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Abstract. Off-the-shelf packages such as SAP need to be configured
to suit the requirements of an organization. Reference models support
the configuration of these systems. Existing reference models use rather
traditional languages. For example, the SAP reference model uses Event-
driven Process Chains (EPCs). Unfortunately, the choice construct within
traditional process modelling languages like EPCs do not capture differ-
ent scopes or impacts of decisions. That means they offer no opportuni-
ties to distinguish between decisions made for a single case (i.e. process
instance) when executing the process and decisions made in advance for
numerous cases impacting bigger parts of the company.
This paper discusses the need for configurable process models. An analy-
sis of configuration from a theoretical perspective provides a solid funda-
ment for such models. Within the analysis a link is made to inheritance
of dynamic behavior and previously defined inheritance concepts. By ap-
plying these concepts to process models the essence of configuration is
determined, which enables the development of more mature configurable
process modelling languages.

1 Introduction

Reference models streamline the design of particular models by providing a
generic solution [25]. Motivated by the “Design by Reuse” paradigm they pro-
vide a repository of potentially relevant models which can be used to accelerate
the modelling process. Ideally these models are “plug and play” but usually need
some adjustment to individual requirements [9,13,7,3]. Hereby it is required to
distinguish between generating and non-generating adaptations. Non-generating
adaptations as aggregation, instantiation, specialization, and analogy are pro-
viding basic models with certain gaps which have to be filled in by the reference
model user. That means, the individual part of the model is generated by the
user and not by guidelines of the reference model. The reference model only
provides interfaces. A generating approach on the other hand provides clear
rules how the reference model can be configured and therefore adapted to the
user’s requirements [7,29,30,10]. Unfortunately, the languages used for reference
modelling [8,11,24] provide little or no support to include such different configu-
ration options. The goal of this paper is to discuss the theoretical requirements



for configurable process modelling languages, i.e., we restrict ourselves to the
control-flow perspective [15].

Probably the most comprehensive reference model is the SAP reference model
[11]. Its data model includes more than 4000 entity types and the reference pro-
cess models cover more than 1000 business processes and inter-organizational
business scenarios [25]. Most of the other dominant ERP vendors have similar or
alternative approaches towards reference models. Foundational conceptual work
for the SAP reference model has been conducted by SAP AG and the Institute
for Information Systems (IWi) of the Saarland University in a collaborative re-
search project in the years 1990-1992 [16]. The outcome of this project was the
process modeling language Event-Driven Process Chains (EPCs) [16,17], which
has been used for the design of the reference process models in SAP. EPCs also
became the core modeling language in the Architecture of Integrated Informa-
tion Systems (ARIS) [27,28]. It is now one of the most popular reference model-
ing languages and has also been used for the design of many SAP-independent
reference models (e.g., the ARIS-based reference model for Siebel CRM or in-
dustry models for banking, retail, insurance, telecommunication, etc.). Despite
its success, the basic EPC model offers little support for process configuration. It
contains (X)OR connectors but it is unclear whether the corresponding decisions
need to be taken at run-time (e.g., based on the stock-level), at build-time (e.g.,
based on the size of the organization using SAP), or somewhere in-between (e.g.,
based on the period of the year or resource availability). For that reason so-called
Configurable EPCs (C-EPCs) were developed [25,12], extending EPCs (and pre-
viously developed extensions like build-time operators [29,26,23]), aiming at a
generic-monolithic approach for constructing re-usable models [13]. Indeed C-
EPCs allow for a clear distinction between run-time and build-time decisions.
However, they only provide a partial solution as they are based on a specific
language (i.e. EPCs). Within this paper we will look at configuration from an
language-independent perspective. Afterwards we will use the results to analyse
C-EPCs [25].

The remainder of the paper is organized as follows. First, we elaborate on the
concept of “choice” which is essential for configurable process models. Second,
we approach the problem from a theoretical viewpoint, i.e., we depict what the
essence of configuration is. Finally, we briefly discuss Configurable EPCs as a
first step towards such configurable process models.

