
Protos2CPN:
Using Colored Petri Nets for Configuring and Testing

Business Processes

F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and H.M.W. Verbeek

Department of Technology Management, Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

f.gottschalk@tm.tue.nl

Abstract. Protos is a popular tool for business process modelling used in more than
1500 organizations. It has a built-in Petri-net-based simulation engine which shows key
performance indicators for the modelled processes. Reference process models offered for
Protos reduce modelling efforts by providing generic solutions which only need to be
adapted to individual requirements. However, the user can neither inspect or inter-
act with simulations running in Protos, nor does Protos provide any explicit support
for the adaptation of reference models. Hence, we aim at a more open and config-
urable simulation solution. To realize this we provide two transformations from Protos
models to colored Petri nets (CPNs), which can be executed by CPN Tools. The first
transformation enables the usage of the extensive simulation and measuring features
of CPN Tools for the simulation of Protos models. The second transformation creates
colored Petri nets with dedicated features for process configuration. Such configurable
process models can be restricted directly within the process model without changing
the model’s structure and provide therefore dedicated adaptation features for Protos’
reference process models.

1 Introduction

Today “process thinking” has become a mainstream organizational practice [20]. Business
process models provide a graphical and systematic view on organizational processes [15].
Various tools for business process modelling have been developed since the late nineties [2].
One popular tool is Protos from the company “Pallas Athena”. Currently it is used by about
1500 organizations in more than 20 countries. E.g., more than half of all municipalities within
the Netherlands use Protos for the specification of their in-house business processes [24].

Most providers of modelling tools, and, e.g., also all dominant enterprise system vendors
provide reference models with or for their software. Reference models are supposed to reduce
the modelling efforts by providing generic solutions that just need to be adapted to individual
requirements [5,9,10,11,18,19]. Pallas Athena provides several sets of reference process models
implemented in Protos. As an example, there is a set of about 60 reference process models for
municipalities. These are ordinary Protos models depicting common processes. The munici-
pality or organization buying such a reference model can adapt the models to its individual
requirements, avoiding the huge effort of building process models from scratch. However, it
is quite important to note that neither Protos nor any other popular process modelling tool
provides any explicit support for the adaptation of reference models [16].

Figure 1 depicts a reference process model for the handling of objections against parking
tickets1. If an objection is received within the corresponding deadline it is checked for its
1 The model is motivated by one of Pallas Athena’s reference models, but specially build for the

purpose of this paper.

��������	��
���

��������������
�

�������

��
������

�������

����������

�����	������

������
��������

�������
��
���

��

�����
�������
��

�������������
��

������
�����������

����������������
��
����������
��

�������
����

� �
������������

������

���������

������
���
�����������

� ��
����������������

 ��

��������!"�����

��������
���

������

#
��
���������

"�����

���������"�������
��
��

$���!%�

�����

��	��
���

���������������

%�
�����������

$���

#
�
��

&���'

Fig. 1. An example decision-making process about objections against parking
fines, modelled in Protos

admissibility. In case it is not admissible, a supplement is requested. If this is received within
the new deadline or if a supplement was not needed, the parking administration is consulted,
reasons for approval/refusal as well as a settlement are drawn up, and the judgement is sent
to the objecting citizen. Otherwise the objection times out and is refused directly as it is in
case the objection was not received within the deadline.

During this research a set of more than 500 reference and adapted process models was
made available to us by Pallas Athena. Although guidelines how to model sound business
processes in Protos and tools for verification exist [21,22,23], we discovered that most of these
process models do not conform to the guidelines. In addition, the models lack of data required
for process simulations which also means that simulation [24] was hardly used, if at all. So we
can conclude that the designers were either unaware or not convinced of the value of sound
models and simulation. One main reason for this is that it is unclear to designers which of the
parameters that can be specified in Protos are actually used for the simulation. For example,
we discovered that in Protos a field for the number of resources required for the execution of
a task exists, but the simulation always uses just one resource and neglects this parameter.

Within this paper we will present two new tools helping Protos users to test and vali-
date their process models and therefore to improve the quality. Both tools are available for
download from http://www.floriangottschalk.de/protos2cpn.

First, we will depict a new way to simulate business processes modelled in Protos using
CPN Tools [25]. Nowadays CPN Tools is probably the most popular modelling and analysis
environment for colored Petri nets (CPNs) [14], used in more than 115 countries with more
than 3000 licensees. It provides not only a nice way to visualize running processes but also
extensive measurement and verification opportunities for concurrent systems. Within this
research we developed a transformation from Protos models to CPNs, using the same data as
the current Protos simulation. Using the simulation of CPN Tools we enable the unexperienced
user to see directly in which order the process tasks are executed and what might go wrong in
incorrect workflow models. In additon some basic statistics are provided to him. The advanced
user will be able to add additional measurements to process models as well as he can see
which of the Protos parameters are actually used during the simulation. The current Protos
simulation is using a tool called ExSpect [4,24] which is based on another type of colored Petri
nets. However, ExSpect does not allow for the easy creation of additional measurements. Its
standard layout scheme, which is applied when loading a model, causes unacceptable delays
when trying to inspect or interact with running processes. In addition, the development of
ExSpect has stopped for some time already [12].

Second, we change the transformation in such a way that it creates a configurable pro-
cess model from the Protos model. We developed configurable process models in our pre-
vious research as a general mechanism for process model adaptation [5,13]. When config-
uring a process, its unnecessary parts are eliminated, i.e. the possible process behavior is
restricted [9,10,18,19]. Incorporating configuration options into the process model during the
transformation creates for the first time a tool allowing to make process configuration deci-
sions within a process model and to evaluate the configuration decision by direct interactions
with the simulation model.

The paper concludes with a summary and an outlook on open issues.

2 Protos2CPN: From Protos Models to Colored Petri Nets

Basically Protos2CPN converts the data provided by Protos for the current simulation into a
CPN, executable in CPN Tools. So far, CPN Tools provides no opportunities for importing
other file formats than the CPN Tools XML-file format. It is therefore reasonable to use an
XML export of Protos and transform this into the CPN Tools format by an XSL transforma-
tion. The current Protos simulation [24] is already using temporary stored XML files for the
communication between Protos and ExSpect. So we decided to “plug-in” in between using the
same XML export for the generation of the CPN Tools files, especially as our main goal is the
process simulation as well. The exported XML file includes a flattened process structure (i.e,
the hierarchical structure is reduced to a single level process model), the resource utilization
of each task, and further statistical simulation parameters. It lacks of information how to
layout the process, but we aim at providing an automatic layout functionality. Currently, the
models are created with a basic layout scheme that allows for an easy re-arranging of process
elements, keeping the manual effort reasonable.

