
Declarative and Procedural Approaches for Modelling
Clinical Guidelines: Addressing Flexibility Issues

Nataliya Mulyar
�
, Maja Pesic

�
, Wil M.P. van der Aalst

�
and Mor Peleg

�

�
Eindhoven University of Technology

GPO Box 513, NL5600 MB Eindhoven, The Netherlands�
n.mulyar, m.pesic, w.m.p.v.d.aalst � @tue.nl�

Department of Management Information Systems, University of Haifa
Mount Carmel, 31905, Israel�

morpeleg � @mis.hevra.haifa.ac.il

Abstract. Recent analysis of clinical Computer-Interpretable Guideline (CIG)
modelling languages from the perspective of the control-flow patterns has re-
vealed limited capabilities of these languages to provide flexibility for encoding
and executing clinical guidelines. The concept of flexibility is of major impor-
tance in the medical-care domain since no guarantee can be given on predicting
the state of patients at the point of care. In this paper, we illustrate how the flexibil-
ity of CIG modelling languages can be improved by describing clinical guidelines
using a declarative approach. We propose a CIGDec language for modelling and
enacting clinical guidelines.
Keywords: Clinical guidelines, Computer-interpretable guidelines, flexibility, mod-
elling languages, declarative model specification,temporal logic.

1 Introduction

Clinical Computer-Interpretable Guidelines (CIG) impact clinician behavior (i.e., qual-
ity of patient care, costs, etc.) to a great extent when they are implemented as comput-
erized guidelines that deliver patient-specific recommendations during patient encoun-
ters [1]. A number of guideline modelling languages have been developed to represent
guidelines in a machine and human understandable format that enables guideline execu-
tion. Control-flow perspective of guidelines significantly influences the clinical behav-
ior, because it determines the order of actions in medical treatments. Other perspectives
(e.g., a model of patient data including temporal data, a model of medical actions and
decisions, etc.) add more contextual details to the control-flow perspective, determin-
ing the exact favorable clinical behavior. Unfortunately, due to the absence of a single
standard for developing CIG modelling languages, the functionality of decision-support
systems employing such modelling languages from the perspective of the control-flow
differs to a great extent.

We analyzed the suitability of four modelling languages Asbru, PROforma, GLIF
and EON for expressing control-flow patterns [2] and revealed that these languages do
not offer more control-flow flexibility than process modelling languages employed by
the Workflow Management Systems (WFMS) [3]. This is remarkable since one would
expect CIG modelling-languages to offer dedicated constructs allowing for more build-
time and runtime flexibility. Accommodating flexibility into guidelines means that the

CIG would be sensitive to the characteristics of specific patients and specific health care
organizations [4].

The modelling languages we analyzed explicitly model a care process by specifying
the steps and the order in which these steps are to be executed. Although process lan-
guages allow for some flexibility by means of modelling alternative paths, any of which
could be taken depending on some a-priori available data, they are incapable of han-
dling exceptional or unpredicted situations. Exceptional situations have to be modelled
explicitly. However, modelling of all possible scenarios results in complex models and
is not feasible since exceptional situations and emergencies may arise at any point in
time. This makes it difficult or even impossible to oversee what activity should be per-
formed next. To overcome these problems, i.e. reduce the complexity of models, and
to allow for more flexibility in selecting an execution path, in this paper we propose
CIGDec as a declarative language for modelling clinical guidelines. Unlike imperative
languages, declarative languages specify the “what” task should be performed without
determining of the “how” to perform it. CIGDec specifies by means of constraints the
rules that should be adhered to by a user during a process execution while leaving a lot
of freedom to the user in selecting tasks and defining the order in which they can be
executed. CIGDec can be considered as a variant of ConDec [5] and DecSerFlow [6].

The remainder of this paper is organized as follows. In Section 2 we introduce CIG
modelling languages Asrbu, GLIF, EON and PROforma using a patient-diagnosis sce-
nario. In Section 3 we introduce CIGDec and illustrate a CIGDec model of the patient-
diagnosis scenario. We discuss the drawbacks and advantages of the proposed language
in Section 4. Related work is presented in Section 5. Section 6 concludes the paper.

