
newYAWL: Designing a Work�ow System using

Coloured Petri Nets???

Nick Russell1, Wil M.P. van der Aalst1,2 and Arthur H.M. ter Hofstede2

1Eindhoven University of Technology,
PO Box 513, 5600MB, Eindhoven, The Netherlands

{n.c.russell,w.m.p.v.d.aalst}@tue.nl
2Queensland University of Technology,
PO Box 2434, QLD, 4001, Australia

a.terhofstede@qut.edu.au

Abstract. Traditional work�ow systems focus on providing support for
the control-�ow perspective of a business process, with other aspects such
as data management and work distribution receiving markedly less at-
tention. A guide to desirable work�ow characteristics is provided by the
well-known work�ow patterns which are derived from a comprehensive
survey of contemporary tools and modelling formalisms. In this paper
we describe the approach taken to designing the newYAWL work�ow
system, an o�ering that aims to provide comprehensive support for the
control-�ow, data and resource perspectives based on the work�ow pat-
terns. The semantics of the newYAWL work�ow language are based on
Coloured Petri Nets thus facilitating the direct enactment and analy-
sis of processes described in terms of newYAWL language constructs.
As part of this discussion, we explain how the operational semantics for
each of the language elements are embodied in the newYAWL system
and indicate the facilities required to support them in an operational
environment. We also review the experiences associated with developing
a complete operational design for an o�ering of this scale using formal
techniques.

1 Introduction

There are a plethora of work�ow systems on the market today providing organ-
isations with various forms of automated support for their business processes.
It is ironic however, that despite the rigour that work�ow systems introduce
into the conduct of the processes that they coordinate, they themselves do not
demonstrate the same rigour in the work�ow languages that they enact. Indeed,
it is a salient fact that, almost without exception, work�ow languages are de�ned

? An earlier version of this work was presented at CPN'07, the Eighth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools [21].

?? This research is conducted in the context of the Patterns for Process-Aware Informa-
tion Systems (P4PAIS) project which is supported by the Netherlands Organisation
for Scienti�c Research (NWO).



on an informal basis leaving their precise operation unclear to anyone other than
the system developers. An additional shortcoming of existing work�ow solutions
is their focus on the control-�ow aspects of business processes.

The YAWL Initiative sought to address the �rst of these issues. YAWL [3]
is an acronym for Yet Another Work�ow Language. It provides a comprehen-
sive modelling language for business processes based on formal foundations. The
content of the YAWL language is an adaptation of Petri Nets informed by the
work�ow patterns [4]. One of its major aims was to show that a relatively small
set of constructs could be used to directly support most of the work�ow pat-
terns identi�ed. It also sought to illustrate that they could coexist within a
common framework. In order to validate that the language was capable of direct
enactment, the YAWL System1 was developed, which serves as a reference im-
plementation of the language. Over time, the YAWL language and the YAWL
System have increasingly become synonymous and have garnered widespread
interest from both practitioners and the academic community alike2.

Initial versions of the YAWL System focussed on the control-�ow perspec-
tive and provided a complete implementation of 19 of the original 20 patterns.
Subsequent releases incorporated limited support for selected data and resource
aspects of processes, however this e�ort was hampered by the lack of a com-
plete formal description of the requirements in these perspectives. Recent work
conducted as part of the Work�ow Patterns Initiative has identi�ed the core
elements in other process perspectives (data, resource, exception handling) and
a recent review [22] of the control-�ow perspective has identi�ed 23 additional
patterns which illustrate a number of commonly used control-�ow constructs,
many of which YAWL is unable to provide direct support for, including the
partial join, transient and persistent triggers, iteration and recursion.

In an e�ort to manage the conceptual shortcomings of YAWL with respect
to the range of work�ow patterns that have now been identi�ed, a substantial
revision of the language � termed newYAWL has been proposed � which aims
to support the broadest range of the work�ow patterns in the control-�ow, data
and resource perspectives. newYAWL synthesises this work to provide a fully for-
malised work�ow language based on a comprehensive view of a business process.
The validation of this proposal is to design (and ultimately build) the work�ow
system that embodies the work�ow language. An interesting consequence of for-
malising the operational semantics for the language constructs in newYAWL,
has been the establishment of the functional architecture for the system to be
developed. This is based on a detailed consideration of the causal e�ects and data
interactions required to support each of the language constructs and their be-
haviour in a broader operational environment. This paper outlines the approach

1 See http://www.yawl-system.com for further details of the YAWL System and to
download the latest version of the software.

2 Hereafter in this paper, we refer to the collective group of YAWL o�erings developed
to date � both the YAWL language as de�ned in [3] and also more recent YAWL
System implementations of the language based on the original de�nition (up to and
including release Beta 8.2) � as YAWL.



taken to designing the newYAWL system. In this paper we not only describe
the design of newYAWL using Coloured Petri Nets, but also re�ect on the use
of such a design approach from a software engineering standpoint.

