
On the Notion of Coupling in Communication
Middleware

Lachlan Aldred1, Wil M.P. van der Aalst1,2, Marlon Dumas1, and Arthur H.M.
ter Hofstede1

1 Faculty of IT, Queensland University of Technology, Australia
{l.aldred,m.dumas,a.terhofstede}@qut.edu.au

2 Department of Technology Management, Eindhoven University of Technology, The
Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. It is well accepted that different types of distributed archi-
tectures require different levels of coupling. For example, in client-server
and three-tier architectures the application components are generally
tightly coupled between them and with the underlying communication
middleware. Meanwhile, in off-line transaction processing, grid comput-
ing and mobile application architectures, the degree of coupling between
application components and with the underlying middleware needs to
be minimised along different dimensions. In the literature, terms such as
synchronous, asynchronous, blocking, non-blocking, directed, and non-
directed are generally used to refer to the degree of coupling required by
a given architecture or provided by a given middleware. However, these
terms are used with various connotations by different authors and mid-
dleware vendors. And while several informal definitions of these terms
have been provided, there is a lack of an overarching framework with a
formal grounding upon which software architects can rely to unambigu-
ously communicate architectural requirements with respect to coupling.
This paper addresses this gap by: (i) identifying and formally defining
three dimensions of coupling; (ii) relating these dimensions to existing
communication middleware; and (iii) proposing notational elements for
representing coupling configurations. The identified dimensions provide
the basis for a classification of middleware which can be used as a selec-
tion instrument.

1 Introduction

Distributed application integration has some longstanding problems. For in-
stance technology and standardization efforts supporting distributed interactions
(Web services [3], MOM [11], MPI [20], RPC/RMI [14]) have made it possible
to implement solutions to the difficult problems of distributed communication,
however a general framework/theory for integration remains elusive. The prob-
lem seems to be one of finding the right abstractions [2].

Researchers seems to agree that the problem of communicating autonomous
systems is not well understood [6, 2, 7, 13] and yet middleware vendors appear



confident that the problem is well understood, at least with respect to their tools.
While there are incredibly complex problems yet to be solved in the area of mid-
dleware, perhaps those issues and aspects related to coupling/decoupling lie at
the very heart of the problem. In their paper about the semantics of blocking
and non-blocking send and receive primitives, Cypher & Leu state that “unfor-
tunately, the interactions between the different properties of the send and receive
primitives can be extremely complex, and as a result, the precise semantics of
these primitives are not well understood.” [6].

Vendors and standards bodies offer many solutions and ideas within this do-
main, however each appears to be embroiled in the paradigm it emerged from. For
instance CORBA is founded and based on an RPC paradigm, whereas MOM 1

platforms are based on a strongly decoupled paradigm involving a hub archi-
tecture, with a MOM service at the centre. Despite their different origins each
appears to have technical and conceptual limitations.

Due to the lack of a widely accepted formal theory for communication and
the fact that each type of solution is based on a totally different paradigm,
models and implementations of middleware based communication are disparate,
and not portable. Rephrased, the models over deployed distributed systems are
not portable in the implementation sense, and not even in the conceptual sense.
Due the lack of formality in this domain, solutions and tools for integration are
difficult to compare as well.

Objectives of the Paper
This paper aims at contributing to address the lack of foundation for expressing
architectural requirements and for assessing middleware support in terms of
decoupling. The main contributions of the paper are:

– A detailed analysis of the notion of (de-)coupling in communication middle-
ware.

– A collection of notational elements for expressing architectural requirements
in terms of (de-)coupling. These notational elements are given a visual syntax
extending that of Message Sequence Charts [18] and can thus be integrated
into UML sequence diagrams.2. In addition, the notational elements are given
a formal semantics in terms of Coloured Petri Nets (CPNs) [12].

– An approach to classify existing middleware in terms of their support for var-
ious forms of (de-)coupling. This classification can be used as an instrument
for middleware selection.

