
Process Mining Based on Clustering:

A Quest for Precision

A.K. Alves de Medeiros1, A. Guzzo2, G. Greco2, W.M.P. van der Aalst1,
A.J.M.M. Weijters1, B. van Dongen1, and D. Saccà2

1 Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The
Netherlands. E-mails: {a.k.medeiros, w.m.p.v.d.aalst,

a.j.m.m.weijters, b.f.v.dongen}@tue.nl
2 University of Calabria, Via Bucci 41C, 187036 Rende (CS), Italy E-mails:

guzzo@icar.cnr.it, ggreco@mat.unical.it, sacca@unical.it

Abstract. Process mining techniques attempt to extract non-trivial and
useful information from event logs recorded by information systems. For
example, there are many process mining techniques to automatically dis-
cover a process model based on some event log. Most of these algorithms
perform well on structured processes with little disturbances. However,
in reality it is difficult to determine the scope of a process and typically
there are all kinds of disturbances. As a result, process mining tech-
niques produce spaghetti-like models that are difficult to read and that
attempt to merge unrelated cases. To address these problems, we use
an approach where the event log is clustered iteratively such that each
of the resulting clusters corresponds to a coherent set of cases that can
be adequately represented by a process model. The approach allows for
different clustering and process discovery algorithms. In this paper, we
provide a particular clustering algorithm that avoids over-generalization
and a process discovery algorithm that is much more robust than the
algorithms described in literature [1]. The whole approach has been im-
plemented in ProM.

Keywords: Process Discovery, Process Mining, Workflow Mining, Disjunctive Work-

flow Schema, ProM Framework

1 Introduction

The basic idea of process mining is to discover, monitor and improve real pro-
cesses (i.e., not assumed processes) by extracting knowledge from event logs
[1]. Today many of the tasks occurring in processes are either supported or
monitored by information systems (e.g., ERP, WFM, CRM, SCM, and PDM
systems). However, process mining is not limited to information systems and
can also be used to monitor other operational processes or systems (e.g., web
services, care flows in hospitals, and complex devices like wafer scanners, com-
plex X-ray machines, high-end copiers, etc.). All of these applications have in
common that there is a notion of a process and that the occurrences of tasks are
recorded in so-called event logs. Assuming that we are able to log events, a wide
range of process mining techniques comes into reach. The basic idea of process
mining is to learn from observed executions of a process and it can be used to (1)
discover new models (e.g., constructing a Petri net that is able to reproduce the
observed behavior), (2) check the conformance of a model by checking whether

Table 1. Example of an event log (with 300 process instances) for the process of a
one-day conference. Each row refers to process instances that follow a similar pattern
in terms of tasks being executed. The first row corresponds to 80 process instances
that all followed the event sequence indicated.

Identifier Process instance Frequency

1 Start, Get Ready, Travel by Car, Conference Starts, 80
Give a Talk, Join Guided Tour, Join Dinner, Go Home,
Pay for Parking, Travel by Car, End.

2 Start, Get Ready, Travel by Train, Conference Starts, 68
Give a Talk, Join Guided Tour, Join Dinner, Go Home,
Travel by Train, End.

3 Start, Get Ready, Travel by Car, Conference Starts, 81
Join Guided Tour, Join Dinner, Go Home, Pay for Parking,
Travel by Car, End.

4 Start, Get Ready, Travel by Train, Conference Starts, 71
Join Guided Tour, Join Dinner, Go Home, Travel by Train,
End.

the modeled behavior matches the observed behavior, and (3) extend an existing
model by projecting information extracted from the logs onto some initial model
(e.g., show bottlenecks in a process model by analyzing the event log).