In order to enable the user to look at the CPN in the same way as to the Protos model,
without the need for learning a new “complicated” modelling language [17], it is our goal
to transform the Protos models into CPN models that match the Protos model in look and
structure as close as possible. For that reason we decided that any information not depicted
in the process view of Protos (cf. Figure 1) but maintained in property dialogues and needed
for simulation must be depicted on separate sub-pages. The derived CPN model provides

���������
	�� �� ���������
�
� ���

������������

�������������
� ���
�! ��	��
� "��

���
������

#$���%���!�����
��& � ���

� '!�
��

	(�
)*"�& ��� �* �
� ������

� '!�
��

���
	�� (� ���������+� ���*�� �
 � �
�

� '�����

� '��
(�

� '��
(�

� '!�
��

� '!�
��

� ������)��
�,�%��
���

� '!�
��

� '!�
��

� '�����

� '!�
��

������������

���
������

-.� � /�� �0���
����& � ���

'!/��
	����
1�2 �
	�� � ���*� �
 $����)*� (�� 1�� & � � 3

���������4���������4

���)���� #$�,�

��������$��4��������$��4

-.�
� � � ���*� �� 5��,"�"�& �
)*�
���

������*2 ������)*�
���

���
(���$�76���
(���$�76

��
� � & �
)*�
���%��������
(� �
�

�� �
89��"*��
� & & �
)*�
���

���
(���$�7:���
(���$�7:

;(�
�������<���
"�� 	�� �
�

�� ��8=��"* �
�������<� �� 5��"�"� ��>
�
& ?� ��� �����&

���
(���$������
(���$���

@ �� �
� ���*����)*� �,�� �� ��� � �
�.	��������& � �
�

'!�
��(��& �%"��
 �
� ���*�
��)�� ��� �� ��� � �
�

���������A���������A

;B�
C��,�
��%�����%�
��)�� ��� 1�& �

DE(��� �� $���"�"�& �
)*�
���

���
�����F���
�����F

;B�
C�������%�
��)*� ��� 1�& �

G�� �� �H����	�� �� �
�0���
�
� ���

���
�����I���
�����I

;B�
� �������1�2 �
	(� � �
�

���
(���$�7J���
(���$�7J

Fig. 2. The overall process view of the CPN (generated from the Protos process
model depicted in Figure 1)

therefore two levels: First the overall process view, similar to the (flattened) process view
of Protos, where every Protos status2 is transformed into a CPN place3 and each Protos
task is transformed to a CPN substitution transition (cf. figures 1 and 2); and second the
sub-pages of these substitution transitions representing an “execution layer” incorporating all
data relevant for the simulation (cf. Figure 3).

2 The Protos name for a place (e.g., a model object representing a channel or state) is status.
3 Note, that in Protos it is possible to connect transitions directly to transitions or statuses directly

to statuses whereas in (colored) Petri nets this is not. In this case additional auxiliary statuses or
transitions are introduced into the CPN process overview model. This is already done by Protos
when creating the XML export.

�������
���
	

� ��� ������
� ��� � ����� �

� � ������
� �

������� �

��� � � ��� � �
�!� � � ��� � ��!� � � ��� � �

"�# �� %$ ��& & ' ��(� � & & "

"�# �� %$ ��& & ' ��(� � & & "

(� ��� �
���
	

���%)

� ����� �+* � � � �, - , �� ��. � � ' ����, / ' 01�
������� �32 / ' 01��254�6 ��7 � � $�/ ' 0���4

� ��, � %$ ��8 ����� �
������� �

� . ��� ' , ��9�, �+��� � � ��� �

������� �

� ���

� � � ����� �

:;6 ��7 � � $�/ ' 01�

' ��< ��� 254�=
� ��� < ��� 2 ��7 � � $�/ ' 01��4�=
�� %� ' ���12 7 � � $�/ ' 01� � .�>?25454�=

Fig. 3. Dedicated task page with information for simulation

The places in the overall model are allowed to have tokens of the type tCase4 depicting
details about the cases running through the process, e.g., a case id, the start time of the
process, and the arrival time of the process in the particular place:

colset tCase = record lCaseID:INT *
lProcessArrivalTime:INT *
lRank:INT *
lPlaceArrivalTime:INT *
lCost:INT;

Whenever a token is residing in one of the places in the overall model it is waiting for
execution by one of the subsequent transitions. All specifications of how and when a task can
be performed by one of these transitions are “hidden” on the corresponding sub-page for the
task, i.e. the transition depicted in the overall model is just a substitution transition for the
underlying sub-page.

Each of these sub-pages consists basically of two transitions: A Start and a Done transition
(cf. Figure 3). The Start transition symbolizes the start of the task and is enabled by token(s)
on its input place(s), i.e. by tokens arriving on the preceding places in the overall process
model. When the Start transition fires, it puts a token into a place Busy, symbolizing the
lasting of the task. By adding a delay of vWorkTime to the token it is ensured that the token
cannot be removed from the Busy-place while the task lasts. The duration of the task, i.e. the
delay, is determined by the function WorkTimeuXX() which calculates the duration of the task
according to the specification at the corresponding task in the Protos model (XX is replaced
with a two letter code in the model, which is a shortcut for the name of the particular task).
Firing the Done transition depicts the completion of the task. It removes the token from the
4 In order to distinguish between colorsets, labels and variables in the CPNs, all colorset names start

with a lowercase t (type), all labels with a lowercase l, and all variables with a lowercase v.

Busy place, and puts token(s) into the output place(s), i.e. in the succeeding place(s) within
the overall model.

The number of input- and output places depends on the number of incoming and outgoing
arcs of the particular task within the Protos model. In Protos it can be specified if several
incoming arcs depict either an AND-Join or an XOR-Join. Several outgoing arcs of a task can
depict either an AND-split or an XOR-split. This might be confusing for Petri net users as
the substitution transitions in the overall process model are looking like a standard Petri net
AND-join/-split, but can represent both XOR and AND-joins/-splits. The exact behavior is
only modelled within the corresponding CPN sub-page:

– In case of an AND-join each input place is connected to the Start transition. The case
id’s of incoming tokens from different arcs are synchronized by a guard attached to the
Start transition. (see Figure 4).

– In case of an XOR-join, a Start transition is introduced for each input-place/arc. So a
Start transition can fire and result in the busy state of the task whenever a token is
placed into one of the input places (see Figure 5).

– In case of an AND-split the Done transition puts tokens into all output places (see Fig-
ure 6).

– In case of an XOR-split, a Done transition is introduced for each output place/arc (Fig-
ure 7). So only one Done transition can take the token out of the Busy place and fire by
removing the token from the place Busy, releasing the resource and putting the case token
into the corresponding Out place. The other Done transitions become disabled as soon as
the first one fires as no token remains in the Busy place..

�������������	���
 �����
�����	���
 ����������	���
 �����

����� �������
����� � �������

��� ��
 �
�����

��	����
�����

� ������� � �������

 �������"! �������

#%$ �& 	�
 '�(�) *+�

, ��������-
, �, �

, ��������.
, �, �

�����

) ��/����"0 1�2
	���� /����"0 �& 	�
 '�(�) *+��1�2
�����) 	��+0 & 	�
 '�(�) *+�����43�05151�2

� �������"6 ����� ��7 857 ������9�

) ��7 (�) *+�
 �������:05(�) *+��0 1+$ �& 	�
 '�(�) *+��1

� ��7 	���'���;��������
 �������

< ������'=��> >) ���=�?� ��> > <

 �������

� 9 ��) 7 ��@�7 �"������	���
 ���

< ������'=��> >) ���=�?� ��> > <

A B 7 ��������,C� �������EDF0 B 7 ��������,C� �������"!G15H

Fig. 4. The AND-Join modelled using a CPN sub-page: The transition Start u38
needs a token with the same case id in both input places (In w36 and In w37)

����������	��
	��� ���	�
��	��
���� ���	���	��
���� ���	�

� ��� ��� � ��� ���

� ��� ���

�����	��
	� �	��� ��� �����	��
�� �	��� ���

� ��� ���

 �
	!��
�#"%$

& � � � �
' ")(�*��#"%$

& � � � �
' "�"%*+�#"%$

� , � � � - ��. - �/���	��
���� ���

0 � � ���21#3 3 � ���2& � � 3 3 0

4 !�* ' "�"
4 !

