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Abstract. Declarative languages are becoming more popular for mod-
elling business processes with a high degree of variability. Unlike proce-
dural languages, where the models define what is to be done, a declara-
tive model specifies what behaviour is not allowed, using constraints on
process events. In this paper, we study how to support configurability in
such a declarative setting. We take Declare as an example of a declarative
process modelling language and introduce Configurable Declare. Config-
urability is achieved by using configuration options for event hiding and
constraint omission. We illustrate our approach using a case study, based
on process models of ten Dutch municipalities. A Configurable Declare
model is constructed supporting the variations within these municipali-
ties.
Keywords: business process modelling, configurable process models,
declarative process models, Declare

1 Introduction

Process-aware information systems [4], such as workflow management systems,
case-handling systems and enterprise information systems, are used in many
branches of industry and governmental organisations. Process models form the
heart of such systems since they define the flow of task executions. Traditionally,
the languages used for process modelling are procedural languages, since they are
very appropriate for describing well-structured processes with a predefined flow.
At the same time, procedural models become very complex for environments
with high variability, since every possible execution path has to be encoded
in the model. In the most extreme cases, like specifications of some medical
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Fig. 1. Example of Declare model describing the process for requesting an excerpt from
the civil registration (Mun. A)

Fig. 2. Automaton obtained from the translation of the Declare model in Fig. 1

protocols, the process flow cannot be completely predefined, and the procedural
way of modelling becomes impossible.

Unlike procedural languages, specifying what should be done, declarative
languages specify which constraints may not be violated, and therefore they allow
for comprehensible descriptions of processes with a high degree of variability.
Declarative languages are also very appropriate for defining compliance models,
which specify what should (not) be done instead of saying how it should be
done. Consider, for instance, the set of rules in Fig. 1 from our case study. By
translating this simple set of rules into an automaton1, we obtain the procedural
model in Fig. 2 that is much more complex.

1 We have used the Declare tool (http://www.win.tue.nl/declare/) for the translation
of Declare models to automata
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In recent years, a number of declarative process modelling languages were
developed [1,10,11,14] and proven to be more suitable for certain application do-
mains than procedural languages [6,12,19]. Nevertheless, since declarative pro-
cess modelling languages attracted the attention of the research community at
the later stage, when procedural languages were already massively used, there
are still serious gaps in the domain of declarative process modelling which are
still to be filled in. In this paper, we address one such a gap: configurability of
declarative process models.

Nowadays, many branches of industry have semi-standardised collections of
process models. Within one branch, process models of different organisations are
often very similar due to legislation and (partial) standardisation, e.g., processes
for registering a birth or extending a driving license would be very similar to
each other for different municipalities. A one-size-fits-all approach with full stan-
dardisation of processes is however often inappropriate, as these organisations
have good reasons for using specific variants of these common processes.

Configurable process models were introduced to solve the aforementioned
problems [8,9]. They allow the user to change some parts of the model towards
the user’s preferences. This solves the one-size-fits-all problem and improves
maintainability of processes since it becomes possible to describe several slightly
different models by a single configurable model. When the configurable model
is changed, all process models are updated automatically. To the best of our
knowledge, the only kind of existing configurable process models are procedural
models.

In this paper, we study in which way configurability in the declarative context
is different from configurability in the procedural context. For this purpose, we
consider the example declarative language Declare [11], in which constraints are
LTL-formulas evaluated on traces of events executed in a process, and we define
Configurable Declare. Since a declarative process model is a set of constraints
over a set of events (representing the completion of a specific task in a business
process), the configuration options we include in Configurable Declare are (1)
hiding an event and (2) omitting a constraint. Through a configuration, it is
possible to specify, for each configuration option, a boolean value that indicates
whether a hideable event must be hidden or an omittable constraint must be
omitted in the configured model.

