we determine the boolean values of the causal
matrix. The basic idea is that if, for two activities t1, t2, the dependency measure
D(t1, t2) is high than there is a high probability that causal(t1, t2) is true (value
1). Below the procedure for the initialization of a process model is given.

1. For all activities t1 and t2 generate a random number r. If r < (D(t1, t2))p

then causal(t1, t2) = 1 else causal(t1, t2) = 0.
2. For all activities t if r < (S(t))p then the complete causal(t)-column is set

to 0.
3. For all activities t if r < (E(t))p then the complete causal(t)-row is set to 0.
4. For every column t1 in the causal matrix the INPUT set is a random partition

of the set Xi := {t2|causal(t2, t1) = 1}.
5. For every row t1 in the causal matrix the OUTPUT set is a random partition

of the set Xi := {t2|causal(t1, t2) = 1}.

10



The power value p is introduced to manipulate the eagerness of the initializa-
tion process to introduce causal relations. Note that p needs to be odd to keep
negative values negative. A high value of p (e.g., p = 9) results in relatively few
causal relations, a low value in relatively many causal relations (e.g., p = 1).
For every entry in the causal matrix a new random number r is drawn. Activi-
ties with a high S-value (start-value) have a high probability that the complete
column is set to 0 and activities with a high E-value have a high probability
that the complete row is 0. This is done because, as explained in Section 2, the
algorithm assumes that start-activities have a single input place (which does
not have ingoing arcs), and end-activities have a single output place (which does
not have outgoing arcs). For every column in the causal matrix, the algorithm
retrieves the activities whose entry (activity, column) equals 1. These activities
are randomly combined in a boolean INPUT expression that (i) does not repeat
symbols (i.e. an activity cannot appear more than once in a boolean expression)
and (ii) is a conjunction of disjuncts. As an example, consider activity H in the
causal matrix in Table 2. The retrieved activities for column H are B,C and G.
So, the possible random combinations for these three activities are: B ∧ C ∧ G,
(B ∧ C) ∨ G, (B ∧ G) ∨ C, (C ∧ G) ∨ B, B ∨ G ∨ C. The analogue procedure is
used to construct an OUTPUT expression.

Individual1

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E}}
E {{D}} {{G}}
F {} {{G}}
G {{E}, {F}} {{H}}
H {{C, B, G}} {}

Individual2

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E, F}}
E {{D}} {{G}}
F {{D}} {{G}}
G {{E}, {F}} {{H}}
H {{C}, {B}, {G}} {}

Table 4. Causal matrix of two randomly created individuals for the log in Table 1.

As an example, we show in Table 4 and in Figure 5 two individuals that could
be randomly built for the initial population, for the log in Table 1. The next
step in the genetic algorithm is the calculation of the fitness of individuals.

3.2 Fitness Calculation

For a noise-free log, the genetic search aims at finding an optimal process that
complies with the information in the event log. Testing if all traces can be parsed
by the mined process model PM is one possibility to check this2. Thus, a simple
2 Normally, we don’t have negative examples at our disposal. If we have negative

examples, we can check if the parsing indeed fails.

11



A

B

D

E

C

F

G

H A

B

D

E

C

F

G

H

Individual 1 Individual 2

Fig. 5. Petri net of two randomly created individuals for the log in Table 1.

fitness measure can just calculate the number of correct parsed traces divided by
the number of traces in the log L. However, such a fitness measure is too naive
because it gives a very coarse indication about a process model’s compliance to
a given log. For instance, assume that for one process model PM1 the parsing
usually gets stuck in the first part of a trace and in an other process model
PM2 usually at the end of the trace. Although PM2 is a better candidate to
crossover because it contains more correct material, this fitness does not indicate
that. Moreover, we like a proper completion of the parsing process. This means
that only the value of the auxiliary element end equals 1 (cf. Subsection 2.2)
and all the other values are 0. In Definition 3.2 we present a fitness measure
that incorporate these observations. The notation used is as follows. numActiv-
itiesLog(L) and numTracesLog(L) respectively indicate the number of activities
and traces in the log. For instance, the log in Table 1 has 18 activities and 4
traces. allParsedActivities(PM,L) gives the sum of all parsed activities for all
traces in the event log. allCompletedLogTraces(PM,L) gives the number of com-
pletely parsed traces. allProperlyCompletedLogTraces(PM,L) gives the number
of completely parsed traces in which the auxiliary element end equals 1 and all
other values equals 0. Note the subscript “S” for some of the terms in Definition
3.2. These are used to distinguish the “Stop semantics” from the “Continuous
semantics” (we will elaborate on this later). Also note the three coefficients in
this definition. We did some experiments to get reasonable coefficient values for
both fitness measures presented in this section.

Definition 3.2. (FitnessS) Let L be an event log and PM be a process model.
Then:

FitnessS(PM,L) = 0.20 × allParsedActivitiesS(PM,L)
numActivitiesLog(L) +

0.30× allCompletedLogTracesS(PM,L)
numTracesLog(L) + 0.50× allProperlyCompletedLogTracesS(PM,L)

numTracesLog(L)

Definition 3.2 assumes a stop semantics, i.e., when parsing event traces the pars-
ing stops the moment the log indicates that an activity should be executed while
this is not possible in the process model. All remaining events in the event trace
are subsequently ignored. As a result, FitnessS has the disadvantage that it will
stop parsing whenever a parsing error occurs (the subscript S in the naming of
FitnessS indicates the stop semantics). A consequence is that if we have two
process models PM1 and PM2, where PM1 has only one error close to an start

12



activity and PM2 has the same error but also many errors the remainder of its
net structure, the fitness of both models will be equal. Also errors that occur at
the start of a model have a higher penalty than errors at the end of the model.
Repairing this problem is obvious: simply do not stop the parsing process af-
ter identifying an error. Instead, register the error and go on with the parsing
process. Another possible gain of this continuous semantics parsing procedure
is a better behavior in case of noisy traces because it gives information about
the complete process model (i.e. not biased to only the first part of the process
model) and the behavior for the whole trace (not only for the first, error free part
of a trace). The fitness measure in Definition 3.3 incorporates such a continuous
semantics. (Note the subscript “C”.)

Definition 3.3. (FitnessC) Let L be an event log and PM be a process model.
Then:

FitnessC(PM,L) =

0.40 × allParsedActivitiesC(PM,L)
numActivitiesLog(L) + 0.60 × allProperlyCompletedLogTracesC(PM,L)

numTracesLog(L)

In the next section we will report our experimental results for both fitness mea-
sures and their behavior in case of noise in the event log. But first we will finish
this section with describing more details of our GA.

3.3 Stop Criteria

The mining algorithm stops when (i) it finds an individual with a fitness of 1; or
(ii) it computes n generations, where n is the maximum number of generation
that is allowed; or (iii) the fittest individual has not changed for n/2 generations
in a row. When the algorithm does not stop, it creates a new population by
using the genetic operations that are described in the next section.

3.4 Genetic Operations

We use elitism, crossover and mutation to build the individuals of the next ge-
netic generation. Elitism means that a percentage of the fittest individuals in
the current generation is copied to the next generation. Crossover and mutation
are the basic genetic operations. Crossover creates new individuals (offsprings)
based on the fittest individuals (parents) in the current population. So, crossover
recombines the fittest material in the current population in the hope that the
recombination of useful material in one of the parents will generate an even fitter
individual. The mutation operation will change some minor details of an indi-
vidual. The hope is that the mutation operator will insert new useful material in
the population. In this section we show the crossover and mutation algorithms
that turned out to give good results during our experiments. The algorithm to
create a next generation works as follows:

Input: current population, elitism rate, crossover rate and mutation rate
Output: new population

13



1. Copy “elitism rate × population size” of the best individuals in the current popu-
lation to the next population.

2. While there are individuals to be created do:

(a) Use tournament selection to select parent1.