2 It is all about making choices

There are many languages to model processes ranging from formal (e.g., Petri
nets and process algebras such as Pi calculus) to informal (flow charts, UML
activity diagrams, EPCs, etc.). Each of these languages provides some notion
of choice (e.g., two transitions sharing a single input place in a Petri net, the
“+”-operator in process algebra, the ♦-symbol in UML activity diagrams, or an
(X)OR-split connector in an EPC). Typically, it is not possible to describe the
nature of such a choice. At best one can either specify a Boolean condition based
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on some data element (data-based decision) or one can specify events that have
to occur for triggering paths (event-based decision) [21]. The usual interpretation
is that a choice is made at run-time, based on such a Boolean condition or based
on occurring events. In the context of reference models, this interpretation is too
narrow.

The scope of a decision can vary. For example, if a hospital uses a rule like “If a
patient has high blood pressure a day before the planned operation, the operation
will be cancelled”, then the scope of each choice (operate or not) is limited to a
single patient. There may also be choices which affect more cases, e.g., consider
the rule “If there is a major disaster in the region, all planned operations will
be cancelled.” or also an entire process, e.g., “The admittance process requires
patients to pre-register.”. There may even be choices that affect all processes
within an organization. We call such choices that are made in advance and
that are affecting more than a single instance of a process configuration choices.
However note that the borderline between run-time choices and configuration
choices may be a bit fuzzy as the following examples show.

– The organization’s management chooses not to allow for pre-shipments.
– The Dutch branches require a deposit, while this is not needed for branches

in other countries (nation-wide management decision).
– If stock is below 100 items, only preferred customers are serviced (local

management decision).
– Based on the volume of the order, the goods are shipped by truck or mail

(local management decision).
– On Saturday, goods are shipped by truck (local, temporal decision).

Each of these choices is at another level, i.e. they are made at other points
in time with different validity limits and periods. However, classical process
modeling languages, e.g., the languages used in workflow management systems
[4,15] or in reference modeling [11], allow only for one level of choice. The ex-
amples demonstrate that reference models have to allow for a broader spectrum
of choices. All decisions have in common that they restrict the actual available
options for decisions at a later point in time. For that reason one can view con-
figuration as limiting choices by making choices. However, at a certain point in
time it is not longer possible to postpone a decision without delaying the actual
process flow. These decisions are called run-time decision and must be distin-
guished from build-time or configuration decisions which can be postponed to a
later point in time without delaying the process flow. Seen from this viewpoint,
process modeling languages need to distinguish at least between run-time choices
and configuration choices.

3 Configuration: A theoretical perspective

The aim of configurable process models is to provide generic models integrating
possible process variations into one model. Afterwards such a model can be
configured to a specific solution. This means a configurable model should guide
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the user to a solution that fits to the user’s requirements [7]. In [13] this is
also classified as a generic-monolithic approach for model re-use. In order to
provide such configuration opportunities a configurable model must be able to
provide a complete, integrated set of all possible process configurations. Only
in this case each individual model can be derived from the model. In other
words the configurable process model can be described as the “least common
multiple” of all process variations. The task of configuration is to create a new
model by selecting that parts of the configurable model that are relevant to
the user or – the other way around – by deselecting the irrelevant parts. In
practice such a configured process model can probably not satisfy all individual
requirements as the reference model will not include the complete set of all
possible configurations. The gap has to be filled in manually by the user by
applying non-generating adaptation mechanisms [7]. However this subsequent
step is out of the scope of this paper.

To depict and analyse process models we will use the notion of Labeled Tran-
sition Systems (LTS).