Like most declarative languages, Declare works under the open world as-
sumption, and, therefore, hiding an event does not mean forbidding this event
to be executed. As the name suggests, hiding means allowing some event to be-
come unobservable, unmonitored, unlogged. The behaviour of a model in which
an event is hidden should remain the same as it was modulo this event. In the
case of a Declare model, where process behaviour is considered to be defined by
the set of traces (language) compliant with the model, hiding an event should
result in a model with the same language modulo the hidden event.

To achieve language preservation, we take into account implicit constraints
that would be lost if we simply removed from the model the event and the con-
straints connected to the event. For example, consider a model with constraints
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“every paper submission is followed by a review” and “every review is followed
by sending a notification letter” in which the event “review” gets hidden. This
implies that the two constraints we have will be removed together with the event.
To preserve the language modulo the hidden event “review”, we have to include
the implicit constraint “every paper submission is followed by sending a notifica-
tion letter” into the configured model. We define a derivation scheme for implicit
constraints that allows us to have a sound transformation of a configurable model
and a configuration to a configured model.

Since some configurations might lead to uninteresting or undesirable process
variants, we introduce meta-constraints, which are defined as logical expressions
over configuration choices, e.g., “if event A is hidden, then eventB is not hidden”.
Meta-constraints, in fact, restrict possible configurations to configurations that
make sense from the content-wise perspective.

To support process modelling with Configurable Declare, we have developed
ConfDeclare [16]. We have used this tool in the context of the CoSeLoG2

project for a case study based on process models from ten Dutch municipalities.
These models represent the production of an excerpt from the civil registration.
In particular, starting from the different variants of the process (one for each
municipality) we build a Configurable Declare model from which these variants
can be derived.

Related Work Configurable process models have been defined for a number of
procedural modelling languages, e.g., C -SAP WebFlow , C -BPEL, C -YAWL [8],
CoSeNets [18], and C -EPC [13]. Imperative configurable process models sup-
port a number of standard operations. Some patterns for procedural configurable
models have been identified to support these operations [2,3,8,15]. Configurable
Declare supports those patterns that can be mirrored to the declarative ap-
proach.

The paper is structured as follows: Section 2 gives a brief introduction to
Declare. In Section 3, we introduce Configurable Declare. Section 4 explains the
configuration steps: hiding an event and omitting a constraint. In Section 5, we
show how to derive a Declare model from a Configurable Declare model and
a configuration. Finally, in Section 6, we draw some conclusions and discuss
directions for future work.

2 Declare: A User-Friendly Declarative Language

A process can be described by using different types of modelling languages. Pro-
cess modelling languages can be classified according to two categories: procedural
and declarative. A procedural model works with a “closed world” assumption,
i.e., it explicitly specifies all the acceptable sequences of events in the process and
everything that is not mentioned in the model is forbidden. Procedural process
models can be used to provide a high level of operating support to participants

2 http://www.win.tue.nl/coselog/
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Table 1. FLTL operators semantics

operator semantics

©ϕ ϕ has to hold in the next position of a path.

�ϕ ϕ has to hold in all the subsequent positions of a path.

♦ϕ ϕ has to hold eventually (somewhere) in the subsequent positions of a path.

ϕ Uψ
ϕ has to hold in a path at least until ψ holds and ψ must hold in the current or
in some future position.

who simply follow one of the allowed sequences in the model during the process
execution. Therefore, this type of models is optimal in environments that are
stable and where the process flow can be fully described in the model.

In contrast, a declarative model describes a process through constraints that
should not be violated by the process execution. A declarative process model
works with an “open world” assumption, i.e., any event is allowed unless it is
explicitly forbidden by some constraint. This type of models can be used in highly
dynamic environments where processes have a low degree of predictability. This is
optimal when participants make decisions themselves and adapt the process flow
accordingly (e.g., a doctor in a procedure to treat a fracture). Using declarative
models for such processes allows for compact, readable representations.

