
Mining of ad-hoc business processes with TeamLog

Schahram Dustdar, Thomas Hoffmann

Distributed Systems Group, Vienna University of Technology
 {dustdar@infosys.tuwien.ac.at | thomas.hoffmann@onemail.at}

Wil van der Aalst
Information Systems, Eindhoven University of Technology

w.m.p.v.d.aalst@tm.tue.nl

Abstract. The design of workflows is a complicated task. In those cases where the
control flow between activities cannot be modeled in advance but simply occurs
during enactment time (run time), we speak of ad-hoc processes. Ad-hoc processes
allow for the flexibility needed in real-life business processes. Since ad-hoc processes
are highly dynamic, they represent one of the most difficult challenges, both,
technically and conceptually. Caramba is one of the few process-aware collaboration
systems allowing for ad-hoc processes. Unlike in classical workflow systems, the
users are no longer restricted by the system. Therefore, it is interesting to study the
actual way people and organizations work. In this paper, we propose process mining
techniques and tools to analyze ad-hoc processes. We introduce process mining,
discuss the concept of mining in the context of ad-hoc processes, and demonstrate a
concrete application of the concept using Caramba, process mining tools such as
EMiT and MinSoN, and a newly developed extraction tool named Teamlog.

Keywords: Process Mining, Workflow Management, Business Process Management,
Business Process Analysis, TeamLog, Caramba, EMiT, MinSoN

1 Introduction

Process management in organizations becomes more and more important. To increase
their competitiveness they have to introduce clearly defined processes, and these
processes must be improved continuously. Actual work can deviate from process
definitions due to many reasons. Therefore, it is important for organizations to
discover these differences in order to improve their processes. Process mining allows
both (1) the identification of processes from transaction logs and (2) the detection of
deviations between the (prescriptive or descriptive) process model and the real world
process executions. Ad-hoc processes, a special category of processes, have no
underlying process definition. Mining this kind of processes offers important
information for the organization’s management, which can be used to detect the actual
processing behavior and therefore, to improve the organizations performance. For
example, ad-hoc processes arise from loosely coupled collaboration between domain-
specialists across geographical distances and organizational boundaries. Examples for
application domains of ad-hoc processes include, for example, consulting and
marketing teams, design teams, small engineering teams, crisis-mitigation teams [e.g.,

mailto:dustdar@infosys.tuwien.ac.at
mailto:thomas.hoffmann@onemail.at
mailto:w.m.p.v.d.aalst@tm.tue.nl

31]. In most cases the application domain is to be found in SMEs (Small- and
Medium-sized enterprises). These organizations often do not model their processes,
because that’s a time-consuming and expensive task. Furthermore, working with ad-
hoc processes allows them to be very flexible, which is a prerequisite for a
competitive process performance when working with varying business partners.
Caramba [12] is one of the few collaboration systems actually supporting ad-hoc
processes. This paper describes mining of ad-hoc processes by means of Caramba,
TeamLog and EMiT [11]. Caramba offers a transaction log and TeamLog converts it
into a general format. Then EMiT mines the process and creates a process model in
form of a Petri net. Additionally, other tools such as MinSoN [4] can mine other
aspects such as the organizational context or the social network. Besides the
knowledge about how a process works, it is important to understand the relations
between the organizations employees, between groups or departments. Based on a
social network (“a finite set or sets of actors and the relation or relations defined on
them” [30]), social network analysis (SNA) [30] provides appropriate methods to get
this kind of information. Because an organization is a social network, SNA, e.g., can
be used to find out how much a person communicates with others, or if it has a central
role within the organization. This kind of information might be important for an
organizations management to initiate some improvements in the organizations
competitiveness and provides valuable indicators for defining roles and
responsibilities.

Why is all of this relevant? Thus far, information technology has been focusing on
two extremes: completely unstructured processes (ad-hoc) and highly structured
(modeled) processes. On one end of the spectrum we find groupware products that
typically aim at supporting unstructured processes, i.e., these systems are completely
unaware of the business process at hand. For example, e-mail programs support the
exchange of information but are completely ignorant when it comes to the purpose of
these information exchanges in context of business processes. If we ignore workflow
components such as Domino Workflow, even advanced groupware products such as
Lotus Notes, are unaware of processes and therefore, implicitly, assume unstructured
processes. On the other end of the spectrum, we find traditional workflow offerings
such as Staffware, MQSeries Workflow, etc. These systems definitely are aware of
the business process at hand. In fact, they typically force the execution of these
processes into structures defined at design time. Classical workflow technology has
problems dealing with flexibility and therefore only supports highly structured
processes. In reality, most business processes are in-between these two extremes, i.e.,
they are semi-structured. In semi-structure processes there may be typical patterns in
the handling of cases, but for individual instances it is desirable, or even necessary, to
deviate from these patterns. One way of dealing with these processes is the case-
handling paradigm [1], i.e., resort to a more data-driven approach where in addition
to the normal workflow, implicitly, alternative routes (e.g., “bypass” and “redo”) are
generated. Another way is to let end-user, at run-time, design or modify the process
for one or more process instances. This is sometimes referred to as ad-hoc workflow,
i.e., the process emerges or is modified at run-time by the end-users.

Dealing with ad-hoc processes in an adequate way is important to improve the
support of business processes. Technologies aiming at completely unstructured
processes (e.g., groupware) and highly structured processes (e.g., production

 2

workflow) have in a way been focusing on the “low hanging fruits”, i.e., processes
where it is easy to improve performance with relatively simple measures.
Unfortunately, the majority of processes do not fall into one of these extreme
categories. Therefore, concepts and tools aiming at ad-hoc business processes are of
the utmost importance.

Ad-hoc business processes require more flexibility than traditional “production
workflow” type of processes. However, at the same time, there is the need for
management information and real insight into the actual processes as they unfold.
Unfortunately, there is not a clearly defined process model that can serve as an anchor
to gather and present process information. Therefore, we propose the use of process
mining to analyze the logs of systems supporting ad-hoc processes. In this paper we
demonstrate that this is actually possible using the existing ad-hoc collaboration
system Caramba and process mining tools such as EMiT. The result is a generic
approach for mining ad-hoc business processes and a concrete tool linking Caramba,
EMiT, and other process mining tools. To conclude this section, Table 1 contains
some important definitions from the domain of (business) processes used in this
paper.

Term Explanation

business process A set of one or more linked procedures or activities which
collectively realize a business objective or policy goal,
normally within the context of an organizational structure
defining functional roles and relationships [20].

process instance The representation of a single enactment of a process [20],
also referred to as (work)case.

process definition The representation of a business process in a form which
supports automated manipulation, such as modeling, or
enactment by a workflow management system. The process
definition consists of a network of activities and their
relationships, criteria to indicate the start and termination of
the process, and information about the individual activities,
such as participants, associated IT applications and data,
etc. [20].

(Work)case In this paper we use it as synonym for process instance.
Activity A description of a piece of work that forms one logical step

within a process. [20]
Coordination step Process of message creation in Caramba. A coordination

step has a sender and an addressee (the term addressee will
be discussed in Section 5.2). A coordination step causes the
generation of activity instances for the sender and for each
recipient. In [12] coordination step is referred to as
coordination.

Table 1: Definitions.

The remainder of this paper is organized as follows. First, we discuss related work.
Section 3 gives an overview of process mining. The common workflow log format

 3

used by our approach is covered by Section 4. Caramba and its data model are
discussed in Section 5. Furthermore, this section contains an example of an ad-hoc
process. The next section presents TeamLog – a format converter of Caramba process
information. Section 7 contains an example of process mining with EMiT. Finally, in
Section 8 we summarize the main conclusions and give an outlook on our future
work.