2 Computer-Interpretable Guidelines

This section describes the main concepts of four well-known CIG modelling languages:
Asbru, EON, GLIF, and PROforma. These have been evaluated from the control-flow
perspective using the workflow patterns [7]. We introduce the main concepts of these
languages by modelling the following patient diagnosis scenario in the tools Asbru-
View, Protege-2000 (for EON and GLIF) and Tallis respectively. A patient is registered
at a hospital, after which he is consulted by a doctor. The doctor directs the patient to
pass a blood test and urine test. When the results of both tests become available, the
doctor sets the diagnosis and defines the treatment strategy.

While specifying the behavior of the scenario, we immediately reflect on the pos-
sibilities to deviate from this scenario required for example in an emergency case. In
particular, we indicate whether it is possible to skip a patient registration step and im-
mediately start with the diagnosis; to perform multiple tests of the same kind or perform
only one of them; and to perform the consultancy by the doctor after performing one of
the tests again. Next to it, we indicate the degree of support of the control-flow patterns
by the analyzed modelling languages. Table 1 summarizes the comparison of the CIG
modelling languages from the perspective of the control-flow patterns [7]. The com-
plete description of the patterns and how they are supported by the analyzed languages
can be found in [8, 3] respectively.

Figure 1 presents the scenario modelled in AsbruView, which is a markup tool de-
veloped to support authoring of guidelines in Asbru [9]. A process model in Asbru

Basic Control–flow 1 2 3 4 New Patterns 1 2 3 4
1. Sequence + + + + 21. Structured Loop + + + +
2. Parallel Split + + + + 22. Recursion + - - -
3. Synchronization + + + + 23. Transient Trigger - - - +
4. Exclusive Choice + + + + 24. Persistent Trigger - - + +
5. Simple Merge + + + + 25. Cancel Region - - - -
Advanced Branching and Synchronization 26. Cancel Multiple Instance Activity + - + +
6. Multi-choice + + + + 27. Complete Multiple Instance Activity + - - +
7. Structured Synchronizing Merge +/- - - + 28. Blocking Discriminator - - - -
8. Multi-merge - - - - 29. Cancelling Discriminator + - - +
9. Structured Discriminator + + + + 30. Structured N-out-of-M Join + - + +
Structural Patterns 31. Blocking N-out-of-M Join - - - -
10. Arbitrary Cycles - + + - 32. Cancelling N-out-of-M Join - - - +
11. Implicit Termination + + + + 33. Generalized AND-Join - - - -
Multiple Instances Patterns 34. Static N-out-of-M Join for MIs - - - -
12. MI without Synchronization - - - - 35. Static N-out-of-M Join for MIs with Canc. - - - -
13. MI with a priori Design Time Knowledge +/- +/- +/- +/- 36. Dynamic N-out-of-M Join for MIs - - - -
14. MI with a priori Run-Time Knowledge - - - - 37. Acyclic Synchronizing Merge - - - +
15. MI without a priori Run-Time Knowledge - - - - 38. General Synchronizing Merge - - - -
State-Based Patterns 39. Critical Section + - + -
16. Deferred Choice + - + + 40. Interleaved Routing + - + -
17. Interleaved Parallel Routing + - - - 41. Thread Merge - - - -
18. Milestone - - - + 42. Thread Split - - - -
Cancellation Patterns 43. Explicit Termination - - - -
19. Cancel Activity + + + +
20. Cancel Case + - +/- +

Table 1. Support for the Control–flow Patterns in (1)Asbru, (2)EON, (3)GLIF, and (4)PROforma

[10] is represented by means of a time-oriented skeletal plan. Skeletal plans are plan
schemata at various levels of detail, which capture the essence of the procedure, but
leave room for execution-time flexibility. The root plan A is composed of a set of other
plans that are represented as 3-dimensional objects, where the width represents the time
axis, the depth represents plans on the same level of the decomposition (i.e. which are
performed in parallel), and the height represents the decomposition of plans into sub-
plans.