In this paper, we study configurability of declarative process modelling lan-
guages taking Declare as an example of these languages. We explain here the
basics of Declare necessary in the context of configurability and we refer the
reader to [11] for a complete description of the language. Declare has formal se-
mantics based on the use of a temporal logic, but the modeler is not confronted
with this formal side, since the language has a user-friendly graphical notation
capturing behavioural patterns expressible as temporal logic formulas. These
patterns are a superset of the ones identified by Dwyer et al. in [5] and each of
them has a specific graphical notation and semantics.

Given that business processes eventually terminate, Declare reasons on finite
traces of events and uses a variant of LTL for finite traces called FLTL [7].
Table 1 contains the main FLTL operators and their semantics. Fig. 3 shows
the graphical notation for the response constraint (response(A,B)) in Declare.
The semantics of this constraint is captured in FLTL by �(A ⇒ ♦B) (“every
occurrence of event A is eventually followed by an occurrence of event B). In
Table 2, we summarise the graphical notation and the FLTL semantics of the
Declare constraints used in this paper.

A Declare model can be seen as a set of constraints, i.e., a conjunction of
FLTL formulas over events. Formally, a Declare model can be defined as follows:

Fig. 3. The response constraint between A and B
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Table 2. Graphical notation and FLTL semantics of the Declare constraints used in
this paper

constraint FLTL semantics graphical notation

respone(A,B) �(A⇒ ♦B)

precedence(A,B) (¬B UA) ∨ �(¬B)

succession(A,B) response(A,B) ∧ precedence(A,B)

alternate response(A,B) �(A⇒©(¬A UB))

exclusive 1 of 2(A,B) (♦A ∧ ¬♦B) ∨ (¬♦A ∧ ♦B)

init(A) A

Definition 1 (Declare Model). A Declare model is a pair M=(E, C), where
E is a set of events and C is a set of FLTL formulas over events in E.

A trace of events belongs to the language of a Declare model, if it satisfies
all the constraints of this model:

Definition 2 (Language). The language of a Declare model M = (E,C), namely
L(M), is the set of all traces satisfying all the constraints from C.

The formal semantics allows every Declare model to be executable and veri-
fiable. To verify the validity of a constraint on a trace, the corresponding FLTL
formula can be translated to a finite state automaton that accepts those and
only those traces on which the formula is satisfied. The automaton for the re-
sponse constraint in Fig. 3 is shown in Fig. 4; the initial state (marked by an
edge with no origin) is here also an accepting state (indicated using a double
outline). When event A happens, the state of the automaton is changed to a
non-accepting state; it changes back to the initial accepting state only when a
event B happens. Next to the positive labels, we also have negative labels (e.g.,
¬A). They indicate that we can follow the transition for any event not men-
tioned (e.g., we can execute event C from the initial state and remain in the

¬A
A

¬B

B

Fig. 4. Automaton for response(A,B)
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same state). This allows us to use the same automaton regardless of the input
language, taking into account the open-world assumption. To verify the validity
of a Declare model M = (E,C) for a trace, we consider the automaton obtained
from the conjunction of the constraints in the model.

Fig. 1 shows a simple Declare model describing the process for requesting
an excerpt from the civil registration in a Dutch municipality. This model is
part of a case study conducted in collaboration with ten Dutch municipalities in
the CoSeLoG project. These municipalities model (and execute) this process in
different, but still very similar ways, which makes it interesting in the context
of configurability.

The Declare model in Fig. 1 involves nine events, depicted as rectangles, (e.g.,
Send payment request) and nine constraints, showed as connectors between the
events (e.g., succession). Events represent the completion of a specific task in
the business process. Constraints highlight mandatory and forbidden behaviours,
implicitly identifying the acceptable sequences of events that comply with the
model.