The remainder of this paper proceeds as follows: Section 2 introduces the
language constructs which comprise newYAWL. Section 3 describes the approach
to designing a work�ow system that can enact business processes described in
terms of the newYAWL language. Section 4 overviews related work and Section
5 discusses the experiences of designing a work�ow system using formal methods
and concludes the paper.

2 newYAWL: the language

newYAWL provides a comprehensive formal description of the work�ow pat-
terns, which to date have only partially been formalised. It has a complete ab-
stract syntax which identi�es the characteristics of each of the language elements
together with an executable semantic model in the form of Coloured Petri Nets
which de�ne the runtime semantics of each of the language constructs. The fol-
lowing sections provide an overview of the features of newYAWL in the control-
�ow, data and resource perspectives.

2.1 Control-�ow perspective

Figure 1 identi�es the complete set of language elements which comprise the
control-�ow perspective of newYAWL. All of the language elements in YAWL

have been retained and perform the same functions. A more detailed discussion
of YAWL can be found in [3]. Several new constructs have been added based on
the full range of work�ow patterns that have now been identi�ed. These are:

� the Thread split and Thread merge constructs, which allow the thread of
control to be split into multiple concurrent threads or several distinct threads
to be merged into a single thread of control respectively. The number of
threads being created/merged is speci�ed for the construct in the design-
time model. Figure 2(a) illustrates these constructs. After the make box

task, twelve threads of control are created ensuring that the �ll bottle task
runs 12 times before the pack box task can run (merging these threads before
it commences);

� the Partial join (also known as the m-out-of-n join) allows a series of in-
coming branches to be merged such that the thread of control is passed to
the subsequent branch when m of the incoming n branches are enabled. In
Figure 2(b), the cancel booking task has a 1-out-of-3 join associated with it.
If any of the incoming branches are enabled, then the cancel booking task is
enabled (and any preceding tasks that are still executing in the associated
cancellation region are withdrawn);

� the Structured loop (which supports while, repeat and combination loops)
allows a task (or a sequence of tasks in the form of a subprocess) to execute



NEW CONSTRUCTS

Persistent trigger task

Transient trigger task

Completion region

Blocking region

EXISTING CONSTRUCTS

Disablement arc

#

#

Composite task

Multiple instances of
an atomic task

Multiple instances of
a composite task

Atomic taskCondition

Input condition

Output condition

AND−join task

XOR−join task

OR−join task

AND−split task

XOR−split task

OR−split task

Thread split task

Thread merge task

Partial−join task

Repetitive task (while/repeat)

Cancellation region

Fig. 1. newYAWL symbology

repeatedly based on conditional tests at the beginning and/or end of each
iteration. The loop is structured in form and it has a single entry and exit
point. Figure 2(c) illustrates a repeat loop for the check backup task which
executes repeatedly until all backups have been veri�ed (i.e. it is a post-tested
loop);

� the Completion region supports the forced completion of tasks which it en-
compasses. In Figure 2(c) the test full recovery task is forcibly completed
once (all iterations of) the check backup task has �nished. This allows the
issue review report task to be immediately enabled;

� Persistent triggers and Transient triggers support the enablement of a task
being contingent on a trigger being received from the operating environment.
They are durable or transient in form respectively. Figure 2(d) illustrates a
persistent trigger (assumedly associated with some form of alarm) which
allows the deadline task to be enabled when it is received. As this trigger is
durable in form, it is retained for future use if it is received before the thread
of control arrives at the deadline task;

� the Disablement arc allows a dynamic multiple instance task to be pre-
vented from creating further instances but allows for each of the currently



1 box = 12 bottles

book
flight

car
book

hotel
book

issue
tickets

cancel
booking

file

car

flight
booked

flight
failure

hotel

hotel
failure

booked

booked

failure
car

fill
#

bottle

#
make

box
pack

box

deadline

prepare
proc’gs

call for
papers

paper
accept

(c)

(b)

(a)

(d)

initiate

review
backup

backup
check

report

issue
review

test
full

recov’ry

Fig. 2. Examples of newYAWL control-�ow constructs

executing instances to complete normally. Figure 2(d) has a disablement arc
associated with the deadline task which prevents any further papers from
being accepted once it has completed.

2.2 Data perspective

Whilst the control-�ow perspective has received considerable focus in many
work�ow initiatives, the data perspective is often only minimally supported with
issues such as persistence, concurrency management and complex data manipu-
lation often being outsourced to third party products. In an e�ort to characterise
the required range of data facilities in a work�ow language, newYAWL incorpo-
rates a series of features derived from the data patterns. These include:

� Support for a variety of distinct scopes to which data elements can be bound.
This allows the visibility and use of data elements to be restricted. The
range of data scopes recognised include: global (available to all elements of
all process instances), folder (available to the elements of process instances
to which the folder is currently assigned), case (available to all elements in a
given process instance), block (available to all elements of a speci�c process
or subprocess de�nition for a given process instance), scope (available to a
subset of the elements in a speci�c top-level process or subprocess de�nition
for a given process instance), task (available to a given instance of a task)
and multiple-instance (available to a speci�c instance of a multiple instance
task);