Definition 1. A labeled transition system is a five-tuple LTS = (S, L, T, SI , SF ),
where

– S is the set of states,
– L is the set of transition labels,
– τ ∈ L is the label reserved for silent transitions,
– T ⊆ S × L× S is the set of transitions,
– SI ⊆ S is the set of initial states, and
– SF ⊆ S is the set of final states.
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S = {S1, S2, S3, S4, S5, S6}
L = {τ, a, b, c, d, e}
T = {(s1, τ, s2) , (s1, τ, s3) , ..., (s5, e, s6)}

SI = {S1}
SF = {S6}

Fig. 1. A labeled transition system

A state represents a complete set of properties, describing the actual situation
within the process. A labeled transition describes the switching from one state
to another. Therefore transitions are also representing any kind of activity or
functionality that is executed and thereby changing the properties of the system.
LTS can be depicted graphically as, e.g., in Figure 1. The actual process flow is
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from top to bottom. E.g., the execution of the transition labeled “a” transforms
S2 into S4. If more than one outgoing arc leaves a state, there is a choice between
the arcs for the continuation of the process. A silent transition, labeled τ , is a
special transition that transforms a state into another without changing any of
the externally visible properties of the state. Note that in S1 all three transitions
a, b, and c can be executed, in S2 only a and b can be executed, and in S3 only
c can be executed, i.e., although the τ transitions are not visible they may limit
the possible ways to continue.

Although numerous process modeling languages are defined and used, all
process models having formal semantics can be mapped onto labeled transition
systems [6,14,20]. By using labeled transtition systems for our analysis, we are
able to transfer the results into any of these languages.

�

�

� �

� �

� �

	


������� 
�������

�����������

�����������	���

���������	� ���������	�


����������� 
�����������

�������������������

� �

�

� �

� �

� �

�

� �

�

	 �

�

� �

�

�

�

�

�

� �

�

	 �

�

Fig. 2. Configuration - the inverse of inheritance

To depict the essence of configuration we make use of the concepts of inher-
itance of dynamic behavior [1,6]. The basic idea of inheritance – as also applied
in object-oriented software development – is to provide a mechanism that al-
lows constructing subclasses which are inheriting all behaviour and features of
superclasses. The subclass extends the superclass with additional behavior or
features, i.e., the superclass supports less functionality than the subclass. By
using multiple inheritance it is also possible that a subclass is the subclass of
multiple superclasses. Such a subclass includes the behavior of all superclasses,
i.e. from the perspective of each single superclass the subclass is extended with
the behaviour of the other superclasses. If such a subclass is minimal (i.e., each
extension is motivated by some superclass), we refer to it as the least common
multiple of all superclasses. In this paper, we will show that this least common
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multiple corresponds to the unconfigured reference model. Each superclass of
the subclass (i.e., the reference model) can be regarded as one of its configured
variants. That means configuration is the process of transforming the subclass
into the superclass, which is exactly the inverse of inheritance (see also Figure
2).

In [1,6] two different mechanisms for detecting inheritance in workflow models
are defined. Both mechanisms are defined in the inverse direction. That means
the behaviour of the superclass is regarded from the viewpoint of the subclass.
The first mechanism inhibits the execution of additionally functionality. If it is
not possible to distinguish the behaviors of model x and model y when only
transitions of x that are also present in y are executed, then x will be a subclass
of y. That means all transitions of the subclass x that are not present in the
superclass y are blocked (encapsulation). The second mechanism compares the
effects of the superclass y and subclass x by considering only that effects of
the subclass x that also occur within the superclass y. If it is not possible to
distinguish the behaviors of x and y when arbitrary tasks of x are executed, but
when only the effects of tasks that are also present in y are considered, then x
is a subclass of y. All effects of the subclass x not occurring in y are hidden in
the superclass y (abstraction).

