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Chapter 1

Introduction

1.1 Problem statement

Recently, logistics has become an important issue in many organizations. This is a

direct consequence of the fact that modern organizations are required to o�er a wide

variety of products, in less time and at reduced prices. To improve their logistics

function, many organizations have integrated the control of the logistic activities

such as production, transportation, storage, acquisition and distribution. This in-

tegration complicates the management of the logistic processes. The complexity of

the control problems encountered in logistics urges the necessity of an integrated

framework for the modelling and analysis of logistic systems.

This monograph focuses on the modelling and analysis of complex logistic systems

and outlines solutions based on a timed coloured Petri net model. Although these

solutions are useful in the context of logistics, their application is not limited to

the logistic domain. Examples of other application domains which may bene�t

from the results presented in this monograph are: exible manufacturing systems,

distributed information systems and real-time systems. In fact most of the results

apply to systems which are:

dynamic The systems we are interested in are subject to changes. At any moment

the system has a certain state, at a later time this state may have changed.

discrete We restrict ourselves to discrete systems, i.e. changes in the system occur

discontinuously. These changes only happen at a �nite number of time points.

distributed A distributed system is composed of a number of autonomous subsys-

tems which interact and share resources in performing a speci�c task. These

subsystems are often physically distributed.

In other words: we consider distributed systems that change in a discrete fashion.

We call these systems discrete dynamic systems.

1



2 CHAPTER 1. INTRODUCTION

We use a Petri net based approach to the modelling and analysis of these discrete dy-

namic systems. Petri nets are appropriate for the modelling of distributed systems,

since they allow for the representation of parallelism and synchronization. However,

the classic Petri net model is unsuitable for the modelling of systems having large

state spaces or a complex temporal behaviour. Therefore, we have developed a Petri

net model extended with time and colour. This model is the foundation of a frame-

work that has been developed to solve problems related to the design and control of

complex discrete dynamic systems.

In this monograph, we focus on two important aspects of this framework:

modelling There are several reasons for modelling a system, e.g. to create and

evaluate a design of a new system, to compare alternative designs and to

investigate possible improvements in a real system. Model building forces us

to organize, evaluate and examine the validity of our thoughts. This way

modelling reveals errors and possible improvements.

The outcome of any modelling process is a `model'. We distinguish three

kinds of models: (1) informal models, (2) mathematical models and (3) formal

speci�cations.

An informal model is a verbal and/or graphical description of the system under

consideration. Such a model lacks formal semantics.

Mathematical models are those in which one or more aspects of a system

are represented by mathematical entities, like: equations, matrices, relations,

Markov chains, graphs, etc. These models are often an abstraction of the real

system in which simplifying assumptions are required if the model is to be

solvable.

A formal speci�cation is a precise and structured description of (aspects of)

a system. Such a speci�cation is an abstraction of the real system, expressed

in a speci�cation language having a prede�ned syntax and semantics. Unlike

most mathematical models, a formal speci�cation cannot be `solved' analyti-

cally. However, most formal speci�cations are based on a mathematical model

allowing for one or more kinds of analysis. Although analysis is possible by

analysing the underlying model, the primary function of a formal speci�ca-

tion is to provide a concise and unambiguous description of the system (i.e. a

`blueprint').

In this monograph we focus on speci�cations based on timed coloured Petri

nets. A timed coloured Petri net is a mathematical model which is suitable

for the modelling of discrete dynamic systems.

The development of a good speci�cation of a complex discrete dynamic system

is often time consuming and requires considerable knowledge and experience.

Therefore, there is a need for concepts and tools to facilitate the modelling

process. Since we concentrate on logistics, we are particularly interested in
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Figure 1.1: A survey of this monograph

concepts useful for the modelling of complex logistic systems. Consequently,

some of the concepts we have developed apply to logistic systems in particular.

analysis The outcome of the modelling process is a speci�cation which corresponds

to a timed coloured Petri net. Analysis of this net may be useful to verify its

correctness and to make statements about the performance of the system. It

also helps the modeller to understand the behaviour of the system.

To analyse the dynamic behaviour of a timed coloured Petri net, we need

analysis methods. Simulation is a suitable technique for the analysis of this

type of nets. Although simulation is exible and easy to use, there is an urge

for other techniques which exploit the features of Petri nets extended with

`time' and `colour'. Many analysis techniques developed for classic Petri nets

have been extended for coloured nets. However, these techniques cannot be

used to analyse the temporal behaviour of a timed coloured Petri net.

Therefore, we have developed a number of powerful analysis methods, three

of which are presented in this monograph.

The purpose of this monograph is summarized in �gure 1.1. On the one hand

this monograph discusses concepts and tools to facilitate the modelling of logistic
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systems, on the other hand it provides methods to analyse timed coloured Petri nets.

These results are outlined in this monograph and are based on concepts from Petri

net theory, systems analysis and knowledge of logistics as an application domain.

1.2 Petri nets

The systems we consider are often very complex, large, discrete dynamic systems of

many interacting components. The components of such a system exhibit concurrency

or parallelism, i.e. activities of one component may occur simultaneously with other

components. The components of the system interact and sometimes they have to

synchronize, i.e. one component waits for the other in order to execute an activity

simultaneously. The Petri net formalism (Petri [102], Reisig [111]) was one of the

�rst approaches introduced for dealing with concurrency and synchronization.

Historically speaking, Petri nets originate from the early work of Carl Adam Petri

([101]). Petri's work came to the attention of Holt and others of the Information

System Theory Project of Applied Data Research, Inc, in the United States. Much

of the early theory and notation has been developed by this group ([65]). The work

of Petri also came to the attention of Project MAC at the Massachusetts Institute

of Technology (MIT), resulting in a number of publications and reports. Since the

late-1970's, the use and study of Petri nets has increased considerably. Especially

Europeans have been very active in the �eld of Petri nets. Research on and the

application of Petri nets have become widespread activities. A review of the history

of Petri nets and an extensive bibliography is given by Murata in [93].

The classic (or basic) Petri net is a directed bipartite graph with two node types

called places and transitions. The nodes are connected via directed arcs. Connec-

tions between two nodes of the same type are not allowed. Places are represented

by circles and transitions by bars. Places may contain zero or more tokens, drawn

as black dots. The number of tokens may change during the execution of the net. A

place p is called an input place of a transition t if there exists a directed arc from p

to t. A place p is called an output place of a transition t if there exists a directed arc

from t to p. Each transition puts a weight to each of its input and output places, i.e.

each arc is labelled with a weight (positive integer). A transition is called enabled if

each of its input places contains at least a number of tokens equal to its weight. In

other words, a transition is enabled if all input places contain (at least) the speci�ed

number of tokens. An enabled transition can �re. Firing a transition t means con-

suming tokens from the input places and producing tokens for the output places, i.e.

t `occurs'. The number of tokens produced for each of the output places is equal to

the weight of the corresponding arc. A state of a Petri net is a distribution of tokens

over the places. Many authors use the term marking to denote the state of a basic

Petri net. A �ring sequence is a sequence of states s1; s2; s3; ::, such that any state

si is followed by a state si+1, resulting from the �ring of some enabled transition in

state si.
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For a Petri net which models a discrete dynamic system, we are often interested in

properties, such as boundedness, liveness, safety and freedom of deadlock. Moreover,

given an initial state (marking), we are also interested in the reachability set, i.e.

the set of all states visited by some �ring sequence starting in this initial state. To

answer these questions, several analysis techniques have been suggested.