� Formal parameters for specifying how data elements are transferred between
process constructs (e.g. block to task, composite task to subprocess decom-
position, block to multiple instance task). These parameters take a function-
based approach to data transfer, thus providing the ability to support inline
formatting of data elements and setting of default values. Parameters can be
associated with tasks, blocks and processes;

� Link conditions for specifying conditions on outgoing arcs from OR-splits and
XOR-splits that allow the determination of whether these branches should
be activated;

� Preconditions and postconditions for tasks and processes. They are evaluated
at the enablement or completion of the task or process with which they are
associated. Unless they evaluate to true, the task or process instance with
which they are associated cannot commence or complete execution; and

� Locks which allow tasks to specify data elements that they require exclusive
access to (within a given process instance) in order to commence. Once these
data elements are available, the associated task instance retains a lock on
them until it has completed execution preventing any other task instances
from using them concurrently. The lock is relinquished once the task instance
completes.

2.3 Resource perspective

The resource perspective in newYAWL provides a variety of means of controlling
and optimising the way in which work is distributed to users and the manner
in which it is progressed through to ultimate completion. For each task, a spe-
ci�c interaction strategy can be speci�ed which precisely describes the way in
which the work item will be communicated to the user, how their commitment
to executing it will be established and how the time of its commencement will
be determined. Similarly, a detailed routing strategy can be de�ned which de-
termines the range of potential users that can undertake the work item. The
routing strategy can nominate the potential users in a variety of ways � they
can be directly speci�ed by name, in terms of roles that they perform or the
decision as to possible users can be deferred to runtime. There is also provision
for determining the range of potential users based on capabilities that individ-
ual users possess, the organisational structure in which the process operates
or the recorded execution history. The routing strategy can be further re�ned
through the use of constraints that restrict the potential user population. Indica-
tive constraints may include: retain familiar (i.e. route to a user that undertook
a previous work item), four eyes principle (i.e. route to a di�erent user than
one who undertook a previous work item), random allocation (route to a user
at random from the range of potential users), round robin allocation (route to
a user from the potential population on an equitable basis such that all users
receive a similar number of work items over time) and shortest queue allocation

(route the work item to the user with the shortest work queue).
newYAWL also supports two advanced operating modes that are designed

to expedite the throughput of work by imposing a de�ned protocol on the way



in which the user interacts with the system and work items are allocated to
them. These modes are: piled execution where all work items corresponding to a
given task are routed to the same user and chained execution where subsequent
work items in a process instance are routed to the same user once they have
completed a preceding work item. Finally, there is also provision for specifying a
range of user privileges, both at process and individual task level, that restrict or
augment the range of interactions that they can have with the work�ow engine
when they are undertaking work items.

3 newYAWL: the system

A work�ow system encompasses a number of distinct functions as illustrated by
the diagram in Figure 3. Generally the business process that is to be automated
is captured in the form of a process model. A work�ow management system is
responsible for coordinating the execution of instances of the process model. It
comprises a number of discrete components. First the work�ow engine is re-
sponsible for managing the control-�ow and data elements that are associated
with each process instance. As the thread of control �ows through a process, it
results in the triggering of individual tasks that make up the process model. The
enabling of a task results in the creation of a new work item which needs to be
executed by a human resource. However, in order for this to occur, the identity
of one or more suitable resources needs to be determined. This activity is the
responsibility of the work item routing component and is based on the interpre-
tation of task routing information associated with each task in the context of
the current state of the process instance. Once a set of suitable resources have
been determined for a work item, it is necessary to advise them of the pending
work item. This function is undertaken by the worklist management component
which places the work item on the worklist of each resource to whom it is to
be routed. Thus the work�ow management system retains a centralised view of
the state of all work items and also provides work�ow administration facilities
should it be necessary to intervene in the normal conduct of this process.

handler
worklist

workflow
engine

workflow
administrat’n

workflow client

system user

process
model

workflow designer

workflow administrator

workflow management system

work item
routing

worklist
management

Fig. 3. Outline of major work�ow system components



However despite the consistent centralised view of pending work maintained
by the work�ow management system, there is another layer of complexity in
managing the actual distribution and conduct of work items across the range
of resources coordinated by the work�ow system. This stems from the fact that
resources typically operate independently of the work�ow system. They retain
a distinct view of the work that they are conducting which is accessed via a
worklist handler (which typically takes the form of a software client running at
a distinct location to that of the work�ow management system). Although the
worklist handler operates on a client-server basis with respect to the work�ow
management system, it is generally disconnected from it and only connects to it
when it wishes to refresh its view of the current work allocation or to advise the
work�ow system of a change of state in the work items it has been allocated.