Fig. 1. The patient-diagnosis scenario modelled in Asbru

As the time axis shows, plans Register patient, Consult with doctor, Test phase
and Define the treatment are executed sequentially. The Test phase is a parallel plan
consisting of two activities ask for urine test and ask for blood test. The parallel plan
requires all enclosed plans to be completed in order to pass the flow of control to the
next plan. In this model, only two types of plans were used: sequential (root plan) and
parallel plan (Test phase plan). In AbsruView plans of type: Any-order, Unordered,
Cyclical, and If-then-else, and actions of type: Ask and Variable Assignment can be
visualized.

Deviations from the modelled scenario are not possible in AsbruView, since all
plans are structured and their order is strictly defined. It would be possible to adjust the
model and implicitly incorporate all required execution paths. In particular, the Cyclical
Plan should be used in order to iterate the execution of a certain task. In order to relax
the parallel order of the blood- and urine-tests’ tasks, an Any-order Plan could be used.
However, the behavior of the model would be still deterministic and not allow for much
flexibility. In Asbru there is a concept of plan activation mode. It allows conditions for
aborting, suspending and resuming a plan. This can be relevant for the case of regis-
tering a patient and not having all the needed data initially: a plan is suspended and
later resumed. As the pattern-based analysis showed [3], Asbru is able to support 20
out of 43 control-flow patterns. Asbru uniquely supports the recursive calls and inter-
leaved parallel routing, which are the features not directly supported by other analyzed
languages.

Main modelling entities in EON [11] are scenarios, action steps, branching, deci-
sions, and synchronization [12, 13]. A scenario is used to characterize the state of a
patient. There are two types of Decision steps in EON, i.e. a Case step (select precisely
one branch) and a Choice step (select at least one branch). An Action step is used to
specify a set of action specifications or a sub-guideline that are to be carried out. Branch
and Synchronization steps are used to specify parallel execution. We omit EON model
since it is very similar to model created in GLIF (see Fig. 2).

The following features offered by EON can be used in order to make the model of
the patient-diagnosis scenario more flexible. A Scenario can be used to model different
entry points to the model. This allows to “jump” into the middle of the model and to
start execution from that point. This feature is useful for emergency cases where for
example a registration step has to be skipped and immediate treatment procedure has
to be started. Unfortunately, EON offers not much flexibility with respect to synchro-
nization of multiple branches, i.e. it allows the define treatment task to be executed only
if a single or all branches have been executed. However, it is incapable of predicting
how many branches were selected and performing a partial synchronization after all se-
lected branches were executed. From all analyzed modelling languages, EON supports
the lowest number of the control-flow patterns, i.e. only 11 out of 43.

GLIF3.5 [14] is a specification method for structured representation of guidelines.
To create a model in GLIF, an ontology schema and a graph widget have to be loaded
into the Protege-2000 environment. Figure 2(a) visualizes the GLIF model of the basic
patient-diagnosis scenario. In GLIF3.5 five main modelling entities are used for process
modelling, i.e. an Action Step, a Branch Step, a Decision Step, a Patient-State Step, and
a Synchronization Step. An Action Step is a block for specifying a set of tasks to be
performed, without constraints set on the execution order. It allows for including sub-
guidelines into the model. Decision steps are used for conditional and unconditional
routing of the flow to one out of multiple steps. Branch and Synchronization steps are
used for modelling concurrent steps. A Patient-State Step is a guideline step used for
describing a patient state and for specifying an entry point(s) to a guideline.

In order to allow the behavior of the basic patient-diagnosis scenario shown in Fig-
ure 2(a) to deviate, all possible pathes have to be explicitly modelled. Figure 2(b) rep-
resents a scenario, in which Register patient step can be done in parallel to any other

step, but it has to be exactly once to complete the process (if more than once is desired,
an iteration condition for Register patient step can be added which resembles a while
loop: while not all patient data has been entered, repeat Register Patient. In this sce-
nario, a decision can be taken to order tests or to proceed to treatment without tests.
However, treatment or ordering of tests cannot be done before consulting with a doctor.
One or two tests can be ordered before proceeding to treatment. Figure 2(b) shows how
complex the model has become after we introduced several deviations from the basic
scenario. Thus, this specification needs to model graphically all the possible paths of
execution, and it is not very scalable.