Scope
A complete, formal analysis of communication middleware would be a daunting
task. The list of options and functionality of middleware is incredibly long, par-
ticularly when one considers, for example privacy, non-repudiation, transactions,
1 Message Oriented Middleware: middleware systems capable of providing support for

decoupled interactions between distributed endpoints.
2 http://www.uml.org

2



reliability, and message sequence preservation. Therefore this work chooses not
to take too broad an analytical view of the domain. We have chosen to focus in
on the aspect of decoupling because it seems to lie at the very heart of the prob-
lem of making two or more endpoints communicate effectively, and is central to
the design of distributed applications.

In a recent survey of publish-subscribe technologies Eugster [7] identified
three primary dimensions of decoupling offered by MOM. These are:

– Time Decoupling - wherein the sender and receiver of a message do not need
to be involved in the interaction at the same time.

– Space Decoupling - wherein the address of a message is directed to a partic-
ular symbolic address (channel) and not the direct address of an endpoint.

– Synchronisation Decoupling - wherein the threads inside an endpoint do not
have to block (wait) for an external entity to reach an appropriate state
before message exchange may begin.

These three dimensions of decoupling, we believe, exist at the very core of
middleware functionality. Despite their crucial role they are not well under-
stood [6], and to the best of our knowledge have not been the subject of a
formal analysis.

Organisation of the Paper
The paper is structured as follows. Section 2 defines some basic concepts and
reviews related work. Section 3 identifies a set of decoupling dimensions and
defines basic elements for expressing architectural requirements in terms of these
dimensions. Next, Section 4 shows how these elements, as well as their formal
definitions in terms of CPNs, can be composed in order to capture requirements
across multiple coupling dimensions. Finally, Section 5 concludes and outlines
directions for further work.

2 Background

This section provides an overview of background knowledge related to the study
of decoupling in communicating middleware. It first defines some essential terms
used throughout the paper, and proceeds with an overview of related work.

2.1 Definitions

An endpoint is an entity that is able to participate in interactions. It may have
the sole capability of sending/receiving messages and defer processing the mes-
sage to another entity, or it may be able to perform both.

An interaction is an action through which two endpoints exchange infor-
mation [17]. The most basic form of this occurs during a message exchange
(elementary interaction).

3



A channel is an abstraction of a message destination. Middleware solutions
such as JMS [10], WebsphereMQ [15], and MSMQ [16] use the term “queues”
to mean basically the same thing, but the crucial point here is that a channel
is a logical address, not a physical one, thus they introduce a space decoupling
to traditional point-to-point messaging. Thus the sender is able to address a
message to a symbolic destination, and the receiver may register the intention to
listen for messages from the symbolic destination. Interestingly such a decoupling
means that a channel is not necessarily restricted to one message receiver - many
endpoints, may share one channel, in which case they may either share/compete
for each message, depending on whether or not the channel is a publish-subscribe.

Channels have been enhanced and extended with many functions, in-
cluding the preservation of message sequence [7, 6], authentication and non-
repudiation [11].

A message is a block of data that gets transported between communicating
endpoints. Depending on the middleware it could contain header elements such
as an message ID, timestamp, and datatype definition; or it could just contain
data. The message may contain a command, a snapshot of state, a request, or an
event among other things. It may be transactional, reliable, realtime, or delayed,
and it often is transported over a “channel”. However, it could just as easily be
sent over sockets.

2.2 Related Work in Middleware Classification

Cross and Schmidt [5] discussed a pattern for standardizing quality of service
control for long-lived, distributed real-time and embedded applications. This pro-
posal briefly described a technology that would be of assistance. They outlined
the technology as “configuration tools that assist system builders in selecting
compatible sets of infrastructure components that implement required services”.
In the context of that paper no proposals or solutions were made for this, how-
ever the proposals of our paper perhaps provide a fundamental basis for the
selection of compatible sets of infrastructure.