Clearly a work�ow system involves a relatively complex set of software com-
ponents and interactions, and in order to provide a precise de�nition of how a
business process should actually be enacted in an operational environment, it is
necessary not only to provide an operational semantics for the work�ow language
that describes the business process, but also to de�ne the overall architecture
and operation of the work�ow system. This has been done for newYAWL us-
ing a series of interrelated Coloured Petri Nets developed using the CPN Tools
environment [13]. This approach to formalising the system o�ers the dual ben-
e�ts of establishing a precise de�nition of the operation of each of the language
constructs which comprise newYAWL and also providing a means of describing
exactly how an instance of a newYAWL speci�cation should be executed. There
are 55 distinct CPNs which make up the newYAWL system description.

These are illustrated in Figure 4 along with the relationships between them.
The correspondence between the functional work�ow system components iden-
ti�ed in Figure 3 and each of the CPNs is also delineated. An indication of the
complexity of individual nets is illustrated by the p and t values included for
each of them which indicate the number of places and transitions that they con-
tain. Clearly it is not possible to discuss the operation of all of these nets in the
con�nes of this paper, however some of them (indicated by the shaded boxes and
cross-references) are discussed in further detail in subsequent sections. A com-
prehensive description of the 55 CPNs which comprise the newYAWL system
can be found in [23]. In the following sections, we will outline the operation of
three of these areas, illustrated by the shaded models in Figure 4. These provide
an overview of the work�ow engine, worklist management and worklist handler

components of the work�ow system.

3.1 Work�ow engine

Figure 5, which is the topmost net in the newYAWL model, provides a useful
summary of the operation of a work�ow engine. The various aspects of control-
�ow, data management and work distribution information which make up a static
newYAWL speci�cation are encoded in the CPN model as tokens in individual
places. The top level view of the lifecycle of a process instance is indicated by the
transitions in this diagram connected by the thick black line. First a new process



handler
worklist

select

start

abort

process
start request

suspension
resumption

route manual
allocation

completion
process process

deallocation

exit
work item

start work
item instance

complete work

reject reoffer route manual
offers

reallocation
reject

reallocation
route process manual

immediate start

reject offer

state oriented
reallocation

process
distribution

failure

autonomous
completion

route allocationroute offers

work item
routing

autonomous
initiation

process
selection 
request

logonandlogoff complete

skipsuspend

deallocate halt instance

stateless
reallocate

manipulate
worklist allocate

reallocate
stateful

delegate

complete
work item

fail
work item

cancel
work item

interrupt
processing

end casestart caseadd
work item

process

management
data

work item
distribution

immediate
route

start
manual

distribution

route
delegation

route reoffers

terminate block
item instance &

p:40 t:4 p:11 t:4 p:12 t:1 p:10 t:1 p:8 t:1

p:15 t:3

p:6 t:3 p:7 t:4

p:7 t:2p:7 t:1

p:5 t:1 p:2 t:1 p:2 t:1

p:4 t:1

p:4 t:1 p:12 t:3

p:12 t:3

p:5 t:1p:3 t:1

p:2 t:1 p:7 t:6 p:2 t:1

p:5 t:1
start

immediate 

p:39 t:33

p:20 t:2 p:8 t:1 p:7 t:2

p:4 t:2

p:5 t:3

p:4 t:1

p:4 t:1

p:4 t:1 p:3 t:1

p:10 t:1

p:4 t:1

p:4 t:1

p:5 t:1 p:11 t:1

p:5 t:1

p:3 t:1

p:2 t:1

p:8 t:1

p:3 t:1

p:4 t:1

p:5 t:2

p:6 t:1

p:21 t:1 p:3 t:1

p:2 t:1

p:2 t:1

worklist
handler

(see Figure 7)
p:25 t:15

workenter
work item

p:17 t:1

p:22 t:9

execution
(see Figure 5)

(see Figure 6)
distribution

p:12 t:3

management
intervention

p:13 t:9

workflow

routing
workitemworklist

workflow engine

administration

management

Fig. 4. newYAWL system CPN model hierarchy

instance is started, then there are a succession of enter→start→complete

→exit transitions which �re as individual task instances are enabled, the work
items associated with them are started and completed and the task instances are
�nalised before triggering subsequent tasks in the process model. Each atomic
work item needs to be routed to a suitable resource for execution, an act which
occurs via the work distribution transition. This cycle repeats until the last
task instance in the process is completed. At this point, the process instance is
terminated via the end case transition. There is provision for data interchange
between the process instance and the environment via the data management

transition. Finally, where a process model supports task concurrency via multiple
work item instances, there is provision for the dynamic addition of work items
via the add transition.