� ��� ���

4 !
4 !�* ' "%(
4 !

� ��� ���

4 !

� !�5�� �/6 7�8

	� � 5�� �/6 �	��
�� �	��� �2� 7	8
� � � �
�! 6 ��
�� �	��� ���	� ,���6 797�8

� ��� ���/: ��� � *�- ; - � ��� , � � � � � - ��� ���
� ��� ��� 6 ��� ��� 697 �<�	��
�� �	��� ��� 7

� ��� ���/: ��� � *+- ;9- � ��� , � � � � � - ��� �2�
� ��� ��� 6 ��� ��� 697 �<�	��
�� �	��� �2� 7

� � -
����	�	= ��� ���
� ��� ���

1#� � * ' ")>
1#� �1#� �

� !�5�� �/697�8

�� � 5�� �/6 �	��
�� �	��� ��� 7�8
� � � �
	! 6 ��
�� �	��� ���	� ,���697 7�8

0 � � ���21#3 3 � ���2& � � 3 3 00 � � ���21#3 3 � ���2& � � 3 3 0

Fig. 5. XOR-Join: Each Start transition is enabled as soon as a token arrives in
the corresponding In place and the resource “Back Office Staff” is available.

����������	��
���� ��	�
������
���� ��	�������
���� ��	�

� ��� ��� � ��� ���

� � � � �
�����

�����	��
�� �	�� !"�

#�
�$��
�����

% $�&�')(�*
% $

� ��� ���

% $ � ��� ���

 $�+�� �-,/.�0

�� � +�� �-, �	��
	� �	�� !"� .�0
� �
�$, �"
�� �	�� !"�	� ��12,/./.	0

� ��� ���-3 ��� � &�4 5/4 � �� 1 � � � � 4 �� !6�
� ��� ��� , �� !"� ,/. �7�	��
�� �	�� !6� .

� � 4
���	�	8 ��� ���
� ��� ���

� ��� ��� � ��� ���

� 1 � � 4 �	9 4 �-�:�	��
���� ��

;�< � $ ��= �	� ;

;�< � $ ��= �	� ;

>�� � &�'?���
>�� �>�� �

>?� � &�')��(
>�� �>�� �

Fig. 6. AND-Split: The transition Done u13 releases the resource “Back Office
Staff” and forwards the case to both outgoing arcs by putting a case token into
each of the two Out places.

���������
	�� � ���
��� ��� � �

��� �����

���������
	�� � ���
��� ��� � �

��� �����

��� �������� �����

���������
	�� � ���
��� ��� � �

� � ������� ����� ��� � � ��������� � � ��� �� � �
��� �����
!"�� � ��!"#
$ ��%'& � ���� � ��#

��� �����

(&�) �
*,+�- ��.�/

(&�) �
*10 ��.�/

��� ��� �
.�/12

3 $ ��%'& � ���� � �

)�4 .���!"#�5
& .�� 4 .���! ��% & � ���� � ��#�5
����� &�) ! % & � ���� � ��.�6 !"# #�5

	�.�� � *,+�-
	�.�� � � �����

	�.�� � *,0
	�.�� � � �����

7) � *,8
7) � � �����

9 ��� & .�� �����
9 ��� & .�� ����� � � � �� � ��:�� � 9 ��� & .�� ���

��.���;
� � � & ������< � �����9 ��� & .�� �����

7)

	�.�� 	�.��

Fig. 7. XOR-Split: As soon as the case is not “busy” anymore, both Done transi-
tions become enabled, but only one can fire.

In addition to the control flow behavior also resource utilization is depicted in the sub-
pages. For that reason every sub-page contains a place Resources. All these resource places
are members of a fusion set containing the available resources:

colset tAvailableResources = STRING;

Transition Start can only fire if the required resources are available. The resource re-
quirements for a task are specified on the arc from the place Resources to the transition
Start. When the transition Done is fired, depicting the completion of the task, the previously
occupied resources are released, i.e. the resources removed by the Start transition are put
back into the Resources place. They can afterwards be used for other tasks.

Besides the overall process model and the sub-pages for the tasks, a page Arrival System
is created. It consists of a single transition spawning cases into the input place of the first
Protos task based on some predefined arrival process, e.g. a Poisson arrival process using
negative exponential inter arrival times. In this way it is ensured that the simulation is
continuously feeded with new cases.

Altogether the CPN model enables a step-by-step simulation of the Protos model, allowing
a detailed analysis of diverse process behavior. In addition the monitoring-features of CPN
Tools enable complex data collection while simulating processes. When transforming Protos
models to CPN, Protos2CPN generates automatically three types of data collector monitors:

– A data collector monitor measuring the total flow time through the process per case,
– A data collector monitor measuring the resource availability/resource utilization over time

per resource type, and
– A data collector monitor measuring the waiting time of cases per task (i.e. the time cases

are waiting for execution by the particular task solely due to the lack of resources).

Normally the simulation would run forever as cases are continuously spawned into the
system. To stop the simulation a breakpoint monitor is defined on the arrival system. By
default it stops the simulation after 500 cases have been spawned into the system. This value
can of course be adapted to individual requirements. A function allowing the performance of
several replications of the simulation (by default four replications) is located on an additional
SimulationStart page.

Analyzing the three generated statistics can be used to find bottlenecks or other perfor-
mance related problems. When analyzing the data, keep in mind that it might include a warm
up period before reaching a steady state. Additional, more complex monitors can be added
by the advanced user in CPN Tools. Users interested in details are referred to the monitoring
help pages of CPN Tools [26].

3 Protos2C-CPN: Using CPN for Building Configurable Process
Models

The second tool we developed is an extended variant of Protos2CPN allowing process model
configuration within the generated model. For that reason we called it Protos2C-CPN where
C-CPN stands for “configurable colored Petri net”. When configuring a process model, e.g.
the process model depicted in Figure 1, some of the tasks of the model are eliminated in
such a way that they cannot be performed when the process is enacted. CPN models created
by Protos2C-CPN provide dedicated features for process model configuration. These features
enable the user to adapt the model to individual requirements without changing the structure
of the original reference model. Afterwards the configured model can either be tested on its
feasibility, i.e. its soundness, or it can be simulated in the same way as depicted in the previous
section. By applying and simulating different configurations on the same process model their
particular efficiency could even be compared.

For depicting how Protos2C-CPN can be used in this context and also to show the limi-
tations of Protos2C-CPN, this section is split into three parts. First we will give some back-
ground information on the ideas behind configuration of process models. Second we will
explain how these ideas are incorporated into the CPN models. And third we will conclude
this section with an analysis of the limitations of the configuration approach introduced in
this paper.

3.1 Configuring Process Models

Configuration is a mechanism for adapting process models that restricts the possible run-
time behavior of a process [8,9]. As an example, removing an arbitrary task from the process
model in figures 1 and 2 would be configuring of the process model. However, according
to our definition of configuration, operations such as the adding of additional tasks or the
renaming of model elements are not possible by means of configuration. Also note that not
all configurations are sound/valid.