Most of the analysis techniques described in literature, either generate a reachability

graph or involve linear algebraic techniques.

A reachability graph is a graph representation of the reachable states and can be used

to answer a variety of questions. Several reduction techniques have been developed

to reduce the size of such a graph.

Linear algebraic techniques are often used to calculate invariants. Note that a

marking can be represented as a vector, and a Petri net can be represented as a

set of linear algebraic equations. Invariants are characteristic solutions of these

equations. Therefore, it is possible to compute them by linear algebraic techniques.

An example of an invariant is a so-called place invariant, this invariant assigns a

weight to each place, such that the weighted token count remains constant during

the execution of any �ring sequence.

For an introduction to basic Petri nets and their analysis we refer to Reisig [111]

and Peterson [100].

Since the beginning of the 1970's the study of Petri nets has developed in two

directions: pure Petri net theory and applied Petri net theory.

The �rst line of research concentrates on the fundamental theory of Petri nets.

People working on this line of research are mainly concerned with the development

of a �rm mathematical foundation of Petri net theory. Although the results of this

kind of research are useful, many techniques and concepts developed in this area are

diÆcult to apply to problems encountered in practice.

The second line of research is concerned with the application of Petri nets to the

modelling and analysis of systems. Typical application areas are communication

protocols, computer systems, distributed systems, production systems and exible

manufacturing systems. In applying Petri nets, it is often necessary to extend the

basic Petri net model.1 These extensions do not allow the use of many techniques

developed in the �eld of pure Petri net theory. Fortunately, many of these techniques

have been generalized to coloured Petri nets.

Both directions did not lead to a comprehensive framework of Petri nets, which fully

utilizes the analysis capabilities and is applicable in practice. Consequently, there

is still a great gulf between pure and applied Petri net theory. This monograph

describes concepts and techniques which are useful for bridging this gulf.

1Note that we use the term `Petri net model ' to denote a formal de�nition of Petri nets, such

a model is in fact a meta-model, since it is used to describe models of systems.
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1.3 Time and colour in Petri nets

The basic Petri net model is not suitable for the modelling of many systems en-

countered in logistics, production, communication, exible manufacturing and in-

formation processing. Petri nets describing real systems tend to be complex and

extremely large. Sometimes, it is even impossible to model the behaviour of the

system accurately. To solve these problems many authors propose extensions of the

basic Petri net model.

We distinguish two kinds of extensions: (1) extensions to increase the modelling

power and (2) extensions to merely facilitate the user in making more succinct and

manageable models. Examples of extensions that do not increase the power of a

Petri net model are multiple arcs and places with capacity constraints (see Murata

[93]). On the other hand there are extensions, such as inhibitor arcs (`zero test')

and priorities (Peterson [100], Pagnoni [97]), that do increase the modelling power.

When adding these extensions, careful attention must be paid to the tradeo� between

modelling and analysis capability. That is, the more general the model, the more

diÆcult it is to analyse.

The approach presented in this monograph is based on a timed coloured Petri net

model, called the Interval Timed Coloured Petri Net (ITCPN) model. We start with

an informal introduction to the ITCPN model by relating it to other timed and/or

coloured Petri net models known in literature.

1.3.1 Adding colour

Many authors have extended the basic Petri net model with coloured or typed tokens

([132], [99], [46], [70], [71], [53]). In these models tokens have a value, often referred

to as `colour'. There are several reasons for such an extension. One of these reasons

is the fact that (uncoloured) Petri nets tend to become too large to handle. Another

reason is the fact that tokens often represent objects or resources in the modelled

system. As such, these objects may have attributes, which are not easily represented

by a simple Petri net token.

These `coloured' Petri nets allow the modeller to make much more succinct and

manageable descriptions, therefore they are called `high-level' nets. Although Zervos

([132]) presented a coloured Petri net in 1977, the �rst well-known high-level Petri

net model, called Predicate/Transition (PrT) nets, was presented in 1979 by Genrich

and Lautenbach (see [45]). It turned out that Predicate/Transition nets presented

some technical problems when generalizing the invariant methods. To overcome

this problem the Coloured Petri Net (CPN) model was de�ned in [69] by Jensen.

For more information about the CPN model and the calculation of invariants in a

high-level net, see Jensen et al. [69], [70], [71] and [72]. In theory it is also possible

to extend a number of other analysis techniques to high-level nets. As long as the

number of colours is �nite, a high-level net is equivalent to a (much larger) Petri

net without colours (`unfolding'). If the number of colours is in�nite, then the high-
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level net is equivalent to a basic Petri net with in�nitely many places and transitions.

Allowing an in�nite number of colours results in a modelling power equivalent to a

Turing machine for which many questions are undecidable (see Peterson [99]), but

on the other hand, Church's thesis implies that the Turing machine is the most

powerful model of computation (Wood [129]).

Our ITCPN model is a successor to the DES model developed by Van Hee, Somers

and Voorhoeve ([53]). Like in the other high-level net models, a colour is attached

to each token. Each place has a type (a set of colours) and tokens in a place have a

colour (value) belonging to the corresponding type. The number of tokens produced

by the �ring of a transition, and their values (colours), may depend upon the values

(colours) of the tokens consumed. Instead of using arc inscriptions, like in CPN, we

use functions to describe the relation between the set of consumed tokens and the

set of produced tokens. Note that, unlike in CPN, the enabling of a transition does

not depend upon the values of the tokens to be consumed.

1.3.2 Adding time

The formal properties of `Time' have attracted the attention of many philosophers,

physicists and mathematicians (Benthem [14]). Time is an important aspect of all

discrete dynamic systems. There are several ways to deal with this timing aspect.

First, one has to decide whether time has to be quanti�ed. If time is not quanti�ed,

the model can only be used to reason about qualitative temporal properties, like

liveness, mutual exclusion, deadlock, fairness, etc. We decide to quantify time,

because only then, it is also possible to express quantitative temporal properties,

like deadlines, activity durations, response times, delays, etc.

If time is quanti�ed, one has to decide whether time is implicit or explicit. In physics

and mathematics, time has traditionally been represented as just another variable.