Schantz and Schmidt [19] described four classes of middleware: Host infras-
tructure middleware provides a consistent abstraction of an operating system’s
communication and concurrency mechanisms (e.g. sockets). Distribution mid-
dleware abstracts the distribution, and generally allows communication over
heterogenous systems as if they were running in one stand-alone application
(e.g. CORBA [9], and RMI [14]). Common Middleware Services group together
middleware that can provide higher level services such as transactions, and se-
curity (e.g. CORBA and EJB). Domain Specific Middleware Services classify
those that are tailored to the requirements of a specific real world domain, such
as telecom, finance etc. (e.g. EDI and SWIFT). This classification provides a
compelling high-level view on the space of available middleware, but it does not
give a precise indication of the subtle differences between alternatives in the light
of architectural requirements.

Thompson [21] described a technique for selecting middleware based on its
communication characteristics. Primary criteria include blocking versus non-

4



blocking transfer. In this work several categories of middleware are distinguished,
ranging from conversational, through request-reply, to messaging, and finally to
publish-subscribe. The work, while insightful and relevant, does not attempt
to provide a precise definition of the identified categories and fails to recognise
subtle differences with respect to non-blocking communication, as discussed later
in the paper.

Cypher and Leu [6] provided a formal semantics of blocking/non-blocking
send/receive which is strongly related to our work. These primitives were defined
in a formal manner explicitly connected with the primitives used in MPI [20].
This work does not deal with space decoupling. Our research adopts concepts
from this work and applies them to state of the art middleware systems. Our
research differs from the above, by exploiting the knowledge of this work in
terms of non-blocking interactions, and combining this with the principles of
time and space decoupling originating from Linda [8]. Our work is also unique in
its proposal for compositional dimensions of decoupling, and our communication
primitives may be used as a basis for middleware comparison.

3 Decoupling Dimensions of an Interaction

In this section we will provide a Petri net-based analysis of fundamental types
of decoupling for interacting endpoints. These dimensions of decoupling have
relevance to all communication middleware we are familiar with, including MOM,
space-based middleware [8], and RPC-based paradigms.

3.1 Synchronisation

The critical concept behind synchronisation decoupling is that of “non-blocking
communication”, for either, or both of, the sender and receiver. Non-blocking
communication allows the endpoints to easily interleave processing with commu-
nication. In the following paragraphs we introduce some notational elements for
denoting various forms of synchronisation decoupling as well as a formalisation
of these notational elements in terms of CPNs.

Send
A message send can either be blocking or non-blocking. Blocking send implies
that the sending application must yield a thread until the message has truly left
it. Figure 1(b) is a coloured Petri net 3 of a blocking send. The outer dashed line
represents the endpoint while the inner dashed line represents middleware code
that is embedded in the endpoint. When a message is ready (represented by a
token inside the place “msg-ready”) and the application is ready (represented
by a token inside the place “app-contrl”) the endpoint gives the message to the

3 Note: This paper presents a range of coloured Petri nets (CPNs) [12] that model
important aspects of decoupled systems. All CPNs were fully implemented and tested
using CPN Tools [4].

5



embedded middleware. The endpoint in blocking send also yields its thread of
control to the embedded middleware, but it gets the thread back when the mes-
sage has completely left the embedded middleware. Note that inside the embed-
ded middleware the transitions “begin-x-port”, “in-progress”, and “fin-x-port”
hang over the edge of the embedded middleware. This was done to demonstrate
that the remote system (receiver endpoint or middleware service) will bind to
the sender by sharing these transitions and one state. This implies that hidden
inside the middleware, communicating systems exchange information in a time
coupled, synchronisation coupled manner, regardless of the behaviour that’s ex-
posed to the the endpoint applications. In CPN terminology certain nodes inside
the embedded middleware are “transition bounded” 4.

In a blocking send there is a synchronisation coupling of the sender applica-
tion (endpoint) with something else - but not necessarily the receiver as we will
show in Section 3.2.