When configuring a process model, the complete, configurable model is re-
stricted to a desired variant. As the two mechanisms of blocking and hiding
are defined in the inverse direction and as we showed that configuration can be
regarded as the inverse of inheritance we can use these mechanisms to depict
configuration in the following. However, as shown above, configuration implies
decision making. Each configuration decision of blocking/not blocking or hid-
ing/not hiding determines if a transition will be executable at run-time or not.
A decision, however, requires information which might not be available at build-
time. Such decisions must be postponed to run-time and performed for each
case individually. Therefore they must be integrated into a run-time (i.e., con-
figured) process model. Thus, a transition can not only be configured as hidden
or blocked but also as optional hidden or optional blocked. That means for an
LTS:

Definition 2. A configuration is a (partial) function c ∈ T 9 {τ, δ, τ0, δ0}
where dom (c) is the set of configured transitions, and for t ∈ dom (c)1:

– c (t) = τ , is a hidden transition,
– c (t) = δ, is a blocked transition,
– c (t) = τ0, is a optionally hidden transition, and
– c (t) = δ0, is a optionally blocked transition.

Of course not all configurations are possible and therefore valid. E.g., for
sure certain functionality and therefore certain transitions are mandatory and
cannot be blocked or hidden. Also interdependencies between various transitions
will probably exist. Therefore we define:
1 f ∈ A 9 B denotes a partial function, dom (f) ⊆ A is the domain of f .
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Definition 3. A configurable process model is a tuple CPM = (LTS,CS) where:

– LTS = (S, L, T, SI , SF ) is a labeled transition system, and
– CS ⊆ T 9 {τ, δ, τ0, δ0} is a set of configurations.

Configuring the configurable process model means to select a configuration
c ∈ CS. In order to get a configured model the configuration must be applied
to the labeled transition system. Figure 3 depicts some configuration-examples
within an LTS. The first column depicts the configurable models. The subsequent
columns depict the configured models of certain configuration scenarios.
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Fig. 3. Configuration in a labeled transition system

The configuration decision to block a transition implies that the transition
will never be executed. That means the transition should not appear within
the configured model. It must be removed from the model when transforming
the configurable model into a configured model as depicted in Figure 3a/b. The
configurable transition a in Figure 3a is removed in the configured model in
Figure 3b. As no alternative transition can be executed from state S1 the state
becomes a deadlock. State S2 and subsequent transitions and states become
unreachable. They could be removed from the configured model, however as
they are not reachable anyway this has no influence on the execution of the
process. This situation differs from the situation if transition a is configured
blocked in the second configurable model (Figure 3d). In this case transition b
must be executed when reaching S1 (Figure 3e).
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If the configuration decision is to hide a transition, the transition’s exter-
nal, i.e. observable, effects will be ignored. However the effects within the model,
that means on the execution of subsequent transitions, are kept. Therefore, when
transforming the configurable model into a configured model, the transition must
be transformed into a silent step without output by renaming the label into τ (see
Figure 3a/c). The definition of hiding given above explicitly says that the task
is executed, but the external effect is ignored. However, the desired result when
configuring a process model differs slightly. In fact instead of ignoring the tran-
sition’s external effects it should not even be executed. Only the non-observable,
internal effect of reaching a subsequent state and triggering subsequent transi-
tions has to occur. For that reason we will call this kind of configuration also
skipping in the following. As the perceived results are identical, skipping can be
handled in the same manner as hiding by introducing a silent step τ .

If it is not possible to decide on hiding/blocking at configuration time, a
configured model can – as depicted above – include the choice between blocking
and not blocking or between hiding and not hiding. To include such a post-
poned choice into the configured model, the choice must of course be included
before the actual transition. Each postponed configuration decision needs to be
resolved at run-time; either the transition will be hidden/blocked or it will not
be hidden/not be blocked. In order to model such as run-time decision, we in-
troduce new intermediate states into the model. Each state corresponds to the
result of all postponed decisions in the particular state. We denote these as states
sH,NH,B,NB where H ⊆ T is the set of hidden transitions in the particular state,
NH ⊆ T are the non-hidden transitions, B ⊆ T are the blocked transitions,
and NB ⊆ T are the non-blocked transitions. If it is obvious which transition is
referred to, we just use the label to describe a labeled transition, i.e. we write
l instead of (s, l, s′). E.g., in Figure 4b the transition labeled a is configured as
optional blocked. For that reason two additional states are introduced within the
configured model: s1{},{},{},{a} for the case that a will not be blocked at run-time
and s1{},{},{a},{} for the case that a will be blocked at run-time. For the subse-
quent model each state matches exactly s1 of the case that it would have been
configured blocked or not blocked at build-time, i.e. for example s1{},{},{a},{}
matches s1 in Figure 3b. It represents the deadlock. Both states s1{},{},{a},{} and
s1{},{},{},{a} are reachable from s1 by silent transitions. As these silent transitions
have no output, the execution of the model will result in the same process as if
the configuration decision would have been made at build-time.