The major data items shared between the activities which facilitate the pro-
cess execution lifecycle are shown as shared places in this diagram. Not sur-
prisingly, this includes both static elements which describe characteristics of
individual processes such as the �ow relation, task details, variable declarations,
parameter mappings, preconditions, postconditions, scope mappings and the hi-
erarchy of process and subprocess de�nitions which make up an overall process
model, all of which remain unchanged during the execution of particular in-
stances of the process. It also includes dynamic elements which describe how an
individual process instance is being enacted at any given time. These elements
are commonly known as the state of a process instance and include items such as
the current marking of the place in the �ow relation, variable instances and their
associated values, locks which restrict concurrent access to data elements, de-



end
case

end-case

start
case

start-case

work distribution

work-distribution

data
management

data-management

add

add-work-item

complete and
terminate block

complete-work-item-instance-and-terminate-block

start

start-work-item-instance

exit

exit-work-item

enter

enter-work-item

postconditions

iPost

PostConds

preconditions

iPre

PreConds

parameter
mappings

iPM

Params

scope
mappings

iSM

ScopeMaps

folder
mappings

[]

FolderMaps

newcase 
identity

iNewCase

ProcessIDxCID

assigned
folders

iFA

FolderAssigns

wi to be
cancelled

WI

wi completed
by resource

[]

WIs

started
work items

[]

UWIs

active
nets

[]

SubProcs

process
hierarchy

iWH

Map

flow
relation

iFR

FlowRel

process
state

[]

Marking

assign wi
to resource

[]

WIs

variable
instances

[]

VarInsts

variable
declarations

iVD

VarDecls

lock
register

[]

LOCKS

task
details

iVarDet

TaskDetails

mi_e

[]

WIs

mi_a

[]

WCTINTs

mi_c

[]

WIs

exec

[]

WIs

enter-work-item exit-work-item

start-work-item-instance complete-work-item-instance-and-terminate-block

add-work-item

data-management

work-distribution

start-case

end-case

Fig. 5. Overview of the newYAWL work�ow engine



tails of subprocesses currently being enacted, folder mappings (identifying shared
data folders assigned to a process instance) and the current execution state of
individual work items (e.g. enabled, started or completed).

There is relatively tight coupling between the places and transitions in Figure
5, illustrating the close integration that is necessary between the various aspects
of the control-�ow and data perspectives in order to enact a process model. The
coupling between these places and the work distribution transition however is
much looser. There are no static aspects of the process that are shared with other
transitions in the model (i.e. the transitions underpinning work distribution)
and other than the places which serve to communicate work items being dis-
tributed to resources for execution (and being started, completed or cancelled),
the variable instances place is the only aspect of dynamic data that is shared
with the work distribution subprocess. This re�ects the functional independence
of the work�ow engine, work item routing and worklist management components.
The next section looks at the issue of worklist management in more detail.

3.2 Worklist management

The main motivation for work�ow systems is achieving more e�ective and con-
trolled distribution of work. Hence the actual distribution and management of
work items are of particular importance. The process of managing the distribu-
tion of work items to resources is summarized by Figure 6. It coordinates the
interaction between the work�ow engine, work item routing, worklist handler

and work�ow administration components.
The correspondences between these components and the transitions in Figure

6 can be summarised as follows:

� the worklist management component is facilitated by the the work item

distribution transition, which handles the overall management of work
items through the distribution and execution process (note that it subsumes
the work item routing component);

� the worklist handler component corresponds directly to the the worklist

handler transition, which is the user-facing client software that advises users
of work items requiring execution and manages their interactions with the
main work item distribution transition in regard to committing to exe-
cute speci�c work items, starting and completing them;

� the work�ow administration component is facilitated via two distinct tran-
sitions: the management intervention transition, that provides the ability
for a work�ow administrator to intervene in the work distribution pro-
cess and manually reassign work items to users where required; and the
interrupt handler transition that supports the cancellation, forced com-
pletion and forced failure of work items as may be triggered by other com-
ponents of the work�ow engine (e.g. the control-�ow process, exception han-
dlers).

Work items that are to be distributed are communicated between the work-

�ow engine and the worklist management components via the work items for



interrupt
handler

interrupt-processing

work item
distribution

work-item-distribution

management
intervention

management-intervention

worklist
handler

worklist-handler

variable
instances

I/O
VarInsts

distributed
work items

[]

WIxUsersList

fail
work item

WI

complete
work item

WI

cancel
work item

In
WI

autonomous
work item finish

WI

autonomous
work item start

WI

failed
work items

WI

piled exec
users

[]

UserTasks

chained
exec users

[]

Users

completed
work items

I/O
WIs

work items 
for distribution

I/O
WIs

manual 
immediate start

WI

create
immediate start

WIxUser

started

UWI

stop 
execution

UWI

started
work items

I/O

UWIs

create
allocation

WIxUser

create
offers

WIxUsers

allocated  
work items

[]

UWIs

offered 
work items

[]

UWIs

deallocation

UWI

delegation

UWI

stateless
reallocation

UWI

stateful
reallocation

UWI

immediate
start

UWI

allocation

UWI

reallocation

WIxUser

reoffer

WIxUsers

manual 
allocation

WI

manual 
offer

WI

resumption

UWI

suspension

UWI

start

UWI

completion

UWI

rejected

UWI

selected

UWI

selection

UWI

withdraw 
offer

UWI

offer

UWI

I/O

I/O

I/O

In

I/O

worklist-handler
management-intervention

work-item-distribution interrupt-processing

Fig. 6. Top level view of the worklist management component

distribution place. This then prompts the work item distribution transi-
tion to determine how they should be routed for execution. This may involve
the services of the work�ow administrator in which case they are sent to the
management intervention transition or alternatively they may be sent directly
to one or more resources via the worklist handler transition. The various
places between these three transitions correspond to the range of requests that
�ow between them. In the situation where a work item corresponds to an auto-

matic task, it is sent directly to the autonomous work item start place and
no further distribution activities take place. An automatic task is considered
complete when a token is inserted in the autonomous work item finish place.