Based on concepts adopted from the inheritance of dynamic behavior [3,7], we identified
two mechanisms for configuration of process models in previous research, called blocking and
hiding [5,13]. Blocking refers to encapsulation. If a task in a process is blocked, it cannot be
executed. The process will never reach a subsequent state and therefore all (potential) sub-
sequent tasks will not be executed as well. If, e.g., the task Time-Out in Figure 1 (or Figure
2) is blocked the process will never reach the status Out of deadline nor execute the task
Refuse objection after it has been in the place Waiting for supplement. Hiding corre-
sponds to abstraction. If a task is hidden, its performance is not observable, i.e. it consumes
neither time nor resources when it is executed. But the process flow continues afterwards

and subsequent tasks will be performed. For that reason we also talk about a silent task or
simply about skipping the task. If, e.g., the task Draw up reasons for approval/refusal
in figures 1 and 2 is hidden, the task draw up settlement will be the next task after the
parking administration was consulted. So, whenever a certain task should not be executed,
but the process flow should be able to continue in this direction, the task must be hidden. If
the process flow should not continue in this direction, the task must be blocked.

Configuration decisions about blocking or hiding of tasks are typically made before the
execution of the process. However, sometimes not all information required to decide between
activating, blocking, or hiding might or needs to be available in advance. For example, the
configuration decision might be that the task Draw up reasons for approval/refusal can
be skipped for certain specific cases whereas for others it cannot. Then the decision must be
postponed to the run-time of the process and made on a case-by-case basis when the process
is executed.

3.2 Configurable CPN

To cope with the two mechanisms for configuration, blocking and hiding, the models derived
in Section 2 have to be extended with additional behavior. As process configuration is defined
on a task level this can be done on the sub-page of each task. A task is activated if it is
neither blocked nor hidden. This corresponds to the situation in ordinary, i.e. non-configurable,
models. Within the CPNs generated by Protos2C-CPN these three configuration opportunities
are distinguished by using the type tConfigDecision:

colset tConfigDecision = with Activated | Hidden | Blocked;

The decision between activating, hiding, and blocking has to be made for each task indi-
vidually. For that reason a place Configuration is added to each sub-page as depicted in the
top-right of Figure 8. When configuring the task the default decision, i.e. the initial marking
of the place Configuration, can be changed from Activated to Hidden or Blocked.

Whenever a token arrives in an input place of a task, the transition AddConfiguration
is enabled. When firing, this transition takes a configuration from the Configuration place
(vDecision), combines it with the number of the particular task (“u17” in the example
in Figure 8), and adds it to the list of configurations (color tTaskConfigurations) made
for the corresponding case (function AddConfiguration(vCase: tCase, vTask: STRING,
vDecision: tConfigDecision). This list is a further attribute to the color set tCase:

colset tTaskConfiguration = record lTask:STRING *
lConfiguration:tConfigDecision;

colset tTaskConfigurations = list tTaskConfiguration;
colset tCase = record lCaseID:INT *

lProcessArrivalTime:INT *
lRank:INT *
lPlaceArrivalTime:INT *
lCost:INT *
lConfiguration:tTaskConfigurations;

If the configuration decision is not clear during the phase of process configuration, tokens
for all possible configuration decisions can be put into the Configuration place at the same
time. The decision will then be made at runtime when the transition Add Configuration “se-
lects” a configuration token. The function notConfigured(vTask: STRING, vCase: tCase)

�������
���
	

�� ��� �
���
	

����������� ����� ���

� � � �! �#"� � � � $��%&�

' ���� �
(')*�

+,��%,� � � -&��%+.��%&� � � -,��% / � %&0+.��%&� � � -,��%

�1����-,� %&� ���
')*� 2 ����� $3���!4 � 5 � � ��6�7*8 ���
	 8*9 ��$3��%&��:*;

2 -&<���-,��$����4 � 5�7*8 ���
	 8*9 ��$3��%,��9>=�� 6�6�����:*;

� $��%&�

��$3��%&�
��$3��%&�

2 -&<���-&��$����4 � 5�7*8 ���
	 8*9 ��$��%,��93?-&� � ����� ��6�: ;

� ?������ @ ��A�@ �1+,��%&� � � -&�

8 / ��-&�B��4 4 � -&�B��� ��4 4 8

8 / ��-&�B��4 4 � -&�B��� ��4 4 8

��$3��%&�
� $@ ��-,����6�$3��%&�

� � �

� ��C � �17*:�D� � � C � �17*������� ����� ����:�D��-&� � ����7 ����� ����� �B� � ?�E�7*: :�D
� $��%&�1F %&��� ��@ G @ ��-&��?� � � ����@ ��� �����$3��%&�B7 ��� ����7*:B�H������� ����� ����:

=�� 6��
�I�
	

?6�6�$3����4 � 5 � � ��� � ����7*��$��%&��98 ���
	 8*9J�1����-&� %&� ����:
��$3��%&�

����-&� 6��$3���!4 � 5 � � ��� � ������
	
$3���!4 � 5 � � ��� � ���

��K ?-&� � ����� ��6

� $����4 � 5L����-&� %,� ���

� $��%&�1F %&��� ��@ $����4 � 5 � � ��� � ������$3��%&�
2 ;� $��%&�1F %&��� ��@ $����4 � 5 � � ��� � ������$3��%&�

2 ;

Fig. 8. A sub page of a configurable task

in the guard of the transition ensures that this decision can only be made once per task by
checking the list of already added configuration decisions.

The guard of the Start transition ensures that the task can only be started in case it is
activated, i.e. if an element of the list of configurations combines the task with the decision
Activated (function checkConfig (vTask: STRING, vCase: tCase, vConfigDecision:
tConfigDecision)).

In case the task is hidden, it is required to bypass the Busy place. This is done by an
additional Hide transition, connecting the input place directly with the output place, without
using any resources. The Hide transition is only enabled if the case token contains a Hidden
decision for the particular task.

If the case is blocked for the particular task, no further behavior is allowed within this
task. For that reason no transition on the sub page is able to remove a token from the input
place which is blocked for the actual task. This needs to be done by another task.

If the corresponding Protos task is an XOR-join, multiple Hide transitions and multiple
Decide Configuration transitions will be introduced, similar to the multiple Start tran-
sitions introduced in Section 2. As the Hide transitions combine the Start- and the Done
transitions, additional Hide transitions must also be introduced in case of an XOR-split. Then
each Hide transition combines one of the alternative input places with one of the alternative
output places. So the maximum amount of Hide transitions (in case of an XOR-join and an
XOR-split) is “incoming arcs of the Protos task” times “outgoing arcs of the Protos task”.
As the embedding is analog to the description and the figures 5 and 7 of the non-configurable
model in Section 2, we omit further figures at this point.

To enable new configurations for the same task in subsequent occurrences, the list of con-
figuration decisions is set back to the empty list by the function tCase.set lConfiguration
vCase [] before the case token leaves a sub-page via the Out-place. But note that we do not
have to update the token’s arrival time.

3.3 Soundness Analysis and Limitations of Configured Process Models

After implementing configurable process models and configuring them, we are now able to
test the configured process models either on their feasibility, i.e. their soundness, or on their
performance. The notion of sound workflow nets [1] expresses the minimal requirements any
workflow (and therefore also any executable process model) should satisfy. Simulation allows
for the evaluation of various configurations in the same manner as described in the end of
Section 2. By simulating different configurations the results can also be compared. In this
paper we will, however, only focus on the testing on soundness as the basic prerequisite for
every process model.