2 Related work

Recently, the topic of process mining has been gaining more attention both in practice
and research [5,6]. Gartner identifies Business Process Analysis (BPA) as an
important aspect of the next generation of BPM products [14]. Note that BPA covers
aspects neglected by many traditional workflow products (e.g., diagnosis, simulation,
etc.). Business Activity Monitoring (BAM), which can be considered as a synonym to
process mining, is named by Gartner as one of the emerging areas in BPA [14]. The
goal of BAM tools is to use data logged by the information system to diagnose the
operational processes. An example is the ARIS Process Performance Manager (PPM)
of IDS Scheer [17]. ARIS PPM extracts information from audit trails (i.e.,
information logged during the execution of cases) and displays this information in a
graphical way (e.g., flow times, bottlenecks, utilization, etc.). Many other vendors
offer similar products, e.g., Cognos (NoticeCast), FileNet (Process Analyzer),
Hyperion (Business Performance Management Suite), Tibco (BusinessFactor), HP
(Business Process Insight), ILOG (Jviews), and webMethods (Optimize/Dashboard).
These tools show the practical relevance of process mining. Unfortunately, these tools
only focus on measuring performance indicators such as flow time and utilization and
do not at all focus on discovering the process and its organizational context. For
example, none of the tools mentioned actually discovers causal relations between
various events or the underlying social network. Moreover, the focus of these systems
is on well-defined processes and they are unable to handle ad-hoc business processes.
Note, that for ad-hoc business processes it is not sufficient to look into performance
indicators such as flow time and utilization, i.e., it is vital to have insight in the actual
processes as they unfold, emerge, and/or change.

Also in academia there is a growing interest in process mining as is illustrated by
special issues of journals, workshops, and papers [2,4,5,6,7,8,10,11,15,16,23,24,27,
29]. Different papers focus on different perspectives of process mining. The most
challenging perspective remains the control-flow perspective. Especially for ad-hoc
business processes, there are notorious, but interesting, problems. For example, “How
to distinguish noise/exceptions from regular behavior?”, “How to discover
duplicate/hidden tasks in a process?”, etc. [23].

This paper focuses on mining ad-hoc business processes. As indicated in the
introduction, there are few tools supporting ad-hoc business processes, i.e., semi-
structured processes. Most research efforts have been focusing at completely
unstructured processes (e.g., groupware) and highly structured processes (e.g.,
production workflow). The literature on workflow is extensive [3,18,21,22] and
within this domain several people have been working on “workflow change”

 4

[9,13,25]. However, most of the work is devoted to migrating an instance from one
(structured) workflow model to another rather than focusing on truly ad-hoc
processes. Caramba is one of the few process-aware collaboration systems that truly
supports ad-hoc business processes [12].

3 Process mining

The goal of process mining is to extract information about processes from transaction
logs [5,7]. We assume that it is possible to record events such that (i) each event
refers to an activity (i.e., a well-defined step in the process), (ii) each event refers to a
(work)case (i.e., a process instance), (iii) each event can have a performer also
referred to as originator (the person executing or initiating the activity), and (iv)
events have a timestamp and are totally ordered. Table 2 shows an example of a log
involving 11 events, 9 activities, and 4 performers. In addition to the information
shown in this table, some event logs contain more information on the case itself, i.e.,
data elements referring to properties of the case.

case id activity id performer timestamp
case 1 activity A Marta 9-2-2004:12.14.01
case 1 activity B Monika 9-2-2004:16.02.29
case 1 activity C Monika 10-2-2004:11.02.11
case 1 activity D Peter 10-2-2004:12.24.18
case 1 activity E Fritz 10-2-2004:14.05.22
case 1 activity F Monika 11-2-2004:09.07.17
case 1 activity G Monika 11-2-2004:10.08.30
case 2 activity A Marta 13-2-2004:11.14.24
case 2 activity B Peter 14-2-2004:08.13.01
case 2 activity H Marta 14-2-2004:14.50.21
case 2 activity I Peter 16-2-2004:12.05.30

Table 2: An event log.

Event logs such as the one shown in Table 2 are used as the starting point for mining.
We distinguish three different perspectives: (1) the process perspective, (2) the
organizational perspective, and (3) the case perspective. The process perspective
focuses on the control-flow, i.e., the ordering of activities. The goal of mining this
perspective is to find a good characterization of all possible paths, e.g., expressed in
terms of a Petri net [26] or Event-driven Process Chain (EPC) [17,19]. The
organizational perspective focuses on the performer, i.e., which performers are
involved and how are they related. The goal is to either structure the organization by
classifying people in terms of roles and organizational units or to show relation
between individual performers (i.e., build a social network [28]). The case perspective
focuses on properties of cases. Cases can be characterized by their path in the process
or by the persons working on a case. However, cases can also be characterized by the
values of the corresponding data elements. For example, if a case represents a

 5

replenishment order it is interesting to know the supplier or the number of products
ordered.

A B

C D E F G

H I

(a) The control-flow structure expressed
 in terms of a Petri net.

role 1 role 2 role 3 role 4 role 5

Marta Peter Monika Fritz

(b) The organizational structure expressed in
 terms of a activity-role-performer diagram.

(c) A sociogram based on transfer of work.

Marta

Monika Peter

Fritz

Figure 1: Some mining results for the process perspective (a) and

organizational (b and c) perspective based on the event log shown in Table 2.

The process perspective is concerned with the “How?” question, the organizational
perspective is concerned with the “Who?” question, and the case perspective is
concerned with the “What?” question. To illustrate the first two consider Figure 1.
The log shown in Table 2 contains information about two cases (i.e., process
instances). The log shows that for both cases the activities A and B have been
executed. The activities C, D, E, F and G are only performed in case 1, H and I only
in case 2. Each case starts with the execution of A and B. Based on the information
shown in Table 2 and by making some assumptions about the completeness of the log
(i.e., assuming that the cases are representative and a sufficient large subset of
possible behaviors is observed), we can deduce the process model shown in Figure
1(a). The model is represented in terms of a Petri net [26]. The Petri net starts with
activity A and finishes either with activity G or with activity I. The activities are
represented by transitions. After executing B there is a choice between either
executing C or H. In this example there is no parallel processing, but if a process
contains parallel routes, detecting this parallelism would be a challenging mining task.
Logging start- and end events would form a good base for this parallelism detection.
The number of events in Table 2 is too small to establish our assumptions accurately.
However, for the sake of argument we assume that the things that did not happen will
never happen. Note that there may be may models that generate the log shown in
Table 2. The goal of process mining is to find the most likely one, cf. Occam's Razor.

Figure 1(a) does not show any information about the organization, i.e., it does not
use any information on the people executing activities. However, Table 2 shows
information about the performers. For example, we can deduce that activity B is
executed by either Peter or Monika, and that all other activities are executed by a
single specified person. We could indicate this information in Figure 1(a). The
information could also be used to “guess” or “discover” organizational structures. A
guess could be that there are five roles (Figure 1(b)). For example, for the execution

 6

of A role 1 is required and only Marta has this role, for the execution of B role 2 is
required and Peter and Monika have this role. For two cases these choices may seem
arbitrary but for larger data sets such inferences capture the dominant roles in an
organization. The resulting “activity-role-performer diagram” is shown in Figure 1(b).
The five “discovered” roles link activities to performers. Figure 1(c) shows another
view on the organization based on the transfer of work from one individual to another,
i.e., not focus on the relation between the process and individuals but on relations
among individuals (or groups of individuals). The event log can be used to derive
relations between performers of activities, thus resulting in a sociogram. For example,
it is possible to generate a sociogram based on the transfers of work from one
individual to another as is shown in Figure 1(c). Each node represents one of the four
performers and each arc represents that there has been a transfer of work from one
individual to another. For example, Figure 1(c) shows that Peter transfers work to
Fritz, but not vice versa. This sociogram does not show frequencies. However, for
analysis proposes these frequencies can be added. Monika is the only person
transferring work to herself.

Besides the “How?” and “Who?” question (i.e., the process and organization
perspectives), there is the case perspective that is concerned with the “What?”
question. Figure 1 does not address this. In fact, focusing on the case perspective is
most interesting when also data elements are logged but these are not listed in Table
2. The case perspective looks at the case as a whole and tries to establish relations
between the various properties of a case. Note that some of the properties may refer to
the activities being executed, the performers working on the case, and the values of
various data elements linked to the case. Using clustering algorithms it would for
example be possible to show a positive correlation between the size of an order or its
handling time and the involvement of specific people.

Orthogonal to the three perspectives (process, organization, and case), the result of
a mining effort may refer to logical issues and/or performance issues. For example,
process mining can focus on the logical structure of the process model (e.g., the Petri
net shown in Figure 1(a)) or on performance issues such as flow time. For mining the
organizational perspectives, the emphasis can be on the roles or the social network
(cf. Figure 1 (b) and (c)) or on the utilization of performers or execution frequencies.
This example process (Figure 1, Table 2) is further used in the remainder of this
section, but then we will use real activity names instead of A, B etc.