(a) (b)

Fig. 2. The patient-diagnosis scenario modelled in GLIF3.5/Protege

Similar to EON, GLIF allows multiple entry points into the model to be specified
by means of the Patient-State step. This allows the execution to start from any point
where a patient enters a scenario model while skipping tasks-predecessors. GLIF offers
more variants for synchronizing parallel branches, i.e. to synchronize after one, sev-
eral or all tasks have been completed. However, GLIF is incapable of synchronizing
branches when it is unknown which branches and how many of them will be chosen.
This explains why the number of control-flow patterns supported by GLIF (17 out of
43) is bigger than in EON but still smaller than Asbru.

PROforma [15] is a formal knowledge representation language for authoring, pub-
lishing and executing clinical guidelines. It deliberately supports a minimal set of mod-
elling constructs: actions, compound plans, decisions, and enquiries that can be used as
tasks in a task network. In addition, a keystone may be used to denote a generic task in
a task network. All tasks share attributes describing goals, control flow, preconditions,
and postconditions. A model of the basic patient-diagnosis scenario created in Tallis
is shown in Figure 3(a). Note that in PROforma control-flow behavior is captured by
modelling constructs in combination with the scheduling constraints. Scheduling con-
straints are visualized as arrows connecting two tasks, meaning that the task at the tail
of the arrow may become enabled only after the task at the head of the arrow has com-
pleted. To deviate from the basic scenario, some of the scheduling constraints should
be removed as it is shown in Figure 3(b).

In contrast to all examined languages, PROforma allows for late modelling, i.e. if it
is not clear in advance what steps exactly should be performed, these steps are modelled
by means of keystones, which are substituted by a desired type of the task before the
model is deployed. Furthermore, by means of triggers it is possible to specify that a task
has to be performed even if the task’s preconditions were not satisfied. PROforma also

Action
Enquiry Plan Decision

Keystone

(a) (b)

Fig. 3. The patient-diagnosis scenario modelled in PROforma/Tallis

allows for more flexibility during the synchronization of multiple paths, thus it is able
to predict how many paths from the available ones were selected and to merge them
when they have completed. Furthermore, scheduling constraints in PROforma are not
obligatory. This means that stand-alone tasks may be activated upon the fulfillment of
a pre-condition. PROforma has the highest degree of pattern-support from all analyzed
languages, i.e. it supports 22 out of 43 patterns.

The medical community has always emphasized that it is impossible to use work-
flow formalisms because of specific requirements such as flexibility. However, when we
examined guideline modelling languages we didn’t find more flexibility than in todays
workflow and BPM products. Given a large variety of process modelling languages
nowadays it makes no sense to develop more complicated language which would sup-
port more control-flow patterns. Instead, we take a completely new approach and pro-
pose a CIGDec language for encoding clinical guidelines.

3 Declarative description of clinical guidelines

In this section we present the CIGDec declarative language and show benefits of apply-
ing it for modeling clinical guidelines.

Modelers who use traditional CIG modelling languages have to represent all pos-
sible scenarios (normal and exceptional) that can occur during the execution. Such a
model has to include all possible scenarios that can occur during the execution. This
means that CIG modelers have to predict in detail all possible execution paths in ad-
vance for the guideline they are modelling. The model itself tends to be very complex
and strictly predefines all relationships between all steps in the guideline. Such a model
not only prescribes to users what to do, but it also contains a detailed specification about
how to do it. Hence, traditional CIG modelling languages are of an imperative nature.

CIGDec is a declarative language, i.e., its models specify what to do and leave it
up to the user to decide how to work depending on the case. CIGDec models do not
require all possible scenarios to be predicted in advance. On the contrary, the model
consists of a set of tasks and some dependencies (relationships) between these tasks.