In this paper, we focus on process discovery. Concretely, we want to construct
a process model (e.g., a Petri net) based on an event log where for each case
(i.e., an instance of the process) a sequence of events (say tasks) is recorded.
Table 1 shows an aggregate view of such a log. This log will be used as a running
example and describes the events taking place when people attend a conference.
It is a toy example, but it is particularly useful when explaining our approach.
Note that in the context of ProM we have analyzed many real-life logs (cf.
www.processmining.org). However, the corresponding processes are too difficult
to describe when explaining a specific process mining technique. Therefore, we
resort to using this simple artificial process as a running example. Each pro-
cess instance corresponds to a sequence of events (i.e., task executions). Process
instances having the same sequence are grouped into one row in Table 1. In
total there are 300 process instances distributed over 4 possible sequences. Note
that all process instances start with task “Start” and end with task “End”. The
process instances referred to by the first two rows contain task “Give a Talk”
while this event is missing in process instances referred to by the last two rows.
This suggests that some people give a talk while others do not. Rows 1 and 3
refer to two occurrences of task “Travel by Car” and the other two rows (2 and
4) refer to two occurrences of task “Travel by Train”. This indicates that the
people that arrive by car (train) also return by car (train). People that come
by car also execute task “Pay for Parking”. Note that Table 1 shows only an
aggregate view of the real log. In fact, real logs typically contain much more
information, e.g., timestamps, transactional information, information on users,
data attributes, etc. However, for the purpose of this paper, we can abstract
from this information and focus in the information shown in Table 1.

A possible result of a process discovery mining algorithm for the log in Table 1
is depicted in Figure 1. The process is represented in terms of a Petri net [6], i.e.,

EndGo
Home

Join
Dinner

Join
Guided
Tour

Give a
Talk

Conference
Starts

Get
Ready

Start

Travel by
Train

Travel by
Car

Pay for
Parking

Travel by
Car

Travel by
Train

Fig. 1. Example of a mined model for the log in Table 1. This model correctly captures
the right level of abstraction for the behavior in the log.

a bipartite directed graph with two node types: places and transitions. Places
(circles) represent states while transitions (rectangles) represent actions (e.g.,
tasks). A certain state holds in a system if it is marked (i.e., it contains at least
one token). Tokens flow between states by firing (or executing) the transitions. A
transition is enabled (or may fire) if all of its input places have at least one token.
When a transition fires, it removes one token from each of its input places and it
adds one tokens to each of its output places. More information about Petri nets
can be found in [6]. Figure 1 shows that the process can be started by putting a
token in the source place at the left and firing the two leftmost transitions. After
this, there is a choice to fire “Travel by Train” or “Travel by Car”. Firing one of
these two transitions results in the production of two tokens: one to trigger the
next step (“Conference Starts”) and one to “remember” the choice. Note that
after task “Go Home” (later in the process) there is another choice, but this
choice is controlled by the earlier choice, e.g., people that come by train return
by train. Also note that after task “Conference Starts” there is a choice to give
a talk or to bypass this task. The black transition refers to a “silent step”, i.e.,
a task not recorded in the log because it does not correspond to a real activity
and has only been added for routing purposes.

The model shown in Figure 1 allows for the execution of all process instances
in the original log (Table 1). Moreover, the model seems to be at the right
level of abstraction because it does not allow for more behavior than the one
in the log (e.g., it explicitly portrays that attendees have used the same means
of transportation to go to and come back from the conference) and there does
not seem to be a way to simplify it without destroying the fit between the
log and model. Note that in Figure 1 some of the tasks are duplicated, there
are the transitions labeled “Travel by Train” and “Travel by Car” that occur
multiple times. Most mining techniques do not allow for this. If we apply a
mining algorithm that does not support duplicate tasks, the resulting model
could look like the one in Figure 2. Note that, although this model captures
(or can reproduce) the behavior in the log (cf. Table 1), it is more general
than necessary because: (i) attendees can use different means of transportation
to reach and leave the one-day conference, (ii) attendees can skip the whole
conference after traveling by car or by train, and (iii) attendees can return to
the conference after going home (cf. task “Go Home”). So, this model is not a
precise picture of the traces in the log. For such a small log, it is easy to visually
detect the points of over-generalizations in the model in Figure 2. However, when
mining bigger logs, there is a need for a technique that can automatically identify
these points.

EndTravel by
Car

Pay for
Parking

Go
Home

Join
Dinner

Join
Guided
Tour

Give a
Talk

Conference
Starts

Travel by
Train

Get
Ready

Start

Fig. 2. Example of another mined model for the log in Table 1. This model is more
general than necessary.