A workflow net is sound if it satisfies the following conditions:

1. Option to complete: There should always be an option to complete a case that is handled
according to the process definition.

2. Proper completion: A workflow should never signal completion of a case while there is
work in progress on this case.

3. No dead tasks: For every task there should at least be a chance that it is executed, i.e.
for each task there should be at least one execution sequence that includes the task.

Although, theoretically only the configured models need to be sound, we require within
this approach that the reference model itself is sound as well. In this way we ensure that
every model element can be part of a sound process model. Otherwise these elements would
have to be blocked in all configurations and would therefore be superfluous. The soundness of
the reference model can be tested in Protos using Woflan [23]. After configuring the reference
model we can use CPN Tools’ state space analysis tool to check how far the soundness
conditions are satisfied for a configured model. As the size of the state space may grow
exponentially with the size of the process model, the model’s complexity and its initial marking
are reduced for soundness testing as follows:

– The process model is reduced to a single case as cases are handled independently and
hence interactions among cases cannot invalidate soundness.

– All timing aspects are neglected as the untimed net includes every order of task execution.
– All resource requirements are neglected as soundness is purely defined on the control-flow

perspective (because resource requirements do not influence soundness as long as no task
requires more resources of a certain type than resources of this type are in total defined).

To test the first condition “Option to complete” our approach requires to check the list of
dead markings, i.e. the possible markings of the net in which no further behavior is possible:
If in such a marking a token remains in a place which is not the “final place” of the process,
the condition is violated. In a dead marking, tokens cannot remain in the busy places of sub-
pages as the Done transitions will always be enabled after a Start transition has fired. It is
therefore possible to test if a dead marking exists that marks a place on the process overview
page (Figure 2). Such a case will never be completed as the Protos model (and therefore also
the CPN process overview model) completes with the execution of the last task5. Then the
condition is violated and the configured net is not sound. However, this approach does not
cover livelocks: If the process models contains loops which can be entered by tokens, but all
tasks allowing to exit this loop are blocked this check will fail because then the tokens will
“circle” without reaching a dead state or completing. Such a situation can only be detected
by analyzing strongly connected components. Any strongly connected component that has no
5 On the process level the last (termination) task is not connected to any subsequent status/place

which could be marked by it, i.e. all tokens are “consumed” by this last task. For that reason a
properly completed case leaves no tokens behind on the process overview page.

outgoing edge to any other strongly connected component, should not contain a state with a
place on the process overview page marked. Otherwise the option to complete is violated and
the configured net is not sound. Note that there can not be a cyclic paths between connected
components, as this would result in one big connected component. As a result, the system
will always be able to reach a strongly connected component that has no outgoing edge to
any other strongly connected component.

It is not required to explicitly test the second condition to verify that the the reference
model is sound. Configuration only restricts the possible process behavior. For that reason
configured process variants cannot produce any tokens which are not produced by the com-
plete reference model; i.e., it is impossible that new tokens which indicate the completion of
the workflow are generated. Within the reference model the proper completion might, e.g., be
ensured by AND-joins in the termination task. Such task behavior is kept in the configured
process model even if the task itself is hidden. So the completion of a case in the configured
process can only be observed if the same conditions for completion are satisfied as required
by the reference model. If this is impossible, tokens will remain in the process model, which
is detected by the test for the first condition.

A task of a process is dead if the Start transition on the task’s sub-page is a dead transi-
tion. Dead tasks are indeed not desirable in a sound workflow net. However when configuring
a process, i.e. restricting its possible behavior, dead tasks may be desirable. The dead tasks
are the unnecessary tasks that can be removed from the configured net. When analyzing the
configured net it is therefore required to check if the dead tasks are those tasks which were
intended to be removed.

In the following we will use the decision-making process from Figure 2 to discuss four
example configurations of this process. Making use of the results provided by the state space
analysis, we will depict and analyze the purpose and sense of the configuration decisions of
blocking and hiding for the selected tasks in the particular context. This analysis is far from
complete as it is based on examples in which we address only selected workflow patterns. It
is included here in order to highlight certain problems of process configuration.

Configuring Task draw up reasons for approval/refusal (Sequence)

The task draw up reasons for approval/refusal is located in a sequence of tasks between
the task Consult parking administration and the task draw up settlement. In some
municipalities it might be sufficient to draw up the settlement without explicitly drawing up
reasons. In this case a single token “Hidden” is placed in the configuration place of task draw
up reasons for approval/refusal (task number: u11, see Figure 9). If we run a state space
analysis the corresponding report contains only Task u11’Start u11 and Task u11’Done u11
as dead transitions (besides all the other Hide transitions) which is exactly what we wanted
to achieve: the task is never executed, but the subsequent tasks are executed.

If the task is configured as blocked (see Figure 10) the state space analysis lists further
dead transitions:

Task u11’Done u11 Task u17’Done u17
Task u11’Hide u11 Task u17’Hide u17
Task u11’Start u11 Task u17’Start u17
Task u13’Decide Configuration u13 Task u21’Decide Configuration w19 u21
Task u13’Done u13 Task u21’Hide w19 u21
Task u13’Hide u13 Task u21’Start w19 u21
Task u13’Start u13 [...]
Task u17’Decide Configuration u17

Neither the Task draw up settlement (task number: u13) nor the task send judgement
(task number: u17) will ever be started. It is even never needed to decide its configuration.
This means tokens will never be in the place Reasons depicted or settlement suggested
which is also indicated by the upper and lower bounds of these places in the state space report
which are 0. Also the task End Decision-Making (task number: u21) will never be executed
from place Judgment send (place number: w19) which is indicated by the last three dead
transitions.

These results of the state space analysis are not surprising as it is exactly what was
intended when blocking the task. However, the configured net is not sound: In some of the dead
markings a token, i.e. the case, remains in the place Parking administration consulted
which is not the final place of the process. As depicted this is not allowed in a sound workflow
net, which means that the net would remain incorrect even after removing all dead model
parts. We can conclude that the blocking of a task in a sequence causes problems.

���������
	�� �� ���������
�
� ���

������������

�������������
� ���
�! ��	��
� "��

���
������

#$���%���!�����
��& � ���

� '!�
��

	(�
)*"�& ��� �* �
� ������

� '!�
��

���
	�� (� ���������+� ���*�� �
 � �
�

� '�����

� '��
(�

� '��
(�

� '!�
��

� '!�
��

� ������)��
�,�%��
���

� '!�
��

� '!�
��

� '�����

� '!�
��

������������

���
������

-.� � /�� �0���
����& � ���

'!/��
	����
1�2 �
	�� � ���*� �
 $����)*� (�� 1�� & � � 3

���������4���������4

���)���� #$�,�

��������$��4��������$��4

-.�
� � � ���*� �� 5��,"�"�& �
)*�
���

������*2 ������)*�
���

���
(���$�76���
(���$�76

��
� � & �
)*�
���%��������
(� �
�

�� �
89��"*��
� & & �
)*�
���

���
(���$�7:���
(���$�7:

;(�
�������<���
"�� 	�� �
�

=�>+�5�5��?