(b) Use tournament selection to select parent2.

(c) Select a random number r between 0 (inclusive) and 1 (exclusive).

(d) If r less than the crossover rate:
then do crossover with parent1 and parent2. This operation generates two
offsprings: offspring1 and offspring2.
else offspring1 equals parent1 and offspring2 equals parent2.

(e) Mutate offspring1 and offspring2. (This step is only needed if the mutation
rate is non-zero.)

(f) Copy offspring1 and offspring2 to the new population.

3. Return the new population.

Tournament Selection The tournament selection is used to select two parents
to crossover. Given a population, it randomly selects 5 individuals and it returns
the fittest individual among the five selected ones.

Crossover An important operation in our genetic approach is the crossover
operation. This is also the most complex genetic operation. Starting point of
the crossover operation are two parents (i.e. parent1 and parent2). The result of
applying the crossover operation are two offsprings (offspring1 and offspring2).
First, the crossover algorithm randomly selects an activity t to be the crossover
point. Second, parent1 is copied to offspring1 and parent2 to offspring2. Third,
the algorithm randomly selects a swap point for the INPUT(t) sets in both off-
springs and another swap point for the OUTPUT(t) sets. The respective INPUT
and OUTPUT sets of the crossover point at the two offsprings are then recom-
bined by interchanging the subsets from the swap point until the end of the
set. The recombined INPUT/OUTPUT sets are then checked to make sure that
they are proper partitions. Finally, the two offsprings undergo a repair operation
called “update related elements”. The pseudo-code for the crossover is as follows:

Input: Two individuals
Output: Two recombined individuals

1. If the individuals are equal, go to Step 11.
2. Randomly select an activity t to be the individuals’ crossover point.
3. Set1 = INPUT(t) in the first individual.
4. Set2 = INPUT(t) in the second individual.
5. Select a swap point sp1 to crossover in Set1. The swap point has a value between

0 (before the first subset) and the number of subsets in the set minus 1.
6. Select a swap point sp2 to crossover in Set2.
7. Swap the selected parts. The parts go from the swap point to the end of the set.

14



8. If there are overlaps in the subsets, with an equal probability either merge the
sets whose intersection is non-empty or remove the intersecting activities from the
subset that is not being swapped.

9. Update the related activities.
10. Repeat steps 3 to 9 but use the OUTPUT sets instead of the INPUT sets.
11. Return the two recombined individuals.

Update Related Activities When the individuals have different causal matri-
ces, the crossover operation may generate inconsistencies. Note that the boolean
expression may contain activities whose respective cell in the causal matrix is
zero. Similarly, an activity may not appear in the boolean expression after the
crossover and the causal matrix still has a non-zero entry for it. So, after the
INPUT/OUTPUT sets have being recombined, we need to check the consistency
of the recombined sets with respect to the other activities’ boolean expressions
and the causal matrix. When they are inconsistent, we need to update the causal
matrix and the related boolean expressions of the other activities. The algorithm
works as follows:

Input: an individual, an activity t that was the crossover point
Output: an updated individual

1. Update the causal matrix.
Explanation: The INPUT(t) is used to update the column t in the causal matrix.
The OUTPUT(t) is used to update the row t in the causal matrix. Every activity
t′ in the INPUT(t) has causal(t′, t) = 1. All the other entries at the column are
set to zero. A similar procedure is done for the activities in OUTPUT(t).

2. Check the boolean expressions of the other activities against the column and row
for t in the causal matrix.
Explanation: Whenever there are inconsistencies between the entries in the causal
matrix and the boolean expression, the activities whose entry is zero in the causal
matrix are eliminated from the respective boolean expression, and activities whose
entry is 1 are included in one of the subsets in the boolean expression.

Figure 6 illustrates a crossover operation that involves the two individuals in
Figure 5. Let activity D be the randomly selected crossover point. Since IN-
PUT1(D) equals INPUT2(D), the crossover has no real effect for D’s INPUT.
Let us look at the D’s OUTPUT sets. Both D’s OUTPUT sets have a sin-
gle subset, so the only possible swap point to select equals 0, i.e., before the
first and only element. After swapping the subsets Offpring1 (parent1 after
crossover) has INPUT1(D)= {{A}} and OUTPUT1(D)= {{E,F}}. Note that
OUTPUT1(D) now also points to F . So, the update related elements algorithm
makes INPUT1(F)= {{D}}. offspring2 is updated in a similar way. The internal
representation for the two offsprings is showns in Table 5.

Mutation The mutation works on the INPUT and OUTPUT boolean expres-
sions of an activity. For every activity t in an individual, a new random number

15



Parent 1 Parent 2

Offspring 1 - before
update of related tasks

Offspring 2 - before
update of related tasks

Offspring 1 Offspring 2

A

B

D

E

C

F

G

H A

B

D

E

C

F

G

H

A

B

E

C

F

G

HA

D

E

F

A

B

E

C

F

G

HA

D

E

A

B

E

C

F

G

HA

D

E

F

A

B

E

C

F

G

HA

D

E

Fig. 6. Example of the crossover operation for the two individuals in Figure 5. The
crossover point is activity D.

offspring1

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E, F}}
E {{D}} {{G}}
F {{D}} {{G}}
G {{E}, {F}} {{H}}
H {{C, B, G}} {}

offspring2

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E}}
E {{D}} {{G}}
F {} {{G}}
G {{E}, {F}} {{H}}
H {{C}, {B}, {G}} {}

Table 5. Example of two offsprings that can be produced after a crossover between
the two individuals in Table 4. The crossover point is activity D.

16



r is selected. Whenever r less than the “mutation rate”, the subsets in INPUT(t)
are randomly merged or split. The same happens to OUTPUT(t). The mutation
algorithm works as follows:

Input: an individual
Output: a possibly mutated individual.

1. For every activity in the individual do:

(a) Select a random number r between 0 (inclusive) and 1 (exclusive).

(b) If r less than the specified mutation rate:

i. Build a new expression for the INPUT of this activity.

ii. Build a new expression for the OUTPUT of this activity.

2. Return the individual.

As an example, consider offspring1 in Table 5. Assume that the random number
r was less than the mutation rate for activity D. After applying the mutation,
OUTPUT(D) changes from {{E,F}} to {{E}, {F}}. Note that this mutation
does not change an individual’s causal relations, only its AND-OR/join-split
may change.

4 Experiments and Results

To test our genetic approach and the effect of the two different fitness measures
FitnessS and FitnessC we use 4 different process models with 8, 12, 22 and 32
activities. These nets are respectively described in Figures 1, 7, 8 and 9. The
nets were artificially generated and contain concurrency and loops. To test the
behavior of the genetic algorithm for event logs with noise, we used 6 different
noise types: missing head, missing body, missing tail, missing activity, exchanged
activities and mixed noise. If we assume a event trace σ = t1...tn−1tn, these
noise types behave as follows. Missing head, body and tail respectively randomly
remove subtraces of activities in the head, body and tail of σ. The head goes from
t1 to tn/3. The body goes from t(n/3)+1 to t(2n/3). The tail goes from t(2n/3)+1 to
tn. Missing activity randomly removes one activity from σ. Exchanged activities
exchange two activities in σ. Mixed noise is a fair mix of the other 5 noise types.
Real life logs will typically contain mixed noise. However, the separation between
the noise types allow us to better assess how the different noise types affect the
genetic algorithm.