Figures 1 and 2 show that process mining algorithms may produce suitable
models but also models that are less appropriate. In particular, the more robust
algorithms have a tendency to over-generalize, i.e., construct models that allow
for much more behavior than actually observed. A related problem is that event
logs typically record information related to different processes. For example,
there could be process instances related to the reviewing of papers mixed up
with the instances shown in Table 1. Note that the distinction between processes
is sometimes not very clear and in a way arbitrarily chosen. In our example, one
could argue that there are two processes: one for handling people coming by
car and the other one for people coming by train. When processing insurance
claims, one could argue that there is one process to handle all kinds of insurance
claims. However, one could also have a separate process for each of the different
types of insurance policies (e.g., fire, flooding, theft, health, and car insurance).
If one attempts to construct a single model for very different cases, the model
is likely to be too complex and existing mining techniques are unable to cope
without excessive over-generalization. This is the core problem addressed by the
approach presented in this paper.

To address problems related to over-generalization and mixing up different
processes in a single model, we propose to use clustering. We do not aim to con-
struct one big model that explains everything. Instead we try to cluster similar
cases in such a way that for every cluster it is possible to construct a rela-
tively simple model that fits well without too much over-generalization. The
idea for such an approach was already mentioned in [4]. However, in this paper
we refine the technique and use a much more powerful process mining tech-
nique. Moreover, we report on the implementation of this approach in ProM.
Both the ProM framework and the described plug-ins are publicly available at
www.processmining.org.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the approach in this paper. Section 3 explains our implementation
for this approach and Section 4 describes how to use this implementation to
discover over-generalizations in mined models and common patterns in logs.
Section 5 presents related work and Section 6 concludes this paper.

2 Approach

As explained in the introduction, the goal of this paper is to allow for the mining
of processes with very diverse cases (i.e., not a homogeneous group of process
instances) while avoiding over-generalization. Consider for example the applica-
tion of process mining to care flows in hospitals. If one attempts to construct a
single process model for all patients, the model will be very complex because it
is difficult to fit the different kinds of treatments into the same model. The dif-

ferent patient groups are ill-defined and share resources and process fragments.
For example, what about the patient that was hit by a car after getting a hearth
attack? This patient needs both a knee operation and hearth surgery and belongs
to a mixture of patient groups. This example shows that it is not easy to define
the boundary of a process and that given the heterogeneity of cases it may be
impossible to find a clean structure. Moreover, process mining techniques that
are able to deal with less structured processes have a tendency to over-generalize,
i.e., the process instances fit into the model but the model allows for much more
behavior than what is actually recorded. To address this we suggest to iteratively
split the log in clusters until the log is partitioned in clusters that allow for the
mining of precise models.

cluster instances and partition log
partial event log model

quality
OK

L1

partial event log model

quality
NOK

L2

whole event log model

quality
NOK

L

quality
OK

L2.1

quality
OK

L2.3

quality
OK

L2.2

cluster instances and partition log

Fig. 3. Overview of the approach: the process instances are iteratively partitioned into
clusters until it is possible to discover a “suitable model” for each each cluster.

Figure 3 shows the basic idea behind this approach. First the whole log is
considered (denoted by L in Figure 3). Using a discovery algorithm a process
model is constructed. By comparing the log and the process model, the quality
of the model is measured. If the model has good quality and there is no way to
improve it, the approach stops. However, as long as the model is not optimal the
log is partitioned into clusters with the hope that it may be easier to construct
a better process model for each of the clusters. In Figure 3 log L is split into two
logs L1 and L2, i.e., each process instance of L appears in either L1 or L2. Then
for each cluster, the procedure is repeated. In Figure 3, the quality of the model
discovered for cluster L1 is good and L1 is not partitioned any further. The
quality of the model discovered for cluster L2 is not OK and improvements are
possible by partitioning L2 into three clusters: L2.1, L2.2, and L2.3. As Figure 3
shows it is possible to construct suitable process models for each of these three
clusters and the approach ends.

Note that the approach results in a hierarchy of clusters each represented by a
partial log and a process model. This is quite different from conventional process
mining approaches that produce a single model. The leaves of the tree presented
in Figure 3 (enclosed by dashed lines) represent clusters that are homogenous
enough to construct suitable models.