A common view of work items in progress is maintained between the work

item distribution, worklist handler, management intervention and interrupt



handler transitions via the offered work items, allocated work items and
started work items places (although obviously this information is only avail-
able to the worklist handler when it is actually connected to the work�ow man-
agement system). There is also shared information about users in advanced op-
erating modes that is recorded in the piled exec users and chained exec

users places. Although there is signi�cant provision for shared information
about the state of work items, the determination of when a work item is ac-
tually complete rests with the work item distribution transition and when
this occurs, it inserts a token in the completed work items place. Similarly,
work item failures are noti�ed via the failed work items place. The only ex-
ception to these arrangements are for work items that are subject to some form
of interrupt (e.g. an exception being detected and handled). The interrupt

handler transition is responsible for managing these occurrences on the basis of
cancellation, forced completion and failure requests received in the cancel work

item, complete work item and fail work item places respectively. All of the
activities in the worklist management component are illustrated by substitution
transitions indicating that each of them are de�ned in terms of signi�cantly more
complex subprocesses. It is not possible to present each of them in this paper.
Finally we focus on one other signi�cant component: the worklist handler.

3.3 Worklist handler

The worklist handler component is illustrated in Figure 7 and describes how
the user-facing work�ow interface (typically a worklist handler software client)
operates and interacts with the worklist management component. The main
path through this process is indicated by the thick black arcs. There are various
transitions that make up the process, these correspond to actions that individual
users can request in order to alter the current state of a work item to more closely
re�ect their current handling of it. These actions may simply be requests to start
or complete it or they may be �detour� requests to reroute it to other users e.g.
via delegation or deallocation. The manner in which these requests operate
is illustrated by the shared places in Figure 6. Typically the inclusion of request
in one of these shared places results in a message �owing between the worklist

handler and worklist management components causing the relative states of the
two components to be synchronised.

4 Related work

There have been numerous papers advocating approaches to work�ow and busi-
ness process modelling based on Petri Nets (cf. [1],[10],[5],[18]), however these
tend to either focus on a single aspect of the domain (e.g. the control-�ow per-
spective) or they are based on a relatively simplistic language. There have also
been attempts to provide formal semantics using Petri Nets for many of the
more widely used approaches to business process modelling including EPCs [2],



uwi

allocate

allocate

manipulate
worklist

manipulate-worklist

abort

abort

stateless
reallocate

stateless-reallocate

stateful
reallocate

stateful-reallocate

immediate
start

immediate-start

halt 
instance

halt-instance

deallocate

deallocate

delegate

delegate

skip

skip

suspend

suspend

start 
work item

start

complete
 work item

complete

logon and off

logonandoff

select
work item

select

piled exec
users

I/O
UserTasks

chained
exec users

I/O
Users

started
work items

I/O

UWIs

allocated  
work items

I/O
UWIs

offered 
work items

I/O
UWIs

started

In
UWI

stop 
execution

In
UWI

stateless
reallocate

Out
UWI

stateful
reallocate

Out
UWI

delegate

Out
UWI

deallocate

Out
UWI

immediate
start

In
UWI

resume

Out
UWI

suspend

Out
UWI

start

Out
UWI

allocation

In
UWI

allocation
requested

[]

UWIs

in progress

[]

UWIs

logged on
users

User

withdraw 
offer

In
UWI

offer

In
UWI

select

Out
UWI

selected

In
UWI

complete

Out
UWI

rejected

In
UWI

In

Out

In

Out

In

In

In

Out

Out

Out

In

Out

Out

Out

Out

In

In

I/O I/O I/O I/O I/O

select

logonandoff

complete

start

suspend

skip

delegate

deallocate

halt-instance

immediate-start

stateful-reallocate

stateless-reallocate

abort

manipulate-worklist

allocate

Fig. 7. Worklist handler component

UML 2.0 Activity Diagrams [24] and BPMN [8], although in each case arriv-
ing at a complete semantics has been hampered by inherent ambiguities in the
informal descriptions for each of the formalisms. There has been minimal work
on formalisation of the other work�ow perspectives, one exception is [19] which
investigates mechanisms for work distribution in work�ows and presents CPN
models for a number of the work�ow resource patterns.

Historically, the modelling and enactment of processes have often been treated
distinctly and it is not unusual for separate design and runtime models to be
utilised by systems. Approaches to managing the potential disparities between
these models have included the derivation of executable process descriptions
from design-time models [7] and the direct animation of design-time models for
requirements validation [17]. The latter of these approaches which uses a strat-
egy based on Coloured Petri Nets [13] and CPN Tools [14] as an enablement



vehicle is one of a number of initiatives that have successfully used the CPN
Tools o�ering as a means of executing various design-time modelling formalisms
including Protos models [11], sequence diagrams [20] and task descriptions [15].