Consider for example �rst order predicate calculus, which can be used to reason

about expressions containing a time variable, i.e. apparently there is no compelling

need for explicit time. However, time plays a prominent part in the applications we

consider, for we are interested in dynamic systems. Therefore, we decided to make

time explicit (for reasons of convenience). This decision is based on the argument

that the aspect of time is an important factor in the systems we want to consider,

and the modelling e�ort is reduced considerably by adding explicit time constructs.

The basic Petri net model is not capable of handling quantitative time. The intro-

duction of high-level nets allowed people to quantify time in an implicit manner, i.e.

time is represented by the value or colour of a token. In this case, we have to model

a global clock using a place connected to every transition. This place contains one

token, whose value represents the current time. Since this is rather cumbersome,

many authors have proposed a Petri net model with explicit quantitative time (e.g.

[133], [108], [89], [82], [53], [113]). We call these models Timed Petri Net (TPN)

models.



8 CHAPTER 1. INTRODUCTION

There are a lot of ways to introduce the concept of time into the basic Petri net

model. In essence, there are two things one has to decide on: (1) the location of the

time delays and (2) the type of these delays.

The location of the time delays

When introducing time into the basic Petri net model, we have to assign time

durations (delays) to certain activities in the net. The literature on timed Petri nets

describes many `locations' in a Petri net which may be used to represent time.

Zuberek ([133]) associates a (�xed) delay with the �ring time of a transition. When

a transition �res, the enabling tokens are consumed and withheld for some time

before the tokens appear in the output places. Since the �ring of a transition takes

some time, this is called `two-phase' �ring.

Sifakis and Wong propose models where time is associated with places, so that

tokens arriving in a place are unavailable for a speci�ed period ([114], [128]).

Most authors propose a model where time is associated with the enabling time of a

transition (e.g. [41], [92], [82], [81]). Each transition in such a timed Petri net must

remain enabled for a speci�ed time before it can �re. In these models, �ring is an

atomic action, i.e. �ring takes no time.

Some authors use two timing mechanisms (at di�erent locations). An example of

such mixture is the model proposed by Razouk and Phelps in [109], where time is

associated with the �ring of transitions and the enabling of transitions.

We use a rather new timing mechanism where time is associated with tokens. This

timing concept has been adopted from Van Hee, Somers and Voorhoeve ([53]). In our

ITCPN model we attach a timestamp to every token. This timestamp indicates the

time a token becomes available. The enabling time of a transition is the maximum

timestamp of the tokens to be consumed. Transitions are eager to �re (i.e. they �re

as soon as possible), therefore the transition with the smallest enabling time will

�re �rst. If, at any time, more than one transition is enabled, then any of these

transitions may be `the next' to �re. This leads to a non-deterministic choice if

several transitions have the same enabling time. Firing is an atomic action, thereby

producing tokens with a timestamp of at least the �ring time. The di�erence between

the �ring time and the timestamp of such a produced token is called the �ring delay.

Associating time with tokens is the logical choice for high-level Petri nets, since the

colour is also associated with tokens. We will show that our timing concept is very

expressive and allows for elegant semantics.

The type of the time delays

Besides the location of the delay, we also have to decide on the type of delay. There

are three alternatives: �xed delays, stochastic delays or delays speci�ed by an inter-

val. We also have to decide whether we use a discrete or continuous time domain.

Nearly all TPN models use a continuous time domain (IR+ ∪ {0}), so do we.
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Petri nets with �xed (deterministic) delays have been proposed in [133], [108], [113]

and [53]. They allow for simple analysis methods but are not very expressive.

In real discrete dynamic systems the duration of most activities is variable, because

the duration of an activity often depends on external inuences. Consider for ex-

ample the time it takes to transport goods from a production unit to the central

warehouse, this transportation time depends on traÆc jams, the weather, the mood

of the driver, etc. Clearly, a �xed delay is inappropriate for the modelling of the

duration of such an activity.

One way to model this variability, is to assume certain delay distributions, i.e. to

use a timed Petri net model with delays described by probability distributions.

These nets are called stochastic Petri nets. Many stochastic Petri net models have

been developed, most of them are used for the performance evaluation of protocols,

manufacturing systems, etc. Two widespread models of this type are the SPN model

by Florin and Natkin ([41]) and the GSPN model by Ajmone Marsan et al. ([82]). In

nearly all stochastic TPN models, time is in transitions and the enabling time of such

a transition is speci�ed by some distribution. The choice of such a delay distribution

is often diÆcult and subject to errors, thus yielding a crude approximation which

appears to be exact.

Analysis of stochastic Petri nets is possible (in theory), since the reachability graph

can be regarded, under certain conditions, as a Markov chain or a semi-Markov

process. However, these conditions are severe: all �ring delays have to be sampled

from an exponential distribution or the topology of the net has to be of a special

form (Ajmone Marsan et al. [81]). Since there are no general applicable analysis

methods, several authors resorted to using simulation to study the behaviour of the

net.

Another problem is the fact that the delays of two activities may be dependent.

When modelling these activities by separate transitions, the delays are assumed to

be independent, this may lead to incorrect results.

To avoid these problems, we propose delays described by an interval specifying an

upper and lower bound for the duration of the corresponding activity. On the one

hand, interval delays allow for the modelling of variable delays, on the other hand,

it is not necessary to determine some arti�cial delay distribution (as opposed to

stochastic delays). Instead, we have to specify bounds. These bounds can be used

to verify time constraints. This is very important when modelling time-critical sys-

tems, i.e. real-time systems with `hard' deadlines. These hard (real-time) deadlines

have to be met for a safe operation of the system. An acceptable behaviour of the

system depends not only on the logical correctness of the results, but also on the time

at which the results are produced. Examples of such systems are: real-time com-

puter systems, process controllers, communication systems, exible manufacturing

systems and just-in-time manufacturing systems.
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To our knowledge, only one other model has been presented in literature which

also uses delays speci�ed by an interval. This model was presented by Merlin in

[89] and [90]. In this model the enabling time of a transition is speci�ed by a

minimal and a maximal time. Another di�erence with our model is the fact that

Merlin's model is not a high-level Petri net model because of the absence of typed

(coloured) tokens. Compared to our model, Merlin's model has a rather complex

formal semantics, which was presented in [16] by Berthomieu and Diaz. This is

caused by a redundant state space (marking and enabled transitions are represented

separately) and the fact that they use a relative time scale and allow for multiple

enabledness of transitions. An additional advantage of our approach is the fact that

our semantics closely correspond to our intuitive interpretation of the dynamical

behaviour of a timed Petri net. We will motivate these statements in due time.