Figure 4c depicts the same situation for the case that transition a is config-
ured as optionally hidden. Here state s1{},{a},{},{} represents the situation that
transition a is not hidden and will be executed, whereas s1{a},{},{},{} represents
the result of the configuration decision to hide transition a and therefore corre-
sponds to s1 in Figure 3c. Figures 4e/f provide further examples by depicting
the optional configurations of a in Figures 3e/f.

Figure 4h depicts a situation where more than one transition that is outgoing
from the same state is configured optional. In this case it is required to generate
2n intermediate states, where n is the number of transitions that are configured
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Fig. 4. Transitions configured optional in a labeled transition system

optional. The sets H, NH, B, and NB depict the configurations of the transition.
They define which configuration is represented by the particular state.

To transform the configurable process model into a configured process model
we provide the following algorithm:

Algorithm 1 Let LTS = (S, L, T, SI , SF ) be a labeled transition system and c ∈
T 9 {τ, δ, τ0, δ0} a configuration. The labeled transition system resulting from
this configuration, notation LTSc = (Sc, Lc, T c, Sc

I , S
c
F ), is defined as follows

– T0 = {t ∈ dom (c) |c (t) ∈ {τ0, δ0}},
– S0 = {s ∈ S|∃(s′,l,s′′)∈T0s

′ = s},
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–
T ′ ={t ∈ T |t ∈ dom (c) ⇒ c (t) ∈ {τ0, δ0}}

⋃

{(s, τ, s′) |∃l∈L (s, l, s′) ∈ dom (c) ∧ c ((s, l, s′)) = τ}

–

Sopt = {sH,NH,B,NB |s ∈ S0

∧ (H ∩NH = ∅)
∧ (H ∪NH = {(s′, l, s′′) ∈ T0|s = s′ ∧ c ((s′, l, s′′)) = τ0})
∧ (B ∩NB = ∅)
∧ (B ∪NB = {(s′, l, s′′) ∈ T0|s = s′ ∧ c ((s′, l, s′′)) = δ0})

–

Topt = {(s, τ, sH,NH,B,NB) |sH,NH,B,NB ∈ Sopt}
⋃

{(sH,NH,B,NB , l, s′) |sH,NH,B,NB ∈ Sopt ∧ l ∈ (NH ∪NB) ∧ (s, l, s′) ∈ T ′}
⋃

{(sH,NH,B,NB , τ, s′) |sH,NH,B,NB ∈ Sopt ∧ ∃l ∈ H : (s, l, s′) ∈ T ′}
⋃

{(sH,NH,B,NB , l, s′) |sH,NH,B,NB ∈ Sopt ∧ (s, l, s′) ∈ (T ′ \ T0) ∧ s ∈ S0}
– Sc = S ∪ Sopt

– Lc = L

– T c = {(s′, l, s′′) ∈ T ′|s′ /∈ S0} ∪ Topt

– Sc
I = SI

– Sc
F = SF

T0 is the set of transitions configured as either optionally hidden or option-
ally blocked. S0 are all states which are sources of transitions configured as
optional. T ′ are all transitions of the configurable model that are not configured
as blocked or hidden, merged with the transitions that are configured as hidden
with changed labels to τ . Sopt are all the additional intermediate states required
for including postponed configuration choices. Topt are all transitions required
to include Sopt into the model. There are four types of transitions. First, Topt

includes all the silent transitions from the original states to the intermediate
states. Second, it includes the original transitions repositioned between all new
intermediate states in which they are listed in “NB” or in “NH” and their
original targets. Third, Topt includes all the renamed, silent transitions from the
intermediate states where they are listed in “H” to their original target. Fourth,
it also includes all non-configured transitions originally leaving a state in S0, re-
allocated between the particular intermediate state and its original destination.
Of course, blocked transitions must not be included here.