To address the three perspectives and the logical and performance issues we have
developed a set of tools including EMiT [2,11], Thumb [29], MinSoN [4], and the
ProM tool.1 All these tools share a common XML format, as described in the next
section.2 Through this format we will try to mine ad-hoc processes based on the logs
in systems such as Caramba. In our case study we will focus on mining the control
flow perspective (Figure 10), and on visualizing social networks (Figure 11). The data
required for both perspectives is readily available in Caramba.

The remainder of the paper discusses an example of mining an ad-hoc process
being instantiated using Caramba. There is no a-priori knowledge required about the

1 These tools can be downloaded from www.processmining.org.
2 The ProM tool uses an extension of the format supported by EMiT and MinSoN.

 7

organizational structure being investigated or the process constituents, such as
activities.

4 Workflow logs

Many process-aware collaboration systems store information in application-specific
formats. Thus a general format would simplify process analysis with common tools
like EMiT [2,11]. [11] gives a definition of a general XML workflow log format. This
section contains a simple ad-hoc process and its general XML description to show
how a workflow log looks like. The general formats DTD is discussed in Section 6.4.
We assume that the example-ad-hoc-process (Figure 2) belongs to the real world
process “plan IT-installation for offices (banks)”. The numbering in Figure 2 indicates
the temporal order.

2: adapt_format(installationplan)

1: create_installation_plan()

3: add_missing_costanalysis(installationplan)
pf: Person mh: Person

4: check_costanalysis(installationplan)

Figure 2: A simple ad-hoc process.

Two persons collaborate (work together) in this process (Table 3).

Abbreviation Full name Department

mh Marta Huchen Consulting
pf Peter Fogosch Sales department

Table 3: Involved persons in the ad-hoc process.

Customer Trust Bank sends a request for an IT-installation plan of a new office to pf.
pf instructs mh to create the requested plan (Fig. 2, collaboration 1). When mh
completes the plan she sends this document back to pf and asks him to verify/change
the document formatting (collaboration 2). After pf has received the installation plan,
he notices that the cost analysis is missing. So he tells mh to add the missing details
(collaboration 3). mh adds the cost analysis and returns the plan to pf, who has to
check the updated plan (collaboration 4). The code below describes this simple ad-
hoc-process using the general workflow log format.

<WorkFlow_log>
 <source program="other"/>
 <process description="none" id="process_1">

 8

 <case description="New office (Trust Bank)" id="id_1">
 <log_line>
 <task_name>Create installation plan</task_name>
 <event kind="complete"/>
 <date>13-02-2004</date>
 <time>11:14:24</time>
 <originator>Huchen Marta </originator>
 </log_line>
 <log_line>
 <task_name>Adapt the format of the installation
plan</task_name>
 <event kind="complete"/>
 <date>14-02-2004</date>
 <time>08:13:01</time>
 <originator>Fogosch Peter </originator>
 </log_line>
 <log_line>
 <task_name>Add missing cost analysis</task_name>
 <event kind="complete"/>
 <date>14-02-2004</date>
 <time>14:50:21</time>
 <originator>Huchen Marta </originator>
 </log_line>
 <log_line>
 <task_name>Check cost analysis</task_name>
 <event kind="complete"/>
 <date>16-02-2004</date>
 <time>12:05:30</time>
 <originator>Fogosch Peter </originator>
 </log_line>
 </case>
 </process>
</WorkFlow_log>

This application-independent process description facilitates further process analysis
and can be applied to ad-hoc business processes. The remainder of this paper
demonstrates this by mining ad-hoc processes supported by a concrete collaboration
system: Caramba [12].

5 Caramba

This section presents Caramba by discussing relevant parts of its architecture and a
concrete scenario.

5.1 Overview

Caramba is a process-aware collaboration system, which helps people to collaborate
across geographical distances and organizational boundaries. One could say that it is a
hybrid between a workflow and a groupware system. It was implemented to improve
the effectiveness of collaboration in virtual teams [12]. A virtual team is composed of
a set of partners (“real organizations”), distributed in time and in space, sharing
resources and competencies, and cooperating to reach some shared objectives using

 9

information technologies. Those resources and competencies (different specialists)
work together to fulfill a goal. [12] lists special properties of virtual teams:
• team members require status information on all work activities (process-

awareness)
• team members are frequently imbedded in different organizations and they have to

collaborate across multiple business processes, time zones and locations
• virtual teams work on highly dynamic ad-hoc processes which require interaction

of many domain experts
• members of virtual teams jointly work on artifacts (documents, databases, etc.)
• team members require knowledge about the multiple relationships between

artifacts and the context in which they were created, shared or distributed (e.g.
who, what, when, in which context).

• team leaders of virtual teams need on-demand access on the projects status and
artifacts and on critical communication (team-internal or between team members
and customers).

Caramba offers support for predefined and ad-hoc processes. Predefined processes are
modeled at design time, whereas ad-hoc processes result from runtime-collaboration
between the involved persons. Therefore, ad-hoc processes do not have an a-priori
known process definition.

Combining workflow and groupware metaphors and primitives – as Caramba does
- is not trivial. To our knowledge very few approaches exist today, which support
highly dynamic processes such as in virtual teams or task forces [e.g., 31]. Well
known, successful academic research has been undertaken in the area of adaptive
workflow and research prototypes have been developed [e.g., 32]. Adaptive workflow
approaches allow for the dynamic modification of instantiated processes. Our
approach is fundamentally different compared to approaches presented by many
commercial WfMS and adaptive workflow systems, since our experience (grounded
in many industrial case studies) is that most virtual teams begin to work on processes
without modeling them in advance. The mechanisms adaptive workflow research
prototypes such as Chautauqua [32] and ADEPTflex [25] build on is that single
workflow instances can be adapted in exceptional cases. However, as far as virtual
teamwork is concerned our industrial case studies [e.g., 12] show that “exceptions are
the rule”. Our goal is to provide a supporting environment (not automatisms) to solve
“exceptions”. Therefore, process remodeling or instance change propagation are not
the preferred way of supporting virtual team members, who work in a loosely-coupled
style and most of the time have no support from process modeling specialists. Hence,
Caramba currently does not provide automatisms if deviations from a modeled
process occur and arrive at “inconsistencies” (compared to the modeled process) of
the work case. The trail of all activities (control flow and data flow) is visible to team
members and coordination primitives are provided to solve underlying problems in
work activities.

 10

Data model

To be able to describe the functionality and further technical TeamLog issues in the
next sections, it is necessary to explain some basics about the Caramba data model.
Caramba stores its data in a relational database that manages the Caramba objects.
Although the database contains many tables, this section focuses only on
CARAMBA_AI, which holds the activity instance information required by TeamLog.
Figure 3 lists the TeamLog-relevant attributes of CARAMBA_AI.

ID
NAME
AI_TYPE
AI_STATE
SENDER_DENORM
ADDRESSEE_DENORM
RECIPIENT_DENORM
BEGIN_SCHEDULED
END_SCHEDULED
BEGIN_ACTUAL
END_ACTUAL
STARTED
STOPPED
WC_ID
WC_SUBJECT

CARAMBA_AI

Figure 3: Table CARAMBA_AI: TeamLog-relevant attributes.