1.4 Analysis of timed coloured Petri nets

In the previous section we established the fact that Petri nets are appropriate for the

modelling of discrete dynamic systems, provided that a Petri net model extended

with time and colour is used. Based on this observation, we proposed the ITCPN

model.

In essence, the modelling process serves two purposes. First of all, the model is used

as a `blueprint' of the system under consideration, e.g. the design of a new system or

a plan which describes improvements. Secondly, models are used to analyse certain

aspects of a system, e.g. the performance, eÆciency or correctness of a system.

Since analysis is often the main goal of model building, we have to supply suitable

analysis methods.

In this section we start with a survey of existing analysis methods for timed and/or

coloured Petri nets to illustrate that none of these methods (entirely) suits our

purpose. This has been an incentive to develop new analysis methods. Therefore,

the core of this monograph is directed towards the analysis of interval timed coloured

Petri nets.

1.4.1 Currently used analysis methods

A lot of analysis techniques have been developed in the area of pure Petri net theory.

Most of them are based on the basic Petri net model.

Many of these techniques have been extended to analyse high-level Petri nets, for

example reachability graphs and invariants. Recall that as long as the number of

colours is �nite, a high-level net can be `unfolded' into an equivalent, but much

larger, Petri net without colours. The unfolding of nets has been studied to see how

the analysis methods for high-level nets should work. For the moment, however, it

is only possible to use these methods for relatively small systems and for selected

parts of larger systems.

An example of such a method is the creation of a reachability graph for high-level

nets. Because of the explosion of the number of states, these graphs tend to become
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too large to analyse. Several reduction techniques have been proposed to deal with

this problem. None of them gives a satisfactory solution (see Jensen [71]).

Another analysis technique available for high-level Petri nets is the generation of

place and transition invariants. These invariants are used to derive and prove prop-

erties of the modelled system. A place invariant (P-invariant) is a weighted token

sum, i.e. a weight is associated with every token in the net. This weight is based

on the location (place) and the value (colour) of the token. A place invariant holds

if the weighted token sum of all tokens remains constant during the execution of

the net. Transition invariants (T-invariants) are the duals of place invariants and

the basic idea behind them is to �nd �ring sequences with no e�ects, i.e. �ring

sequences which reproduce the initial state. Some analysis techniques have been

developed to calculate these invariants automatically (see Jensen [71]). These tech-

niques have a number of problems. For large nets with a lot of di�erent colours, it

is hard to compute these invariants. Usually there are in�nitely many invariants (a

linear combination of invariants is also an invariant), therefore it is diÆcult to distill

the interesting ones. However, there is a more promising way to use invariants. If

the user supplies a number of invariants, it is easy to verify these invariants totally

automatically. If an invariant does not hold, it is relatively easy to see how the Petri

net (or the invariant) should be modi�ed. The latter approach does not solve the

problem that applying invariants requires a lot of training.

The addition of time to the basic Petri net model resulted in a lot of new and

interesting techniques to analyse the dynamic behaviour of a system. Literature on

this subject reects the fact that the study of timed Petri nets developed along two

separate lines.

The �rst line concentrates on the veri�cation of dynamic properties. Most of the

methods developed along this line are based on nets with deterministic delays. There

are several methods to calculate upper and lower bounds for the cycle time of a

timed Petri net ([113], [108], [107], [93]). The cycle time is a criterion for the

performance of the system. For a speci�c class of deterministic timed Petri nets,

the so-called Timed Event Graphs, the exact cycle time can be computed quite

eÆciently, see Ramamoorthy and Ho [107] and Chretienne [31]. Other researchers

analyse deterministic timed Petri nets by building the reachability graph (Zuberek

[133]). Although this requires a lot of computing e�ort, such a graph can be used

to answer a variety of questions.

A serious drawback of these methods is the fact that in many real systems the

activity durations are not �xed, i.e. they vary because of disturbances and other

interferences. Assuming deterministic delays often results in inaccurate results.

The second line concentrates on the performance evaluation of timed Petri nets

by means of analysis of the underlying stochastic process. Instead of assuming

deterministic activity durations, an attempt is made to capture the essence of a

system by probabilistic assumptions. These probabilistic assumptions often include
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the distribution of the delays in the net. In nearly all stochastic TPN models

a stochastic variable is associated with every transition. This stochastic variable

expresses the delay from the enabling to the �ring of a transition, i.e. the enabling

time. For analysis reasons, the distribution of these stochastic variables is assumed

to be negatively exponential. Molloy showed that, due to the memoryless property

of the exponential distribution, such a stochastic TPN is isomorphic to a continuous

time Markov chain ([92]). This allows for analytical methods to analyse the dynamic

behaviour of a system, this way it is possible to calculate performance measures,

e.g. the average waiting time or the probability of having more than �ve tokens in

a speci�c place. Several other stochastic TPN models have been suggested ([82],

[41], [80], [128], [64]). Consider for example, the Generalized Stochastic Petri Net

(GSPN) model developed by Ajmone Marsan et al. ([82], [81], [83]). A GSPN has

two types of transitions: `timed' transitions and `immediate' transitions. A timed

transition has an exponentially distributed enabling time, an immediate transition

has an enabling time of zero, i.e. an immediate transition �res the moment it

becomes enabled.

Many authors give conditions for the topology of the net or the distribution of

the delays such that analysis of the underlying stochastic process is possible (e.g.

Ajmone Marsan et al. [81], [80]). In general these conditions are quite strong.

Moreover, for real problems, the state space of the corresponding continuous time

Markov chain tends to be too large to analyse.

To our knowledge, only one analysis method has been presented for Petri nets with

interval timing. This method was presented by Berthomieu et al. in [17] and [16] and

uses Merlin's timed Petri nets ([89]) to describe the system. The method generates

a reachability graph where nodes represent state classes instead of states. This

approach is more or less related to one of the analysis methods presented in this

monograph.

Only a few analysis methods have been developed for timed and coloured Petri nets,

this results from the fact that there are only a limited number of Petri net models

having coloured tokens and some explicit time concept. In Lin and Marinescu [76]

and Zenie [131] stochastic high-level nets are proposed. A high-level Petri net model

with deterministic delays was presented by Van Hee et al. in [53]. A similar extension

of the CPN model was proposed by Jensen in [71]. Note that a deterministic delay

depending upon the colour of a token is suÆcient to approximate any stochastic

delay distribution, since coloured tokens allow for the generation of pseudo-random

numbers, which can be used to sample delays for a speci�c distribution, see Shannon

[112] or [9]. A straightforward way to analyse the dynamic behaviour of such a net

is simulation.

1.4.2 Analysis methods based on the ITCPN model

Although Petri net theory is rich in analysis methods, only a few of the methods are

suitable for the analysis of the temporal behaviour of a timed coloured Petri net.
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Moreover, the methods used for the analysis of the dynamic behaviour of a system

represented by a timed coloured Petri net su�er from computational problems. This

is one of the reasons, simulation is the most widely used technique to analyse nets

which represent complex discrete dynamic systems.