The constraint init shows that Fill in e-form must be the first task per-
formed in the process; note that it is not forbidden to execute this task again
later on. Since it is necessary to exactly evaluate the total amount of administra-
tive expenses before formulating a payment request, Send payment request can
be performed only after having performed Determine administrative expenses,
as indicated by the precedence constraint between the two events. Fill in pay-
ment information must eventually be followed by Process payment, and Process
payment cannot complete before that Fill in payment information is completed,
which is captured by the succession constraint, being the combination of prece-
dence and response constraints. The exclusive choice between events Stop (that
stops the procedure) and Fill in payment information, depicted as a line with a
black diamond, indicates that one of these two events must be performed in the
process but not both. The response constraint between Produce excerpt and sign
it and Archive indicates that whenever Produce excerpt and sign it is executed,
Archive must eventually follow.

3 Configurable Declare

In this section, we introduce Configurable Declare, an extension of Declare. While
in imperative languages, where the focus is on modelling the allowed behaviour,
configuration options aim at making some behaviour optional (e.g., by blocking
an event), in declarative languages the focus is on modelling restrictions on the
behaviour, and therefore our configuration options will aim at making the restric-
tions optional. One reason to make some restrictions in the model optional can
come from the inability to execute, control or monitor an event in some context.
In this case, we want to allow for hiding an event depending on the configuration
chosen. Another way to remove some restriction is by removing constraints from
the model. Therefore, Configurable Declare introduces the possibility of anno-
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(a) A hideable event (b) An omittable constraint

Fig. 5. Graphical representation of the configuration options

tating some constraints as omittable. Finally, we use meta-constraints to define
which options for configuring the model are combinable and which not.

Formally, we define a Configurable Declare model as:

Definition 3 (Configurable Declare Model). A Configurable Declare model
is a tuple (M,Eh, Co,MC ) where:

– M = (E,C) is a Declare model,
– Eh ⊆ E is a set of hideable events (graphically represented as in Fig. 5(a)),
– Co ⊆ C is a set of omittable constraints (graphically represented as in

Fig. 5(b)), and
– MC is a set of meta-constraints and each meta-constraint defines a nar-

rowing of the function space (Eh ∪ Co) → B. We call this narrowing the
configuration space of the Configurable Declare model.

For the sake of readability, we overload the notation used and write, for
example, ¬e⇒ (¬c1 ∧¬c2) for the meta-constraint saying that if hideable event
e is hidden, then omittable constraints c1 and c2 must be omitted, which implies
that the configuration space only include functions, whose values on e, c1 and c2
obey the meta-constraint.

To configure a Configurable Declare model, the user has to make, for each
hidable event and omittable constraint, a configuration choice specifying whether
a hideable event should be hidden, and whether an omittable constraint should
be omitted in the configured model.

Definition 4 (Configuration). Let Mconf = (M,Eh, Co,MC ) be a Config-
urable Declare model. A configuration of Mconf is a function conf : (Eh∪Co)→
B from the configuration space of Mconf .

By applying a configuration to a Configurable Declare model, we obtain a
configured model, which is one of the possible variants deducible from the given
Configurable Declare model.

4 Configuration Steps

We choose a two-step approach for defining a configuration of a Configurable
Declare model. In the first step –abstraction– the user defines the part of the
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Fig. 6. An implicit constraint between A and C can disappear when removing B

configuration that specifies which hideable events must be hidden in the config-
ured model, thus setting the context for this model. The Configurable Declare
model is, then, transformed into a modified Configurable Declare model obtained
by hiding the events that must be hidden according to the configuration. In the
second step –configuring constraints– the user defines the part of the configura-
tion that specifies which omittable constraints must be omitted in the configured
model. Starting from the modified Configurable Declare model obtained in the
first step, the configured model is derived by omitting the constraints that must
be omitted according to the defined configuration.

4.1 Abstraction

In the abstraction step, the user defines a configuration over the hideable events
by choosing (not) to hide events that are hideable in the Configurable Declare
model. Note that hiding an event in a Declare model does not mean that it
cannot occur, but it means that it is not monitored, implying that there can be
no constraints restricting the execution of that event.