We use the term “record” as a synonym for an entry in table CARAMBA_AI. ID is a
unique number, which serves as a records primary key. The attribute NAME contains
the task description (e.g. “Verify installation plan”). Caramba distinguishes between
different record types (AI_TYPE). A “W”-record (workcase) indicates the creation of
a new workcase. Caramba adds a “C”-record for each activity instance sent to a
recipient. Additionally to that, Caramba inserts an “S”-record (source) for each
message sent to an addressee, i.e., for every “S”-record there are one ore more “C”-
records. A small example can be given as follows. Assume that person A would
instruct another person B to order new hardware. In Caramba, person A would initiate
a coordination step, defining B as addressee. The result is a new activity instance
„order hardware“ in person Bs worklist (a “C”-record is created). Additionally, the
activity instance is shown in the Person as “sent to” folder (“S”-record in Caramba’s
database). The example in Section 5.2 offers details about the notion of addressees
and shows when Caramba creates the different kinds of records. AI_STATE holds the
record-status: “N” marks an activity instance as new, “R” indicates an activity
instance which was already read and “D” (done) means that an activity instance is
completed. Caramba supports further record states which are not relevant for the
purpose of this paper. SENDER_DENORM is used to store the name of the initiator

 11

of a coordination step, ADDRESSEE_DENORM holds the name of the addressee and
RECIPIENT_DENORM contains the name of the activity instances recipient. Table
CARAMBA_AI stores different kinds of timestamp information.
BEGIN_SCHEDULED and END_SCHEDULED denote an activity instances
scheduled start and end time. On the other hand BEGIN_ACTUAL and
END_ACTUAL hold the actual begin and end timestamps. STARTED is used to store
the creation time of the record, STOPPED is set whenever the status (AI_STATE)
changes to “D”. In contrast to STARTED and STOPPED which are automatically
created by Caramba, the schedule and actual time intervals are under the users
control. If a record is an activity instance (AI_TYPE is “C”) then WC_ID contains the
primary key of the corresponding “W”-record. WC_SUBJECT holds the appropriate
workcase description.

5.2 Example: ad-hoc process in Caramba

To illustrate the principle of ad-hoc processes in Caramba we consider the
collaboration diagram shown in Figure 4. This section extends the example from
Section 4 with another workcase (a second process instance of the same real world
process). Another bank (Simpson Bank) requests an installation plan for a new office.
In addition to the control flow, Figure 4 contains information about the generated
database records in table CARAMBA_AI.

ml: Person

mh: Person pf: Person fz: Person

2: adapt_format(installationplan)

1:
 c

re
at

e_
in

st
al

la
tio

n_
pl

an
()

3: request_salesdepartment_verification(formatted_plan)

3a
: r

eq
ue

st
_v

er
ifi

ca
tio

n(
fo

rm
at

te
d_

pl
an

)

3b
: r

eq
ue

st
_v

er
ifi

ca
tio

n(
fo

rm
at

te
d_

pl
an

)

5: consider_comments(correctionnotes_fritz)

4:
 c

on
si

de
r_

co
m

m
en

ts
(c

or
re

ct
io

nn
ot

es
_p

et
er

)

"S"-record: belongs to coord. to ml
"C"-record: coord. to ml

"S"-record: belongs to coord. sent to sales
departm.
"C"-record: coord. to pf
"C"-record: coord. to fz

"W"-record
"S"-record: belongs to coord. to mh
"C"-record: coord. to mh

"S"-belongs to coord. sent to ml
"C"-record: coord. sent back to ml

"S"-belongs to coord. sent to ml
"C"-record: coord. sent back to ml

Figure 4: Ad-hoc process: collaboration diagram.

 12

Several persons collaborate during process execution (Table 4).

Abbreviation Full name Department

ml Monika Lachs Sales department
mh Marta Huchen Consulting
pf Peter Fogosch Sales department
fz Fritz Zander Sales department

Table 4: Involved persons in ad-hoc process.

In this case, customer Simpson Bank sends the request for an IT-installation plan of a
new office to ml. ml instantiates the process “New office (Simpson Bank)” by
performing a coordination step that leads to an activity instance in mh's worklist
(Figure 4, collaboration 1). When mh completes the plan she sends this document
back to ml and asks her to verify/change the document formatting (collaboration 2).
After ml has revised the formatting she wants the plan to be verified by the members
of the sales department. In contrast to the ad-hoc process in Section 4, ml might think
that verification by multiple people makes sense, because the project costs are much
higher. Hence, ml instructs Caramba (collaboration 3) to send activity instances to the
appropriate persons (3a and 3b). Because ml also belongs to the sales department
normally she would receive an activity instance too. To simplify the example, this
activity instance from ml to ml is ignored in Figure 4. Later on, when pf and fz have
verified the installation plan, they return their correction notes to ml (collaboration 4
and 5).

How does Caramba process a coordination step to a group, such as collaboration 3
in Figure 4? The coordination model of Caramba distinguishes between recipients and
addressees. An addressee is a higher level construct (abstraction) and can be an
“Organizational Object” such as role, skill, group etc. [see 12 for more details on
this]. It maps addressees to one or multiple recipients. If the user chooses a group as
addressee (e.g. the group sales department), Caramba determines the group members
and sends an activity instance to each of them. Caramba offers further possibilities
[12]: other objects than groups can serve as addressees and it is possible to control a
coordination steps distribution type (e.g. all members of a group, a random member of
a group, etc.).

TeamLog reads the database records shown in Figure 4 to create an XML
workflow log. The next section discusses more technical TeamLog issues to offer
knowledge about how TeamLog works in principle and how it maps Caramba
database information into the XML log.

6 TeamLog

This section presents the main contribution of the paper: a tool that can take logs from
a process-aware collaboration system like Caramba and extract the information
relevant for process mining.

 13

6.1 Motivation and goals

Normally, in current enterprise systems process information is distributed over several
“log databases” (e.g., files, relational databases etc.). To support easier processing of
this data, it is convenient to collect the relevant process information from the different
logs and summarize it in one XML workflow log. TeamLog is a tool which offers
appropriate functionality for ad-hoc process information. Furthermore, TeamLog
supports anonymous task names in the XML workflow log, because that is convenient
for general process analysis. Currently, there are already some tools that support
visualization of processes on the basis of workflow logs (e.g., EMiT [11], Thumb
[29]). In this paper we will use TeamLog to read process information out of the
Caramba database in order to generate XML input for EMiT (Enhanced Mining
Tool). In contrast to visualization, at the moment there is only limited tool-support for
analysis and interpretation of ad-hoc processes. Although TeamLog is applied to
Caramba in this paper, TeamLog itself is a general applicable logging tool which can
be adapted to the respective data model.

Figure 5 provides an overview of the approach. It shows the transition from
relational ad-hoc process information in CARAMBA to EMiTs output: a Petri-net of
the reconstructed workflow.

Caramba
Server DB

XML
workflow log

Petri net
reconstructed

workflow

TeamLog
convert workflow

information

EMiT
workflow mining

1
2

3
4

5

1

2

3

4

5
Add missing cost analysis

Check cost analysis

ID NAME AI_TYPE SENDER_DENORM ...
............
13 Add missing cost analysis C Fogosch Peter
............
15 Check cost analysis C Huchen Marta
............ <log_line>

 <task_name>Add missing cost analysis</task_name>
 <event kind="normal"/>
 <date>14-02-2004</date>
 <time>14:50:21</time>
 <originator>Fogosch Peter</originator>
</log_line>
.....................
<log_line>
 <task_name>Check cost analysis</task_name>
 <event kind="normal"/>
 <date>16-02-2004</date>
 <time>12:05:30</time>
 <originator>Huchen Marta</originator>
</log_line>

Figure 5: From Caramba database information to the reconstructed
workflow.

 14

6.2 Technical overview of TeamLog

TeamLog is a portable standalone application written in Java. To get the required
data, TeamLog accesses Caramba's database directly via JDBC3, loading the
communication settings from its property file. The information read from table
CARAMBA_AI is filtered, converted, and written to an XML-file in the file system.

Three packages organize the applications components (Figure 6). TeamLog.general
contains classes/interfaces for general purposes (constants, the applications startup
class etc.), TeamLog.ui holds all classes which implement the user interface, and
TeamLog.logic includes business logic and external interface components. To
separate independent subtasks, TeamLog.logic comprises six components, each of it
contributing to TeamLog's goal: generating an XML workflow log from Carambas
process information. The action controller serves as interface component to separate
the user interface implementation from business logic tasks. The DOM builder reads
information from the database table CARAMBA_AI and creates an XML
representation of the requested workflow log. Because the application generates XML
output, validation is straightforward, implemented in component “XML parser and
validation”. After validation, the workflow log is written to the file system, using the
appropriate external interface. Additionally, TeamLog.logic contains components to
access the applications property- and logfile.