The ITCPN model deviates from existing models, because delays are speci�ed by an

interval rather than deterministic or stochastic delays. If we choose a distribution

for each delay interval (e.g. a uniform or beta distribution), then we are able to

simulate an ITCPN. Although simulation is a very powerful tool to analyse discrete

dynamic systems, it is certainly not a panacea for answering all relevant questions.

For example, simulation cannot be used to prove certain properties. This is one of

the reasons, we have developed four analysis methods:

1. Modi�ed Transition System Reduction Technique (MTSRT)

2. Persistent Net Reduction Technique (PNRT)

3. Arrival Times in Conict Free Nets (ATCFN)

4. Steady State Performance Analysis Technique (SSPAT)

As said, these analysis methods are based on the ITCPN model.

The MTSRT method can be applied to any kind of ITCPN. This method generates

a reduced reachability graph.

In an ordinary reachability graph, a node corresponds to a state. To calculate such

an ordinary reachability graph, we start with an initial state, say s. For this state

s, we obtain `new states'. These are the states reachable by �ring a transition in

state s. New states are connected to s by a directed arc. For each new state, say s′,
connected to s, we obtain the states reachable by �ring a transition in state s′, etc.
Repeating this process results in a graph representation of the reachable states.

Even for simple examples these graphs tend to be very large (generally in�nite). The

MTSRT method proposes a number of reductions, resulting in a reduced reachability

graph. In such a graph a node corresponds to a set of states, called a state class,

instead of a single state. To generate a graph representation of these state classes,

we use a modi�ed model, where a time-interval is associated with a token rather

than a timestamp. We already mentioned a more or less related analysis method

proposed by Berthomieu, Menache and Diaz in [17] and [16]. This method is based

on Merlin's timed Petri net model. Their analysis method also uses state classes,

which are represented by a system of inequalities. Our MTSRT method uses a

totally di�erent approach to analyse a Petri net with interval timing and is able to

answer other types of questions. We will compare their method with our MTSRT

method in due time.

The other methods can only be applied to a restricted set of interval timed coloured

Petri nets.
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The PNRT method and the SSPAT method can be applied to ITCPNs whose un-

derlying net structure is a marked graph, i.e. the number of input arcs and output

arcs of every place is smaller than or equal to 1. The PNRT method uses the special

structure of such a net to create an even further reduced reachability graph. The

SSPAT method calculates upper and lower bounds for the cycle time of a net. This

is a generalization of the technique described by Ramamoorthy and Ho in [107].

The ATCFN method can be applied to conict free nets, i.e. nets where the number

of output arcs of every place is smaller than or equal to 1. This method produces

upper and lower bounds for the arrival time of the �rst token in a place using a

polynomial-time algorithm.

The analysis methods MTSRT, ATCFN and PNRT are outlined (in detail) in this

thesis. For a description of the SSPAT method, see Van der Aalst [2].

For complex practical problems, the MTSRT method is most appropriate, because it

can be applied to arbitrary interval timed coloured Petri nets. The conditions made

by the other methods are often too restrictive. Furthermore, the MTSRT method

is the only method able to answer questions involving the colour of tokens. The

PNRT, ATCFN and the SSPAT abstract from the token colours. However, there

are application areas where these limitations are not restrictive. For example: the

ATCFN method can be used to analyse project plans, and the PNRT method can

be used for production planning with repetitive schedules.

A consequence of the exibility of the MTSRT method, is the computational ef-

fort required to analyse a complex system. For practical problems, the `reduced'

reachability graph generated by the MTSRT method, tends to become too large to

analyse. In most cases this is caused by a large and complex net structure and/or a

large number of possible token colours.

To deal with large colour sets, we propose techniques to translate an ITCPN into an

ITCPN with only one kind of tokens, i.e. the cardinality of each colour set equals

1. Such an ITCPN is called an Interval Timed Petri Net (ITPN).

One can think of an ITPN as a speci�c kind of ITCPN with only one colour. Our aim,

however, is to analyse interval timed coloured Petri nets. Therefore, we investigated

suitable procedures for the translation of an ITCPN into an ITPN. There are two

other reasons for having the desire to translate an ITCPN into an ITPN. First of all,

ITCPNs with only one kind of tokens allow for several structural analysis techniques

developed for uncoloured nets (see Murata [93]). Another reason is the fact that, at

the moment, our analysis software only supports the analysis of uncoloured ITCPNs.

Since we are able to (automatically) translate an ITCPN into an ITPN, we can

analyse ITCPNs indirectly,

We distinguish three ways to translate an ITCPN into an ITPN:

unfold The �rst way is to translate the ITCPN into an equivalent ITPN is to use

a construction similar to the one presented in Peterson [99] and Genrich [44].
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Such a construction, often referred to as `unfolding', is only possible if the

number of colours is �nite. The construction maps each place (transition) in

the ITCPN into a set of places (transitions) in the constructed ITPN. If there

are many di�erent colours, the size of the constructed ITPN becomes very

large. Therefore, this approach cannot be applied to large practical examples.

uncolour Another way to reduce the ITCPN into an ITPN is to discard the colours,

to a certain extent. Each place in the ITCPN corresponds to exactly one place

in the ITPN. If a transition in the ITCPN always produces the same number of

tokens for every output place, then this transition also corresponds to exactly

one transition in the ITPN. The lower bound (upper bound) of the delay

of a token produced by a transition for a speci�c output place in the ITPN,

corresponds to the smallest (largest) lower bound (upper bound) of all possible

delays assigned to this place by the transition in the ITCPN. If the number

of tokens produced by a transition in the ITCPN depends on the values of

the consumed tokens, then this transition corresponds to a set of transitions

in the ITPN. In practice the cardinality of this set is small. Therefore, this

construction produces an ITPN of about the same size. Consider for example,

a transition t with two output places o1 and o2. Assume that: if t �res, it

produces one token, either for place o1 or for place o2 (depending upon the

values of the consumed tokens). In the corresponding uncoloured net t is

replaced by two transitions t1 and t2. Both transitions consume tokens from

the input places of t. Transition t1 produces a token for place o1 and transition

t2 produces a token for place o2.

Clearly some information is lost during this construction. However, it is still

possible to derive useful properties for the ITCPN. For instance, if the ITPN

is K-bounded (deadlock free), then the ITCPN is also K-bounded (deadlock

free), and upper and lower bounds for the cycle time of the ITPN are also valid

upper and lower bounds for the ITCPN. Often it is possible to prove certain

properties for an ITCPN by analysing the corresponding ITPN, for example,

it is possible to prove that certain deadlines are met.

re�ne The third way to use an ITPN to analyse an ITCPN is a mixture of the

previous two. This hybrid approach works in two steps, �rst, for each place,

the set of possible colours is partitioned into a number of colours sets, then

the net is unfolded into an ITPN. A place in the ITCPN is mapped into a

set of places, the cardinality of this set depends on the partitioning. In other

words: �rst, we transform the ITCPN into an ITCPN with less colours and

more places, then we remove the colours.