(a) Notation. (b) Petri net - Blocking send.

Fig. 1. Blocking send. After initialising send, the transition “process” cannot fire until
a thread is returned at the end of message transmission.

Synchronisation decoupling is achieved from the viewpoint of the sender only
if it is possible to perform a non-blocking send. A non-blocking send is observable
in a messaging interface if the message send operation can be initiated from the
application and then the middleware embedded inside the sender returns control
immediately, (i.e. before the message has left the application place). See Figure 2
for an illustration and Petri net model of the concept. Note that this Figure like
that of blocking send (Figure 1) is transition bounded with remote components
through the transitions in the embedded middleware of the application. Snir and
Otto provide a detailed description of non-blocking send [20].

Non-blocking send is a necessary condition, but not a sufficient condition
to achieve total synchronisation decoupling, which is to say that the receive
action must also be non-blocking. If both send and receive are blocking (non-

4 “Transition bounded”, in this context, means that two distributed components share
a transition (action), and must perform it at exactly the same moment.

6



(a) Notation. (b) Petri net - Non-blocking
send.

Fig. 2. Non-blocking send. The transition “process” can be interleaved with communi-
cation because a thread is not yielded to the embedded middleware.

blocking) then a total synchronisation coupling (decoupling) occurs. A partial
synchronisation decoupling occurs when the send and the receive are not of the
same blocking mode (i.e. one is blocking with the other being non-blocking).

Non-blocking send is a fairly uncommon feature of middleware solutions.
For instance all RPC-based implementations use blocking send, and many/most
MOM implementations use a blocking send as well. This is the case because
even though MOM decouples the sender from the receiver through time, the
senders are typically synchronisation coupled to the middleware service. This is
acceptable when the sender is permanently connected over a reliable network
to the provider, however mobile devices, for instance, typically need to inter-
operate on low availability networks, hence they require the ability to store the
message locally, until the network is available (i.e. store and forward) [13]. This
problem should obviously not be too great a burden on the mobile applications
developer, and should be part of the middleware functionality.

Receive
Like message send, message receipt can either be blocking or non-blocking [6].
The definition of blocking receive is that the application must yield a thread
into a waiting state in order to receive the message (the thread is usually re-
turned when the message is received). This means that the receiving application
is synchronisation coupled to either the message sender or the middleware ser-
vice (depending on the whether the middleware is peer-to-peer or server-client
oriented). Figure 3 presents a model of this concept.

On the other hand, non-blocking receive, is a messaging concept wherein the
application can receive a message, without being required to yield a thread to
achieve this. This concept is illustrated in Figure 2.

A well known example of non-blocking-receive is that of the event-based han-
dler, as described in the JMS [10]. A handler is registered with the middleware

7



(a) Notation. (b) Petri net - Blocking re-
ceive.

Fig. 3. Blocking receive. A thread must be yielded to the embedded middleware until
the message has arrived.

(a) Notation. (b) Petri net - non-blocking
receive.

Fig. 4. Non-blocking receive. A thread need not be yielded to the middleware in order
to receive.

and is called-back when a message arrives. MPI provide an equally valid non
blocking receive that is not event based [20].

Non-blocking receive seems less frequently used than the blocking receive.
This is probably because blocking receives are simpler to program and debug [11].
One frequently observes statements in the developer community that MOM en-
ables asynchronous interactions (which is true in the it allows time decoupled
interaction), however this general usage of “asynchronous” for MOM is mislead-
ing because MOM usually connects endpoints with a blocking-send and blocking
receive (synchronisation coupled).

3.2 Time

The dimension of time decoupling is crucial to understanding the difference
between many peer-to-peer middleware paradigms and server oriented paradigms

8



(e.g. MPI versus MOM). In any elementary interaction time is either coupled or
decoupled.