Dependencies between tasks can be seen as some general rules that should always hold
in the guideline. Any task in the model can be performed by a user if and only if none
of the specified rules is violated. As an extreme example, a CIGDec model that consists
only of a set of tasks without dependencies would represent a completely free guideline,
where a user can execute any task in any desired order. As more rules in the model as
less possibilities to deviate from a certain execution order is given to the user. Therefore,
rules constrain the model. Hence, we refer to dependencies between tasks (rules) as to
constraints.

Any CIG model consists of a set of tasks and some relationships between them
specifying the exact order of tasks. Typically, traditional languages use a predefined set
of constructs that can be used to define relations between tasks: 1) sequence, 2) choice,
3) parallelism, and 4) iteration. These constructs are used to define the exact control-
flow (order of tasks) in the guideline. In CIGDec, this set of constructs is unlimited, i.e.,
constructs can be added, changed and removed, depending on the requirements of the
application, domain, users, etc. We refer to constructs used for defining possible types
of dependencies between tasks in CIGDec as to constraint templates. Each template
has its semantics, which is formally represented by one Linear Temporal Logic (LTL)
formula. This semantics is used for the computerized enactment of the guideline [5].
LTL is extensively used in the field of model checking, where the target model is verified
against properties specified in LTL [16, 17]. For computerized enactment of CIGDec
model we use algorithms for translating LTL expressions into automata developed in
the model checking field [18, 6, 5]. Since LTL formulas can be very complex and hard
to understand, each template also has unique graphical representation for users. In this
way, we ensure that CIGDec users do not have to be LTL experts in order to work with
models [5]. Although the set of templates is ‘open’, we propose a starting collection of
eleven templates in [19].

When looking at a traditional CIG model, one usually tries to find the starting point
and then follows the control-flow until the end point is reached. This cannot be applied
to CIGDec models. Constructs (lines) do not necessarily describe the order of tasks, but
rather various dependencies between them. In our starting set of constraint templates we
distinguish between two types of templates: ‘existence’ (unary) templates, and binary
templates that can represent a ‘relation’ or ‘negative relation’.

‘Existence’ templates are unary templates because they involve only one task. Gen-
erally, they define the cardinality (possible number of executions) of the task. Binary
templates involve two tasks. For example, a special line between tasks might mean that
these two tasks include each other (e.g., ‘co-existence’ template between tasks A and B
specifies that if A happens then B happens and vice versa, without specifying in which
order). The ‘responded existence’ constraint specifies that if one task is performed then
the other task before or after the first one. There are also some binary templates that
consider the order of activities. One example is the ‘response’ template, which specifies
that the a given task has to be performed at least once after the other task has been com-
pleted. Note that in all these examples it was possible to have an arbitrary execution of
other tasks between the two related tasks.

3.1 CIGDec model for the diagnosis scenario

Figure 4 depicts a CIGDec model of our patient-diagnosis scenario. It consists of five
tasks. In an extreme case, it would be possible to make and use the model consisting
only out of these tasks and without any constraints. This would be a unrestricted model
allowing for maximum flexibility, where tasks could be executed an arbitrary number of
times (‘0..*’) and in any order. This model would have an infinite number of execution
possibilities (different process instances). However, to develop a model that provides
guidance, we add five constraints derived from three constraint templates.

Fig. 4. CIGDec model for the diagnosis scenario.

First, there is one unary (involving one task) constraint created from the template
‘existence’ - constraint presented as cardinality 1..* above the task register patient. This
constraint specifies that the task register patient has to be executed at least once within
one process (guideline) enactment.

Second, there are two constraints created from the template ‘precedence’ as shown
in Figure 4: one between tasks consult doctor and blood test and one between tasks
consult doctor and urine test. Precedence is a binary template, i.e., it defines a depen-
dency between two tasks. A ‘precedence’ between two tasks A and B means that task B
can only be executed after task A was executed at least once [6]. It is possible that other
tasks are executed between A and B. Hence, if we want to execute task blood test we
can do so only after we have executed task consult doctor. Note that other tasks from
the model can be executed between consult doctor and blood test. Task test urine also
has a ‘precedence’ relation with task consult doctor and it can be executed only after
task consult doctor. Similarly, there could be other tasks between them. Moreover, the
doctor may be consulted multiple times before and after doing the tests.