3 See JDBC Technology Overview, http://java.sun.com/products/jdbc/.

 15

XML
workflow log

UI implementation

TeamLog.ui

XML parser and validation DOM builder

TeamLog.logic

external interface:
XML output

property file

external interface:
properties

external interface:
log

applications
log file

general
components

TeamLog.general

action controller

Figure 6: Overview of TeamLogs components.

6.3 Security

TeamLog does not require authentication to start the application, because security
issues are not considered as a major goal of TeamLogs implementation. The major
goal of TeamLog is to convert Caramba process information to XML. But although
TeamLog does not require authentication, accessing the Caramba database via JDBC
does. Therefore, TeamLog provides functionality which enables the user to modify
this access-information (connection string, database user and the corresponding
password), which is stored as plain text in TeamLogs property file.

6.4 Output

A major goal of this section is to describe TeamLog’s mapping of Caramba
information to the XML workflow log. TeamLog’s current version supports two log
formats: the format defined in the DTD (Section 9), and another format that is used in
the ProM framework (more information in Section 8), containing nearly the same
information but with different XML grammar. If element names are used in the
remainder of this paper, they refer to the original DTD format.

 16

TeamLog distinguishes between different timestamps, that determine the source of
<date> and <time>, the outputs timestamp-elements (Table 5). TeamLog creates one
logline for each activity instance. Additionally, it generates two loglines automatically
for each case: a creation logline at the beginning, and a termination logline at the end.
In addition to loglines originating from Caramba’s database, Table 5 explains which
timestamp information is used for the automatically created loglines.

Timestamp Type of logline Attribute in table
CARAMBA_AI

STARTED logline for an activity

instance
STARTED

 creation logline STARTED
 termination logline Latest STARTED information

of all activity instances within
the workcase

STOPPED logline for an activity

instance
STOPPED

 creation logline STARTED
 termination logline Latest STOPPED information

of all activity instances within
the workcase

BEGIN_ACTUAL logline for an activity

instance
BEGIN_ACTUAL

 creation logline STARTED
 termination logline Latest BEGIN_ACTUAL

information of all activity
instances within the workcase

END_ACTUAL logline for an activity

instance
END_ACTUAL

 creation logline STARTED
 termination logline Latest END_ACTUAL

information of all activity
instances within the workcase

BEGIN_SCHEDULED logline for an activity

instance
BEGIN_SCHEDULED

 creation logline STARTED
 termination logline Latest BEGIN_SCHEDULED

information of all activity
instances within the workcase

END_SCHEDULED logline for an activity

instance
END_SCHEDULED

 17

 creation logline STARTED
 termination logline Latest END_SCHEDULED

information of all activity
instances within the workcase

Table 5: Workflow log timestamps

The timestamp is under the users control (selection in user interface). The timestamps
meanings are:

STARTED: The workflow log describes the real process flow. The timestamp of

each activity instance shows when it was initiated in Caramba. Caramba generates
this timestamp automatically and, therefore, it is not under the user’s control.

STOPPED: The timestamp of an activity instance indicates when its status was set
to “done”. If an activity instance is marked as “done”, Caramba automatically sets the
STOPPED timestamp.

BEGIN_ACTUAL: Caramba provides functionality to enter the actual begin time
which is used as timestamp in the generated workflow log. It indicates the activity
instances start time from the users point of view. The main difference between
STARTED and BEGIN_ACTUAL is, that the timestamp BEGIN_ACTUAL is under the
users control.

END_ACTUAL: Caramba enables the user to enter the actual end time of an
activity instance. Like BEGIN_ACTUAL, this timestamp is under the user’s control.
It’s the time when the activity instances are completed from the user’s point of view.

BEGIN_SCHEDULED: This time information is also under the user’s control. The
timestamps in the workflow log indicate the planned start times.

END_SCHEDULED: Corresponds to BEGIN_SCHEDULED. The user enters the
planned end time in Caramba. This information is then used as timestamp in the
generated workflow log.

The comments in the DTD [11], listed in the appendix, describe how TeamLog maps
Caramba database information to workflow log information. The user can influence
the <task_name>-elements contents. If he requests anonymous task names, TeamLog
automatically replaces the real task names with “T1”, “T2”, “T3”, etc. Anonymous
task names might be required for outsourced process analysis where the actual task
names are not relevant. Otherwise CARAMBA_AI's NAME-attribute is used. Unique
task names are suggested in [5]. Therefore, if a task name appears more than once
within a workcase (<case>-element), a number is appended automatically. The
number is reset to 1 at the beginning of each workcase.

As an example, managing same names in a case is accomplished as follows.
Assume that the task “create design-document” appears three times within a case. The
first task name does not change, the second will be “create design-document_1” and
the third will be “create design-document_2”. If another task, e.g. “analyze design-
document”, appears twice, the task name of the second appearance is changed to
“analyze design-document_3”.

 18

Limitations and assumptions
TeamLog's goal is to generate workflow logs describing Caramba ad-hoc processes.
Per definition, ad-hoc processes do not have a-priori-known process definitions.
A workflow log usually contains information about multiple process instances
(workcases), that means information about multiple executions of the same real world
process. Because for ad-hoc processes it cannot be determined automatically to which
real world process they belong, TeamLog makes the following assumption:
All workcases in table CARAMBA_AI within a Caramba workspace belong to the
same real world process. This assumption is required, because in the current version
of Caramba there is no information about the real world process to which an ad-hoc
process belongs. This will be part of the next Caramba release. Each Caramba
workspace has its own database and therefore, it has its own table CARAMBA_AI.
This assumption leads to exactly one <process>-element in the generated workflow
log because all workcases belong to the same real world process. Caramba does not
store event information. For each activity instance there is only one “C”-record in
CARAMBA_AI. If the activity instances status is changed, this record is updated and
therefore information about the history of state-changes is not available. That is the
reason why the <event>-elements kind-attribute has the constant value “complete”.
There are other possible values for this attribute, like “scheduled”, “active”,
“withdrawn” etc. [11]. But this only makes sense if event information is available,
which is not the case in Caramba.

The workflow logs timestamp information (<date>- and <time>-elements)
depends on the selected timestamp. Some workflow log timestamps require
timestamp information which is under the users control. If the user does not enter the
information in Caramba the corresponding output fields (<date>- and <time>-
element) will have no value.

During process mining all cases (<case>-elements) are used to reconstruct a
process-definition. Therefore the task names in different cases, which belong to the
same task in real world, must be equal. Because the content of the element
<task_name> is entered by the CARAMBA-user, that is in his responsibility. If the
user does not take care, useful process mining is not possible.

Social network analysis (SNA)
In the workflow log listed in Section 4 the only possibility for social network analysis
is the use of the <originator>-element. If the checkbox “Caramba causality” in
TeamLog’s user interface (Figure 7) is not checked, this element contains the activity
instances performer. To enable more sophisticated SNA and to provide mining tools
with additional information to achieve better results, TeamLog is able to consider
Caramba’s explicit causality information, i.e., for each activity instance Caramba
stores the sender as well as the recipient. The former instructs the latter to do
something, i.e., in Caramba the recipient is an activity instance performer. If the user
requests Caramba causality information, the <originator> element contains the sender
(i.e., the “instructor”, SENDER_DENORM in table CARAMBA_AI), the optional
<recipient>-element contains the performer (RECEIPIENT_DENORM), and the
optional <role>-element contains the role which serves as addressee in Caramba (e.g.,
“sales department”, if a coordination step is performed by sending activity instances
to the members of the group “sales department”, ADDRESSEE_DENORM). If the

 19

addressee is a group, ADDRESSEE_DENORM contains the group name (e.g., “sales
department”). But if the addressee is a specific person, ADDRESSEE_DENORM
contains the name of the person. That has to be taken into account during social
network analysis. It is up to the user if these additional elements are part of the
workflow log (user interface).

Sorting and filtering
TeamLogs output contains data about workcases and their activity instances. The user
chooses those workcases that shall be part of the output. Furthermore, it is possible to
restrict the activity instances which shall be taken into account. Therefore, the user
has the possibility to enter timestamp-ranges. Further information concerning
timestamps and their meaning can be found in section 6.5.

Additionally to this filters the user can choose the elements and attributes that shall
be part of the workflow log (for each optional element or attribute there is a
corresponding checkbox in the user interface). The workcase-order in the workflow
log is always based on CARAMBA_AI.STARTED (ascending). Within a workcase,
the activity instances are sorted by timestamp. Which timestamp information is used
depends on the timestamp selected in the user interface.