Time coupled interactions are observable when communication cannot take
place unless both endpoints are operating at the same time. Hence peer-to-peer
systems are always time coupled. In time coupled systems the message begins by
being wholly contained at the sender endpoint. The transition boundedness of
endpoints can guarantee that the moment the sender begins sending the message,
the receiver begins receiving. The concept is presented in Figure 5 wherein the
endpoint applications are joined directly at the bounding transitions (“begin
x-port” and “fin x-port”).

(a) Notation. (b) Coloured Petri net of time coupled messag-
ing.

Fig. 5. Time coupling is characterised by transition-bounded systems.

Time decoupled interactions allow messages to be exchanged irrespective of
whether or not each endpoint is operating at the same time. Therefore simple
peer-to-peer architectures cannot provide true time decoupling - by definition.
What is required for time decoupling is a third participant in the interaction
where the sender can deposit the message, and the receiver can retrieve it. This
is why many MOM implementations use a client-server architecture. Servers may
be redundant, and even use “store and forward” semantics between servers [15],
in which case the term “peer-to-peer” is often used ambiguously. Though this
could be better described as a polygamous architecture where many machines
host both peer-endpoints, and a messaging server.

The concept of time decoupling is presented in Figure 6. Note that in the
Petri net and the illustration the separate systems are transition bounded in the
same way as before, however this time there are three of them, with the middle
one being a middleware service that is able to buffer the message.

3.3 Space

Space coupling is the final dimension of decoupling considered to play a role in
this domain.

9



(a) Notation.

(b) Coloured Petri net of time decoupled messaging.

Fig. 6. Time decoupling is characterised by systems that can be strictly non-concurrent
(endpoint to endpoint), and still communicate.

For an interaction to be space coupled the sender uses a direct address to
send the message to. Therefore the sender “knows” exactly where to address the
receiver application. Figure 7 presents the concept of space coupling. This can
be seen in the Petri net by introducing a new type of token (< appID,msg >),
and a new place (“id”) as input to the transition “begin x-port”. Only when two
conjoined systems match on the value of “appID” will the bounding transition
fire.

(a) Notation (b) Coloured Petri net of space coupled mes-
saging.

Fig. 7. Space coupling. The sender directly addresses the receiver.

10



Space decoupled interactions on the other hand allow for a sender to have no
explicit knowledge of the receiver’s address. This makes it possible for parts of
distributed systems to be extended, and replaced at runtime without shutting
everything down. Hence space decoupling is highly desirable from the viewpoint
of enterprise integration due to its support for maintenance and management.

Figure 8 introduces the concept of an abstract message destination - or chan-
nel for space decoupled point to point messaging5. This is the logical message
destination, but the actual message destination obtains its message off the same
channel. The Petri net demonstrates this by linking the transition “begin x-port”
to a new input place (“my chans”) and a slightly different token containing
the message (< cID, msg >), of type BoundMessage (BndMsg). Hence, this
transition shall only fire when two systems are bound together that satisfy the
transition guard “[elt(cID,chs)]”.

(a) Notation. (b) Coloured Petri net of space decoupled mes-
saging.

Fig. 8. Space decoupling. The sender does not directly address the receiver, but directs
the message along a channel.

3.4 Summary

The dimensions of decoupling include synchronisation-decoupling (with its four
options), time-decoupling, and space-decoupling. Each has its own precise be-
haviour and semantics. These were rendered using a reasonably intuitive graph-
ical notation and a more precise formal semantics as presented by the Petri
nets.

4 Combining Synchronisation, Time, and Space

The dimensions of decoupling presented in the previous section are orthogonal
to each other. Therefore designs for interactions can be composed from them
5 Note that this series of CPNs models point to point messaging (i.e. as opposed

to publish-subscribe). Extending the models to describe publish-subscribe, while
beyond the scope of this paper, is possible but not trivial.

11



arbitrarily while preserving the innate semantics, as fully defined for each -
contributing to a precise overall behaviour. This set of configurations can then
be used as a palette of possible interaction behaviours and thus applied to an
integration problem or to the selection of an appropriate middleware product.