In this step, the user can possibly hide events which are involved in im-
plicit constraints, i.e., constraints that can be deduced from other (explicit)
constraints. Consider, for instance, the model in Fig. 6 where every A is eventu-
ally followed by B, and every B is eventually followed by C. By transitivity, also
every A is eventually followed by C, which is an implicit constraint. Similarly to
hiding in other settings (e.g., in the process algebra context), we want a model
derived by hiding B to be visible-language-equivalent to the model where B is
not hidden (with the hidden event considered to be invisible, like a τ -event).
When hiding B, we cannot simply remove B together with all the constraints
connected to B, since this would also remove the implicit constraint between
A and C. To maintain the language equivalence, we have to take the implicit

Table 3. An excerpt of the language equivalences after the τ -abstraction of B

LB←τ (response(A,B) ∧ response(B,C)) = L(response(A,C))
LB←τ (response(A,B) ∧ succession(B,C)) = L(response(A,C))
LB←τ (precedence(A,B) ∧ precedence(B,C)) = L(precedence(A,C))
LB←τ (precedence(A,B) ∧ succession(B,C)) = L(precedence(A,C))
LB←τ (succession(A,B) ∧ response(B,C)) = L(response(A,C))
LB←τ (succession(A,B) ∧ precedence(B,C)) = L(precedence(A,C))
LB←τ (succession(A,B) ∧ succession(B,C)) = L(succession(A,C))
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Fig. 7. The implicit constraint between A and C is not expressible in standard Declare

constraints into account, and, when necessary, make implicit constraints explicit.

Table 3 presents an excerpt from the list of constraint combinations connect-
ing events A, B and C, and the corresponding implicit constraints that should be
added when hiding B. In [16], the reader can find the full list of combinations of
standard Declare constraints with the strongest implicit constraint (expressable
in the standard Declare) corresponding to each combination. Several of these
combinations do not allow for maintaining the language equivalence and the
best we can do is to approximate the implicit constraint. Consider, for instance,
the model in Fig. 7 consisting of two alternate response constraints. When B is
not hidden, the configured model accepts (among others) traces ABCABC and
ABACBC, which are abstracted to ACAC and AACC when hiding B in the
traces. Therefore, when B is hidden, the configured model does not accept any
trace in which more than two occurrences of A happen without a C in between.
By removing B from the model (i.e., by substituting B by τ), we would need to
obtain a Declare model which accepts exactly such traces, but such a constraint
is not expressible in Declare.

The approach provided in [16] considers as implicit constraint the closest
constraint that is stronger than the necessary (inexpressible) constraint, which
is alternate response(A,C) for the example considered (this constraint does not
accept the trace AACC.) An alternative approach is to choose for the closest
weaker constraint. This issue can be fully overcome by extending Declare with
new constraints (in this case with a constraint that forces the occurrence of C
after two occurrences of A). When using only the standard Declare constraints,
the user should be notified in case the language preservation is violated.

Below we sketch the proof idea, supporting our method for hiding events.
The proof is done by comparing the languages of the models obtained from the
same Configurable Declare model using different configurations.

Theorem 1. Let M = (E,C) and M ′ = (E′, C ′) be Declare models obtained by
not hiding/hiding an event e ∈ E in the Configurable Declare model ((E,C), {e}, ∅, ∅),
respectively. Then, Le←τ (M) = L(M ′), i.e., the language of model M with event
e considered as invisible is the same as the language of model M ′.

Proof. (Idea) We can transform M to an equivalent model M ′′ where the im-
plicit constraints in which e is involved are made explicit, maintaining the lan-
guage equivalence between M and M ′′. Considering that implicit constraints
are deducible from the explicit constraints in the model, this implies that we
do not constrain the behaviour any further. Afterwards, we transform M ′′ to
M ′ by removing event e and all constraints associated with e. Showing that
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Fig. 8. Implicit constraints between A and C and between A and D are omittable

Le←τ (M ′′) = Le←τ (M ′) is straightforward, using the equivalences as shown in
Table 3. Therefore, we can conclude that model M is visible-language equivalent
to the model M ′ (with e abstracted to τ). ut

When a hidden event is involved in omittable constraints, the situation be-
comes slightly more complicated. If an implicit constraint to be added to the
model is derived using an omittable constraint, the implicit constraint should be
added as an omittable constraint. Consider, for instance, the model in Fig. 8.
The constraint between A and B can be omitted and B can be hidden. If we
choose to hide B, we have to make explicit the implicit constraints between A
and C (c1) and between A and D (c2). However, since the constraint between
A and B is omittable, we have to make the implicit constraints c1 and c2 also
omittable.