For every noise type, we generated logs with 5%, 10% and 20% of noise. So,
every process model in our experiments had 6 × 3 = 18 noisy logs. Besides,
we also ran the experiments for noisy-free logs of the process models because
our approach should also work for noisy-free logs. Thus, every process model in
our experiments has in total 19 logs. Every event log had 1000 traces. For each
event-log the genetic algorithms ran 10 experiments with different seeds. The
populations had 500 individuals and were iterated for at most 100 generations.
The crossover rate was 1.0 and the mutation rate was 0.01. The elitism rate was

17



S
complete

f
complete

g
complete

h
complete

i
complete

k
complete

E
complete

b
complete

d
complete

j
complete

c
complete

e
complete

Fig. 7. Petri net for process model with 12 activities.

S
complete

p
complete

a
complete

f
complete

h
complete

g
complete

r
complete

k
complete

s
complete

m
complete

t
complete

v
complete E

complete

n
complete

o
complete

u
complete

b
complete

d
complete

j
complete

i
complete

c
complete

e
complete

Fig. 8. Petri net for process model with 22 activities.

18



S
complete

p
complete

r
complete

t
complete

s
complete

v
complete

uv4
complete

a
complete b

complete

c
complete

s1
complete

e
complete

s2
complete

j
complete

s3
complete

m
complete

r5
complete

n
complete n6

complete
n7

complete

n8
complete

o
complete

f
complete

h
complete

g
complete

i
complete

k
complete

k10
complete

E
complete

u
complete

h9
complete

d
complete

Fig. 9. Petri net for process model with 32 activities.

0.01. The power for the causal relation (cf. Subsection 3.1) was 9. The initial
population might contain duplicate individuals.

An important general question is how to measure the quality of mined models
in the case of noisy logs. In the experimental setting we know that the model that
is used to generate the event logs and you may expect that the genetic algorithm
will come up with exactly this model. In a more realistic situation, you will not
know the underlying model, you are searching for it. The problem is that it is
very difficult to distinguish low frequent behavior from noise. Not modelled low
frequent possible behavior registered in the event log can be interpreted as an
error. However, low or even high frequent registered noise that is incorporated
in the model are errors. In a practical situation the only sensible solution seems
the definition of an appropriate fitness measure. However, in our experimental
setting we are experimenting with different fitness measures. Therefore we cannot
use one of them as the measure. In our experimental setting the simplest solution
to measure the quality of an genetic algorithm is counting the number of runs in
which the genetic search comes up with exactly the process model that is used
during the creation of the noise-free event logs. Even in the case that noise is
added to the event log we will use this measure.

Let us first have a look at the results for the noisy-free logs. As shown in
Figure 10 and Table 6, the genetic algorithm works for noise-free logs. For both
fitness types, the smaller the net, the more frequently the algorithm finds the

19



desired process model. For process models that contain more activities, the GA
using FitnessC seems to work better than the GA using FitnessS . Although the
correct process model was not found for all runs (25 out of 40 for the GA using
FitnessS and 32 out of 40 for the GA using FitnessC), the other runs returned
nearly correct individuals.

However, our main aim is to use genetic algorithms to mine noisy logs. The
results for the mixed noise type in Figures 11 to 13 show that the genetic al-
gorithm indeed works for noisy logs as well. Again we see that the smaller the
net, the more frequently the algorithm finds the correct process model; and the
higher the noise percentage, the lower the probability the algorithm will end up
with the original process model. However, the GA using FitnessC is more ro-
bust to noise. Tables 7 to 10 have the detailed results. By looking at the results
for the different noise types we have the following observations. The algorithm
can handle well the missing tail noise type for both fitness types because of the
high impact of proper completion. The Missing head impacts more the experi-
ments using the FitnessC than the FitnessS because the former fitness punishes
more the process models that do not properly complete. The exchanged activities
noise type impacts less the performance of the algorithm than the missing body
and the missing activity noise types because of the heuristics that are used dur-
ing the building of the initial population. Removing an activity t2 from a trace
“...t1t2t3...” generates “fake” subtraces t1t3 that will not be counter balanced
by subtraces t3t1. Consequently, the probability that the algorithm will causally
relate t1 and t3 is increased.

Noisy-free logs

0

5

10

15

20

25

30

35

40

FS FC

Fitness

N
u

m
b

er
 o

f 
su

cc
es

sf
u

l r
u

n
s

Fig. 10. Results for noisy-free logs. FS and FC respectively show the results for Fit-
nessS and FitnessC .

In this section we presented some results for the genetic mining approach
presented in this paper. In contrast to most of the existing approaches, our
GA process mining is able to deal with noise. However, more improvements are

20



number of activities number of successful runs
in process model FS FC

8 10 10

12 10 10

22 02 04

32 03 08

Table 6. Results of applying the genetic algorithm for noise-free logs. The table shows
the number of times the perfect individual was found in 10 runs. FS and FC respec-
tively show the results for FitnessS and FitnessC .

Noise 5%

0

5

10

15

20

25

30

35

40

FS FC

Fitness

N
u

m
b

er
 o

f 
su

cc
es

sf
u

l r
u

n
s

Missing Head

Missing Tail

Missing Body

Missing Activity

Exchanged Activities

Mixed Noise

Fig. 11. Results for logs with 5% of noise. FS and FC respectively show the results
for FitnessS and FitnessC .

noise type
Missing Missing Missing Missing Exchanged Mixed

noise head tail body activity activities noise
percentage FS FC FS FC FS FC FS FC FS FC FS FC

5% 10 10 10 10 0 0 5 1 3 9 3 1

10% 10 10 10 10 0 1 1 1 3 5 1 3

20% 10 0 10 10 0 0 0 0 0 0 1 2

Table 7. Results of applying the genetic algorithm for noisy logs of the process models
with 8 activities. The table shows the number of times the perfect individual was found
in 10 runs. FS and FC respectively show the results for FitnessS and FitnessC .

21



Noise 10%

0

5

10

15

20

25

30

35

40

FS FC

Fitness

N
u

m
b

er
 o

f 
su

cc
es

sf
u

l r
u

n
s

Missing Head

Missing Tail

Missing Body

Missing Activity

Exchanged Activities

Mixed Noise

Fig. 12. Results for logs with 10% of noise. FS and FC respectively show the results
for FitnessS and FitnessC .

Noise 20%

0

5

10

15

20

25

30

35

40

FS FC

Fitness

N
u

m
b

er
 o

f 
su

cc
es

sf
u

l r
u

n
s

Missing Head

Missing Tail

Missing Body

Missing Activity

Exchanged Activities

Mixed Noise

Fig. 13. Results for logs with 20% of noise. FS and FC respectively show the results
for FitnessS and FitnessC .