Third, we use a binary template ‘response’ to create two constraints: one between
tasks blood test and treatment and one between tasks urine test and treatment. Template
‘response’ between tasks A and B defines that after every execution of task A task B has
to be executed at least once while it is possible that other tasks are executed between A
and B. Thus, after every blood test at least one treatment should follow, and there could
be other tasks from the model executed between them. The same holds for tasks urine
test and treatment.

The possibilities given to a user during execution of the model depicted in Figure 4
are defined as a combination of all five constraints in the model. When looking at the
models designed by means of the analyzed language Asbru, the execution always had

to start with the task register patient. This may cause problems in cases of emergency,
when there is no time for the registration requiring the procedure with doctor (task
consult doctor) to start immediately. While in EON and GLIF allow multiple entry-
points to a scenario, these entrance steps have to be modelled explicitly. In PROforma a
task can be modelled without use of scheduling constraints which allows this task to be
executed at any moment. Note however, that the CIG languages assume that a task can
be executed once during the model execution or iteratively a specified number of times.
In CIGDec model a patient-registration step can be performed at any moment during
the CIGDec process. Furthermore, CIGDec model allows to perform register patient
multiple times in case the required data is not available on time.

If we look at the traditional models Figures 1, 2 and 3 (i.e. mode using Absru and
EON, GLIF and PROforma), task consult doctor was executed exactly once. CIGDec
model allows this task not to be executed at all, but it also allows it to be executed
multiple times. For example, some patients use medication periodically. For them only
the treatment task has to be performed either before or after the register patient has
been executed. On the other hand, in some complex cases, task consult doctor can be
performed more than once at various points during the CIGDec execution.

If necessary, a doctor can order a blood test many times or not at all during the
CIGDec process. However, constraint ‘precedence’ between this task and consult doc-
tor makes sure that blood test can not be done for a patient that has not seen the doctor
before. Note that his holds only for the first blood test. Sometimes, the results can be
unexpected and doctor can order a different type of blood test without having to see
the patient again. After every blood test, task treatment is performed. It is possible that
during treatment no medication is prescribed due to the good test results. However,
it is also possible to wait and to perform several blood tests in order to make an in-
formed decision before the task treatment is performed. Since task urine test has the
same relationships as task blood test (‘precedence’ with consult doctor and ‘response’
with treatment), the same variants of execution paths hold like for the task blood test.
However, note that none of the tasks ‘blood test’ and ‘urine test’ do not have to execute
at all, or each of them can be executed one or more times, or only one of them can be
executed one or more times.

CIGDec model from Figure 4 could be used to realize the following scenarios. First,
in the ‘case A’ a periodical medication is prescribed to a chronic patient: only register
patient and treatment tasks are executed. In the ‘case B’ an urgent visit starts directly
with consult doctor and only afterwards the task register patient is executed. The urine
test was not necessary. The results of the blood test were unclear so the treatment is
executed only after the results of the second blood test became available and an addi-
tional consult doctor task. In the ‘case C’, the situation was not urgent, so task register
patient was performed before the task consult doctor. Both urine test and blood test are
performed. However, due to alarming results of the urine test an immediate treatment
was executed to prescribe appropriate medication. The results of blood test arrived later,
and an additional treatment task was executed to handle the blood test results as well.

4 Discussion

We have shown that CIGDec can be used to define the degree of flexibility given to a
user during the process execution. We have also indicated that a degree of the absolute
flexibility can be reached by leaving out all constraints resulting in the freedom given
to a user to select any task and execute tasks in any desired order. Since the degree
of flexibility has to be controlled in the context of medical care in order to adhere to
strict and desirable recommendations, the mandatory and optional constraints have to
specified for a modelled guideline. To control the adherence to the specified constraints,
the execution engine CIGDec prohibits the violation of the mandatory constraints while
allowing the optional constraints to be neglected. All user steps that might result in the
violation of constraints are communicated to a user by means of warnings.