Validation
To avoid/detect application- or data-errors, the generated output has to be validated. If
the validation routine uses a DTD or the ProM schema depends on the requested log
format (Figure 7). If errors occur during validation, TeamLog informs the user. In
case of the DTD log format, TeamLog supports validation against 2 different DTDs: a
standard DTD [11], and an alternative DTD (in case of requested Caramba causality
information), which contains additional elements (<recipient>, <role>) to allow more
flexible social network analysis. If the user selects neither the recipient- nor the role-
element, the generated workflow log is validated against the standard DTD, otherwise
against the alternative DTD. But there is one exception: if the appropriate DTD file
path is not set in TeamLog’s property file, validation is skipped. If the user requests a
workflow log in ProM format and the appropriate schema path is set in the properties,
this schema is used for validation.

6.5 Using TeamLog

TeamLog is launched when TeamLogStart's main-method is called. During
TeamLog's start procedure it reads the connection information used for JDBC access.
Then it reads the distinct workcase descriptions from table CARAMBA_AI and
copies them into the appropriate user interface components (screen descriptions in the
remainder of this section) where the user can select the workcases. If the connection
information is not available in the property file or the database connection can’t be
established an error message appears.

 20

TeamLogs property-file contains seven persistent settings. The database
connection string, the database user and the corresponding password are used to
access Caramba’s data. The setting Workflow-Log-Filepath holds the path of the
XML workflow log that TeamLog generates. The remaining settings are Workflow-
Log-DTD, Workflow-Log-DTD-alternative, and the ProM schema path which holds
the locations of document type definitions and a schema (used for validation). The
remainder of this section shows TeamLog’s user-interface and functions.

Figure 7: Main screen of TeamLog.

The user can choose the timestamp, request anonymous task names, indicate the need
for Caramba’s causality information, and select the optional elements/attributes that
shall be part of the output. The format of the log can be set with a combo box close to
the button “Generate WF-log”.
In addition to that he is able to select the workcases that shall be considered and he
can restrict the activity instances within the workcase. The activity instances can be
restricted by timestamp (input format “dd.mm.yyyy hh:MM:ss”) according to the
following rules:

STARTED: the activity instances STARTED timestamp must be newer than the
input (or equal).

STOPPED: the activity instances STOPPED timestamp must be older than the
input (or equal).

BEGIN_SCHEDULED: the activity instances BEGIN_SCHEDULED timestamp
must be newer than the input (or equal).

 21

END_SCHEDULED: the activity instances END_SCHEDULED timestamp must
be older than the input (or equal).

BEGIN_ACTUAL: the activity instances BEGIN_ACTUAL timestamp must be
newer than the input (or equal).

END_ACTUAL: the activity instances END_ACTUAL timestamp must be older
than the input (or equal).

These inputs can be combined freely.

Figure 8 shows the dialog that offers possibilities to change the contents of TeamLogs
property file.

Figure 8: TeamLog – changing the contents of TeamLog's property file.

6.6 Workflow log generation

To describe the process of workflow log generation by means of a sequence diagram,
we give some information about TeamLog's classes, in addition to the high-level
overview presented in Figure 6. The class CUMainFrame implements the major part
of TeamLog's user interface, CLActions serves as action controller (Figure 6), and
CLWFLogGenerator and CLWFDOMCreator are classes within the DOM builder
(Figure 6). CLXMLWriter represents the external interface to write an XML workflow
log to the file system. ContentDefinition, a class in the package TeamLog.general,
describes the expected content of the workflow-log, i.e., it contains information about

 22

the request. Finally, CLValidator is part of the “XML parser and validation”
component (Figure 6).

There is one method that controls the workflow log generation,
CLActions.generate_WFLog. Figure 9 describes the most important steps of this
method. To reduce complexity we omitted some details. After the user-interface
component CUMainFrame has created an instance of CLActions, it sets up a
ContentDefinition-object, which holds information about the request (e.g. which
optional attributes shall be part of the output or which workcases have to be read from
table CARAMBA_AI). Then this ContentDefinition is passed to
CLActions.generate_WFLog. Furthermore, generate_WFLog uses the business logic
classes CLWFLogGenerator and CLWFDOMCreator to get a DOM representation of
the requested XML workflow log. Finally, the log is written to a file (CLXMLWriter)
and it is validated against the appropriate DTD (CLValidator). If validation fails, an
error message appears.

DOM-object is created

CUMainFrame CLActions CLWFLogGenerator CLWFDOMCreator CLXMLWriter CLValidator

CLWFLogGenerator()
CLWFDOMCreator()

generate_WFLog_DOM(cont_def)

open_connection()

init_DOM

add_source

add_process

generate_workcases

close_connection()

CLXMLWriter()

writeXML(doc)

CLValidator()

validate_xmlfile()

CLActions()

create_content_definition()

generate_WFLog(cont_def)

Figure 9: Sequence diagram - CLActions.generate_WFLog.

The remainder of this paper provides an example of mining an ad-hoc process.

 23

7 Mining of ad-hoc processes

To illustrate the concept of process mining using real Caramba logs, we consider the
process (“plan IT-installation for offices (banks)”) described in Section 5.2. Our focus
is the control flow perspective. In Section 4 and Section 5.2 we described a real
process instance of this process. If these two scenarios are executed using Caramba,
then TeamLog can generate the following workflow log based on the information
stored in Caramba.

<WorkFlow_log>
 <source program="other"/>
 <process description="none" id="caramba_process_1">
 <case description="New office (Simpson Bank)_1" id="case_12">
 <log_line>
 <task_name>Case start</task_name>
 <event kind="complete"/>
 <date>08-02-2004</date>
 <time>16:57:53</time>
 <originator/>
 </log_line>
 <log_line>
 <task_name>Create installation plan</task_name>
 <event kind="complete"/>
 <date>09-02-2004</date>
 <time>12:14:01</time>
 <originator>Huchen Marta </originator>
 </log_line>
 <log_line>
 <task_name>Adapt the format of the installation
plan</task_name>
 <event kind="complete"/>
 <date>09-02-2004</date>
 <time>16:02:29</time>
 <originator>Lachs Monika </originator>
 </log_line>
 <log_line>
 <task_name>Verify installation plan</task_name>
 <event kind="complete"/>
 <date>10-02-2004</date>
 <time>11:02:11</time>
 <originator>Lachs Monika </originator>
 </log_line>
 <log_line>
 <task_name>Verify installation plan_1</task_name>
 <event kind="complete"/>
 <date>10-02-2004</date>
 <time>12:24:18</time>
 <originator>Fogosch Peter </originator>
 </log_line>
 <log_line>
 <task_name>Verify installation plan_2</task_name>
 <event kind="complete"/>
 <date>10-02-2004</date>
 <time>14:05:22</time>
 <originator>Zander Fritz </originator>
 </log_line>
 <log_line>

 24

 <task_name>Consider comments from Peter</task_name>
 <event kind="complete"/>
 <date>11-02-2004</date>
 <time>09:07:17</time>
 <originator>Lachs Monika </originator>
 </log_line>
 <log_line>
 <task_name>Consider comments from Fritz</task_name>
 <event kind="complete"/>
 <date>11-02-2004</date>
 <time>10:08:30</time>
 <originator>Lachs Monika </originator>
 </log_line>
 <log_line>
 <task_name>Case termination</task_name>
 <event kind="complete"/>
 <date>11-02-2004</date>
 <time>10:08:30</time>
 <originator/>
 </log_line>
 </case>
 <case description="New office (Trust Bank)_2" id="case_25">
 <log_line>
 <task_name>Case start</task_name>
 <event kind="complete"/>
 <date>13-02-2004</date>
 <time>11:14:24</time>
 <originator/>
 </log_line>
 <log_line>
 <task_name>Create installation plan</task_name>
 <event kind="complete"/>
 <date>13-02-2004</date>
 <time>11:14:24</time>
 <originator>Huchen Marta </originator>
 </log_line>
 <log_line>
 <task_name>Adapt the format of the installation
plan</task_name>
 <event kind="complete"/>
 <date>14-02-2004</date>
 <time>08:13:01</time>
 <originator>Fogosch Peter </originator>
 </log_line>
 <log_line>
 <task_name>Add missing cost analysis</task_name>
 <event kind="complete"/>
 <date>14-02-2004</date>
 <time>14:50:21</time>
 <originator>Huchen Marta </originator>
 </log_line>
 <log_line>
 <task_name>Check cost analysis</task_name>
 <event kind="complete"/>
 <date>16-02-2004</date>
 <time>12:05:30</time>
 <originator>Fogosch Peter </originator>
 </log_line>
 <log_line>
 <task_name>Case termination</task_name>

 25

 <event kind="complete"/>
 <date>16-02-2004</date>
 <time>12:05:30</time>
 <originator/>
 </log_line>
 </case>
 </process>
</WorkFlow_log>

We can now use process mining tools such as EMiT [2,11], Thumb [29], MinSoN [4],
and ProM. For example, when EMiT processes this workflow log consisting of only
two instances, it produces the Petri net shown in Figure 10.