4.1 Compositional Semantics

Any type of synchronisation-decoupling (for both send and receive) can be
combined with any type of time-decoupling, which in turn can be combined
with any type of space-decoupling. This means that for one directional mes-
saging there are sixteen possible interaction behaviours, definable according to
the decoupling properties (22 ∗ 2 ∗ 2 = 16), and we believe that these dimen-
sions are orthogonal. Meaning, for example, that you can have a time-coupled,
synchronisation-decoupled interaction, and it is equally possible to have a time-
decoupled synchronisation-coupled interaction.

Composing Petri nets
The Petri nets for each coupling dimension from Section 3 can also be composed,
or overlayed to form a complete model of any of the sixteen possible interac-
tion behaviours. For example to create a CPN of a synchronisation-decoupled,
time-decoupled, and space-decoupled interaction one may use the CPNs from
Figures 2(b), 4(b), 6(b), and 8(b), and overlay them. Such a net is presented in
Figure 10. A CPN for a synchronisation-coupled, time-coupled, space-coupled
also shown (Figure 9), however, for space reasons we do not present the remain-
ing fourteen CPNs.

Fig. 9. Petri net of a synchronisation-coupled, time-coupled, space-coupled interaction
between endpoints.

Graphical Notation of Compositions
The entire set of sixteen possible decoupling configurations possible are enumer-
ated in graphical form in Figures 11 and 12. These graphical illustrations of the
possibilities are essentially arrived at by overlaying the illustrative vignettes of
the dimensions of decoupling as presented in Section 3.

12



Fig. 10. Petri net of a synchronisation decoupled (non-blocking send/receive), time-
decoupled, and space-decoupled interaction.

This graphical notation for the different types of coupling for elementary in-
teractions could prove to be useful in defining requirements, or system analysis
and design. The configurations are varied, and each one has its own specific be-
haviour. Furthermore they are sufficiently different that some will be more suit-
able to a given integration problem than other. Put another way not all possible
coupling configurations would be useful in any situation. For instance a multi-
player realtime strategy game would not have much use for a time-decoupled
configuration.

4.2 Example of Capturing Coupling Requirements in an Integration
Project

Imagine that a hospital needs to integrate a new BPM system and a new prox-
imity sensor system to its existing IT services. Each doctor, and nurse is given a
mobile device which can inform a central system of the location of that person
inside the hospital. This is linked to the BPM system so that the nearest staff
member with the requisite skills can be notified of new work and notified during
emergencies.

The challenge is to design a conceptually clean, integration model showing the
types of connectivity between the different endpoints in such a system. Clearly
the mobile devices will not always be connected to the central systems (due to
possible signal interference), and therefore non-blocking send is advisable, this
way messages from the device could be stored until the signal is restored. New
mobile devices might need to be added to the system, and device swapping may
occur, and shouldn’t break the system. Therefore space decoupling is required.
Finally, device batteries might go flat and therefore time decoupling between mo-
bile devices and the central system is necessary. Hence the architecture of this
endpoint interconnection should be either configuration ‘14’ (Non-blocking-send,
Blocking-receive, Time-decoupled, Space-decoupled) or ‘16’ (Non-blocking-send,
Non-blocking-receive, Time-decoupled, Space-decoupled). During requirements

13



Fig. 11. Notations 1 - 8 of the coupling configurations for one way communication.

analysis we can proceed through each endpoint connection using a similar ap-
proach.