There has been a signi�cant body of work that describes software architec-
tures for work�ow management systems. Signi�cant examples of such systems
include MOBILE [12], WIDE [6], CrossFlow [16] and WAMO [9] amongst many
others however none of these systems o�er a fully formalised description both of
their language elements and the overall operation of the work�ow system.

5 Experiences and conclusion

The newYAWL system model3 incorporates 55 distinct pages of CPN diagrams

and encompasses 480 places, 138 transitions and in excess of 1500 lines of ML

code. It took approximately six months to develop. The size of the model gives
an indication of the relative complexity of formally specifying a comprehensive
business process modelling language such as newYAWL. Indeed, it is only with
the aid of an interactive modelling environment such as CPN Tools that devel-
oping a formalisation of this scale actually becomes viable. One of the major
advantages of pursuing this approach to software development is that it pro-
vides a design that is executable. This allows fundamental design decisions to
be evaluated and tested much earlier than would ordinarily be the case during
the development process. Where suboptimal design decisions are revealed, the
cost of rectifying them is signi�cantly less than it would be later in the develop-
ment lifecycle. There is also the opportunity to test alternate solutions to design
issues with minimal overhead before a �nal decision is settled on. A particular
bene�t a�orded by this approach to formalisation is that the CPN hierarchy
established during the design process provides an excellent basis on which to
make subsequent architectural and development decisions.

The original motivations for this research initiative were twofold: (1) to estab-
lish a fully formalised business process modelling language based on the synthesis
of the work�ow patterns and (2) to demonstrate that the language was not only
suitable for conceptual modelling of business processes but that it also contained
su�cient detail for candidate models to be directly enacted. newYAWL achieves
both of these objectives and directly supports 118 of the 126 work�ow patterns

that have been identi�ed. It is interesting to note however that whilst the devel-
opment of a system model of this scale o�ers some extremely bene�cial insights
into the overall problem domain and provides a software design that can be
readily utilised as the basis for subsequent programming activities, it also has
its limitations. Perhaps the most signi�cant of these is that the scale and com-
plexity of the model obviates any serious attempts at veri�cation. Even on a
relatively capable machine (P4 2.1Ghz dual-core, 2Gb RAM), it takes almost 4
minutes just to load the model. Moreover the potentially in�nite range of busi-
ness process models that the newYAWL system can encode, rules out the use

3 This model is available at www.yawl-system.com/newYAWL.



of techniques such as state space analysis. This raises the question as to how
models of this scale can be comprehensively tested and veri�ed.

Notwithstanding these considerations however, the development of the newYAWL

system model delivered some salient insights into areas of newYAWL that needed

further consideration during the design activity. These included:

� the introduction of a deterministic mechanism for recording status changes
in the work item execution lifecycle in order to ensure that the views of
these details maintained by the worklist management and worklist handler

components are consistent;
� the establishment of a coherence protocol to ensure that reallocation of work
items to alternate resources either by resources themselves or the work�ow
administrator are handled in a consistent manner in order to ensure that po-
tential race conditions arising during reallocation do not result in the work-
�ow engine, work�ow administrator or the initiating resource (i.e. worklist
handler) having irreconcilable views of the current state of work item allo-
cations;

� the introduction of a consistent approach for handling the evaluation of
any functions associated with a newYAWL speci�cation e.g. for outgoing
links in a XOR-split, pre/postconditions, pre/post tests for iterative tasks
etc. This issue was ultimately addressed by mapping any necessary function
calls to ML functions and establishing a standard approach to encoding the
invocation of these functions and the passing of any necessary parameters
and the return of associated results;

� adoption of a standard strategy for characterising parameters to functions in
order to ensure that they could be passed in a uniform way to the associated
ML functions that evaluated them;

� the introduction of a locking strategy for data elements to prevent inadver-
tant side-e�ects of concurrent data usage; and

� recognition that when a self-cancelling task completes: (1) it should process
the cancellation of itself last of all in order to prevent the situation where
it cancels itself before all other cancellations have been completed and (2)
it needs to establish whether it is cancelling itself before it can make the
decision to put tokens in any relevant output places associated with the
task.

The newYAWL system model provides a complete description of an operational
environment for the newYAWL language. It is su�ciently detailed to be di-
rectly useful for system design and development activities. It will serve as the
design blueprint for upcoming versions of the open-source YAWL System. The
resource management component of the newYAWL language is currently being
incorporated in the YAWL System.

References

1. W.M.P. van der Aalst. The application of Petri nets to work�ow management.
Journal of Circuits, Systems and Computers, 8(1):21�66, 1998.



2. W.M.P. van der Aalst. Formalization and veri�cation of event-driven process
chains. Information and Software Technology, 41(10):639�650, 1999.

3. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another work�ow
language. Information Systems, 30(4):245�275, 2005.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Work�ow patterns. Distributed and Parallel Databases, 14(3):5�51, 2003.