Consider for example an ITCPN with tokens representing machine jobs. The

service time of a job depends on the colour of the token, i.e. its attributes. A

job can have a large number of attributes, like weight, size, operations required,

etc. In this case it is possible to partition the set of possible jobs into two

meaningful classes: `small' jobs and `large' jobs. Based on this partitioning

it is possible to derive upper and lower bounds for the service time of small
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(large) jobs. When unfolding the ITCPN into an ITPN, each place containing

jobs is mapped into two places, one for small jobs and one for large jobs. The

transitions connected to these places are also duplicated.

This way it is possible to derive tight bounds for the behaviour of the ITCPN

without having an `explosion' in the size of the net. Preferably, this approach

is supported by a tool in an interactive way.

This monograph describes the last two approaches. These approaches are attractive,

because they can be applied to large coloured and timed Petri nets, as opposed to

nearly all other analysis methods. Note that this is a direct consequence of the fact

that we use interval delays rather than deterministic or stochastic delays.

1.5 ExSpect

The practical use of the ITCPN model and related analysis methods highly depends

upon the availability of adequate computer tools. To facilitate the creation, storage

and adaptation of these models, we use a speci�cation language to represent these

models. We already mentioned that a formal speci�cation is a precise and structured

description of a system, expressed in a language having a syntax and semantics. We

use the Petri net based speci�cation language ExSpect ([53], [55], [52], [56], [51], [57],

[8], [7]). This language has been developed at Eindhoven University of Technology,

and is supported by a software package also called ExSpect (see Somers et al. [54],

[9]).

We use ExSpect for the formal speci�cation of a restricted class of interval timed

coloured Petri nets. There is a straightforward relation between this speci�cation

language and the ITCPN model. In fact, the semantics of ExSpect are given in

terms of a timed coloured Petri net model (see Van Hee et al. [53]).

The language ExSpect consists of two parts: a functional part and a dynamic part.

The functional part is used to de�ne types and functions needed to describe the

operations on the value of a token. The type system consists of some primitive

types and a few type constructors to de�ne new types. A `sugared lambda calculus'

is used to de�ne new functions from a set of primitive functions. ExSpect is a

`strongly typed' language since it allows all type checking to be done statically.

A strong point of the language is the concept of type variables: it provides the

possibility of polymorphic functions.

The dynamic part of ExSpect is used to specify a network of transitions and places,

and therefore, the interaction structure of a system. The behaviour of a transition,

i.e. the number of tokens produced and their values, is described by functions. The

language also has a hierarchical construct called system. A system is a subnet, i.e. an

aggregate of places and transitions and (perhaps) subsystems. The system concept

supports both top-down and bottom-up design. A system can have a number of

parameters. As a result, a system can be customized or �ne-tuned for a speci�c

situation. This way it is possible to de�ne generic system speci�cations, that are

easy to reuse.



1.5. EXSPECT 17

analysis
tool
(IAT)

design
interface

type
checker

inter-
preter

external
appl.

runtime
interface

&%

'$
source
�les

&%

'$
object
�les

-�

6

?

�

�
���

H
H
HjH

HHY H
H
Hj�

��*
�
��*

Figure 1.2: The toolset ExSpect

The software package ExSpect (EXecutable SPECi�cation Tool) is a workbench

based on the speci�cation language ExSpect. This workbench is made up of a

number of software tools, �gure 1.2 shows the set of tools of ExSpect. These tools

are integrated in a shell, from which the di�erent tools can be started. The design

interface is a graphical mouse driven editor, which is used to construct or to modify

an ExSpect speci�cation. Such a speci�cation is stored in a source �le (module).

This source �le is checked by the type checker for type correctness. If the speci�cation

is correct, then the type checker generates an object �le, otherwise the errors are

reported to the design interface. The interpreter uses the object �le to execute a

simulation experiment described by the corresponding ExSpect speci�cation. This

interpreter is connected to one or more runtime interfaces. These interfaces allow

one or more users to interact with the running simulation. It is also possible to

interact with some external application, for example presentation software.

Recently we added an analysis tool, called the ITPN Analysis Tool (IAT), to ExSpect.

This tool translates a speci�cation into an ITPN that is analysed using the meth-

ods described in this monograph, i.e. the MTSRT, PNRT and ATCFN analysis

methods. The tool also allows for more traditional kinds of analysis such as the

generation of P and T-invariants. This way we o�er three kinds of analysis: sim-

ulation, `structural analysis' (invariants) and `interval analysis' (MTSRT, PNRT,

ATCFN). This observation reveals an interesting issue: a formal speci�cation can

be used as a `blueprint' of the system, which allows for various kinds of analysis.
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This is very convenient, since it prevents us from having to remodel the system every

time we want to use another analysis technique. Therefore, we are also interested in

supporting other analysis techniques, e.g. Markovian analysis, queueing networks,

linear programming, etc.

1.6 Application to logistics

High-level Petri nets have been used in many application areas: exible manufac-

turing, computer architecture, distributed information systems, protocols, etc. In

[72] there are a number of papers describing applications of high-level nets. We

have used ExSpect in various application domains, e.g. queueing systems ([3]) and

exible manufacturing ([7]).

However, our main interest is in the modelling and analysis of logistic systems ([4],

[5], [8], [6]). This interest stems from three reasons:

First of all, timed coloured Petri nets are an appropriate way to describe logistic

processes. Note, that a logistic system is composed of physically distributed subsys-

tems with a rather complex interaction structure, i.e. a typical example of a discrete

dynamic system.

Secondly, recent developments in the �eld of logistics have complicated the manage-

ment of the logistic processes, e.g. the integration of logistic activities often results

in complex control problems. Therefore, there is a need for an integrated framework

for the modelling and analysis of logistic systems.

Thirdly, we participate in a project called TASTE (The Advanced Studies of Trans-

port in Europe). The goal of this project is to develop a tool to enable non-

programmers to model and analyse strategic problems in the �eld of interindustrial

logistics. TASTE uses ExSpect to model and analyse the ow of goods at an aggre-

gated level in and between, production, assembly, distribution and transport (see

[6]).

The TASTE project faced the fact that research in the �eld of logistics developed

along two separate lines.

The �rst line concentrates on solving mathematical problems related to logistics.