The advantages of the proposed CIGDec-based approach over the analyzed mod-
elling languages that employ the imperative approach are as follows:

� CIGDec enables the flexibility in selection, meaning that a user executing a model
specified in CIGDec gets a freedom in choosing an execution sequence, without
requiring this sequence to be thought of in advance and explicitly modelled during
the design-time.

� CIGDec enables late binding, meaning that it allows to choose an appropriate task
at the point of care. This feature is particular important in modelling of CIG since it
is not always possible to predict what steps will need to be executed, thus the task
selection is case-dependent.

� CIGDec ensures the absence of change, meaning that it prohibits choices of users
that would violate mandatory constraints.

� CIGDec allows for extendability and allows new LTL formulas to be introduced,
thus applicability of CIGDec could be tailored to a specific situation.

The disadvantages of using CIGDec are as follows:
� If a process to be modelled has to be very strict and should allow for flexibility,

then the use of CIGDec may result in a complex model.
� CIGDec aims at the modelling of rather small processes, since the description of

large processes (containing approximately several thousands of tasks) becomes dif-
ficult to understand.

Since both imperative and declarative languages have disadvantages, in order to im-
prove the flexibility of the CIG modelling languages we recommend to augment the
CIG languages with the features offered by CIGDec.

5 Related Work

The recent Workflow Patterns initiative [2] has taken an empirical approach to identi-
fying the most common control constructs inherent to modelling languages adopted by
workflow systems. In particular, a broad survey of modelling languages resulted in 20
workflow patterns being identified [7]. In this paper we have used the revised set of the
control-flow patterns [8] to evaluate CIS’s modelling languages.

There had been many attempts to enrich the flexibility of workflow (process) man-
agement systems. Case-handling systems are systems that offer more flexility by focus-
ing on the whole case (process instance), instead of individual tasks [20]. An example
of such a system is FLOWer [21], where users can ‘move up and down’ the process by
opening, sipping and re-doing tasks, rather than just executing tasks. Although users
have a major influence on execution in FLOWer, their actions are seen as going back-
wards or forward in a traditional process model. Moreover, this might some unwanted
side-effects. For example, if the user wishes to execute again (re-do) an earlier task,
s(he) will also have to execute again (re-do) all tasks that followed it. Unlike in FLOWer,
deviations are not seen as an exception in CIGDec but as ‘normal’ behavior while the
process instance unfolds further according to the choices of users.

Flexibility of process enactment tools is greatly increased by their adaptivity. ADEPT
is an example of an adaptive system where users can change the process model during
the enactment [22]. ADEPT is a powerful tool which enables users to insert, move and
delete tasks form the process instance they are currently working on. However, the user
has to be a process modelling expert in order to change the model. Moreover, in med-
ical domain cases may have many differences and adaptations would be too frequent
and time consuming. CIGDec does not see deviations as changes in the model and a
good-designed CIGDec model can cover a wide variety of cases.

One of a promising ways to introduce flexibility is to replace imperative by declar-
ative. Various declarative languages “describe the dependency relationships between
tasks, rather than procedurally describing sequences of action” [23]. Generally, declar-
ative languages propose modeling constraints that drive the model enactment [23–25].
Constraints describe dependencies between model elements. Constraints are specified
using pre and post conditions for target task [25], dependencies between states of tasks
(enabled, active, ready, etc.) [23] or various model-related concepts [24].

6 Conclusions

In this paper, we have proposed a declarative approach which could be applied to over-
come problems experienced by the imperative languages used for modelling clinical
guidelines. In particular, we have shown how by means of applying the CIGDec lan-
guage more flexibility in selection can be achieved than the considered CIG modelling
languages offer. Furthermore, we showed how the model declared in CIGDec can be
enacted. In addition, we discussed differences between the proposed declarative and
analyzed imperative languages, their advantages and disadvantages, and made a propo-
sition to combine the features of imperative and declarative approaches in order to in-
crease their applicability and usability.