 26

Figure 10: The mining result expressed in terms of a Petri net (diagram was

automatically generated using EMiT).

During process mining both process instances (cases) are used. Note, that the process
model constructed by EMiT indeed captures both scenarios. Figure 10 shows that in
some cases the installation plan is verified by multiple persons, and in other cases the
plan is not verified. Suppose, that the management has never advised the employees
to do multiple-person-verification and that many installation-plan orders are either
waiting for processing or they are already delayed. If this is the case, then
management can react to this situation and advise the employees to skip multiple-
person-verification in order to create all installation-plans in-time. Clearly, these
observations may seem trivial based on a simple process of only a few steps generated

 27

on the basis of two cases. However, the same procedure can be applied to much more
complicated processes that need to deal with hundreds or even thousands of cases.

Figure 11: Social network derived by MinSoN based on a Caramba log.

The log can also be analyzed using MinSoN as is illustrated in Figure 11. The
screenshot shows the social network constructed on the basis of the two cases. The
social network shown in Figure 11 is based on the “hand-over of work” metric. This
metric assumes that if there is a transfer of work from one person to another person,
then there is a relation. The more work that is transferred, between two person the
stronger the relation based on “hand-over of work” is. The resulting social network
can be analyzed by all kinds of tools, e.g., MinSoN can export to Agna and NetMiner.
These tools analyze both the organization as a whole and the role of each individual in
the organization. Because Figure 11 is only based on two cases, the scope of
interpretation is limited. However, it illustrates the concept and the fact that through
TeamLog and MinSoN it is possible to analyze the organizational context of ad-hoc
business processes supported by Caramba.

We have applied the approach presented in this paper to some real-life Caramba
logs but did not yet conduct a real case study in an organization using Caramba, i.e.,
the paper provides a proof of concept but no empirical validation. In Section 4 we
mentioned existing BPA/BAM systems such as ARIS PPM. These systems typically
restrict their analysis to well-defined processes and performance indicators such as

 28

flow time. With Caramba it is easily possible to obtain performance indicators based
on different timestamp information (Table 5). The two figures in this section, show
that the results are quite different from existing systems, i.e., through TeamLog and
EMiT/MinSoN we actually capture causal relations and the organizational context.
Moreover, such information is particularly interesting for ad-hoc business processes.

8 Conclusion and future work

This paper investigated the application of process mining techniques to ad-hoc
processes. The conclusion is that process mining is very promising in those situations
where the steps in the process are logged in a systematic manner. The approach
presented in this paper is generic: based on data about ad-hoc business processes,
process mining can be performed, considering different views (perspectives) on the
data. Using process-aware collaboration systems such as Caramba, events are logged
while allowing for the flexibility required for ad-hoc business processes. As a proof of
concept, TeamLog, a system that is able to extract the information required for
process mining from the Caramba database, was introduced in this paper. The
resulting information is stored in an XML format that can be read by process mining
tools such as EmiT and MinSoN. To illustrate the application of Caramba, TeamLog,
EmiT, and MinSoN a small ad-hoc business process (“plan IT-installation for offices
(banks)”) was used. Based on two scenarios the paper demonstrated automatic
construction of a process model (in terms of a Petri net) and a social network. A
weakness of the currently available tools is that none of them supports visualization of
all perspectives.

Future work will aim at the application of the entire toolset described in this paper
in real-life situations. In addition, we are extending and improving the mining tools.
In fact, recently, the tools EmiT, Thumb, and MinSoN have been merged into the
ProM framework. The ProM framework provides an environment where it is easy to
“plug-in” new analysis methods (cf. www.processmining.org). Interesting new
analysis methods offered by this framework include: genetic mining (process mining
based on genetic algorithms), LTL checking (checking properties expressed in a
temporal logic), e-mail mining (mapping an Exchange mailbox onto the XML
format), process verification, etc.

In terms of applications, we are also looking at other workflow products allowing
for more flexibility. Within the UWV we already applied the process mining tools
discussed to three processes using the case handling system FLOWer (Pallas Athena).
UWV (Uitvoering Werknemersverzekeringen) is the Dutch Employee Insurance
Implementing Body responsible for the implementation of employee insurance
schemes, such as the sickness insurance scheme (ZW), the national health insurance
scheme (ZFW), the unemployment insurance scheme (WW) and the occupational
disability insurance scheme (WAO). The application of tools such as EmiT, Thumb,
MinSoN, and ProM within the UWV shows that highly-dynamic processes are quite
challenging when it comes to process mining.

Experiences with Caramba show that it is important to extract knowledge about
interaction patterns in organizational business processes. Finding interaction patterns

 29

http://www.processmining.org/

helps in identifying the role of persons within the social network of an organization.
For example, a person might act as a kind of proxy for other persons. The workflow
logs presented in this paper, as well as the Caramba database in the current version,
do not contain enough information to find such patterns automatically. Such an
automatic pattern finding process will require additional information about activities
and the relations between them. Hence, future work in extending the presented
workflow log format will be required in order to implement such an automatic pattern
finding process.

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments.
Furthermore, we thank all team members of Caramba Labs Software AG. We also
thank Ton Weijters, Boudewijn van Dongen, Ana Karla Alves de Medeiros, Minseok
Song for their on-going work on process mining techniques and tools at Eindhoven
University of Technology.

9 Appendix

This appendix describes an annotated version of the workflow log DTD [11]. The
comments describe the data mapping between Caramba and the workflow log.

<!-- element WorkFlow_log:
 root-element, no Caramba database information required -->
<!ELEMENT WorkFlow_log (source?,process+)>

 <!-- element source: no contents -->
 <!ELEMENT source EMPTY>

 <!-- attribute source: constant value "other" -->
 <!ATTLIST source program (staffware|inconcert|pnet|IBM_MQ|other)
#REQUIRED>

 <!-- element process:
 There is exactly one process-element in TeamLogs output.
 Section "Limitations and assumptions" contains the reason for
 that. -->
 <!ELEMENT process (case*)>

 <!-- attribute id:
 Because the generated workflow log contains exactly
 one process-element, the value of the id-attribute is a
 constant ("caramba_process_1"). -->
 <!ATTLIST process id ID #REQUIRED>

 <!-- attribute description: constant value "none" -->
 <!ATTLIST process description CDATA "none">

 <!-- element case:
 Under the assumption that all workcases are instances of the
 same real life process TeamLog creates a case-element for

 30

 each workcase. -->
 <!ELEMENT case (log_line*)>

 <!-- attribute id:
 "case_" + CARAMBA_AI.ID of the "W"-record e.g. "case_12"
 if the workcase-records ID is 12 -->
 <!ATTLIST case id ID #REQUIRED>

 <!-- attribute description:
 CARAMBA_AI.WC_SUBJECT + "_" + number
 Different workcases can have the same content in
 CARAMBA_AI.WC_SUBJECT. Therefore a serial number is
 appended to get a unique description (is advised in [5]).
 If CARAMBA_AI.WC_SUBJECT is null, the description-
 attribute gets the constant value "workcase_" + number
 (e.g. "workcase_1", "workcase_2"). -->
 <!ATTLIST case description CDATA "none">