Investigations in this area are part of a discipline called operations research. Often

the problem statement is simpli�ed to allow for analytical solutions. This is the

reason that many results in this area are not generally applicable and require an

expert consultant. Examples of this line are the application of queueing networks to

scheduling problems and the application of linear programming to transport plan-

ning. Although these analysis methods help us gain insight in the problem, they can

only be applied in rather speci�c situations. Moreover, some of the results reported

in this area describe techniques for problems that do not even exist in practice.

The second line of research concentrates on practical logistic problems. The results

are often qualitative and informal. The approaches used in this area are mainly

discipline oriented, i.e. they focus on a speci�c aspect of logistics. Examples are the
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research on customer service, storage equipment, communication facilities (EDI),

personnel requirements, etc.

Neither of these lines has lead to an integrated framework to model and analyse

logistic systems. This is the reason this monograph outlines concepts and tools to

facilitate the modelling and analysis of real logistic problems.

First, we motivate our choice to use timed coloured Petri nets. We will do this by

showing that our Petri net model is able to represent typical logistic activities in a

very convenient manner.

Secondly, we present a `systems view of logistics' to structure complex logistic sys-

tems. Based on a taxonomy of the ows in a logistic system, we describe a system-

atic approach to the modelling of logistic systems. This approach can be used as a

stepping-stone to the development of a comprehensive `reference model' of logistics.

Such a reference model is a representation of an idealized organization, de�ning the

tasks of the logistic components as well as the interaction between these components

(see Biemans et al. [19], [21]).

Thirdly, based on our `systems view of logistics' we have developed an ExSpect

library of prede�ned system de�nitions. These system de�nitions are parameterized

building blocks representing typical logistic activities. There are about 20 of these

building blocks including a production unit, a distribution centre and a transport

system. It is our belief that many practical logistic systems can be modelled using

these building blocks. Modelling in terms of building blocks is supported by software

(ExSpect) and the modelling process results in a speci�cation that can be analysed

using simulation and the analysis methods already mentioned.

Our approach is intentionally abstract. Therefore, we focus on the main logistic

functions (e.g. transport, demand, supply, production and stock holding) and ignore

aspects, like administration, safety, personnel, etc. Moreover, sometimes we also

abstract from the physical reality, i.e. we are not interested in the actual layout of

a logistic system, mechanical aspects, communication protocols, etc.

1.7 Other methods

We use a Petri net based approach, this is only one of the many approaches which

have been developed to model and analyse discrete dynamic systems. We distinguish

three main directions:

• simulation techniques

• diagramming techniques

• formal techniques

Simulation is one of the most powerful techniques to analyse a complex system.

Advantages of simulation are: easy to use, exible, availability of tools. Another

important advantage of simulation is that it helps the analyst to understand and
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to gain a feel for the system. In a way, simulation is similar to the debugging of a

program, in the sense that it can reveal errors of a (simulation) model. In practice,

however, simulation is never suÆcient to prove the correctness of the system.

There are two kinds of simulation tools: simulation languages and speci�c simulation

packages. Simulation languages, such as SIMULA (Dahl and Nygaard [33]) and

SIMAN (Pidd [103]), are exible but lack suÆcient support of the modelling process,

e.g. a graphical editor, analysis tools, etc. Simulation packages are often application

speci�c. Examples in the �eld of manufacturing are SIMFACTORY and TAYLOR

([103]). These packages are easy to use and support animation. The fact that

they are tailored towards a speci�c application makes them inexible. Note that,

although ExSpect is a speci�cation language, it can be used as a simulation language

which can be tailored towards a speci�c domain by creating reusable systems, i.e. it

is possible to use libraries of user-de�ned building blocks. The application of these

building blocks is quite easy, because they can be used in a completely graphical

manner.

There are several frameworks based on diagramming techniques. These frameworks

use a graphical language to describe data ow, control ow, etc. The graphical

nature of these frameworks makes them easy to use. Examples are SADT (Marca

and McGowan [79]), ISAC (Lundeberg et al. [78]) and DFD (Ward and Mellor [121]).

Most of these frameworks incorporate techniques to describe the data structure, for

example the entity-relationship model (Chen [29]). The result of using such an

approach is an informal description, that does not allow for quantitative analysis.

Another drawback of these techniques is that they lack a concept to quantify time

which makes it very diÆcult to model real-time constraints.

Formal methods to model (specify) and to analyse discrete dynamic systems are, at

this point, mainly under development in the academic world. Some of these methods

are slowly gaining industrial acceptance. We distinguish 6 directions:

• queueing networks

• �nite state machines

• model oriented speci�cations

• process algebras

• temporal logic

• Petri nets

We will review these formal methods, without claiming to give a complete survey.

A queueing network (Ajmone Marsan et al. [83]) is a system of interconnected

queues in which customers circulate, arrive or leave. Queueing networks have become

quite popular in the �eld of performance evaluation. The main reason for this
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popularity is due to the product form solution, that holds for a restricted class

of queueing networks (see Baskett et al. [13]). This restricted class allows for

the analytical solution of all sorts of performance measures. Nevertheless, several

practically important features, like synchronization, blocking and the splitting of

customers can usually not be modelled in such a way that the model still has the

product form solution (see Ajmone Marsan et al. [83]). For non-product form

queueing networks there are approximative methods of analysis available, but these

are not generally applicable and require an expert consultant. Therefore, for a more

detailed analysis of queueing networks, simulation is practically unavoidable.

The �nite state machine is a restriction to the classical model of theoretical computer

science (Hopcroft and Ullman [66]). A �nite state machine can be modelled using

is a state transition diagram (Davis [34]). At any moment the machine is in a

certain state. In response to an input the machine generates an output and changes

state. Statecharts (Harel [48]) represents a generalized formalism based on �nite

state machines. In statecharts, the normal state transition diagram is enhanced

with hierarchical and compositional features. Although a supporting tool, called

`statemate', has been developed, this method cannot be used to model large real-time

systems because of the absence of facilities to model data structures and quantitative

time.

VDM (Jones [73]) and Z (Spivey [116]) are model oriented speci�cation languages.

These methods have been found useful for the speci�cation of large commercial

systems, but are weak in their ability to deal with concurrency and real-time. Fur-

thermore, these languages do not allow for quantitative analysis, the emphasis is on

speci�cation rather than analysis.

Process algebras, such as CSP (Hoare [63]), CCS (Milner [91]) and ACP (Bergstra

and Klop [15]), are well suited for the modelling of parallel and concurrent be-

haviour. They are however poor in their capabilities to specify data structures and

operations. There are several algebraic speci�cation languages based on one of these

process algebras, e.g. LOTOS (Brinksma [27], [26]) and PSF (Mauw and Veltink

[86]). These languages have constructs to handle data structures, modularization

and parameterization. Moreover, several process algebras have been extended with

timing constraints, for example timed-CSP (Reed and Roscoe [110]), CCSR (Gerber

and Lee [47]), ACP� (Baeten and Bergstra [12]) and Timed LOTOS (Bolognesi et

al. [23]).