���
(���$������
(���$���

@ �� �
� ���*����)*� �,�� �� ��� � �
�.	��������& � �
�

'!�
��(��& �%"��
 �
� ���*�
��)�� ��� �� ��� � �
�

���������A���������A

;B�
C��,�
��%�����%�
��)�� ��� 1�& �

DE(��� �� $���"�"�& �
)*�
���

���
�����F���
�����F

;B�
C�������%�
��)*� ��� 1�& �

G�� �� �H����	�� �� �
�0���
�
� ���

���
�����I���
�����I

;B�
� �������1�2 �
	(� � �
�

���
(���$�7J���
(���$�7J

Fig. 9. Task draw up reasons for
approval/refusal hidden (grey)

���������
	�� �� ���������
�
� ���

������������

�������������
� ���
�! ��	��
� "��

���
������

#$���%���!�����
��& � ���

� '!�
��

	(�
)*"�& ��� �* �
� ������

� '!�
��

���
	�� (� ���������+� ���*�� �
 � �
�

� '�����

� '��
(�

� '��
(�

� '!�
��

� '!�
��

� ������)��
�,�%��
���

� '!�
��

� '!�
��

� '�����

� '!�
��

������������

���
������

-.� � /�� �0���
����& � ���

'!/��
	����
1�2 �
	�� � ���*� �
 $����)*� (�� 1�� & � � 3

���������4���������4

���)���� #$�,�

��������$��4��������$��4

-.�
� � � ���*� �� 5��,"�"�& �
)*�
���

������*2 ������)*�
���

���
(���$�76���
(���$�76

��
� � & �
)*�
���%��������
(� �
�

�� �
89��"*��
� & & �
)*�
���

���
(���$�7:���
(���$�7:

;(�
�������<���
"�� 	�� �
�

=�> #$'<?����

���
(���$������
(���$���

@ �� �
� ���*����)*� �,�� �� ��� � �
�.	��������& � �
�

'!�
��(��& �%"��
 �
� ���*�
��)�� ��� �� ��� � �
�

���������A���������A

;B�
C��,�
��%�����%�
��)�� ��� 1�& �

DE(��� �� $���"�"�& �
)*�
���

���
�����F���
�����F

;B�
C�������%�
��)*� ��� 1�& �

G�� �� �H����	�� �� �
�0���
�
� ���

���
�����I���
�����I

;B�
� �������1�2 �
	(� � �
�

���
(���$�7J���
(���$�7J

Fig. 10. Task draw up reasons for
approval/refusal blocked (black)

Configuring Task Time-Out (Deferred Choice / Dummy Tasks)

The task Time-Out is executed when the supplement was not received within a certain period
of time. This means there is a race condition between the timer triggering the time-out and
the receival of the supplement triggering the task Consult parking administration. The
decision which of the two tasks is executed is postponed until the execution of one of the tasks
starts. Therefore this situation is also called a deferred choice. If the municipality decides that

cases cannot time-out, the task Time-Out has to be blocked (see Figure 11). Then its Start
and Done transitions are listed as dead in the corresponding state-space report. However, the
state space analysis reports no dead states with tokens remaining in places other than the
final place. That means in case of the construct of a deferred choice a task can be blocked
without creating a deadlock.

If the task Time-Out is hidden (see Figure 12), it will never start nor finish but its Hide
transition will fire, and the case reaches the Out of deadline place. This seems to be fine
from a syntactical perspective. However when simulating the process, it becomes obvious that
the behavior of the process practically conforms to the behavior of the activated Time-Out
task. This phenomenon occurs due to the fact that the Time-Out task can be seen as a
dummy task which is a task not corresponding to the execution of any work but introduced
for changing the state of a process model, e.g. triggered by an external event. As there is
no output produced, such dummy tasks are also called silent tasks or silent transitions. The
hiding of such a task is questionable because in this case the effect of hiding and activating
is quasi identical.

����� �����
	��� ����� � 	��

�������������

��� � �"!$#�%

�����������'&

#'��()%������ ��� 	���*�+$����� ��,

����������- �

.$� ��/ �0%������ ��� 	��1+$����� ��,

�������
��2

34��(�,��
(���� �
	��5/ ������� 6��

�������
��-

7������ 	�/�����6�6�8 ��9:�����

�������
��;

(�/ ��<=��6:/ ������	����>� 	�/?��6�6�/ 	�@���8 A4/ ��� ������8

�������������

(�/ ��<B��6:����� 8 8 ��9:�����

������������C

�5D������
	��� ����� � 	��:� 	�/���(�9:� ����� ��� 8 � � E

����������&

�5	�������8 �F6���/ ��� ��,:��(�9
� ��� ��� / ��� � 	��

����������G

������(: ��(�,�9:�����

������������H

�����F	��5(�����(�8 � ���

� �5�����

��	�9:6�8 ��� �:/ ��� ������(

� �5�����

%������ ��� 	��)+$���I� ��,:��� ��/ � ��(

� �$�����

����J��K�����F��	��F��(�9
� ����� ��8 �

� �$�����

LM��� � � ��,:� 	�/?���K6�6�8 ��9:�����

� �$�����

����� � 8 ��9:�����F����,�,������ ��(

� �5�����

LM� � D�� �1%�����(�8 � ���

� �5�����

3 ��(�,�9
���K�F�������

� �5�����

N ��/ ��� ��,:��(�9:� �K��� ��� / ��� � 	��M��	�������8 � ��(

� �5�����

����J��������F��(�9:� ����� ��8 �

� �$�����

��������	����>(���6�� ��� ��(

� �5�����

������������H

����������G

����������&

������������C

�������������

�������
��;

�������
��-

�������
��2

����������- �

�����������'&

�������������

Fig. 11. Task Time-Out blocked
(black)

���������
	�� �� ���������
�
� ���

������������

�������������
� ���
�! ��	��
� "��

���
������

#$���%���!�����
��& � ���

� '!�
��

	(�
)*"�& ��� �* �
� ������

� '!�
��

���
	�� (� ���������+� ���*�� �
 � �
�

� '�����

� '��
(�

� '��
(�

� '!�
��

� '!�
��

� ������)��
�,�%��
���

� '!�
��

� '!�
��

� '�����

� '!�
��

������������

���
������

-.� � /�� �0���
����& � ���

'!/��
	����
1�2 �
	�� � ���*� �
 $����)*� (�� 1�� & � � 3

���������4���������4

5
6+�7�7�,8

��������$��4��������$��4

-.�
� � � ���*� �� 7��,"�"�& �
)*�
���

������*2 ������)*�
���

���
(���$�:9���
(���$�:9

��
� � & �
)*�
���%��������
(� �
�

�� �
;<��"*��
� & & �
)*�
���

���
(���$�:=���
(���$�:=

>(�
�������?���
"�� 	�� �
�

�� ��;@��"* �
�������?� �� 7��"�"� ��A
�
& B� ��� �����&

���
(���$������
(���$���

C �� �
� ���*����)*� �,�� �� ��� � �
�.	��������& � �
�

'!�
��(��& �%"��
 �
� ���*�
��)�� ��� �� ��� � �
�

���������D���������D

>E�
F��,�
��%�����%�
��)�� ��� 1�& �

GH(��� �� $���"�"�& �
)*�
���

���
�����I���
�����I

>E�
F�������%�
��)*� ��� 1�& �

J�� �� �K����	�� �� �
�0���
�
� ���

���
�����L���
�����L

>E�
� �������1�2 �
	(� � �
�

���
(���$�:M���
(���$�:M

Fig. 12. Task Time-Out hidden (grey)

Configuring Task Ask for supplement (Interdependencies between
Configurations)

If a municipality does not want to ask for supplements in case a request is not admissible, one
could think of blocking the task Ask for supplement (see Figure 13). But then the munic-
ipality would end-up with cases lost in the place Request not admissible, never reaching

the final task. So, the other option is to hide the task Ask for supplement which results
in another issue: Non-admissible requests might time-out while waiting for an action by the
municipality. Formally this is not a problem, but content-wise it could be unintended behav-
ior. To resolve this issue and create a valid configuration, the dummy task Time-Out must be
blocked additionally whenever the task Ask for supplement is hidden (see Figure 14). We
can conclude that configuration decisions are not always independent of each other.