These sets enable us to specify the configured model. Labels, initial states,
and final states remain the same as in the configurable model. The states of
the configured model Sc are the states of the unconfigured model S plus the
states required for the postponed choices Sopt. To define the transitions of the
configured model, T c consists of two types of transitions. First, T c includes all the
non-configured or hidden transitions defined in T ′, but without the transitions
leaving a state that is split into intermediate states. Second, the transitions
to include the intermediate states into the model are defined in Topt and also
included in T c.
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Some states and transitions become unreachable within such a configured la-
beled transition system. An additional cleanup algorithm could of course remove
these elements. Since this is a trivial technicality it is not shown here.

After clearly defining what configuration of process models is and after defin-
ing what configurable process models formally are, we are now able to system-
atically analyse existing configurable process modelling languages and propose
improvements.

4 Configurable EPCs: An example of a language

To conclude this paper we will introduce and analyse Configurable EPCs (C-
EPCs) [25,12]. C-EPCs serve as an example of a configurable process modeling
language and we compare its expressive power with the requirements for pro-
cess configuration. C-EPCs are an extension of EPCs [16]. An EPC consists of
functions, events, arcs and connectors. Events represent states and functions
represent activities or functionality. Arcs and connectors define the process flow.
Functions follow events and events follow functions. Moreover, to model splits
and joins in a process, connectors may be used. There are three types of con-
nectors: AND, OR and XOR. AND-splits and AND-joins may be used to model
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Fig. 5. A Configurable EPC.
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parallel routing. XOR-splits and XOR-joins may be used to model the selection
of specific routes (e.g., a “switch case” construct). OR-splits and OR-joins may
be used to model a mixture of conditional and parallel routing. (The depicted se-
mantics are informal. There is an on-going discussion about mathematical sound
semantics of EPCs, especially on the non-locality of the OR-join, e.g. see [18,2].)

In a C-EPC, as defined in [25,12], both functions and connectors may be con-
figurable. Configurable functions may be included (ON), skipped (OFF) or condi-
tionally skipped (OPT). Configurable connectors may be restricted at build-time,
e.g., a configurable connector of type OR may be mapped onto an AND connec-
tor, an XOR-connector or a sequence2. Local configuration choices like skipping
a function may be limited by configuration requirements. For example, if one
configurable function f1 is configured as “ON”, then another configurable func-
tion f2 needs to be excluded. This configuration requirement may be denoted by
the logical expression; f1 = ON ⇒ f2 = OFF . In addition to these requirements
it is possible to add guidelines, supporting the configuration process.

Figure 5 shows a C-EPC describing an invoice verification process. The classi-
cal EPC is extended with configurable functions and connectors (indicated using
thick lines) as well as with requirements and guidelines attached to functions.
For example function Invoicing Plan Settlement (i) is configurable, i.e., it may
be included (ON), skipped (OFF) or conditionally skipped (OPT) within the
configured model. Note that skipping corresponds to the notion of hiding, i.e.,
if a function is skipped, the process flow continues after the function without
actually executing the function. This is also depicted in the first row of Figure
6. The function a within the C-EPC process fragment is switched “OFF”. This
conforms to a hidden transition a within the corresponding LTS. Within the con-
figured LTS, the transition is renamed into τ , whereas in the configured EPC
function a is removed. In order to generate a lawful EPC also one of the events
surrounding a must be removed, which is indicated by the brackets around event
A in Figure 6. Comparing the configured EPC and the configured LTS, the se-
quences of executed activities correspond to each other. Also optional hiding is
supported by C-EPCs [19,12]: If a function is configured as “OPT” this means
that the decision about its execution is postponed to run-time.