When applying the approach illustrated by Figure 3, there are basically three
decisions that need to be made: (i) When to further partition a cluster? The
approach starts with considering the whole log as a single cluster. Then this
cluster is partitioned into smaller clusters which again may be partitioned into
even smaller clusters, etc. Note that this always ends because eventually all
clusters contain only one process instance and cannot be split anymore. However,
it is desirable to have as few clusters as possible, so a good stopping criterion
is needed. Stopping too late, may result in a proces model for every process
instance. Stopping too early, may result in low quality process models that try
to describe a set of cases that is too heterogeneous;(ii) How to split a cluster into
smaller clusters? There are many ways to split a cluster into smaller clusters.
An obvious choice is to cluster process instances that have a similar “profile”
when it comes to task executions, e.g., split the log into a cluster where “A”
occurs and a cluster where “A” does not occur. It is also possible to use more
refined features to partition process instances. It may also be possible to use data
elements, e.g., in case of hospital data it may be wise to cluster patients based
on the diagnosis. Different approaches known from the data mining field can be
used here; (iii) What discovery algorithm to use? To extract a process model
from the process instances in the cluster different process mining algorithms
can be used. Some algorithms are very robust but yield models that allow for
too much behavior. Other algorithms produce models that are unable to replay
the existing log, i.e., there are process instances whose behavior is not allowed
according to the model.

The approach presented in this paper is inspired by the process mining algo-
rithm described in [4]. Here the approach is termed Disjunctive Workflow Schema
(DWS) and particular choices are made for the three questions listed above. For
example, a rather weak algorithm is used for process discovery. The algorithm
described in [4] is unable to deal with loops, non-free-choice constructs (e.g., the
controlled choice in Figure 1 forcing people to take the same means of transporta-
tion home), etc. Moreover, the different parts of the approach are tightly coupled
in [4]. In our view, it is essential to allow for different techniques to be plugged
into the approach illustrated by Figure 3. Hence, this paper improves this earlier
work in several directions: (1) the approach is presented independent of a par-
ticular algorithm, (2) several improvements have been made (e.g., replacing the
process mining algorithm), and (3) the whole approach is implemented in ProM
using an architecture that makes it easy to plug-in new clustering algorithms or
process discovery algorithms.

The remainder of this paper presents a particular choice for each of the three
questions stated before and describes the new plug-ins implemented in ProM.
We use the combination of a very robust process mining algorithm (Heuristics
Miner) combined with a clustering approach focusing on over-generalization.

3 Implementation

This section explains how we have answered the questions raised in Section 2
and describes the resulting plug-ins that were implemented in ProM.

3.1 When to Further Partition a Cluster?

A cluster should be further partitioned when its mined model allows for more
behavior than what is expressed by the traces in the cluster. So, in our approach,
generalizations in the model are captured by selecting features (or structural
patterns) that, while being in principle executable according to the model, have
never been registered in the log. If such discrepancies can be identified, then
the model is not an accurate representation for the process underlying the log.
Hence, we are given some evidence that the model has to be further specialized
into a set of different, more specific use cases.

To identify the relevant features, we use an A-priori [2] like approach. The
idea is to incrementally generate sequences of tasks by extending a sequence of
length n with another task, and to subsequently check for their frequency in
the log3. A relevant feature is basically a sequence for which this incremental
extension cannot be carried out by guaranteeing that the resulting sequence is
as frequent as its two basic constituents. Hence, a relevant feature is a sequence,
say t1, ..., tn, together with a task, say tn+1 such that (cf. Figure 4): (i) t1, ..., tn
is frequent, i.e., the fraction of projected log traces in which the sequence occurs
is greater than a fixed threshold (called sigma); (ii) tn, tn+1 is also frequent with
respect to the same threshold sigma; but,(iii) the whole sequence t1, ..., tn, tn+1

is not frequent, i.e., its occurrence is smaller than some threshold gamma.

t1, t2, ..., tn, tn+1

> sigma

> sigma

< gamma

Fig. 4. Feature selection. The subparts (“t1...tn” and “tntn+1”) of the feature should
occur more than sigma times in the projected log traces while the whole sequence
(“t1...tn+1”) should occur at most gamma times.