 <!-- element log_line:
 TeamLog generates one log-line for each activity instance.
 Additionally to that it automatically adds a creation-
 logline at the beginning and a termination-logline at
 the end. -->
 <!ELEMENT log_line (task_name,task_instance?, event?, date?,
 time?, originator?)>

 <!-- element task_name:
 For creation logline: "Case start"
 For termination logline: "Case termination"
 The remainder of this section gives additional
 information about task_names content. -->
 <!ELEMENT task_name (#PCDATA)>

 <!-- element task_instance:
 This field is designed to store the number of task-
 executions. The Caramba database does not yet contain
 this kind of information. Therefore it’s not part of
 TeamLogs output. -->
 <!ELEMENT task_instance (#PCDATA)>

 <!-- element event: no contents. -->
 <!ELEMENT event EMPTY>

 <!-- attribute kind:
 Event information is information about the change of
 state. The Caramba database does not contain event
 information. Therefore the value of this attribute is
 constant ("complete"). -->
 <!ATTLIST event kind
(normal|schedule|start|withdraw|suspend|resume|abort|complete)
#REQUIRED>

 <!-- element date: Table 5 contains information about this
 elements content. -->
 <!ELEMENT date (#PCDATA)>

 <!-- element time: Table 5 contains information about this
 elements content. -->

 31

 <!ELEMENT time (#PCDATA)>

 <!-- element originator:information about the contents can be
 found in section 6.4 – “Social network analysis” .-->
 <!ELEMENT originator (#PCDATA)>

10 References

[1] W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management:
Product-Driven Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors,
International ACM SIGGROUP Conference on Supporting Group Work (GROUP
2001), pages 42–51. ACM Press, New York, 2001.

[2] W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance
Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors,
International Conference on Engineering and Deployment of Cooperative
Information Systems (EDCIS 2002), volume 2480 of Lecture Notes in Computer
Science, pages 45–63. Springer-Verlag, Berlin, 2002.

[3] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT press, Cambridge, MA, 2002.

[4] W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering
interaction patterns in business processes. In J. Desel, B. Pernici, and M. Weske,
editors, International Conference on Business Process Management (BPM 2004),
volume 3080 of Lecture Notes in Computer Science, pages 244–260. Springer-
Verlag, Berlin, 2004.

[5] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237– 267, 2003.

[6] W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science
Publishers, Amsterdam, 2004.

[7] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128-1142, 2004.

[8] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from
Workflow Logs. In Sixth International Conference on Extending Database
Technology, pages 469–483, 1998.

[9] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data and
Knowledge Engineering, 24(3):211–238, 1998.

[10] J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from
Event-Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

[11] B.F. van Dongen and W.M.P. van der Aalst. EMiT: A Process Mining Tool. In J.
Cortadella and W. Reisig, editors, Application and Theory of Petri Nets 2004,
volume 3099 of Lecture Notes in Computer Science, pages 454–463. Springer-
Verlag, Berlin, 2004.

 32

[12] S. Dustdar. Caramba - A Process-Aware Collaboration System Supporting Ad
Hoc and Collaborative Processes in Virtual Teams. Distributed and Parallel
Databases, 15(1):45–66, 2004.

[13] C. Ellis and K. Keddara. ML-DEWS: Modeling Language to Support Dynamic
Evolution within Workflow Systems. Computer Supported Co-operative Work,
9(3/4):293–333, 2000.

[14] Gartner. Gartner’s Application Development and Maintenance Research Note M-
16-8153, The BPA Market Catches another Major Updraft.
http://www.gartner.com, 2002.

[15] D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process
Quality through Exception Understanding, Prediction, and Prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamo-Hanarao, and R. Snodgrass, editors,
Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

[16] J. Herbst. A Machine Learning Approach to Workflow Management. In
Proceedings 11th European Conference on Machine Learning, volume 1810 of
Lecture Notes in Computer Science, pages 183–194. Springer-Verlag, Berlin,
2000.

[17] IDS Scheer. ARIS Process Performance Manager (ARIS PPM). http://www.ids-
scheer.com, 2002.

[18] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts,
Architecture, and Implementation. International Thomson Computer Press,
London, UK, 1996.

[19] G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

[20] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management
Coalition. John Wiley and Sons, New York, 1997.

[21] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[22] D.C. Marinescu. Internet-Based Workflow Management: Towards a Semantic
Web, volume 40 of Wiley Series on Parallel and Distributed Computing. Wiley-
Interscience, New York, 2002.

[23] A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Workflow
Mining: Current Status and Future Directions. In R. Meersman, Z. Tari, and D.C.
Schmidt, editors, On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE, volume 2888 of Lecture Notes in Computer Science, pages
389–406. Springer-Verlag, Berlin, 2003.

[24] M. zur Muehlen and M. Rosemann. Workflow-based Process Monitoring and
Controlling - Technical and Organizational Issues. In R. Sprague, editor,
Proceedings of the 33rd Hawaii International Conference on System Science
(HICSS-33), pages 1–10. IEEE Computer Society Press, Los Alamitos, California,
2000.

[25] M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

 33

[26] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1998.

[27] M. Sayal, F. Casati, and M.C. Shan U. Dayal. Business Process Cockpit. In
Proceedings of 28th International Conference on Very Large Data Bases
(VLDB’02), pages 880–883. Morgan Kaufmann, 2002.

[28] J. Scott. Social Network Analysis. Sage, Newbury Park CA, 1992.
[29] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models

from Event-Based Data using Little Thumb. Integrated Computer-Aided
Engineering, 10(2):151–162, 2003.

[30] S. Wasserman and K. Faust. Social Network Analysis: Methods and
Applications. Cambridge University Press, Cambridge, 1994.

[31] D. Georgakopoulos, et. al., "Managing Escalation of Collaboration Processes in
Crisis Mitigation Situations", Proceedings of the 16th International Conference
on Data Engineering, 2000.

[32] Ellis, C. A., Maltzahn, C.: The Chautauqua Workflow System. Proc. 30th Int'l
Conf. on System Science, Maui, 1997

Schahram Dustdar is an Associate Professor at the
Distributed Systems Group, Vienna University of Technology.
His previous work experience includes several years as the
founding head of the Center for Informatics (ZID) at the
University of Art and Industrial Design in Linz (1991-1999)
and as the director of Coordination Technologies at the Design
Transfer Center in Linz (1999 - 2000). While on sabbatical
leave he was a post-doctoral research scholar at the London
School of Economics (Information Systems Department) (1993
and 1994), and a visiting research scientist at NTT Multimedia
Communications Labs in Palo Alto, USA during 1998. Since
1999 he works as the co-founder and chief scientist of Caramba
Labs Software AG (CarambaLabs.com) in Vienna, a venture
capital co-funded software company focused on software for
collaborative processes in teams. More information can be
found on: http://www.infosys.tuwien.ac.at/Staff/sd

Thomas Hoffmann is a MSc thesis student at the Distributed
Systems Group, Vienna University of Technology. His
research interests include process mining and Web services. In
2003, he developed an editor (BPELComposer) for the
Business Process Execution Language (BPEL), which is used
for Web services composition. Since 1998 he has been working
for Management Solutions IT Gmbh, a small IT-consulting
company, which focuses on the development of workflow
systems of financial service organizations.

 34

http://www.ufg.ac.at/zid
http://is.lse.ac.uk/
http://is.lse.ac.uk/
http://www.nttlabs.com/
http://www.nttlabs.com/
http://www.carambalabs.com/
http://www.infosys.tuwien.ac.at/Staff/sd

Wil van der Aalst is a full professor of Information Systems
and head of the Information Systems sub-department of the
department of Technology Management at the Technische
Universiteit Eindhoven. He is also an adjunct professor at the
Faculty of Information Technology of Queensland University
of Technology. He holds an MSc in Computing Science (1988)
and a PhD in Mathematics (1992) awarded by the Technische
Universiteit Eindhoven. He has been as assistant/associate/full
professor at the department of Mathematics and Computing
Science of the Technische Universiteit Eindhoven. From 1993-
1998 he also worked as a part-time consultant for Bakkenist.
He has been a visiting professor to several universities al
around the globe. His research interests include business
process management, information systems, simulation, Petri
nets, process models, workflow management systems, process
mining, verification techniques, enterprise resource planning
systems, computer supported cooperative work, and
interorganizational business processes.

 35