4.3 Comparison of Middleware Systems

We postulate that any type of middleware could be plotted against the 16 cou-
pling configurations proposed in this Section with respect to whether they di-
rectly support the defined behaviour through their API or interface. As part of
this research we have plotted the coverage of middleware solutions and standards
against the proposed coupling configurations. The set of solutions and stan-

14



Fig. 12. Notations 9 - 16 of the coupling configurations for one way communication.

dards includes MPI6, Biztalk Server 2004 (Product Documentation), Websphere
MQ7, Java-NIO8, Java-RMI8, Java-Sockets8, Java-Mail9, JMS9, Java-spaces10,
CORBA [9], RPC11. In most cases the documentation (as opposed to implemen-

6 MPI Core: V. 2, [20].
7 Websphere MQ V 5.1, [15].
8 JDK V. 1.4, http://java.sun.com/j2se/1.4.2/docs/api, accessed June 2005.
9 J2EE-SDK V. 1.4, http://java.sun.com/j2ee/1.4/docs/api, accessed June 2005.

10 Java Spaces http://java.sun.com/products/jini, accessed June 2005.
11 DCE-RPC V 1.1, http://www.opengroup.org/onlinepubs/9629399/toc.htm, ac-

cessed June 2005.

15



tations) for these standards and solutions was used as a guide to determine their
coverage.

Space
coupling

Synch coupling Partial synch decoupling Synch decoupling
B-Send, B-Rcv NB-Snd, B-Rcv B-Snd, NB-Rcv NB-Snd, NB-Rcv

Time coupled MPI, Sockets MPI, RPC-Reply MPI, CORBA,
RPC-Request

MPI, Java-NIO

1 2 3 4

Time
decoupled

Java-Mail

5 6 7 8

Space
decoupling

Synch coupling Partial synch decoupling Synch decoupling
B-Send, B-Rcv NB-Snd, B-Rcv B-Snd, NB-Rcv NB-Snd, NB-Rcv

Time coupled Java-RMI-Reply CORBA, Java-
RMI-Request

9 10 11 12

Time
decoupled

JMS,
Websphere-MQ,
BizTalk-MSMQ,
JavaSpaces

JMS,
Websphere-MQ,
BizTalk-MSMQ,
JavaSpaces

13 14 15 16

Table 1. Support for coupling configurations by some well known middleware solutions
and standards.

Table 1 represents our initial assessment of various well known middleware
solutions and assesses each one’s ability to directly support each coupling con-
figuration (hence that communication behaviour).

The hospital scenario previously introduced, requires either configurations 14
or 16, these are both empty in our tables, however MobileJMS [13] is a proposal
that will support them.

4.4 The Case of Two-way Interactions

This work, while presented in terms of one directional communication, has ap-
plication in compound interactions as well - for instance two-way communi-
cation. In RPC style interactions there are two roles being played. The role of
requestor performs a “solicit-response”, and the role of service provider performs
a “request-response” [1]. The requestor typically blocks for the response, hence
the interaction is generally considered synchronous. However, if such an inter-
action is modelled using the proposed notation it becomes clear that this broad
definition is not totally precise. In actual fact the interaction is partially syn-
chronisation decoupled, in each direction. The service provider uses non-blocking
receive and in the reply uses non-blocking send (B-send → NB-receive → NB-
send → B-receive). Therefore any model of such an interaction should capture
these subtleties.

16



Using the proposed notation there are 16 possibilities in each direction for
two way interactions. Hence if one enumerated all possible configurations of
decoupling, for two way interactions, there are 162 = 256 possibilities.

5 Conclusions

This paper has presented a set of formally defined notational elements to capture
architectural requirements with respect to coupling. The proposed notational
elements are derived from an analysis of communication middleware in terms
of three orthogonal dimensions: space time and synchronisation. This analysis
goes beyond previous middleware classifications by identifying certain subtleties
with respect to time coupling. In previous communication middleware analyses,
when two endpoints are coupled in time, they are generally considered to be
synchronous, and in the reverse case they are considered to be asynchronous
(e.g. [11]). However, such an imprecise definition does not provide any differen-
tiation between sockets and RPC, which are both time-coupled. Clearly there is
more to the problem than the generally held belief (that time-coupled implies
synchronous). We consider that ‘synchronous’ and ‘asynchronous’ are too impre-
cise for using to create clear abstract models of integrations. The framework that
we provide is the first that we know of that presents synchronisation coupling
and time coupling as independent but related concepts.