3.2 How to Split a Cluster into Smaller Clusters?

We use the k-means method [5] to split a cluster into sub-clusters. k-means is
a clustering algorithm based on Euclidian distance in vectorial spaces. It works
by finding central points (or centroids) over which a set of vectors are clus-
tered. Every cluster has a centroid. The parameter k determines the number of
centroids (and, therefore, the number of clusters). Consequently, to reuse the
k-means clustering method, we have designed an approach for producing a flat
representation of the traces by projecting each of them on the relevant features
identified as outlined in Section 3.1. In particular, only the most relevant m

features are considered. The relevance of each feature is measured on the basis

3 Note that log traces are projected while checking for the frequency of these sequences
in the log. During the projection, only the tasks that are in a sequence are kept in
the log traces.

of the frequency of its occurrences in the log (the more frequent, the more rele-
vant). Once features have been selected, each trace in the log is processed and
associated with a vector in a m-dimensional vectorial space: for each feature,
the corresponding entry of the vector is set to a value that is proportional to
the fraction of the feature actually occurring in the trace. In the extreme case
where the feature does not characterize the trace, this value is set to 0. When
the whole feature matches the trace, this value is set to 1. After the log traces
have been projected in the vectorial space, the k-means clustering method takes
place.

3.3 What Discovery Algorithm to Use?

We have selected the Heuristics Miner (HM) [9] to use as the mining algorithm
in our approach. The HM can deal with noise and can be used to express the
main behavior (i.e., not all the details and exceptions) registered in an event
log. It supports the mining of all common constructs in process models (i.e.,
sequence, choice, parallelim, loops, invisible tasks and some kinds of non-free-
choice), except for duplicate tasks. Therefore, the HM is a more robust algorithm
than the mining algorithm originally used in [4]. The HM algorithm has two
main steps. In the first step, a dependency graph is built. In the second step, the
semantics of the split/join points in the dependency graph are set. Due to the
lack of space, in this paper we do not elaborate in the relation between these two
steps and the threshold values used by the HM. The interested reader is referred
to [9].

The next subsection introduces the two plug-ins that were implemented in
ProM to support the choices explained so far in this section.

3.4 Implemented Plug-ins

Two ProM plug-ins have been implemented to provide for the mining of precise
models: DWS Mining and DWS Analysis. The DWS Mining plug-in implements
the full-cycle of the approach in Figure 3. This plug-in starts with an event
log and uses the Heuristic Miner (cf. Section 3.3) to mine a model for this log.
Afterwards, the plug-in tries to detect relevant features for this model (cf. Sec-
tion 3.1). If features are found, the plug-in clusters this log based on k-means (cf.
Section 3.2). If further sub-clusters can be identified, a model is again automat-
ically mined by the HM for each sub-cluster. This iterative procedure continues
until no further clustering is possible. Figure 5 shows a screenshot of applying
the DWS Mining plug-in to the log in Table 1. As can be seen, the window for
specifying the settings has two parts: one for setting the parameters used by the
HM (cf. Figure 5(a)) and another for setting the parameters for the feature se-
lection and clustering (cf. Figure 5(b)). The parameters for the HM correspond
to the thresholds mentioned in Section 3.3. The first three parameters in the
panel in Figure 5(b) are respectively used to determine the sigma, gamma and k

threshold explained in sections 3.1 and 3.2. Note that other three extra parame-
ters are provided (“(Max.) Length of features”, “(Max.) Number of splits” and
“(Max.) Number of features”) which allow for determining upper bounds to the
algorithm. The parameter “(Max.) Length of features” sets the length of the se-
quences up to which the discovery of the frequent features is carried out. In many

(a)

(b)

(c) (d)

(e)