����� �����
	��� ����� � 	��

�������������

��� �
��� �����

����������� �

! ��"$#������ ��� 	�����%&����� ��'

����������()�

*&� ��+ �,#������ ��� 	��-%&����� ��'

�������
��.

/0��"�'��
"���� �
	��1+ ������� 2��

�������
��(

3&4 �)576&!�#

�������
��8

"�+ ��9:��2;+ ������	����<� 	�+=��2�2�+ 	�>���? @0+ ��� ������?

�������������

"�+ ��9A��2;����� ? ? ���;�����

������������B

51C������
	��� ����� � 	��;� 	�+���"��;� ����� ��� ? � � D

�����������

51	�������? �E2���+ ��� ��';��"��
� ��� ��� + ��� � 	��

����������F

������"; ��"�'��;�����

������������G

�����E	��1"�����"�? � ���

� 51�����

��	��;2�? ��� �;+ ��� ������"

� 51�����

#������ ��� 	��$%&���H� ��';��� ��+ � ��"

� 5&�����

����I��������E��	��E��"��
� ����� ��? �

� 5&�����

JK��� � � ��';� 	�+=����2�2�? ���;�����

� 5&�����

����� � ? ���;�����E����'�'������ ��"

� 51�����

JK� � C�� �-#�����"�? � ���

� 51�����

/ ��"�'��
�����E�������

� 51�����

L ��+ ��� ��';��"��;� ����� ��� + ��� � 	��K��	�������? � ��"

� 51�����

����I��������E��"��;� ����� ��? �

� 5&�����

��������	����<"���2�� ��� ��"

� 51�����

������������G

����������F

�����������

������������B

�������������

�������
��8

�������
��(

�������
��.

����������()�

����������� �

�������������

Fig. 13. Task Ask for supplement
blocked (black): Lost tokens may
remain in the place Request not
admissible

����� �����
	��� ����� � 	��

�������������

��� � �"!$#�%

�����������'&

#'��()%������ ��� 	���*�+$����� ��,

����������- �

.$� ��/ �0%������ ��� 	��1+$����� ��,

�������
��2

34��(�,��
(���� �
	��5/ ������� 6��

�������
��-

7�89%:%:#�;

�������
��<

(�/ ��=>��6?/ ������	����@� 	�/:��6�6�/ 	�A���B C4/ ��� ������B

�������������

(�/ ��=D��6?����� B B ��E?�����

������������F

�5G������
	��� ����� � 	��?� 	�/���(�E?� ����� ��� B � � H

����������&

�5	�������B �I6���/ ��� ��,?��(�E
� ��� ��� / ��� � 	��

����������J

������(? ��(�,�E?�����

������������K

�����I	��5(�����(�B � ���

� �5�����

��	�E?6�B ��� �?/ ��� ������(

� �5�����

%������ ��� 	��)+$���9� ��,?��� ��/ � ��(

� �$�����

����L��M�����I��	��I��(�E
� ����� ��B �

� �$�����

NO��� � � ��,?� 	�/:���M6�6�B ��E?�����

� �$�����

����� � B ��E?�����I����,�,������ ��(

� �5�����

NO� � G�� �1%�����(�B � ���

� �5�����

3 ��(�,�E
���M�I�������

� �5�����

P ��/ ��� ��,?��(�E?� �M��� ��� / ��� � 	��O��	�������B � ��(

� �5�����

����L��������I��(�E?� ����� ��B �

� �$�����

��������	����@(���6�� ��� ��(

� �5�����

������������K

����������J

����������&

������������F

�������������

�������
��<

�������
��-

�������
��2

����������- �

�����������'&

�������������

Fig. 14. To avoid asking for sup-
plements, not only the Task Ask
for supplement is hidden (grey), but
also task Time-Out must be blocked
(black)

Configuring Task Judge date of receipt (Explicit Choice)

When executing the task Judge date of receipt an explicit choice how the process will
continue is made: When the complain was received within the deadline, it will be checked
for its admissibility, whereas in case it arrives too late, it will be refused. But maybe some
municipalities want to be less restrictive with the initial deadlines and consider all objections
as being received within the deadline. So all objections must be checked for their admissibility.
However, neither hiding nor blocking of the task Judge date of receipt helps here. If it is
blocked the process will never go beyond this task. If it is hidden, tokens can still be placed
into the Out of deadline place.

In the previous scenario we could achieve the desired behavior by hiding one (Ask for
supplement) and blocking another task (Time-Out). But also this approach is impossible to

apply as neither hiding nor blocking of task Refuse objection can prevent that tokens are
put into the place Out of deadline and as soon as a token is in this place it cannot be
checked for its admissibility anymore.

The only chance of enforcing the desired behavior is, to go to a lower level, i.e., to have a
look at the implementation of the choice on the task page. In a standard Petri net an explicit
choice can only be modelled by a deferred choice with subsequent silent transitions. In our
implementation of the XOR-split, these silent transitions are the multiple Done transitions.
Only when explicitly blocking the particular Done transition on this task-level (see Figure 15),
it is possible to restrict the process model to the desired behavior6. So within a sound process
model the outcome of an explicit choice cannot be restricted, i.e., configured, at the process
level, but on lower implementation levels.

���������
	�� � ���
��� ��� � �

��� �����

���������
	�� � ���
��� ��� � �

��� �����

��� ����� ��� �����

���������
	�� � ���
��� ��� � �

� � ������� ����� ��� ��� ��������� � � ��� � !"�
��� �����$#� � !
��# %
& ��'"(� �� � !"��%

��� �����

) (�* �
+",.- ��/�0�1 ��2 	 �43�5)

��� ��� �
/�0 ,

6 & ��'7(� �� � !
�

 *�8 /9��# %�:
(/�� 8 /9�;# ��'7(� �� � !"��%�:
����� (�* # '7(� �� � !"��/���#�% %�:

	</�� � +
,=-
	�/�� � � �����

	�/�� � +?>
	</�� � � �����

@ * � +
,
@ * � � �����

A ��� (/�� �����
A ��� (/�� ����� � � � �� � ��B�� � A ��� (/�� ���

��/���C
� � � (������D � �����

A ��� (/�� �����

@ *

	</��	�/��

Fig. 15. Done transition blocked (black) in the sub-page of the Judge date of
receipt task: The task can only exit via the left path.

This concludes our analysis of four configuration scenarios. Using the four scenarios it has
been shown that the state space analysis and the simulation facilities of CPN Tools can be
used to evaluate configuration decisions.