Currently the rating of tools against the coupling configurations are binary,
while perhaps a recognition of partial support (where the tool fully implements
a restricted version of the concept, or it supports it, but requires some extra
modelling effort to implement it) would make more useable. The assessment
would also benefit from a more detailed explanation of why a rating was given.

Disclaimer The assessments we made of middleware products and standards
with respect to the coupling configurations are based on the tool or standard
documentation. They are true and correct to the best of our knowledge.

Acknowledgement This work is partly funded by an Australian Research
Council Discovery Grant “Expressiveness Comparison and Interchange Facil-
itation between Business Process Execution Languages”. The third author is
funded by a Queensland Government Smart State Fellowship.

References

1. W. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72–76, Feb 2003.

2. A. Beugnard, L. Fiege, R. Filman, E. Jul, and S. Sadou. Communication Abstrac-
tions for Distributed Systems. In ECOOP 2003 Workshop Reader, volume LNCS
3013, pages 17 – 29. Springer-Verlag Berlin Heidelberg, 2004.

3. R. Chinnici, M. Gudgin, J. Moreau, J. Schlimmer, and S. Weerawarana. Web
Services Description Language (WSDL) Version 2.0. W3C Recommendation, 2004.
http://www.w3.org/TR/wsdl20 accessed June 2004.

17



4. Cpn tools homepage. http://wiki.daimi.au.dk/cpntools/_home.wiki accessed
March 2005.

5. Joseph K. Cross and Douglas C. Schmidt. Applying the quality connector pat-
tern to optimise distributed real-time and embedded applications. Patterns and
skeletons for parallel and distributed computing, pages 209–235, 2003.

6. R. Cypher and E. Leu. The semantics of blocking and nonblocking send and receive
primitives. In H. Siegel, editor, Proceedings of 8th International parallel processing
symposium (IPPS), pages 729–735, April 1994.

7. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

8. David Gelernter. Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985.

9. Object Management Group. Common Object Request Broker Architecture: Core
Specification, 3.0.3 edition, March 2004. http://www.omg.org/docs/formal/

04-03-01.pdf accessed June 2004.
10. M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Haase. Java Messaging

Service API Tutorial and Reference. Addison-Wesley, 2002.
11. G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley, Boston, MA, USA, 2003.
12. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

13. M. Kaddour and L. Pautet. Towards an adaptable message oriented middleware
for mobile environments. In Proceedings of the IEEE 3rd workshop on Applications
and Services in Wireless Networks, Bern, Switzerland, July 2003.

14. Sun Microsystems. Java remote method invocation specification. http:

//java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmi-title.html accessed
March 2005, 2003.

15. Websphere MQ family. http://www-306.ibm.com/software/integration/wmq/

accessed June 2005.
16. Microsoft Message Queue (MSMQ) Center. http://www.microsoft.com/

windows2000/technologies/communications/msmq accessed October 2004.
17. D. Quartel, L. Ferreira Pires, M. van Sinderen, H. Franken, and C. Vissers. On

the role of basic design concepts in behaviour structuring. Computer Networks and
ISDN Systems, 29(4):413 – 436, 1997.

18. E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Sequence
Charts. Computer Networks and ISDN Systems, 28(12):1629–1641, 1996.

19. R. Schantz and D. Schmidt. Encyclopedia of Software Engineering, chapter Middle-
ware for Distributed Systems: Evolving the Common Structure for Network-centric
Applications. Wiley & Sons, New York, USA, 2002.

20. M. Snir, S. Otto, D. Walker S. Huss-Lederman, and J. Dongarra. MPI-The Com-
plete Reference: The MPI Core. MIT Press, second edition, 1998.

21. J. Thompson. Toolbox: Avoiding a middleware muddle. IEEE Software, 14(6):92–
98, 1997.

18