Fig. 5. Screenshot of the DWS mining plug-in

practical situations, this parameter may be set to 2, meaning that one looks for
features of the form t1, t2 with a task t3 such that t1, t2, t3 is not frequent. Larger
values for this length may be desirable for models involving many tasks, espe-
cially when the paths between the starting task and some final one involve lots
of tasks. The parameter “(Max.) Number of splits” is an upper bound on the
total number of splits to be performed by the algorithm. The higher its value,
the deeper the resulting hierarchy can be. The parameter “(Max.) Number of
features” defines the dimension of the feature space over which the clustering
algorithm is applied. Note that “(Max.) Number of features” should be greater
than k (i.e. parameter “(Max.) Number of clusters per split”). In general, larger
values of “(Max.) Number of features” lead to higher quality in the clustering
results but it requires more computational time. The window for showing the
results has three panels: the hierarchy of the found clusters (cf. Figure 5(c)), the
model mined for each cluster4 (cf. Figure 5(d)), and the set of relevant features
(cf. Figure 5(e)) used to split each cluster. The subcomponents of each feature
are separated by the symbol “-/->”. The substrings on the left and right side of
this symbol respectively correspond to t1...tn and tn+1 in Figure 5. As can be
seen at the bottom of this figure, four features have been found for the settings
in this example. These features reflect the generalizations already discussed in

4 The model mined by the HM for this example is just like the one in Figure 2.
However, instead of Petri nets, the HM uses Heuristics nets as the notation to
represent models. Due to the lack of space and the fact that the two models allow
for the same behavior, we will not provide an explanation about Heuristics nets. The
interested reader is referred to [9].

Section 1. The results in Figure 5 are discussed in Section 4. The DWS Analysis
plug-in is very similar to the DWS mining one. However, it has the advantage
that the approach is decoupled from a specific mining plug-in. The input of the
DWS Analysis plug-in is a log and a model. Its output is a set of partitions (or
clusters) for this log. No sub-clusters are provided because the user can again
choose which mining plug-ins to use for each of the resulting clusters.

The next section describes how to use the parameters in these two plug-ins
to detect (i) over-generalizations in mined models and (ii) frequent patterns in
the log.

4 Detecting Over-Generalizations and Common Patterns

A (mined) model is over-general when it can generate behavior that cannot
be derived from the log. In other words, certain sequences (or features) are
possible in the model but do not appear in the log. Using this reasoning, over-
generalizations can be detected by the DWS analysis or mining plug-ins when-
ever we (i) set the sigma and gamma parameters to 0, (ii) allow for feature
sizes that are at least as big as the number of tasks in the model and (iii) set a
maximum number of features so that all points of over-generalization are kept
in the list of identified features. As an illustration, consider the screenshot in
Figure 5. This figure shows the result of applying the DWS mining plug-in to
the model in Figure 2 linked to the log in Table 1. Note that the DWS mining
plug-in successfully detected four points of over-generalizations in the model.
For instance, the first feature (see bottom-right) states that the task “Confer-
enceStarts” was never executed after the sequence “GoHome,TravelTrain” has
happened, although the sequence “TravelTrain,ConferenceStarts” appears in the
log. Actually, the first two features indicate that attendees did not return to the
conference after going home and the last two features reflect that attends always
used the same means of transportation while reaching of leaving the conference.
Note that the algorithm did not capture the over-generalizations for the se-
quences “GetReady,TravelTrain,End” and “GetReady,TravelCar,End” because
features are detected based on their occurrences in projected traces in a log. So,
if we project the traces in the log in Table 1 to contain only the tasks in these
two sequences, they both will occur in the log and, therefore, are not relevant
features. This example shows that the DWS analysis plug-in not only finds out
that the model is more general than necessary, but it also indicates the points
of over-generalization. This information is especially useful when many parts of
a model capture the right level of abstraction and just a few parts do not. In
these situations, the DWS analysis or mining plug-ins could guide a designer in
modifying the model to make it more precise.

Our approach can also be used to identify common patterns in the log. In
these situations, the values for the sigma and gamma parameters may overlap
because the whole feature may also be a common pattern in the log. For instance,
if one wants to find out the patterns that happen at least in half of the traces
in the log, one can set sigma = 0.5 and gamma = 1. With these settings, one is
saying that the subparts of the feature (i.e., “t1...tn” and “tntn+1”) happen in
more than 50% of the traces in the log and its combination (i.e., “t1...tntn+1”)

happens in (i) all traces, (ii) some traces or (iii) none of the traces in the log.
As an illustration, let us try to find out the most frequent patterns (above
50%) in the log in Table 1. The results are in Figure 6. As expected, all the
patterns identified in the list of features returned by the DWS analysis plug-in
occur in process instances 1 and 3 in the log. Together, these process instances
correspond to 53.6% of the behavior in the log (cf. Table 1). Based on the ten
identified features, the log was partitioned into two clusters: “R.0” contains the
process instances 1 and 3, and “R.1” has the process instances 2 and 4.