At the same time, we need to preserve correlations between implicit con-
straints. Consider, again, the model in Fig. 8. If the constraint between A and
B is omitted, then both the implicit constraints c1 and c2 disappear. This in-
troduces a correlation between the implicit constraints c1 and c2: they should
be either both present or both omitted in the configured model. This can be
encoded through meta-constraints as c1 ⇔ c2.

Deducing which correlations have to be maintained between pairs of implicit
constraints is straightforward. Consider, for instance, the models in Fig. 9, in
which all implicit constraints have been made explicit. Constraint c4 is deduced
from c1 and c3, and c5 is deduced from c2 and c3. In the model in Fig. 9(a),
explicit constraints c1 and c2, and c3 are all omittable. Starting from the omit-
table (explicit) constraints, we can build the deduction graph in Fig. 10(a). In
this graph, if explicit constraints are used to deduce an implicit constraint, we
include an hyperarc between the explicit constraints and the implicit constraint.

(a) model 1 (b) model 2

Fig. 9. Configurable Declare models with the implicit constraints (c4, c5) made explicit

11



c5c4

c1 c3 c2

(a) Deduction graph of model 1

c5c4

c3

(b) Deduction graph of model 2

Fig. 10. Deduction graphs of the Configurable Declare models in Fig. 9

For instance, c4 is deduced from c1 and c3, hence, we include a hyperarc be-
tween c1, c3 and c4. Using the hyperarcs, we can induce meta-constraints like
(c1 ∧ c3)⇔ c4.

Using the deduction graphs, we can easily induce correlations between im-
plicit constraints. Consider the Configurable Declare model in Fig. 9(b) and the
corresponding deduction graph in Fig. 10(b). From Fig. 10(b), we can induce
the meta-constraints c3 ⇔ c4 and c3 ⇔ c5. By transitivity, we obtain the meta-
constraint c4 ⇔ c5. Therefore, when hiding C, c4 and c5 must be both omitted
or both not omitted.

From the technical perspective, it would be easier to let the user first de-
fine which constraints should be omitted and then choose which events should
be hidden. In this case, omittability of implicit constraints and correlations be-
tween them would be irrelevant. This would, however, require the user to make
choices about constraints that are defined on events which are not relevant for
her practice.

4.2 Configuring constraints

In the second step, the user can decide which omittable constraints should be
omitted in the configured model. It is also possible to include the option of
substituting a constraint by a different constraint into Configurable Declare.
However, this option can be considered as syntactic sugar. Indeed, substituting
a (default) constraint with different constraints can be obtained by considering
these constraints as omittable and providing a meta-constraint specifying that
exactly one of this constraints can be kept in the configured model.

(a) Substitutable response(A, B) (b) The substitutable constraints in
Fig. 11(a) encoded as omittable con-
straints

Fig. 11. Substitutable constraints in Configurable Declare
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In Fig. 11(a), for instance, we show a model in which the response(A,B) can
be substituted by either precedence(A,B) or by alternate response(A,B). This
can also be encoded through omittable constraints as depicted in Fig. 11(b) with
a meta-constraint enforcing that exactly one of the omittable constraints is kept
in the configured model. This is encoded as c1 ∨ c2 ∨ c3, where ∨ is the exclusive
or.