References

1. Peleg, M.: Chapter 4-2: Guideline and Workflow Models. In R.A., G., ed.: Medical Decision
Support: Computer-Based Approaches to Improving Healthcare Quality and Safety. Elsevier
(2006)

2. Workflow Patterns Home Page. http://www.workflowpatterns.com

3. Mulyar, N., Aalst, W., Peleg, M.: A Pattern-based Analysis of Clinical Computer-
Interpretable Guideline Modelling Languages. Technical report, Center Report BPM-06-29,
BPMcenter.org (2006)

4. Wald, J., Pedraza, L., Murphy, M., Kuperman, G.: Requirements development for a patient
computing system. In: Proc. AMIA Symp. (2001) 731–735

5. Pesic, M., Aalst, W.: A declarative approach for flexible business processes management.
In: Business Process Management Workshops. (2006) 169–180

6. Aalst, W., Pesic, M.: Specifying, discovering, and monitoring service flows: Making web ser-
vices process-aware. BPM Center Report BPM-06-09, BPM Center, BPMcenter.org (2006)

7. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Distributed and
Parallel Databases 14(1) (2003) 5–51

8. Russell, N., Hofstede, A., Aalst, W., Mulyar., N.: Workflow Control-Flow Patterns: A Re-
vised View. BPM Center Report BPM-06-22, BPMcenter.org (2006)

9. Shahar, Y., Miksch, S., Johnson, P.: The Asgaard Project: a task-specific Framework for the
application and critiquing of time-oriented clinical guidelines. Artif Intell Med (14) (1998)
29–51

10. Seyfang, A., Kosara, R., Miksch, S.: Asbrus Reference Manual, V.7.3. Technical report,
Vienna Univ. of Techn., Inst. of SW Techn., Vienna. Report No.: Asgaard-TR-2002-1 (2002)

11. Tu, S., Musen, M.: A flexible approach to guideline modeling. In: Proc AMIA Symp. (1999)
420–424

12. Tu, S., Musen, M.: From guideline Modeling to guideline execution: Defining guideline-
based decision-support Services. In: Proc AMIA Annu Symp. (2000) 863–867

13. Tu, S.: The eon guideline model. http://smi.stanford.edu/projects/eon (2006)
14. Boxwala, A., M.Peleg, Tu, S., O.Oqunyemi, Zeng, Q., Wang, D., et al.: GLIF3: a represen-

tation format for sharable computer-interpretable clinical practive guidelines. Biomedical
Informatics 37(3) (2004) 147–161

15. Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating Medical Knowledge: The PROforma
Approach. Artificial Intelligence in Medicine 14(1) (1998) 157–182

16. Jr., E.C., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge, Mas-
sachusetts and London, UK (1999)

17. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston, Massachusetts, USA (2003)

18. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on
running programs. In: ASE ’01: Proc. of the 16th IEEE int. conf. on Automated sw engi-
neering, Washington, DC, USA, IEEE Computer Society (2001) 412

19. Mulyar, N., Pesic, M., Aalst, W., Peleg, M.: Towards the Flexibility in Clinical Guideline
Modelling Languages. Technical report, Center Report BPM, BPMcenter.org (2007)

20. Reijers, H., Rigter, J., Aalst, W.: The Case Handling Case. International Journal of Cooper-
ative Information Systems 12(3) (2003) 365–391

21. Pallas Athena: Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands. (2002)
22. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow without

Losing Control. Journal of Intelligent Information Systems 10(2) (1998) 93–129
23. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., Zbyslaw, A.: Freeflow: mediating

between representation and action in workflow systems. In: Proc. of CSCW ’96. (1996)
190–198

24. Mangan, P., Sadiq, S.: On building workflow models for flexible processes. In: ADC ’02:
Proc. of the 13th Australasian database conf., Australian Computer Society, Inc. (2002) 103–
109

25. Wainer, J., de Lima Bezerra, F. In: Groupware: Design, Implementation, and Use. Volume
2806. Springer Berlin / Heidelberg (2003) 151 – 158