The example C-EPC in Figure 5 also shows two configurable connectors. By
configuring the OR-join (ii), it is possible to specify which of the events has to
occur in order to start the process. E.g., it is possible to restrict the connector to
an AND-join, which would mean that all events have to occur. It is also possible
to restrict it to an XOR-join which would mean that only one of the events has to
occur. The configurable XOR-split (iii) can be configured to an XOR-connector
or it can be restricted to a sequence. E.g., in order to disable automatic invoice
release, it can be configured to a sequence only executing the left path (i.e. always
performing manual invoice release). In fact this conforms to blocking of the other
path leaving the XOR connector. The second row of Figure 6 depicts a process
fragment of a corresponding labeled transition system. In the third row of this
figure it becomes obvious that direct blocking of functionality is not available

2 For details see [25], Section 5.2.
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Fig. 6. Configuration within LTSs and C-EPCs.

within C-EPCs. There is no construct available that would enable the blocking
of function b as it is in the labeled transition system. A configurable function
can only be hidden, but not blocked. That means within C-EPCs blocking is
only supported indirectly by configurable connectors. This also becomes obvious
if it is required to postpone the choice of blocking to run-time. A configurable
connector cannot be configured as optional. However if it is not restricted, it
keeps all configuration opportunities. That means, the configuration choice will
occur implicitly within the configured model, however it will not be modelled
explicitly.

The third element type for configuration within C-EPCs are requirements.
E.g., in Figure 5 the requirement attached to “Invoicing Plan Settlement” states
that if it is switched “ON” also the function Evaluated Receipt Settlement has
to be switched “ON” (iv) . Requirements therefore ensure that only configura-
tions are generated that are valid within the configurable process model (see
Definition 3).
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Altogether the implementation of configuration within C-EPCs by blocking
functionality within the process flow and directly skipping functionality without
changing the process flow can be seen as a rather restrictive, but very intu-
itive, approach. Although it does not provide complete support for all possible
configuration scenarios, it already provides some support for both configuration
techniques blocking and hiding as well as for optional blocking and optional
hiding. It also provides opportunities to inhibit generation of invalid process
models.

5 Summary and Outlook

Within this paper we have argued that it is required to distinguish between at
least two types of choices as the scope and level of decisions varies: (1) configu-
ration choices made at build-time and (2) “normal” choices made at run-time.
To allow for a language-independent discussion on configurable process-models
we tried to capture the essence of configuration by describing configuration as
the inverse of inheritance. Instead of adding functionality, configurations restrict
the model. The two techniques used for restriction are called blocking and hid-
ing. Blocking stops the process flow whereas hiding disables functionality by
continuing the process flow. As decisions regarding blocking and hiding require
information which might not be available at build-time, configurable process
modelling languages must support postponement of decisions to run-time.

The important thing to note is that it is possible to extend a language like
EPCs with configurable elements, supporting these requirements. Although the
current definition of C-EPCs lacks of some configuration opportunities, the ex-
tension is intuitive making it easy to apply. The target of this research was to
formally define configuration of process models. Further research has to analyze
which of these configuration opportunities are sensible in a practical context.
A reference model is always a trade-off between costs and benefits. I.e. configu-
ration is the first step from the reference model towards the individual model.
Afterwards further specialization has to be done individually by the user in order
to include requirements not covered by the reference model.

Using the theory developed within this paper on the one hand and practical
experiences using C-EPCs on the other hand, we hope to develop more ma-
ture configuration languages. To improve the configuration process of Enterprise
systems it will also be required to transfer the presented ideas from process mod-
elling to truly executable models which can be used for enactment. As a starting
point, we plan to work on adding configurability features to workflow modelling
languages like SAP workflow [22], Staffware [31], or YAWL [5].
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