22



noise type
Missing Missing Missing Missing Exchanged Mixed

noise head tail body activity activities noise
percentage FS FC FS FC FS FC FS FC FS FC FS FC

5% 10 10 10 10 0 0 0 0 2 10 3 2

10% 10 1 10 10 0 0 0 0 0 9 0 3

20% 10 1 10 10 0 0 0 0 2 8 0 2

Table 8. Results of applying the genetic algorithm for noisy logs of the process models
with 12 activities. The table shows the number of times the perfect individual was
found in 10 runs. FS and FC respectively show the results for FitnessS and FitnessC .

noise type
Missing Missing Missing Missing Exchanged Mixed

noise head tail body activity activities noise
percentage FS FC FS FC FS FC FS FC FS FC FS FC

5% 2 1 0 5 0 2 0 6 0 4 0 4

10% 0 0 0 2 0 0 0 1 0 3 0 0

20% 0 0 0 5 0 0 0 0 0 0 0 0

Table 9. Results of applying the genetic algorithm for noisy logs of the process models
with 22 activities. The table shows the number of times the perfect individual was
found in 10 runs. FS and FC respectively show the results for FitnessS and FitnessC .

noise type
Missing Missing Missing Missing Exchanged Mixed

noise head tail body activity activities noise
percentage FS FC FS FC FS FC FS FC FS FC FS FC

5% 2 0 3 6 2 3 0 5 1 2 1 6

10% 2 0 3 5 0 0 2 5 0 0 0 4

20% 0 0 1 2 2 0 0 0 0 0 0 0

Table 10. Results of applying the genetic algorithm for noisy logs of the process models
with 32 activities. The table shows the number of times the perfect individual was found
in 10 runs. FS and FC respectively show the results for FitnessS and FitnessC .

23



Fig. 14. A screenshot of the GeneticMiner plugin in the ProM framework analyzing
the event log in Table 1 and generating the correct process models, i.e., the one shown
in Figure 1.

still needed. For instance, the fitness should consider the number of tokens that
remained in the individual after the parsing is finished as well as the number
of tokens that needed to be added during the parsing. Besides, the dependency
relations that are used during the building of the initial population should be
modified to become less sensitive to the missing body and missing activity noise
types.

The genetic mining algorithm presented in this paper is supported by a plugin
in the ProM framework (cf. http://www.processmining.org). Figure 14 shows a
screenshot of the plugin showing the result for the process model with 8 activities
in terms of Petri nets and in terms of Event-Driven Process Chains (EPCs). Note
that the internal representation used by the GeneticMiner plugin is the causal
matrix. However, the ProM framework allows the user to convert this result to
other notations such as Petri nets and EPCs.

5 Related Work

The idea of process mining is not new [6, 8, 10–12, 20–22, 26, 28, 39, 40, 5, 42].
Cook and Wolf have investigated similar issues in the context of software en-
gineering processes. In [10] they describe three methods for process discovery:
one using neural networks, one using a purely algorithmic approach, and one
Markovian approach. The authors consider the latter two the most promising
approaches. The purely algorithmic approach builds a finite state machine where
states are fused if their futures (in terms of possible behavior in the next k steps)
are identical. The Markovian approach uses a mixture of algorithmic and sta-
tistical methods and is able to deal with noise. Note that the results presented
in [10] are limited to sequential behavior. Cook and Wolf extend their work to
concurrent processes in [11]. They propose specific metrics (entropy, event type
counts, periodicity, and causality) and use these metrics to discover models out
of event streams. However, they do not provide an approach to generate explicit

24



process models. Recall that the final goal of the approach presented in this paper
is to find explicit representations for a broad range of process models, i.e., we
want to be able to generate a concrete Petri net rather than a set of dependency
relations between events. In [12] Cook and Wolf provide a measure to quantify
discrepancies between a process model and the actual behavior as registered
using event-based data. The idea of applying process mining in the context of
workflow management was first introduced in [8]. This work is based on workflow
graphs, which are inspired by workflow products such as IBM MQSeries work-
flow (formerly known as Flowmark) and InConcert. In this paper, two problems
are defined. The first problem is to find a workflow graph generating events ap-
pearing in a given workflow log. The second problem is to find the definitions
of edge conditions. A concrete algorithm is given for tackling the first problem.
The approach is quite different from other approaches: Because the nature of
workflow graphs there is no need to identify the nature (AND or OR) of joins
and splits. As shown in [25], workflow graphs use true and false tokens which
do not allow for cyclic graphs. Nevertheless, [8] partially deals with iteration
by enumerating all occurrences of a given activity and then folding the graph.
However, the resulting conformal graph is not a complete model. In [28], a tool
based on these algorithms is presented. Schimm [39, 40] has developed a mining
tool suitable for discovering hierarchically structured workflow processes. This
requires all splits and joins to be balanced. Herbst and Karagiannis also address
the issue of process mining in the context of workflow management [21, 20, 22]
using an inductive approach. The work presented in [22] is limited to sequential
models. The approach described in [21, 20] also allows for concurrency. It uses
stochastic activity graphs as an intermediate representation and it generates a
workflow model described in the ADONIS modeling language. In the induction
step activity nodes are merged and split in order to discover the underlying pro-
cess. A notable difference with other approaches is that the same activity can
appear multiple times in the workflow model, i.e., the approach allows for dupli-
cate activities. The graph generation technique is similar to the approach of [8,
28]. The nature of splits and joins (i.e., AND or OR) is discovered in the transfor-
mation step, where the stochastic activity graph is transformed into an ADONIS
workflow model with block-structured splits and joins. In contrast to the previ-
ous papers, our work [26, 42] is characterized by the focus on workflow processes
with concurrent behavior (rather than adding ad-hoc mechanisms to capture
parallelism). In [42] a heuristic approach using rather simple metrics is used to
construct so-called “dependency/frequency tables” and “dependency/frequency
graphs”. The preliminary results presented in [42] only provide heuristics and
focus on issues such as noise. In [3] the EMiT tool is presented which uses an
extended version of the α-algorithm to incorporate timing information. For a
detailed description of the α-algorithm and a proof of its correctness we refer
to [7]. For a detailed explanation of the constructs the α-algorithm does not
correctly mine and an extension to mine short-loops, see [29, 30].

Process mining can be seen as a tool in the context of Business (Process)
Intelligence (BPI). In [17] a BPI toolset on top of HP’s Process Manager is de-

25



scribed. The BPI tools set includes a so-called “BPI Process Mining Engine”.
However, this engine does not provide any techniques as discussed before. Instead
it uses generic mining tools such as SAS Enterprise Miner for the generation of
decision trees relating attributes of cases to information about execution paths
(e.g., duration). In order to do workflow mining it is convenient to have a so-
called “process data warehouse” to store audit trails. Such as data warehouse
simplifies and speeds up the queries needed to derive causal relations. In [14, 34,
35] the design of such warehouse and related issues are discussed in the context
of workflow logs. Moreover, [35] describes the PISA tool which can be used to
extract performance metrics from workflow logs. Similar diagnostics are provided
by the ARIS Process Performance Manager (PPM) [23]. The later tool is com-
mercially available and a customized version of PPM is the Staffware Process
Monitor (SPM) [41] which is tailored towards mining Staffware logs. Note that
none of the latter tools is extracting the process model. The main focus is on
clustering and performance analysis rather than causal relations as in [8, 10–12,
20–22, 26, 28, 39, 40, 42].

More from a theoretical point of view, the rediscovery problem discussed in
this paper is related to the work discussed in [9, 16, 36]. In these papers the lim-
its of inductive inference are explored. For example, in [16] it is shown that the
computational problem of finding a minimum finite-state acceptor compatible
with given data is NP-hard. Several of the more generic concepts discussed in
these papers could be translated to the domain of process mining. It is possi-
ble to interpret the problem described in this paper as an inductive inference
problem specified in terms of rules, a hypothesis space, examples, and criteria
for successful inference. The comparison with literature in this domain raises
interesting questions for process mining, e.g., how to deal with negative exam-
ples (i.e., suppose that besides log W there is a log V of traces that are not
possible, e.g., added by a domain expert). However, despite the many relations
with the work described in [9, 16, 36] there are also many differences, e.g., we
are mining at the net level rather than sequential or lower level representations
(e.g., Markov chains, finite state machines, or regular expressions). For a survey
of existing research, we also refer to [5].