5. N.R. Adam, V. Atluri, and W.K. Huang. Modeling and analysis of work�ows using
Petri nets. Journal of Intelligent Information Systems, 10(2):131�158, 1998.

6. S. Ceri, P.W.P.J. Grefen, and G. Sanchez. Wide: A distributed architecture for
work�ow management. In Proceedings of the Seventh International Workshop
on Research Issues in Data Engineering (RIDE'97), Birmingham, England, 1997.
IEEE Computer Society Press.

7. E. Di Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and M. Trombetta. Deriving
executable process descriptions from UML. In ICSE '02: Proceedings of the 24th
International Conference on Software Engineering, pages 155�165, New York, NY,
USA, 2002. ACM Press.

8. R.M. Dijkman, M. Dumas, and C. Ouyang. Formal semantics and
automated analysis of BPMN process models. Technical Report
5969, Queensland University of Technology, Brisbane, Australia, 2007.
http://eprints.qut.edu.au/archive/00005969/.

9. J. Eder and W. Liebhart. The work�ow activity model (WAMO). In S. Laufmann,
S. Spaccapietra, and T. Yokoi, editors, Proceedings of the Third International Con-
ference on Cooperative Information Systems (CoopIS-95), pages 87�98, Vienna,
Austria, 1995. University of Toronto Press.

10. C.A. Ellis and G.J. Nutt. Modelling and enactment of work�ow systems. In
M. Ajmone Marsan, editor, Proceedings of the 14th International Conference on
Application and Theory of Petri Nets, volume 691 of Lecture Notes in Computer
Science, pages 1�16, Chicago, IL, USA, 1993. Springer.

11. F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and H.M.V. Verbeek.
Protos2CPN: Using colored Petri nets for con�guring and testing business pro-
cesses. In K. Jensen, editor, Proceedings of the 7th Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, volume PB-579 of Daimi
Reports, pages 137�155, Aarhus, Denmark, 2006.

12. S. Jablonski and C. Bussler. Work�ow Management: Modeling Concepts, Archi-
tecture and Implementation. Thomson Computer Press, London, UK, 1996.

13. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science.
Springer-Verlag, Berlin, Germany, 1997.

14. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri nets and CPN Tools for
modelling and validation of concurrent systems. International Journal of Software
Tools for Technology Transfer, 9(3):213�254, 2007.

15. J.B. Jørgensen, K.B. Lassen, and W.M.P. van der Aalst. From task descriptions via
coloured Petri nets towards an implementation of a new electronic patient record.
In K. Jensen, editor, Proceedings of the 7th Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, volume PB-579 of Daimi Reports,
pages 137�155, Aarhus, Denmark, 2006.

16. H. Ludwig and Y. Ho�ner. Contract-based cross-organisational work�ows - the
cross�ow project. In P. Grefen, C. Bussler, H. Ludwig, and M.C. Shan, editors,
Proceedings of the WACC Workshop on Cross-Organisational Work�ow Manage-
ment and Co-Ordination, San Francisco, 1999.



17. R.J. Machado, K.B. Lassen, S. Oliveira, M. Couto, and P. Pinto. Requirements
validation: Execution of UML models with CPN Tools. International Journal on
Software Tools for Technology Transfer, 9(3):353�369, 2007.

18. Daniel Moldt and Heiko Rölke. Pattern based work�ow design using Reference
nets. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors,
Proceedings of the Business Process Management Conference 2003, volume 2678 of
Lecture Notes in Computer Science, pages 246�260, Eindhoven, The Netherlands,
2003. Springer.

19. M. Pesic and W.M.P. van der Aalst. Modelling work distribution mechanisms
using colored Petri nets. International Journal on Software Tools for Technology
Transfer, 9(3):327�352, 2007.

20. O.R. Ribeiro and J.M. Fernandes. Some rules to transform sequence diagrams
into coloured Petri nets. In K. Jensen, editor, Proceedings of the 7th Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, volume
PB-579 of Daimi Reports, pages 137�155, Aarhus, Denmark, 2006.

21. N. Russell, A.H.M. ter Hofstede, and W.M.P. van der Aalst. newYAWL: Specifying
a work�ow reference language using Coloured Petri Nets. In Proceedings of the
Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools, number DAIMI PB-584, pages 107�126. Department of Computer
Science, University of Aarhus, Denmark, 2007.

22. N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Work-
�ow control-�ow patterns: A revised view. Technical Report BPM-06-22, 2006.
http://www.BPMcenter.org.

23. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P van der Aalst.
newYAWL: achieving comprehensive patterns support in work�ow for the control-
�ow, data and resource perspectives. Technical Report BPM-07-05, 2007.
http://www.BPMcenter.org.

24. H. Störrle and J.H. Hausmann. Towards a formal semantics of UML 2.0 activities.
In P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Proceedings of the Software
Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik, volume 64 of
Lecture Notes in Informatics, pages 117�128, Essen, Germany, 2005. Gesellschaft
fur Informatik.