Fig. 6. Screenshot of the result of applying the DWS analysis plug-in to detect common
patterns in the log. The model, log and configuration parameters are the same as in
Figure 6, except for the parameters “Frequency support - sigma” and “Frequency
relevance threshold - gamma” which were respectively set to 0.5 and 1.

5 Related Work

This section reviews the techniques that that have been used to detect over-
general mined models in the process mining domain. Greco et al. [4] have defined
the soundness metric, which receives a model and a log as input and calculates
the percentage of traces that a model can generate and are not in the log. Since
the log is assumed to be exhaustive, this metric only works for acyclic models.
Rozinat et al. [7] have created two notions of behavioral appropriateness (aB),
both based on a model and a log. The simple aB measures the average number
of enabled tasks while replaying a log in a model. The problem with this metric
is that it does not take into account which tasks are enabled. The complex aB

calculates the so-called “sometimes” predecessor and successor binary relations
for tasks in a log and tasks in a model. The problem here is that the relations
are global and binary. So, the approach cannot identify over-generalizations that
involve more than two tasks. Alves de Medeiros et al. [8] have defined the behav-
ioral precision (BP) and behavioral recall (BR) metrics, which work by checking
how much behavior two models have in common with respect to a given log. Al-
though the metrics quantify the degree of over-generalization in a mined model,
they have the drawback that they require a base model (in addition to the mined
model and the log). Van Dongen et al. [3] have defined the causal footprint met-
ric, which assesses behavior similarity of two models based on their structure.
Like the behavioral precision/recall metrics, the problem with the causal foot-
print is that a base model is also required. The approach presented in this paper
differs from the previously discussed ones because it not only detects that a
mined model is over-general, but it also highlights where the over-general points

are. Additionally, it only requires a log and a model to run (i.e., no need for a
base model).

6 Conclusions and Future Work
This paper has introduced an approach for mining precise models by clustering
a log. The approach has been implemented as two ProM plug-ins: the DWS
analysis and the DWS mining. The DWS analysis plug-in can be used to detect
points of over-generalization in a model or frequent patterns in a log. The DWS
mining plug-in provides a way to mine a hierarchical tree of process models by
using the Heuristics Miner, a pre-existing ProM plug-in that is robust to noise
and can handle most of the common control-flow constructs in process models.
By decoupling the feature selection and clustering steps from a specific mining
algorithm, this paper has shown how to broaden the reach of the techniques
in [4] such that other process mining algorithms can easily use them. Future
work will focus on (i) allowing for the definition of intervals for the thresholds
sigma and gamma, and (ii) removing the constraint that features are possible
(sub-)paths in a model. This way it would be possible to identify features whose
two sub-components are not directly connected.

References

1. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, volume 53
of Special Issue of Computers in Industry. Elsevier Science Publishers, Amsterdam,
2004.

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In J.B.
Bocca, M. Jarke, and C. Zaniolo, editors, VLDB, pages 487–499. Morgan Kaufmann,
1994.

3. B.F. van Dongen, J. Mendling, and W.M.P. van der Aalst. Structural Patterns for
Soundness of Business Process Models. In EDOC ’06: Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Conference (EDOC’06),
pages 116–128, Washington, DC, USA, 2006. IEEE Computer Society.

4. G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. Discovering expressive process mod-
els by clustering log traces. IEEE Transactions on Knowledge and Data Engineering,
18(8):1010–1027, 2006.

5. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a Review. ACM
Computing Surveys, 31(3):264–323, 1999.

6. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

7. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In Christoph Bussler and
Armin Haller, editors, Business Process Management Workshops, volume 3812 of
Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin, 2005.

8. Wil M. P. van der Aalst, A. K. Alves de Medeiros, and A. J. M. M. Weijters.
Process equivalence: Comparing two process models based on observed behavior. In
Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth, editors, Business Process
Management, volume 4102 of Lecture Notes in Computer Science, pages 129–144.
Springer, 2006.

9. A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process
Mining with HeuristicsMiner Algorithm. BETA Working Paper Series, WP 166,
Eindhoven University of Technology, Eindhoven, 2006.