5 Methodology and Case Study

In this section, we present the deduction of a Declare model from a Configurable
Declare model. As mentioned before, this is done through a two-step approach.
First the context is set (Subsection 5.1), and then, some constraints are selected
to be omitted in the configured model (Subsection 5.2). The methodology is
presented by using an example from our case study. Further results about the
case study are given in Section 5.3.

5.1 Setting the context

The first step for configuring a Configurable Declare model consists in selecting
which events should be controlled and which events are uncontrolled in the con-

Algorithm 1: Setting the context for a Configurable Declare model
SetTheContext(Mconf , Sh, Mconf ′)
Input: Mconf the Configurable Declare model, Sh ⊆ Eh the set of
hidden events
Output: Mconf ′ the Configurable Declare model after abstraction
(1) if the meta-constraints MC are not satisfied
(2) return
(3) else
(4) Mtemp ←Mconf

(5) T ← all implicit constraints (using the transitive closure
based on the rules in [16])

(6) foreach event e ∈Mtemp

(7) if e ∈ Sh
(8) C ← all implicit constraints which have to be

made explicit after hiding e using the defined rules
(see [16])

(9) add all constraints from C to Mtemp

(10) add all meta-constraints related to the removal of
e (based on T ) to Mtemp

(11) Remove all events from Mtemp which are hidden
(12) Remove all constraints from Mtemp which are related to

hidden events
(13) Update all meta-constraints in Mtemp which are related

to hidden events
(14) return Mtemp
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Fig. 12. The Configurable Declare model

figured model. Using Algorithm 1, the Configurable Declare model is transformed
into a (modified) Configurable Declare model. Here, the hideable events that are
chosen to be hidden (denoted as set Sh) are removed from the model. It can be
the case that hiding an event invalidates some meta-constraints, or even that the
event to be hidden is not hideable. Therefore, we first check whether all meta-
constraints are satisfied and whether all events in Sh are hideable (Sh ⊆ Eh).
If this is the case, the events in Sh are removed from the Configurable Declare
model, the implicit constraints are made explicit if needed, and meta-constraints
are updated accordingly. Otherwise, the empty model is returned.

Consider the Configurable Declare model in Fig. 12 (without any specified
meta-constraint at the beginning). Suppose that the user chooses to hide events
Assign to employee, Send to DMS department, and Indicate already paid.

If we hide Send to DMS department, we need to add to the modified model
(Mconf ′) a succession constraint between Process payment and Assign to em-
ployee (c1), and between Process payment and Indicate already paid (c2). Fur-
thermore, we have to include in Mconf ′ a succession constraint between Fill in
payment information and Assign to employee (c3), and between Fill in pay-
ment information and Indicate already paid (c4). Since the succession between
Fill in payment information and Send to DMS department can be omitted, we
have to maintain the correlation between c3 and c4, i.e., the meta-constraint
m1 = c3 ⇔ c4 is added to Mconf ′ .

In the second iteration, we process Assign to employee. This introduces a
succession between Process payment and Produce extract and sign (c5) in Mconf ′ .
Furthermore, the succession between Fill in payment information and Produce
extract and sign it (c6) has to be made explicit, and we have to include the
meta-constraint m2 = c4 ⇔ c6 in Mconf ′ .

If we hide Indicate already paid, we need to add to Mconf ′ the constraints
succession(Process payment, Produce extract and sign it) and succession(Fill in
payment information, Produce extract and sign it). Note that no new meta-
constraints have to be included at this iteration. Finally, we have to remove the
hidden events from the model, and remove the constraints and update the meta-
constraints related to any of those events. This yields the Configurable Declare
model depicted in Fig. 13 (with meta-constraints m1 and m2).
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Fig. 13. The Configurable Declare model for municipality A after setting the context

5.2 Configuring constraints

The second step for configuring a Configurable Declare model consists of select-
ing which constraints have to be omitted in the configured model (we indicate
this set of constraints with So). Omitting a constraint might invalidate some
meta-constraints, or it can be the case that the constraint to be omitted is not
omittable. Therefore, we first check whether all meta-constraints are satisfied
and whether all constraints in So are omittable (So ⊆ Co). If this is the case, the
constraints in So are removed from the Configurable Declare model. Otherwise,
the empty model is returned (Algorithm 2).