There have been some papers combining Petri nets and genetic algorithms,
cf. [27, 33, 32, 37]. However, these papers do not try to discover a process model
based on some event log. The approach in this paper is the first approach using
genetic algorithms for process discovery. The goal of using genetic algorithms is
to tackle problems such as duplicate activities, hidden activities, non-free-choice
constructs, noise, and incompleteness, i.e., overcome the problems of some of the
traditional approaches.

6 Conclusion and Future Work

In this paper we presented a new genetic algorithm (i.e. a more global tech-
nique) to mine process models. After the introduction of process mining and
its practical relevance, we motivated our genetic approach. The use of a genetic

26



approach seems specially attractive if the event log contains noise. After the
introduction of a new process representation formalism (i.e. the causal matrix)
and its semantics, we presented the details of our GA: the genetic operators and
two fitness measures FitnessS and FitnessC . Both fitness measures are related
to the successful parsing of the material in the event log, but FitnessS parsing
semantics stops when a error occurs. FitnessC is a more global fitness measure
in the sense that its parsing semantics will not stop when an error occurs: the
error is registered and the parsing continues.

In the experimental part we presented the results of the genetic process min-
ing algorithm on event logs with and without noise. We specially focused on
the performance differences between the two fitness measures (i.e. FitnessS and
FitnessC). The main result is that for both noise-free and noisy event logs, the
performance of the GA with the most global fitness measure (FitnessC) appears
to be better.

If we look at the performance behavior of the GA for the different noise
types (i.e. missing head, missing body, missing tail, missing activity, exchanged
activities and mixed noise), we observe special mining problems for the missing
body and missing activity noise types; it happens that they introduce superfluous
connections in the process model. A possible solution is an improvement of the
fitness measure so that simple process models are preferred above more complex
models.

The genetic mining algorithm presented in this paper is supported by a plug-
in in the ProM framework (cf. http://www.processmining.org). The reader is
encouraged to download the tool and experiment with it (there are also sev-
eral adaptors for commercial systems). We also invite other research groups to
contribute to this initiative by adding additional plugins.

Acknowledgements
The authors would like to thank Boudewijn van Dongen, Peter van den Brand,
Minseok Song, Laura Maruster, Eric Verbeek, Monique Jansen-Vullers, and Hajo
Reijers for their on-going work on process mining techniques and tools at Eind-
hoven University of Technology.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on
Models, Systems and Standards for Workflow Management. In J. Desel, W. Reisig,
and G. Rozenberg, editors, Lectures on Concurrency and Petri Nets, volume 3098
of Lecture Notes in Computer Science, pages 1–65. Springer-Verlag, Berlin, 2004.

3. W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance
Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International
Conference on Engineering and Deployment of Cooperative Information Systems
(EDCIS 2002), volume 2480 of Lecture Notes in Computer Science, pages 45–63.
Springer-Verlag, Berlin, 2002.

27



4. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin,
2004.

5. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

6. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

7. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

8. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

9. D. Angluin and C.H. Smith. Inductive Inference: Theory and Methods. Computing
Surveys, 15(3):237–269, 1983.

10. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

11. J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings
of the Sixth International Symposium on the Foundations of Software Engineering
(FSE-6), pages 35–45, 1998.

12. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology, 8(2):147–176, 1999.

13. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

14. J. Eder, G.E. Olivotto, and Wolfgang Gruber. A Data Warehouse for Workflow
Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International Conference on
Engineering and Deployment of Cooperative Information Systems (EDCIS 2002),
volume 2480 of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag,
Berlin, 2002.

15. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Natural
Computing. Springer-Verlag, Berlin, 2003.

16. E.M. Gold. Complexity of Automaton Identification from Given Data. Information
and Control, 37(3):302–320, 1978.

17. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Qual-
ity through Exception Understanding, Prediction, and Prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, ed-
itors, Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

18. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Work-
flow Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst and
E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of Lec-
ture Notes in Computer Science, pages 335–354. Springer-Verlag, Berlin, 2003.

28



19. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

20. J. Herbst. Dealing with Concurrency in Workflow Induction. In U. Baake, R. Zo-
bel, and M. Al-Akaidi, editors, European Concurrent Engineering Conference. SCS
Europe, 2000.

21. J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. PhD thesis, Universität Ulm, November 2001.

22. J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow Man-
agement to Support Acquisition and Adaptation of Workflow Models. International
Journal of Intelligent Systems in Accounting, Finance and Management, 9:67–92,
2000.

23. IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Ana-
lyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer,
Saarbruecken, Gemany, http://www.ids-scheer.com, 2002.

24. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

25. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane, Australia, 2003. Available via http://www.workflowpatterns.com.

26. L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van den Bosch.
Process Mining: Discovering Direct Successors in Process Logs. In Proceedings of
the 5th International Conference on Discovery Science (Discovery Science 2002),
volume 2534 of Lecture Notes in Artificial Intelligence, pages 364–373. Springer-
Verlag, Berlin, 2002.

27. H. Mauch. Evolving Petri Nets with a Genetic Algorithm. In E. Cantu-Paz and
J.A. Foster et al., editors, Genetic and Evolutionary Computation (GECCO 2003),
volume 2724 of Lecture Notes in Computer Science, pages 1810–1811. Springer-
Verlag, Berlin, 2003.

28. M.K. Maxeiner, K. Küspert, and F. Leymann. Data Mining von Workflow-
Protokollen zur teilautomatisierten Konstruktion von Prozemodellen. In Proceed-
ings of Datenbanksysteme in Büro, Technik und Wissenschaft, pages 75–84. Infor-
matik Aktuell Springer, Berlin, Germany, 2001.

29. A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Workflow
Mining: Current Status and Future Directions. In R. Meersman, Z. Tari, and D.C.
Schmidt, editors, On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE, volume 2888 of Lecture Notes in Computer Science, pages
389–406. Springer-Verlag, Berlin, 2003.

30. A.K.A. de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M. Wei-
jters. Process Mining: Extending the α-algorithm to Mine Short Loops. BETA
Working Paper Series, WP 113, Eindhoven University of Technology, Eindhoven,
2004.

31. M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1996.

32. J.H. Moore and L.W. Hahn. Petri net modeling of high-order genetic systems using
grammatical evolution. BioSystems, 72(1-2):177–86, 2003.

33. J.H. Moore and L.W. Hahn. An Improved Grammatical Evolution Strategy for
Hierarchical Petri Net Modeling of Complex Genetic Systems. In G.R. Raidl et al.,
editor, Applications of Evolutionary Computing, EvoWorkshops 2004, volume 3005
of Lecture Notes in Computer Science, pages 63–72. Springer-Verlag, Berlin, 2004.

29



34. M. zur Mühlen. Process-driven Management Information Systems Combining
Data Warehouses and Workflow Technology. In B. Gavish, editor, Proceedings of
the International Conference on Electronic Commerce Research (ICECR-4), pages
550–566. IEEE Computer Society Press, Los Alamitos, California, 2001.

35. M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring and Con-
trolling - Technical and Organizational Issues. In R. Sprague, editor, Proceedings
of the 33rd Hawaii International Conference on System Science (HICSS-33), pages
1–10. IEEE Computer Society Press, Los Alamitos, California, 2000.