4 Conclusions

By analyzing a set of reference models designed using the business process modelling language
of Protos, we discovered that these models do not conform to well defined soundness criteria
which also prevents the meaningful use of Protos’ simulation features. The main reasons for
this are that the developers of the models either see no value in the Protos simulation, or they
are not aware of its value. We also realized that it is unclear which of the parameters that
can be specified in Protos are actually used in the Protos simulation. To improve the value
of simulation in this context, we developed the Protos2CPN transformation which allows the
simulation of Protos models in CPN Tools. The simulation of Protos models in CPN Tools
6 The configuration of Done transitions is not yet implemented in the Protos2C-CPN transformation.

makes the running process visible by depicting the moving cases as tokens within the process
model. It therefore allows for a detailed inspection of the running process. In addition, the
monitoring features of CPN Tools enable the generation of complex statistics. The models
created by our Protos2CPN transformation already include some basic measurements which
can be extended by experienced users.

In a second step we developed Protos2C-CPN. As far as we know, this is the first im-
plemented tool offering explicit support for reference model adaptation by adding standard
configuration features to the tasks in the reference models. These features permit the restric-
tion of the possible behavior of the reference model directly in the model without changing its
net structure. The simulation features of CPN Tools allow for performance testing and com-
parison of different process configurations. By making use of CPN Tools’ state space analysis
feature, we were able to test configurations on their admissibility in sound process models,
but also realized that certain configurations are undesirable in specific contexts.

However, it might be possible to resolve such problems on lower model levels. To do this
we plan to explore configuration in the context of the workflow patterns [6]. We assume that
by analyzing all workflow patterns on their configurability aspect, it might be possible to
develop configuration patterns which depict how configuration can be implemented in the
context of the particular workflow pattern. If such patterns are available, we could develop
an improved version of Protos2C-CPN which might even be able to transform the configured
model back into an ordinary process model without configuration features.

Acknowledgements

The authors would like to thank Kurt Jensen and Lisa Wells for their continuous feedback
and support related to the use of CPN Tools, as well as Pallas Athena for providing the Protos
reference models.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science,
pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models, Sys-
tems and Standards for Workflow Management. In J. Desel, W. Reisig, and G. Rozenberg,
editors, Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 1–65. Springer-Verlag, Berlin, 2004.

3. W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to tackling problems
related to change. Theoretical Computer Science, 270(1-2):125–203, January 2002.

4. W.M.P. van der Aalst, P.J.N. de Crom, R.R.H.M.J. Goverde, K.M. van Hee, W.J. Hofman, H.A.
Reijers, and R.A. van der Toorn. ExSpect 6.4 An Executable Specification Tool for Hierarchical
Colored Petri Nets. In M. Nielsen and D. Simpson, editors, Application and Theory of Petri Nets
2000: 21st International Conference, ICATPN 2000, volume 1825 of Lecture Notes in Computer
Science, pages 455–464, Berlin, Germany, January 2000. Springer.

5. W.M.P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M.H. Jansen-Vullers.
Configurable Process Models as a Basis for Reference Modeling. In C. Bussler and A. Haller,
editors, Business Process Management Workshops: BPM 2005 International Workshops, BPI,
BPD, ENEI, BPRM, WSCOBPM, BPS. Revised Selected Papers, volume 3812 of Lecture Notes
in Computer Science, pages 512–518, Berlin Heidelberg, 2006. Springer Verlag.

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow Pat-
terns. Distributed and Parallel Databases, 14(1):5–51, 2003.

7. T. Basten and W.M.P. van der Aalst. Inheritance of behavior. Journal of Logic and Algebraic
Programming, 47(2):47–145, 2001.

8. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka. Configurative Process
Modeling – Outlining an Approach to increased Business Process Model Usability. In Proceed-
ings of the 15th Information Resources Management Association International Conference, New
Orleans, 2004. Gabler.

9. J. Becker, P. Delfmann, and R. Knackstedt. Konstruktion von Referenzmodellierungssprachen:
Ein Ordnungsrahmen zur Spezifikation von Adaptionsmechanismen für Informationsmodelle (in
German). Wirtschaftsinformatik, 46(4):251–264, 2004.

10. J. vom Brocke and C. Buddendick. Konstruktionstechniken für die Referenzmodellierung (in
German). In J. Becker and P. Delfmann, editors, Referenzmodellierung. Grundlagen, Techniken
und domänenbezogene Anwendung, also Proceedings of the 8th Fachtagung Referenzmodellierung,
pages 19–48, Heidelberg, 2004.

11. Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 Business Blueprint: understanding
the business process reference model. Prentice Hall PTR, Upper Saddle River, New Jersey, 1998.

12. Deloitte & Touche Bakkenist. ExSpect Home Page. http://www.exspect.com.
13. F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Configurable Process Models –

A Foundational Approach. In Referenzmodellierung 2006, Passau, Germany, 2006. to appear in
Lecture Notes in Computer Science.

14. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume
1. EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1997.

15. R.J. Paul, G.M. Giaglis, and V. Hlupic. Simulation of business processes. The American Behav-
ioral Scientist, 42(10):1551–1576, August 1999.

16. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Language. Infor-
mation Systems, 2005. (to appear, also available via BPMCenter.org).

17. K. Sarshar and P. Loos. Comparing the Control-Flow of EPC and Petri Net from the End-
User Perspective. In W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors,
Proceedings of the 3rd International Conference on Business Process Managemen (BPM 2005),
volume 3649 of Lecture Notes in Computer Science, pages 434–439, Nancy, France, September
2005. Springer-Verlag.

18. R. Schütte. Grundsätze ordnungsmäßiger Referenzmodellierung – Konstruktion konfigurations-
und anpassungsorientierter Modelle (in German). Gabler, Wiesbaden, 1998.

19. A. Schwegmann. Objektorientierte Referenzmodellierung: theoretische Grundlagen und praktische
Anwendung (in German). Gabler, Wiesbaden, 1999.

20. A. Sharp and P. McDermott. Workflow Modeling: Tools for Process Improvement and Application
Development. Artech House Publishers, Norwood, MA, 2001.

21. H.M.W. Verbeek and W.M.P. van der Aalst. Woflan Home Page, Eindhoven University of Tech-
nology, Eindhoven, The Netherlands. http://is.tm.tue.nl/research/woflan.

22. H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based Workflow Diagnosis
Tool. In M. Nielsen and D. Simpson, editors, Application and Theory of Petri Nets 2000, volume
1825 of Lecture Notes in Computer Science, pages 475–484. Springer-Verlag, Berlin, 2000.

23. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes using
Woflan. The Computer Journal, 44(4):246–279, 2001.

24. H.M.W. Verbeek, M. van Hattem, H.A. Reijers, and W. de Munk. Protos 7.0: Simulation Made
Accessible. In G. Ciardo and P. Darondeau, editors, Applications and Theory of Petri Nets
2005: 26th International Conference (ICATPN 2005), volume 3536 of Lecture Notes in Computer
Science, pages 465–474, Miami, USA, June 2005. Springer-Verlag.

25. A. Vinter Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S. Stissing, M. West-
ergaard, S. Christensen, and K. Jensen. CPN Tools for Editing, Simulating, and Analysing
Coloured Petri Nets. In W.M.P. van der Aalst and E. Best, editors, Applications and Theory of
Petri Nets 2003: 24th International Conference, ICATPN 2003, volume 2679 of Lecture Notes in
Computer Science, pages 450–462. Springer Verlag, January 2003.

26. L. Wells. Monitoring a CP-net. http://wiki.daimi.au.dk/cpntools-help/monitoring a cp-net.wiki.

http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2003/BPM-03-08.pdf�

