
Analyzing BPEL processes using Petri nets

H.M.W. Verbeek, W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{h.m.w.verbeek,w.m.p.v.d.aalst}@tm.tue.nl

Abstract. Some years ago, BEA, IBM, Microsoft, SAP AG, and Siebel
Systems teamed up and proposed the Business Process Execution Lan-
guage for Web Services (BPEL or BPEL4WS) for application integration
within and across organizational boundaries. By now, BPEL has become
the de facto standard in this Web services composition arena. However,
little effort has been dedicated so far concerning the verification of the
modeled business processes. For example, there is no support to detect
possible deadlocks, or to detect parts of the process that are not viable.
For so-called WF-nets (workflow nets), techniques and tools exist which
make it possible to detect such anomalies. Therefore, we could detect
these anomalies in a BPEL process model provided that we can suc-
cessfully map this model onto a WF-net. This papers describes a first
attempt to map a BPEL process model onto a WF-net. Although not
all BPEL constructs have been mapped yet, the results seem promising,
as we are able to map typical examples from the BPEL 1.1 specification
onto WF-nets.

1 Introduction

Web Services are rapidly emerging as the principal paradigm for architecting and
implementing business collaborations within and across organizational bound-
aries. According to this paradigm, the functionalities provided by business ap-
plications are encapsulated within web services: software components described
at a semantical level, which can be invoked by application programs or by other
services through a stack of Internet standards including HTTP, XML, SOAP,
WSDL, and UDDI [7]. Once deployed, web services provided by various orga-
nizations can be inter-connected in order to implement business collaborations,
leading to composite web services.

Business collaborations require long-running interactions driven by explicit
process models [4]. Accordingly, it is a natural choice to capture the logic of
a composite web service using business process modeling languages tailored for
web services. Many such languages have recently emerged, including WSCI [21],
BPML [6], BPEL(4WS) [8], BPSS [18], and XPDL [22], with little effort being
dedicated to the verification of these explicit process models. Questions such as:

– Can an instance of a Web service can always be completed successfully?
– Is completion always clean, that is, is nothing left behind upon completion?

– Are all parts of the Web service viable, that is, are there no dead parts?

are left unanswered.
Existing powerful Petri-net-based techniques could be used to verify the pro-

cess models by answering the aforementioned questions, provided that it is pos-
sible to successfully map the BPEL process model onto a WF-net (a class of
Petri nets). In this paper, we make a first attempt to map BPEL process models
onto WF-nets. The reason for selecting BPEL is that is the most widely known
and used, and has become the de facto standard for this kind of languages.

The remainder of this paper is organized as follows. Section 2 introduces, in
a nutshell, both BPEL and WF-nets. Section 3 introduces the current mapping.
Section 4 discusses the results of this mapping on some example BPEL process
models found in [5]. Next, Section 5 shows that for an small erroneous example
the behavior of the Oracle BPEL Process Manager [16] is consistent with the
behavior of the mapped WF-net. Section 6 discusses related work. Finally, we
conclude the paper.

2 Preliminaries

2.1 BPEL

BPEL, also known as BEPL4WS, builds on IBMs WSFL (Web Services Flow
Language) and Microsofts XLANG (Web Services for Business Process Design).
Accordingly, it combines the features of a block structured process language
(XLANG) with those of a graph-based process language (WSFL). BPEL is in-
tended for modeling two types of processes: executable and abstract processes.
An abstract process is a business protocol specifying the message exchange be-
havior between different parties without revealing the internal behavior of any
of them. An executable process specifies the execution order between a number
of constituent activities, the partners involved, the messages exchanged between
these partners, and the fault and exception handling mechanisms.

A BPEL process specification is a kind of flow-chart. Each element in the
process is called an activity. An activity is either primitive or structured. The
primitive activity types are:

invoke to invoke an operation of a web service described in WSDL;
receive to wait for a message from an external source;
reply to reply to an external source;
wait to remain idle for some time;
assign to copy data from one data container to another;
throw to indicate errors in the execution;
terminate to terminate the entire service instance; and
empty to do nothing.

To enable the representation of complex structures, the following structured
activities are provided:

sequence for defining an execution order;
switch for conditional routing;
while for looping;
pick for race conditions based on timing or external triggers;
flow for parallel routing; and
scope for grouping activities to be treated by the same fault-handler.

Structured activities can be nested. Given a set of activities contained within the
same flow, the execution order can further be controlled through (control) links,
which allow the definition of dependencies between two activities: the target
activity may only start when the source activity has ended. Activities can be
connected through links to form directed acyclic graphs.

2.2 WF-nets

We will attempt to map a BPEL process model onto a class of Petri nets known
as WF-nets (WorkFlow nets) [1–3], because for this class of nets a soundness
property has been defined [1, 14] and a verification tool (Woflan [19, 20]) exists.
Basically, a WF-net is a classical Petri net with three additional requirements:

1. There exists a single source place, usually denoted i.
2. There exists a single sink place, usually denoted o.
3. For every node (place or transition) there exists a path from i to o which

covers the node.

A token in place i denotes a case (an instance of a Web service, in BPEL terms)
that is ready to be started, whereas a token in place o denotes a case that has
been completed. The third requirement enforces that every node contributes to
the completion of instances.

A WF-net is called sound if and only if it satisfies the following three require-
ments:

1. For every possible instance, completion is possible, that is, a token can be
put into place o).

2. For every completed instance, completion is clean, that is, if o contains a
token then o is the only place containing a token.

3. Every node is viable, that is, every node can be activated.

Using existing Petri-net-based techniques, a tool like Woflan can decide sound-
ness of any WF-net, and report any anomalies back to the modeler. Using this
report, the modeler can then correct the model.

3 Mapping

In this section, we will map the structured activities onto Petri nets, except for
the scope activity. Furthermore, our mapping will provide support for control
links. We have used [5] as basis for our mappings.

Note that an activity is not necessarily mapped onto a WF-net, as most of the
activities are mapped onto a Petri net that contains multiple source places and
multiple sink places. However, the top-most activity, including all its contained
activities, will be mapped onto a WF-net, and this WF-net can be verified for
soundness.

3.1 Activities

Any BPEL activity can have a name, a join condition, a join-fault setting, a
number of sources, and a number of targets. The join condition is a Boolean
expression over the activity’s targets. The activity can only be started if the join
condition has evaluated to “true”. The join-fault setting describes what should
happen in case the join condition evaluates to “false”. If the join condition is
set to “yes”, then the activity is simply skipped; if set to “no”, then a join fault
will be thrown which needs to be caught by some element up in the hierarchy.
As long as the exception has not been caught, activities will be aborted. For his
paper, we assume this setting to be “yes”. The sources are the outgoing links
that will be traversed if this activity has either been completed or skipped. If
skipped, the corresponding link will have a negative status. If completed, then an
optional transition condition determines its status. The targets are the incoming
links that need to be traversed before this activity can start. A traversed target
can have either a positive or a negative status.

false
targets

false
sources

start end

sf

st

ef

et

started completed

true
targets

true
sources

Activity

skip

Fig. 1. Mapping for an activity.

Figure 1 shows how we map this onto a Petri net fragment. The place start
contains a token if the hierarchical structure enables this activity. For every
target, a true place and a false place are present. If the corresponding link has
been traversed, either the true place contains a token (indicating that the link
has a positive status) or the false place contains a token (indicating that the link
has a negative status). The join condition is mapped onto a set of st (start true)
transitions: One st transition for every valid combination of targets. For every
invalid combination of targets, a sf (start false) transition is present. If the set of
positive targets is valid, that is, if the join condition evaluates to “true”, then the
activity is started. After the activity has been completed, the corresponding et
(end true) transition forwards control to both the next activity in the hierarchical
structure (through place end) and to the sources. If the set of positive targets is

invalid, the corresponding sf transition forwards control to the skip place, after
which the ef (end false) transition forwards control to both the next activity in
the hierarchical structure (through place end) and to the sources. Please note
that an activity forwards a positive control to its sources if it was completed, and
that it forwards a negative control (for dead path elimination) if it was skipped.

start endet

started completed

st Activity

Fig. 2. Mapping for a link-less activity.

Figure 2 shows how we map an activity without sources or targets. Because
any source or target must refer to some link defined in some flow activity higher
up in the hierarchy, the top activity in the hierarchy cannot have sources or
targets. Thus, this top activity will have exactly one source place (start) and
exactly one sink place (end).

3.2 Links

false
source

true
target

true
source

false
target

tf

tt

ff

Fig. 3. Mapping for a link.

Figure 3 shows how we map a link onto a Petri net fragment. If the source
activity was skipped, then place false source contains a token, and we simply have
to pass this negative control on (dead path elimination) to the target activity
through the place false target. If the source activity was completed, then place
true source contains a token, and the transition condition determines whether
a positive control or a negative control needs to be forwarded. If the transition
condition evaluates to “true”, then a positive control is forwarded through place
true target (that is, transition tt fires), otherwise a negative control is forwarded
(that is, transition tf fires). Note that transition tf (true false) is absent if no
transition condition is given for this link.

In the remainder of this section, we will abstract from links as much as possi-
ble. Instead we will focus on the core of the activity, that is, the part between the

places “started” and “completed”. As a result, we will show places like “start”
and “true sources” only if they are relevant for the activity at hand.

3.3 Basic Activities

b a
true

targets

false
sourcesstart

end

c

started completed

Fig. 4. Mapping for a basic activity. Note that standard connections shown in Figure 1
have been omitted.

A basic activity (like, for example, invoke, receive, and reply) does not contain
any other activity. A basic activity can be completed, aborted (by not catching a
thrown exception), or rolled back (using a compensation handler). Figure 4 shows
how we map this onto a Petri net fragment. Transition c models the completion
of the activity, transition a its abortion, and transition b its rolling back. Note
that a roll back will set the status of all its incoming links to positive. Because the
activity had been started, its join condition must have been evaluated to “true”,
and we assume that a join condition will evaluate to “true” if all incoming links
have a positive status. Therefore, it seems safe to roll back to a state where all
incoming links have a positive status.

3.4 Sequence Activities

started completed

Activity A Activity B Activity C

Fig. 5. Mapping for a sequence activity.

A sequence activity contains ordered set of activities, and takes care of executing
these contained activities in the given order. Figure 5 shows how this can be
(trivially) mapped onto a Petri net fragment.

Although it is not shown in Figure 5 (and in many figures to come), it is
possible that links exists between enclosed activities. For example, there could
be links from Activity B to Activity C, from Activity A to Activity C, and there
could be even links to and from activities outside the sequence. Figures 1 and

3 show how such links are mapped onto Petri net fragments, which extend the
Petri net fragment resulting from Figure 5.

3.5 Switch Activities

started completed

Activity A

Activity B

Activity C

Fig. 6. Mapping for a switch activity.

A switch activity contains an ordered set of activities with associated conditions,
and executes the first contained activity for which the associated condition eval-
uates to “true”. The last activity in the ordered set of activities can be an other-
wise activity, for which the associated condition always evaluates to “true”. If no
otherwise activity is present, an empty otherwise activity is considered present.
Thus, one of the associated conditions will evaluate to “true”. Figure 6 shows
how we can map this onto a Petri net fragment. Note that we abstract from the
actual conditions and the order in which they are evaluated. Also note that in
case all conditions can evaluate to “false”, we need to add an empty activity,
that is, a transition that forwards control from the started place to the completed
place.

Note that each of the activities in a switch may have links. As a result,
parts of the model may not be executed while they contain links that may block
concurrent activities. Although [5] is not completely clear about the semantics
such constructs, the text “If, during the performance of structured activity S,
the semantics of S dictate that activity X nested within S will not be performed
as part of the behavior of S, then the status of all outgoing links from X is set to
negative.” (page 65, [5]) suggest that links need to be taken anyway. A similar
problem occurs on the receiving side. In this paper, we will abstract from these
problems and assume that both the source and target of a link are traversed or
both are skipped. This problem is not limited to switch activity but also applies
to other section mechanism (e.g., the pick activity).

3.6 While Activities

A while activity contains one activity and executes this activity as long as an
associated condition holds (evaluates to “true”). Figure 7 shows how we can map
this onto a Petri net fragment. If the associated condition evaluates to “true”,

ct

cf

started

completed

Activity A

Fig. 7. Mapping for a while activity.

then transition ct (condition true) will forward control to the contained activity
A. When activity A completes, it will put the control back. If the associated con-
dition evaluates to “false”, transition cf (condition false) will forward the control
to the completed place, indicating that this while activity has now completed.

3.7 Pick Activities

event A

event B

started completed

Activity A

Activity B

Activity C

Fig. 8. Mapping for a pick activity.

A pick activity contains a (non-zero) number of onMessage elements and a (pos-
sibly zero) number of onAlarm elements. Each onMessage element contains a
reference to some event, a possible set of correlations, and an activity. As soon
as the event has occurred, the pick activity can start the corresponding activity.
Each onAlarm element contains either a absolute time or a relative time, and
an activity. As soon as the absolute time has been reached or the relative time
has been passed, the pick activity can start the corresponding activity. A pick
activity starts only one activity. After it has started an activity, a pick activity
waits until that activity has completed. A pick activity completes as soon as its
started activity completes. Figure 8 shows how we can map this onto a Petri net
fragment.

3.8 Flow Activities

A flow activity contains a number of links and a (non-zero) number of activi-
ties. In the hierarchical activity structure, all contained activities are enabled in

as aj

started completed

Activity A

Activity B

Activity C

Fig. 9. Mapping for a flow activity.

parallel. However, due to the link structure, some activities might not be able to
start immediately. A flow activity completes as soon as all its contained activities
have completed. Figure 9 shows how we can map the hierarchical structure onto
a Petri net fragment, for the link structure we refer to Figure 1 and Figure 3.
In Figure 9, transition as (AND-split) enables all activities, and transition aj
(AND-join) completes the flow activity.

3.9 A Reduction

skip

false
targets

false
sources

start end

sf

st

ef

et
true

targets
true
sources

Fig. 10. Mapping for an activity that does not contain a source, target, or pick.

It is straightforward to check, that most of the activities can only lead to prob-
lems if they contain sources or targets. The only exception is the pick activity,
which may block because it lacks any of the necessary events. Thus, if any activ-
ity does not contain any source, target, or pick, then that activity can cause no
problems. Hence, we can use the more simple mapping as shown in Figure 10.

4 Examples

The following examples show how the structure of a BPEL process model is
mapped onto a WF-net. The examples are all taken (descriptions have been
copied in) from the section on structured activities of the BPEL 1.1 specification
[5] and, therefore, serve as a nice illustration of the mappings presented in this
paper.

4.1 Flow Graph Example

Descriptions In the following example, the activities with the names getBuyer-
Information, getSellerInformation, settleTrade, confirmBuyer, and confirmSeller
are nodes of a graph defined through the flow activity. The following links are
defined:

– The link named buyToSettle starts at getBuyerInformation (specified through
the corresponding source element nested in getBuyerInformation) and ends
at settleTrade (specified through the corresponding target element nested in
settleTrade).

– The link named sellToSettle starts at getSellerInformation and ends at set-
tleTrade.

– The link named toBuyConfirm starts at settleTrade and ends at confirm-
Buyer.

– The link named toSellConfirm starts at settleTrade and ends at confirm-
Seller.

Based on the graph structure defined by the flow, the activities getBuy-
erInformation and getSellerInformation can run concurrently. The settleTrade
activity is not performed before both of these activities are completed. After
settleTrade completes the two activities, confirmBuyer and confirmSeller are
performed concurrently again.

<flow suppressJoinFailure="yes">
<links>
<link name="buyToSettle"/>
<link name="sellToSettle"/>
<link name="toBuyConfirm"/>
<link name="toSellConfirm"/>

</links>
<receive name="getBuyerInformation">
<source linkName="buyToSettle"/>

</receive>
<receive name="getSellerInformation">
<source linkName="sellToSettle"/>

</receive>
<invoke name="settleTrade"

joinCondition="bpws:getLinkStatus(’buyToSettle’) and
bpws:getLinkStatus(’sellToSettle’)">

<target linkName="getBuyerInformation"/>
<target linkName="getSellerInformation"/>
<source linkName="toBuyConfirm"/>
<source linkName="toSellConfirm"/>

</invoke>
<reply name="confirmBuyer">
<target linkName="toBuyConfirm"/>

</reply>
<reply name="confirmSeller">
<target linkName="toSellConfirm"/>

</reply>
</flow>

as aj

started completed

start endet

etc

true source
buyToSettle

st

getBuyerInformation

etc

true source
sellToSettle

st

getSellerInformation

etcst

true target
buyToSettle

true target
sellToSettle

true source
toBuyConfirm
true source
toSellConfirm

tt

tt

settleTrade

etcst

confirmBuyer

true target
toBuyConfirm

etcst

confirmSeller

true target
toSellConfirm

tt

tt

st

Fig. 11. Intended mapping for the first example.

Mapping Note that the aforementioned example contains references to links
named getBuyerInformation and getSellerInformation, which are activities in-
stead of links. We assume that these references should be replaced by references
to buyToSettle and sellToSettle. Figure 11 shows the intended mapping. This
mapping behaves as described in the BPEL 1.1 specification [5].

4.2 Links and Structured Activities

Description Links can cross the boundaries of structured activities. When this
happens, care must be taken to ensure the intended behavior of the business pro-
cess. The following example illustrates the behavior when links target activities
within structured constructs.

The following flow is intended to perform the sequence of activities A, B, and
C. Activity B has a synchronization dependency on the two activities X and Y
outside of the sequence, that is, B is a target of links from X and Y. The join
condition at B is missing, and therefore implicitly assumed to be the default,
which is the disjunction of the status of the links targeted to B. The condition is
therefore true if at least one of the incoming links has a positive status. In this
case that condition reduces to the Boolean condition P(X,B) OR P(Y,B) based
on the transition conditions on the links.

In the flow, the sequence S and the two receive activities X and Y are all
concurrently enabled to start when the flow starts. Within S, after activity A
is completed, B cannot start until the status of its incoming links from X and
Y is determined and the implicit join condition is evaluated. When activities X
and Y complete, the join condition for B is evaluated.

Suppose that the expression P(X,B) OR P(Y,B) evaluates to false. In this
case, the standard fault bpws:joinFailure will be thrown, because the environ-
mental attribute suppressJoinFailure is set to “no”. Thus the behavior of the
flow is interrupted and neither B nor C will be performed.

If, on the other hand, the environmental attribute suppressJoinFailure is
set to “yes”, then B will be skipped but C will be performed because the
bpws:joinFailure will be suppressed by the implicit scope associated with B.

<flow suppressJoinFailure="no">
<links>
<link name="XtoB"/>
<link name="YtoB"/>

</links>

<sequence name="S">
<receive name="A" ...>
...

</receive>
<receive name="B" ...>
<target linkName="XtoB"/>
<target linkName="YtoB"/>
...

</receive>

<receive name="C" ...>
...

</receive>
</sequence>

<receive name="X" ...>
<source linkName="XtoB" transitionCondition="P(X,B)"/>
...

</receive>

<receive name="Y" ...>
<source linkName="YtoB" transitionCondition="P(Y,B)"/>
...

</receive>
</flow>

Finally, assume that the preceding flow is slightly rewritten by linking A,
B, and C through links (with transition conditions with constant truth-value of
“true”) instead of putting them into a sequence. Now, B and thus C will always
be performed. Because the join condition is a disjunction and the transition
condition of link AtoB is the constant “true”, the join condition will always
evaluate to “true”, independent from the values of P(X,B) and P(Y,B).

<flow suppressJoinFailure="no">
<links>
<link name="AtoB"/>
<link name="BtoC"/>
<link name="XtoB"/>
<link name="YtoB"/>

</links>
<receive name="A">
<source linkName="AtoB"/>

</receive>
<receive name="B">
<target linkName="AtoB"/>
<target linkName="XtoB"/>
<target linkName="YtoB"/>
<source linkName="BtoC"/>

</receive>
<receive name="C">
<target linkName="BtoC"/>

</receive>
<receive name="X">
<source linkName="XtoB" transitionCondition="P(X,B)"/>

</receive>
<receive name="Y">
<source linkName="YtoB" transitionCondition="P(Y,B)"/>

</receive>
</flow>

Mappings Except for the suppressJoinFailure=“no”, we can map the second
example. Figure 12 shows the intended result. Note that his example is not

as aj

started completed

start endet

etst

etcst

true target
XtoB

etc

st

sf

st

st

true target
YtoB

false target
XtoB

false target
YtoB

etcst

etcst

etcst

tt

tt

tf

tf

true source
YtoB

true source
XtoB

 A

 C

 X

 Y

 B

?

st

Fig. 12. Intended mapping for the second example.

as aj

started completed

start endet

etc

true source
AtoB

st

 A

etc

st

 B

true target
AtoB

true target
BtoC

true source
BtoC

true source
YtoB

tt

tt

 C

etcst

 X

true target
toBuyConfirm

etcst

 Y

true target
toSellConfirm

tt

tt

etcst

st

st

st

true target
YtoB

true target
XtoB

false target
XtoB

false target
YtoB

true source
XtoB

tf

tf

st

Fig. 13. Intended mapping for the third example.

(yet) mapped onto a WF-net, as the transition sf in activity B clearly is a sink
transition, which is not covered by any path form start to end. This is due to
the fact that the mapping does not (yet) include scopes and fault handlers. In
the near future, we hope to add these constructs to the mapping.

Figure 13 shows the intended mapping of the third example. Because in this
example the join condition cannot fail, we can map it successfully onto a WF-net.

Fig. 14. Oracle BPEL Designer snapshot.

5 Oracle BPEL Process Manager

Using Oracle BPEL Process Manager (and Designer) [16], we have deployed the
following, erroneous, BPEL process model.

<sequence name="main">
<receive name="receiveInput" partnerLink="client"

portType="tns:Eric1" operation="initiate"
variable="input" createInstance="yes"/>

<flow name="flowEric">

<links>
<link name="linkEric"/>

</links>
<sequence name="flow-sequence-1">
<switch name="switchEric">
<case condition="bpws:getVariableData(

"input","payload",
"/tns:Eric1Request/tns:input")=
"Eric"">

<empty name="Eric">
<source linkName="linkEric"/>

</empty>
</case>
<otherwise>
<empty name="nonEric">
<target linkName="linkEric"/>

</empty>
</otherwise>

</switch>
</sequence>

</flow>
<invoke name="callbackClient" partnerLink="client"

portType="tns:Eric1Callback"
operation="onResult" inputVariable="output"/>

</sequence>

Figure 14 shows a snapshot of this model using Oracle BPEL Designer. This
process model is clearly erroneous:

– if the condition evaluates to true, the status of the link linkEric is set to
positive, but this determined status will never be used;

– if the condition evaluates to false, the process model will deadlock because
the status of the link linkEric can not be determined;

– the (empty) activity labeled “nonEric” is not viable (it cannot be executed).

However, no warnings or errors were issued during the deployment of this process
model. This shows that it is not hard to deploy an erroneous BPEL process
model, which is clearly not without dangers.

Figures 15 and 16 show the audit trails of two instances, one with “Eric”
as input and one with “Wil” as input. The first instance is able to complete.
However, no warning is issued for the fact that the status of link linkEric is
never used. The second instance is not able to complete (it deadlocks) because
the status of the link cannot be determined.

We have (manually) mapped the erroneous process onto a WF-net, and have
verified that WF-net using Woflan [19, 20]. Figure 17 shows the diagnostic results
provided by Woflan. First of all, Woflan reports (the red X in the bottom right
corner) that the WF-net is not sound. Furthermore, the conditions (places) that
correspond to the link “linkEric” are both improper (unbounded). Obviously,
there is something wrong with this link. Even worse, there is no scenario which
avoids improper places (as the number of improper scenarios is 0). Also note

Fig. 15. Audit trail “Eric”.

Fig. 16. Audit trail “Wil”.

Fig. 17. Woflan report on mapped process model.

that Woflan explicitly mentions the task (transition) “flowEric/flow-sequence-
1/switchEric/Eric/et” as a possible cause of the improper places (as it is part of
an AND-OR mismatch (TP-handle). Clearly, our approach works and provides
the modeler with valuable information towards correcting possible errors.

6 Related Work

Several attempts have been made to capture the behavior of BPEL in some
formal way. Some advocate the use of finite state machines [12, 13], others process
algebras [11], and yet others abstract state machines [9, 10]. Our approach is
specifically tailored towards mapping a BPEL process model onto a WF-net,
which enables us to check its soundness. As the aforementioned formalisms do
not support the soundness property, we cannot use these mappings. To our
knowledge, some researchers also advocate the use of Petri nets (cf. [15, 17]), but
the corresponding papers have not been published yet.

7 Conclusion

It is not hard to model an erroneous BPEL process model using existing tools.
Even worse, it is also straightforward to deploy such models. Current BPEL tools
lack the possibility to verify certain basic properties any BPEL process model
should have. To overcome this weakness, we propose to map BPEL process

models onto models for which strong verification techniques and tools exist:
Petri nets (WF-nets, to be precise).

We have shown that large parts of BPEL process models can be mapped onto
WF-net without any problems. Nevertheless, the current mapping is still not
complete: We still need to add support for scopes, fault handlers, and (possibly)
correlations. Nevertheless, the results sofar seem encouraging and consistent with
the behavior of existing BPEL engines.

In the near future, we plan to extend the current mapping to a fully-fledged
mapping. Such a fully-fledged mapping can then be used to verify any BPEL
process model before it is deployed. An ongoing point of attention is the fact that
we have to be able to map any errors in the resulting WF-net back to the BPEL
process model, but we do not expect any difficulties in this area. As a result, the
fully-fledged mapping will be able to guide the modeler of an erroneous BPEL
process model towards correcting the error(s).

References

1. W.M.P. van der Aalst. Verification of workflow nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 407–426, Toulouse, France, June 1997. Springer, Berlin,
Germany.

2. W.M.P. van der Aalst. The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Workflow verification: Finding control-flow errors using
Petri-net-based techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors, Business Process Management: Models, Techniques, and Empirical Stud-
ies, volume 1806 of Lecture Notes in Computer Science, pages 161–183. Springer,
Berlin, Germany, 2000.

4. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18:72–76, January/February 2003.

5. BEA, IBM, Microsoft, SAP AG, and Siebel Systems. Busi-
ness process execution language for web services (version 1.1).
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf (last
visited in March 2005), 2003.

6. BPML.org. Business process modeling language. www.bpmi.org (last visited in
April 2005), 2002.

7. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the web services web: An introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2):86–93, March 2002.

8. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business process execution language for web services, version 1.0. Stan-
dards proposal by BEA Systems, International Business Machines Corporation,
and Microsoft Corporation, 2002.

9. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In D. Beauquier, E. Brger, and A. Slissenko, editors, Proc. 12th International
Workshop on Abstract State Machines, pages 131–151, Paris, France, March 2005.

10. R. Farahbod, U. Glässer, and M. Vajihollahi. Specification and validation of the
business process execution language for web services. In W. Zimmermann and

B. Thalheim, editors, Abstract State Machines 2004, volume 3052 of Lecture Notes
in Computer Science, pages 79–94, Lutherstadt Wittenberg, Germany, May 2004.
Springer, Berlin, Germany.

11. A. Ferrara. Web services: a process algebra approach. In International Conference
On Service Oriented Computing: Proceedings of the 2nd international conference
on Service oriented computing, pages 242–251, New York, NY, USA, 2004. ACM
Press.

12. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In K. Bauknecht, M. Bichler, and B. Proll, editors, Pro-
ceedings of the 5th International Conference on Electronic Commerce and Web
Technologies (EC-Web ’04), volume 3182 of Lecture Notes in Computer Science,
pages 79–94, Zaragoza, Spain, August 2004. Springer, Berlin, Germany.

13. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In
International World Wide Web Conference: Proceedings of the 13th international
conference on World Wide Web, pages 621–630, New York, NY, USA, 2004. ACM
Press.

14. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and separability of
workflow nets in the stepwise refinement approach. In W.M.P. van der Aalst and
E. Best, editors, 24th International Conference on Application and Theory of Petri
Nets (ICATPN 2003), volume 2679 of Lecture Notes in Computer Science, pages
337–356, Eindhoven, The Netherlands, June 2003. Springer, Berlin, Germany.

15. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli, editor,
Proceedings of the 8th International Conference on Fundamental Approaches to
Software Engineering (FASE 2005), volume 3442 of Lecture Notes in Computer
Science, pages 19–33. Springer, Berlin, Germany, 2005.

16. Oracle. Oracle BPEL process manager. http://www.oracle.com/technology/bpel
(last visited in March 2005), 2005.

17. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

18. UN/CEFACT and OASIS. ebXML business process specification schema (version
1.01). www.ebxml.org/specs/ebBPSS.pdf (last visited in November 2002), 2001.

19. H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based work-
flow diagnosis tool. In M. Nielsen and D. Simpson, editors, Application and Theory
of Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science, pages 475–
484. Springer, Berlin, Germany, 2000.

20. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnozing workflow
processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

21. W3C. Web service choreography interface (WSCI) 1.0. www.w3.org/TR/wsci (last
visited in November 2002), 2002.

22. WfMC. Workflow process definition interface - XML process definition language.
www.wfmc.org/standards/docs/TC-1025 10 beta xpdl 102502.pdf (last visited in
April 2005), 2002.