36. L. Pitt. Inductive Inference, DFAs, and Computational Complexity. In K.P. Jan-
tke, editor, Proceedings of International Workshop on Analogical and Inductive
Inference (AII), volume 397 of Lecture Notes in Computer Science, pages 18–44.
Springer-Verlag, Berlin, 1889.

37. J.P. Reddy, S. Kumanan, and O.V.K. Chetty. Application of Petri Nets and a
Genetic Algorithm to Multi-Mode Multi-Resource Constrained Project Scheduling.
International Journal of Advanced Manufacturing Technology, 17(4):305–314, 2001.

38. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

39. G. Schimm. Process Mining. http://www.processmining.de/.
40. G. Schimm. Process Miner - A Tool for Mining Process Schemes from Event-

based Data. In S. Flesca and G. Ianni, editors, Proceedings of the 8th European
Conference on Artificial Intelligence (JELIA), volume 2424 of Lecture Notes in
Computer Science, pages 525–528. Springer-Verlag, Berlin, 2002.

41. Staffware. Staffware Process Monitor (SPM). http://www.staffware.com, 2002.
42. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models

from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

A Relating the Causal Matrix and Petri nets

In this section we relate the causal matrix to Petri nets. We will map Petri nets
(in particular WF-nets) onto the notation used by our genetic algorithm, i.e.,
the causal matrix. Then we consider the mapping of the causal matrix onto Petri
nets. However, first we introduce some basic notions (e.g., Petri Net, WF-nets,
and soundness).

A.1 Preliminaries

This subsection introduces the basic Petri net terminology and notations, and
also discusses concepts such as WF-nets and soundness.

The classical Petri net is a directed bipartite graph with two node types called
places and transitions. The nodes are connected via directed arcs.

Definition 1 (Petri net). A Petri net is a triple (P, T, F ):

- P is a finite set of places,

- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation)

30



A place p is called an input place of a transition t iff there exists a directed arc
from p to t. Place p is called an output place of transition t iff there exists a
directed arc from t to p. For any relation/directed graph G ⊆ N × N we define
the preset •n = {(m1,m2) ∈ G | n = m2} and postset n• = {(m1,m2) ∈ G | n =
m1} for any node n ∈ N . We use G• n or n

G• to explicitly indicate the context
G if needed. Based on the flow relation F we use this notation as follows. •t
denotes the set of input places for a transition t. The notations t•, •p and p•
have similar meanings, e.g., p• is the set of transitions sharing p as an input
place. Note that we do not consider multiple arcs from one node to another.

At any time a place contains zero or more tokens, drawn as black dots. The
state, often referred to as marking, is the distribution of tokens over places, i.e.,
M ∈ P → IN. To compare states we define a partial ordering. For any two states
M1 and M2, M1 ≤ M2 iff for all p ∈ P : M1(p) ≤ M2(p)

The number of tokens may change during the execution of the net. Transi-
tions are the active components in a Petri net: they change the state of the net
according to the following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least
one token.

(2) An enabled transition may fire. If transition t fires, then t consumes one
token from each input place p of t and produces one token for each output
place p of t.

Given a Petri net (P, T, F ) and a state M1, we have the standard notations for
a transition t that is enabled in state M1 and firing t in M1 results in state
M2 (notation: M1

t→ M2) and a firing sequence σ = t1t2t3 . . . tn−1 leads from
state M1 to state Mn via a (possibly empty) set of intermediate states (notation:
M1

σ→ Mn). A state Mn is called reachable from M1 (notation M1
∗→ Mn) iff

there is a firing sequence σ such that M1
σ→ Mn. Note that the empty firing

sequence is also allowed, i.e., M1
∗→ M1.

In this appendix, we will focus on a particular type of Petri nets called Work-
Flow nets (WF-nets) [1, 2, 13, 18].

Definition 2 (WF-net). A Petri net PN = (P, T, F ) is a WF-net (Workflow
net) if and only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.
(iii) Every node x ∈ P ∪ T is on a path from i to o.

A WF-net represents the life-cycle of a case that has some initial state repre-
sented by a token in the unique input place (i) and a desired final state rep-
resented by a token in the unique output place (o). The third requirement in
Definition 2 has been added to avoid “dangling transitions and/or places”. In
the context of workflow models or business process models, transitions can be
interpreted as activities or tasks and places can be interpreted as conditions.
Although the term “WorkFlow net” suggests that the application is limited to

31



workflow processes, the model has wide applicability, i.e., any process where
each case has a life-cycle going from some initial state to some final state fits
this basic model.

The three requirements stated in Definition 2 can be verified statically, i.e.,
they only relate to the structure of the Petri net. To characterize desirable dy-
namic properties, the notation of soundness has been defined [1, 2, 13, 18].

Definition 3 (Sound). A procedure modeled by a WF-net PN = (P, T, F ) is
sound if and only if:

(i) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally: ∀M (i ∗→ M) ⇒ (M ∗→ o).3

(ii) State o is the only state reachable from state i with at least one token in
place o. Formally: ∀M (i ∗→ M ∧ M ≥ o) ⇒ (M = o).

(iii) There are no dead transitions in (PN , i). Formally: ∀t∈T ∃M,M ′ i
∗→ M

t→
M ′.

Note that the soundness property relates to the dynamics of a WF-net. The
first requirement in Definition 3 states that starting from the initial state (state
i), it is always possible to reach the state with one token in place o (state o).
The second requirement states that the moment a token is put in place o, all
the other places should be empty. The last requirement states that there are no
dead transitions (activities) in the initial state i.

A.2 Mapping a Petri net onto a Causal Matrix

In this paper, we use the concept of a causal matrix to represent an individual.
Table 3 and Table 2 show two alternative visualizations. In this section, we first
formalize the notion of a causal matrix. This formalization will be used to map
a causal matrix onto a Petri net and vice versa.

Definition 4 (Causal Matrix). A Causal Matrix is a tuple CM = (A,C, I,O),
where

- A is a finite set of activities,
- C ⊆ A × A is the causality relation,
- I ∈ A → P(P(A)) is the input condition function,4

- O ∈ A → P(P(A)) is the output condition function,

such that

- C = {(a1, a2) ∈ A × A | a1 ∈ ⋃
I(a2)},5

- C = {(a1, a2) ∈ A × A | a2 ∈ ⋃
O(a1)},

3 Note that there is an overloading of notation: the symbol i is used to denote both
the place i and the state with only one token in place i.

4 P(A) denotes the powerset of some set A.
5

⋃
I(a2) is the union of the sets in set I(a2).

32



- ∀a∈A ∀s,s′∈I(a) s ∩ s′ �= ∅ ⇒ s = s′,
- ∀a∈T ∀s,s′∈O(a) s ∩ s′ �= ∅ ⇒ s = s′,

- C ∪ {(ao, ai) ∈ A × A | ao
C•= ∅ ∧ C• ai = ∅} is a strongly connected graph.

The mapping of Table 3 onto CM = (A,C, I,O) is straightforward (the latter
two columns represent I and O). Note that C can be derived from both I and
O. Its main purpose is to ensure consistency between I and O. For example,
if a1 has an output condition mentioning a2, then a2 has an input condition
mentioning a1 (and vice versa). This is enforced by the first two constraints.
The third and fourth constraint indicate that some activity a may appear only
once in the conjunction of disjunctions, e.g., {{A,B}, {A,C}} is not allowed
because A appears twice. The last requirement has been added to avoid that the
causal matrix can be partitioned in two independent parts or that nodes are not
on a path from some source activity ai to a sink activity ao.