Suppose that we start from the Configurable Declare model depicted in
Fig. 13 (with meta-constraints m1 and m2). Suppose that the user chooses to
remove the succession between Fill in payment information and Produce extract
and sign it, and the precedence between Archive and Send excerpt. Since m1

and m2 are satisfied, succession and precedence can be removed from the model
yielding the model depicted in Fig. 1, which belongs to municipality A.

5.3 Case Study

For the case study, we have used models from the CoSeLoG project adopted by
ten different Dutch municipalities. We have used the model for municipality A
(depicted in Fig. 1) as running example to present our proposed approach. To

Algorithm 2: Removing omitted constraints from the Configurable De-
clare model

Configurability(((E,C), Eh, Co,MC ), So, Mconf ′)
Input: ((E,C), Eh, Co,MC ) the Configurable Declare model, So ⊆
Co the set of omitted constraints
Output: Mdecl the Declare model after omitting the constraints
(1) if the meta-constraints MC are not satisfied
(2) return
(3) else
(4) return (E,C \ So)
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Fig. 14. The Declare model for municipality B

Fig. 15. The Declare model for municipality C

obtain the models depicted in Fig. 14 and in Fig. 15 for municipalities B and C,
we use the configurations showed in Table 4 and in Table 5.

6 Conclusion

In this paper, we defined Configurable Declare, a configurable declarative lan-
guage. The configurability setting for declarative languages differs from the set-
ting for procedural languages. Indeed, while adding configurability options for
procedural languages implies that more options for allowed behaviour get in-
cluded in the model, adding configurability options for declarative languages
results in the inclusion of more options for restricting behaviour.

Table 4. The context for municipalities B and C

Event Mun. B Mun. C

Archive hidden not hidden
Assign to employee not hidden hidden

Indicate already paid hidden not hidden
Process payment not hidden hidden

Send to DMS department not hidden not hidden
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Table 5. The configurability for municipalities B and C

Constraint Mun. B Mun. C

precedence(Archive,Send Extract) omitted omitted
succession(Fill in payment information,Send to DMS department) omitted omitted

We have defined an approach to transform a Configurable Declare model and
a given configuration into a Declare model. While in the declarative setting re-
moving a constraint turned out to be a trivial transformation, in the procedural
setting removing a dependency between two events without influencing depen-
dencies between other events is far from being trivial. On the other hand, hiding
an event is easy to implement in the procedural setting, whereas it requires a
dedicated mechanism to maintain implicit constraints in the declarative setting.

We have applied our approach as a proof of concept to a case study and we
have been able to capture processes of ten Dutch municipalities in one readable
Configurable Declare model. This paper must be considered as a starting point
for Configurable Declare and there are several research directions we want to
investigate concerning this topic. Below we elaborate on some of them.

Outlook Building a Configurable Declare model from scratch is a logical option
when a completely new process needs to be designed. However, in many cases
(like in our case study) organisations already have models of their processes
available and the configurable model should be built based on some existing
knowledge. To make it possible, we are working on an approach for automatic
generation of a Configurable Declare model from a given set of Declare models
in such a way that the original Declare models are derivable from the gener-
ated Configurable Declare model (by applying some configurations). A related
question is how to derive automatically a configuration for a given Configurable
Declare model resulting in a model that is similar to a given Declare model.

When an organisation wants to start configuring a configurable model for
some existing process for which no model is available, event logs can be used for
deriving an appropriate configuration.

Finally, we would like to introduce patterns for meta-constraints in order
to ease the design process. In particular, we want to develop a method for the
automated deduction of meta-constraints to forbid configurations that lead to
unsatisfiable models (models with no behaviour), or to models in which some
important events become not executable or some important constraints become
trivially true [17].
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