The mapping from an arbitrary Petri net to its corresponding causal matrix
illustrates the expressiveness of the internal format used for genetic mining. First,
we give the definition of the mapping ΠPN→CM .

Definition 5 (ΠPN→CM). Let PN = (P, T, F ) be a Petri net. ΠPN→CM (PN ) =
(A,C, I,O), i.e., the mapping of PN , where

- A = T ,
- C = {(t1, t2) ∈ T × T | t1 • ∩ • t2 �= ∅},
- I ∈ T → P(P(T )) such that ∀t∈T I(t) = {•p | p ∈ •t},
- O ∈ T → P(P(T )) such that ∀t∈T O(t) = {p • | p ∈ t•}.

Let PN be the Petri net shown in Figure 1. It is easy to check that ΠPN→CM (PN )
is indeed the causal matrix in Table 2. However, there may be Petri nets PN for
which ΠPN→CM (PN ) is not a causal matrix. The following lemma shows that
for the class of nets we are interested in, i.e., WF-nets, the requirement that
there may not be two different places in-between two activities is sufficient to
prove that ΠPN→CM (PN ) represents a causal matrix as defined in Definition 4.

Lemma 1. Let PN = (P, T, F ) be a WF-net with no duplicate places in between
two transitions, i.e., ∀t1,t2∈T |t1 •∩• t2| ≤ 1. ΠPN→CM (PN ) represents a causal
matrix as defined in Definition 4.

Proof. Let ΠPN→CM = (A,C, I,O). Clearly, A = T is a finite set, C ⊆ A × A,
and I,O ∈ A → P(P(A)). C = {(a1, a2) ∈ A × A | a1 ∈ ⋃

I(a2)} because
a1 ∈ ⋃

I ′(a2) if and only if a1•∩•a2 �= ∅. Similarly, C = {(a1, a2) ∈ A×A | a2 ∈⋃
O(a1)}. ∀a∈A ∀s,s′∈I(a) s ∩ s′ �= ∅ ⇒ s = s′ because ∀t1,t2∈T |t1 • ∩ • t2| ≤ 1.

Similarly, ∀a∈A ∀s,s′∈O(t) s ∩ s′ �= ∅ ⇒ s = s′. Finally, it is easy to verify that
C ∪ {(ao, ai) ∈ A × A | ao• = ∅ ∧ •ai = ∅} is a strongly connected graph. ��
The requirement ∀t1,t2∈T |t1 • ∩ • t2| ≤ 1 is a direct result of the fact that
in the conjunction of disjunctions in I and O, there may not be any overlaps.
This restriction has been added to reduce the search space of the genetic mining
algorithm, i.e., the reason is more of a pragmatic nature. However, for the success
of the genetic mining algorithm such reductions are of the utmost importance.

33



A.3 A Naive Way of Mapping a Causal Matrix onto a Petri net

The mapping from a causal matrix onto a Petri net is more involved because we
need to “discover places” and, as we will see, the causal matrix is slightly more
expressive than classical Petri nets.6 Let us first look at a naive mapping.

Definition 6 (ΠN
CM→PN). Let CM = (A,C, I,O) be a causal matrix. ΠN

CM→PN

(CM ) = (P, T, F ), i.e., the naive Petri net mapping of CM , where

- P = {i, o} ∪ {it,s | t ∈ A ∧ s ∈ I(t)} ∪ {ot,s | t ∈ T ∧ s ∈ O(t)},
- T = A ∪ {mt1,t2 | (t1, t2) ∈ C},
- F = {(i, t) | t ∈ A ∧ C• t = ∅} ∪ {(t, o) | t ∈ A ∧ t

C•= ∅} ∪ {(it,s, t) | t ∈
A ∧ s ∈ I(t)} ∪ {(t, ot,s) | t ∈ A ∧ s ∈ O(t)} ∪ {(ot,s,mt1,t2) | (t1, t2) ∈
C ∧ t ∈ A ∧ s ∈ O(t) ∧ t = t1 ∧ t2 ∈ s} ∪ {(mt1,t2 , it,s) | (t1, t2) ∈
C ∧ t ∈ A ∧ s ∈ I(t) ∧ t = t2 ∧ t1 ∈ s}.

The mapping ΠN
CM→PN maps activities onto transitions and adds input places

and output places to these transitions based on functions I and O. These places
are local to one activity. To connect these local places, one transition mt1,t2 is
added for every (t1, t2) ∈ C. Figure 15 shows a causal matrix and the naive
mapping ΠN

CM→PN (we have partially omitted place/transition names).

ACTIVITY INPUT OUTPUT

A {} {{C, D}}
B {} {{D}}
C {{A}} {}
D {{A, B}} {}

A

B

C

D

A

B

C

D

(a) Naive translation.

(b) Incorrect translation.

Fig. 15. A causal matrix (left) and two potential mappings onto Petri nets (right).

Figure 15 shows two WF-nets illustrating the need for “silent transitions”
of the form mt1,t2 . The dynamics of the WF-net shown in Figure 15(a) is con-
sistent with the causal matrix. If we try to remove the silent transitions, the
best candidate seems to be the WF-net shown in Figure 15(b). Although this is
a sound WF-net capturing incorporating the behavior of the WF-net shown in
Figure 15(a), the mapping is not consistent with the causal matrix. Note that
Figure 15(b) allows for a firing sequence where B is followed by C. This does
not make sense because C �∈ ⋃

O(B) and B �∈ ⋃
I(C). Therefore, we use the

mapping given in Definition 6 to give Petri-net semantics to causal matrices.
It is easy to see that a causal matrix defines a WF-net. However, note that

the WF-net does not need to be sound.
6 Expressiveness should not be interpreted in a formal sense but in the sense of con-

venience when manipulating process instances, e.g., crossover operations.

34



Lemma 2. Let CM = (A,C, I,O) be a causal matrix. ΠN
CM→PN (CM ) is a

WF-net.

Proof. It is easy to verify the three properties mentioned in Definition 2. Note
that the “short-circuited” C is strongly connected and that each mt1,t2 transition
makes a similar connection in the resulting Petri net. ��

Figure 16 shows that despite the fact that ΠN
CM→PN (CM ) is a WF-net, the

introduction of silent transitions may introduce a problem. Figure 16(b) shows
the WF-net based on Definition 6, i.e., the naive mapping. Clearly, Figure 16(b)
is not sound because there are two potential deadlocks, i.e., one of the input
places of E is marked and one of the input places of F is marked but none of
them is enabled. The reason for this is that the choices introduced by the silent
transitions are not “coordinated” properly. If we simply remove the silent tran-
sitions, we obtain the WF-net shown in Figure 16(a). This network is consistent
with the causal matrix. This can easily be checked because applying the map-
ping ΠPN→CM defined in Definition 5 to this WF-net yields the original causal
matrix shown in Figure 16.

ACTIVITY INPUT OUTPUT

A {} {{B}, {C, D}}
B {{A}} {{E, F}}
C {{A}} {{E}}
D {{A}} {{F}
E {{B}, {C}} {{G}}
F {{B}, {D}} {{G}}
G {{E}, {F}} {}

A C

D

B E

F

G

A C

D

B E

F

G

(a) Mapping without silent transitions.

(b) Naive mapping.

Fig. 16. Another causal matrix (left) and two potential mappings onto Petri nets
(right).

Figures 15 and 16 show a dilemma. Figure 15 demonstrates that silent tran-
sitions are needed while Figure 16 proves that silent transitions can be harmful.
There are two ways to address this problem taking the mapping of Definition 6
as a starting point.

First of all, we can use relaxed soundness [13] rather than soundness [1]. This
implies that we only consider so-called sound firing sequences and thus avoid
the two potential deadlocks in Figure 16(b). See [13] for transforming a relaxed
sound WF-net into a sound one.

35



Second, we can change the firing rule such that silent transitions can only fire
if they actually enable a non-silent transition. The enabling rule for non-silent
transitions is changed as follows: a non-silent transition is enabled if each of its
input places is marked or it is possible to mark all input places by just firing
silent transitions, i.e., silent transitions only fire when it is possible to enable a
non-silent transition. Note that non-silent and silent transitions alternate and
therefore it is easy to implement this semantics in a straightforward and localized
manner.

In this appendix we use the second approach, i.e., a slightly changed enabling/-
firing rule is used to specify the semantics of a causal matrix in terms of a WF-
net. This semantics allows us also to define a notion of fitness required for the
genetic algorithms. Using the Petri-net representation we can play the “token
game” to see how each event trace in the log fits the individual represented by
a causal matrix. Note that in Figure 3, the token game is played in the context
of the causal matrix. However, the semantics used is exactly the same.

A.4 A More Sophisticated Mapping

Although not essential for the genetic algorithms, we elaborate a bit on the
dilemma illustrated by figures 15 and 16. The dilemma shows that the causal
net representation is slightly more expressive than ordinary Petri nets. (Note
the earlier comment on expressiveness!) Therefore, it is interesting to see which
causal matrices can be directly mapped onto a WF-net without additional silent
transitions. For this purpose we first define a mapping ΠR

CM→PN which only
works for a restricted class of causal matrices.

Definition 7 (ΠR
CM→PN). Let CM = (A,C, I,O) be a causal matrix. ΠR

CM→PN

(CM ) = (P, T, F ), i.e., the restricted Petri net mapping of CM , where

- X = {(Ti, To) ∈ P(A) × P(A) | ∀t∈Ti
To ∈ O(t) ∧ ∀t∈To

Ti ∈ I(t)}
- P = X ∪ {i, o},
- T = A,
- F = {(i, t) | t ∈ T ∧ C• t = ∅} ∪ {(t, o) | t ∈ T ∧ t

C•= ∅} ∪ {((Ti, To), t) ∈
X × T | t ∈ To} ∪ {(t, (Ti, To)) ∈ T × X | t ∈ Ti}.

If we apply this mapping to the causal matrix shown in Figure 16, we obtain the
WF-net shown in Figure 16(a), i.e., the desirable net without the superfluous
silent transitions. However, in some cases the ΠR

CM→PN does not yield a WF-
net because some connections are missing. For example, if we apply ΠR

CM→PN

to the causal matrix shown in Figure 15, then we obtain a result where there
are no connections between A, B, C, and D. This makes sense because there
does not exist a corresponding WF-net. This triggers the question whether it is
possible to characterize the class of causal matrices for which ΠR

CM→PN yields
the correct WF-net.

Definition 8 (Simple). Let CM = (A,C, I,O) be a causal matrix. CM is sim-
ple if and only if ∀tA,tB∈T ∀TA∈O(tA) ∀TB∈O(tB) ∀tC∈(TA∩TB) ∀TC∈I(tC){tA, tB} ⊆

36



TC ⇒ TA = TB and ∀tA,tB∈T ∀TA∈I(tA) ∀TB∈I(tB) ∀tC∈(TA∩TB) ∀TC∈O(tC)

{tA, tB} ⊆ TC ⇒ TA = TB.

Figure 17 illustrates the notion of simplicity. Note that the diagrams shown
do not represent Petri nets but causal matrices, i.e., the circles should not be
interpreted as places but as disjunctions. (Recall that the input and output
sets of an activity are conjunctions of disjunctions.) The left-hand side shows a
requirement on two activities (tA and tB) pointing to the same activity (tC). In
this case, TA and TB should coincide. The left-hand side of Figure 17 shows the
requirement on two activities (tA and tB) pointed to by the same activity (tC).
In this case, TA and TB should also coincide.

t A

TA

t B

T B

tC

TC

t B

t C

TC

TB

t A

T A

Fig. 17. A causal matrix is simple if in the situations shown TA = TB . If one can find
a pattern like one of the two shown and TA �= TB , then the causal matrix is not simple.

Clearly the causal matrix shown in Figure 16 is simple while the one in
Figure 15 is not. In the remainder of this appendix we will show that ΠR

CM→PN

provides indeed the correct mapping if the causal matrix is simple.

Lemma 3. Let CM = (A,C, I,O) be a causal matrix. If CM is simple, then
each of the following properties holds:

(i) ∀(t1,t2)∈C ∃T1,T2∈P(A) t1 ∈ T1 ∧ t2 ∈ T2 ∧ (∀t∈T1 T2 ∈ O(t)) ∧ (∀t∈T2 T1 ∈
I(t)), and

(ii) ΠR
CM→PN (CM ) is a WF-net.

Proof. First, we prove Property (i). Assume two activities t1 and t2 such that
(t1, t2) ∈ C. There is exactly one T2 ∈ O(t1) such that t2 ∈ T2 because (t1, t2) ∈
C and disjunctions cannot overlap. Similarly, there is exactly one T1 ∈ I(t2)
such that t1 ∈ T1. Remains to prove that ∀t∈T1 T2 ∈ O(t) and ∀t∈T2 T1 ∈ I(t).
Suppose t ∈ T1. Clearly, there is an X ∈ O(t) such that t2 ∈ X. Now we can
apply the left-hand side of Figure 17 with tA = t1, tC = t2, tB = t, TA = T2,
TC = T1, and TB = X. This implies that T2 = X and hence ∀t∈T1 T2 ∈ O(t).
Similarly, we can show that ∀t∈T2 T1 ∈ I(t).

The second property (Property (ii)) follows from the first one because if
(t1, t2) ∈ C then a connecting place between t1 and t2 is introduced by the set

37



X used in the construction of ΠR
CM→PN (CM ) (cf. Definition 7). The rest of the

proof is similar to the proof of Lemma 2. ��
The two properties given in Lemma 3 are used to prove that mapping a causal
matrix to a Petri net using ΠR

CM→PN (CM ) and then applying the mapping of
a Petri net to a causal matrix ΠPN→CM on the result, yields again the original
causal matrix.

Theorem 1. Let CM = (A,C, I,O) be a causal matrix. If CM is simple, then
ΠPN→CM (ΠR

CM→PN (CM )) = CM.

Proof. Consider an activity t in CM with input sets I(t) and output sets O(t).
Every p ∈ I(t) is mapped onto an input place in ΠR

CM→PN (CM ) bearing the
label (Ti, To) such that p = Ti. Lemma 3 can be used to show that such a
place exists if CM is simple. Every p ∈ O(t) is mapped onto an output place in
ΠR

CM→PN (CM ) bearing the label (Ti, To) such that p = To. Again, Lemma 3 can
be used to show that such a place exists. Therefore, no information is lost during
the mapping onto the WF-net ΠR

CM→PN (CM ) and that ΠPN→CM retranslates
the sets Ti and To in the places of X to functions I and O. Hence the original
causal matrix is reconstructed. ��
In this appendix, we discussed the relation between the representation used by
our genetic algorithm and Petri nets. We used this relation to give semantics
to our representation. It was shown that this representation is slightly more ex-
pressive than Petri nets because any WF-net can be mapped into causal matrix
while the reverse is only possible after introducing silent transitions and modi-
fying the firing rule or using relaxed soundness. We also characterized the class
of causal matrices that can be mapped directly.

38