Temporal logic (Pnueli [104]) is a branch of modal logic. Generally, a number of

temporal operators are introduced, for example 2 (henceforth) and 3 (eventually).

Various types of semantics can be given to the temporal operators depending on

whether time is linear or branching, time is quanti�ed, time is implicit or explicit,

time is local or global, etc. A temporal logic is called a real-time temporal logic if

time is quanti�ed.
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Metric Temporal Logic (Koymans [75]) is a real-time temporal logic with an implicit

time construct. For example, the formula A → 3≤3B means that: if A occurs, then

eventually within 3 time units B must occur.

Real-Time Temporal Logic (Ostro� [95]) has an explicit time (clock) variable t. The

previous formula can be expressed as follows: (A ∧ t = T ) → 3(B ∧ t ≤ T + 3).

An overview of existing frameworks in temporal logic is given by Ostro� in [96].

Temporal logic is suitable for describing (temporal) properties of a system. Dis-

advantages are the fact that temporal logic is diÆcult to learn and speci�cations

based on temporal logic are hard to read. The low level nature of these speci�cations

makes it diÆcult to model large and complex systems. Additional drawbacks are

the absence of data modelling capabilities and limited analysis methods. A promis-

ing approach is the combination of temporal logic and other frameworks (e.g. Petri

nets). Such an approach was presented by Ostro� in [95], where Extended State

Machines are used to model the system and Real-Time Temporal Logic is used to

specify the required behaviour of the system.

In this monograph we present an approach based on a timed coloured Petri net

model. The Petri net concept meets the requirements set out by the distributed

nature of a logistic system. The addition of colour and time, enables the modelling

of data structures and a complex temporal behaviour. A major advantage compared

to other methods mentioned in this section, is the availability of various kinds of

analysis, e.g. simulation, `structural analysis' (invariants) and `interval analysis'

(MTSRT, PNRT, ATCFN). From this point of view, this monograph provides an

integrated approach which combines a number of existing formalisms.

1.8 Outline of this monograph

The remainder of this monograph consists of �ve chapters.

In Chapter 2 we de�ne the ITCPN model. The semantics of this model is given in

terms of a transition system. To do this, we introduce some basic notations and

concepts. We also discuss some interesting properties of this model.

Chapter 3 describes three of the four analysis methods we have developed to anal-

yse interval timed coloured Petri nets. These methods are compared with existing

analysis methods. We also show how these methods can be used to analyse interval

timed coloured Petri nets with large colour sets. We use an example to illustrate

our approach.

In chapter 4 we discuss the language ExSpect and describe the tools that have been

developed to support this language. The author participated in the development of

the design interface and the analysis tool of ExSpect. As an example of an ExSpect

module, we present the QNM library (see Van der Aalst [3]). This library contains

building blocks, which can be used to model and analyse queueing networks in a

graphical manner.

In chapter 5 we structure the �eld of logistics and discuss the application of Petri

nets to logistic problems. We also present a library containing logistic building
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blocks.

Finally, in chapter 6, we discuss the usefulness of the approach presented in this

monograph.
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Chapter 2

A timed coloured Petri net model

2.1 Introduction

In this chapter we give a formal de�nition of our ITCPN model. This chapter also

describes some fundamental concepts, such as behavioural properties and perfor-

mance measures. Some of these concepts have been adopted from existing Petri net

theory, others have been developed with the rest of this monograph in mind. The

concepts described in this chapter are used throughout this monograph and so they

are fundamental to a correct understanding of our approach.
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Figure 2.1: An interval timed coloured Petri net

In section 1.3 we already discussed the need for a timed and coloured Petri net

model. This is the reason we developed the Interval Timed Coloured Petri Net

(ITCPN) model.

To illustrate this model we use an example. Figure 2.1 shows an ITCPN which

comprises four places (p1, p2, p3 and p4) and two transitions (t1 and t2). Transition

t1 has two input places (p1 and p2) and one output place (p4). Transition t2 also has

25
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two input places (p2 and p3) and one output place (p4). At any moment, a place

contains zero or more tokens, drawn as black dots. In the ITCPN model, a token

has four attributes: an identity, a position, a value and a timestamp, i.e. we can use

the quartet 〈i; p; v; x〉 to denote a token in place p with value v, timestamp x and

some identi�cation number i.

Figure 2.2 shows the ITCPN in a state with one token in p1, two tokens in p2 and

one token in p3. In this example, the value of any token is a string, e.g. the token

in place p1 has a value ′
AB

′. In the state shown in �gure 2.2, both transitions t1
and t2 are enabled, because each of the input places of t1 and t2 contains at least

one token. The enabling time of t1 is the maximum timestamp of the tokens to be

consumed, i.e. 3:0 (the maximum of 3:0 and 2:0). The enabling time of t2 is 4:0

(the maximum of 2:0 and 4:0). Note that tokens on a place are consumed in order

of their arrival (i.e. timestamps). Transitions are eager to �re, therefore t1 �res at

time 3:0.

Firing t1 means consuming a token from place p1 (〈1; p1; ′
AB

′
; 3:0〉) and place p2

(〈2; p2; ′
CD

′
; 2:0〉) and producing a token for place p4 whose value may depend on

the values of the tokens consumed. In this case the value of the produced token is

the concatenation of the values of the tokens consumed (i.e. ′
ABCD

′). The delay of

this token is between 0 and 2. Figure 2.3 shows a state resulting from the �ring of

transition t1 in �gure 2.2. In this case the delay of the token equals 1.25, however,

any other value between 0 and 2 would have been allowed. The identi�cation of the

new token is an arbitrary, but unique, number (in this case 5).

In the state shown in �gure 2.3 only t2 is enabled. The enabling time of t2 is

5:0 (the maximum of 5:0 and 4:0). Consequently, this transition �res at time 5:0.

Transition t2 also concatenates two strings, i.e. t2 consumes a token from place p2
(〈3; p2;′EF ′

; 5:0〉) and place p3 (〈4; p3;′GH ′
; 4:0〉) and produces a token for place p4

(e.g. 〈6; p4;′EFGH ′
; 6:50〉). Note that in this case the delay of the produced token

is 1:5.

Figure 2.4 shows a state resulting from the �ring of transition t2 in �gure 2.3. There

are no transitions enabled in this state.

The above example illustrates the dynamic behaviour of an ITCPN. It is, however,

nearly impossible to give an informal explanation which is complete and unambigu-

ous. Since an informal discussion of the meaning of interval timed coloured Petri

nets is likely to cause confusion, we give a formal de�nition of the ITCPN model

and the corresponding semantics in section 2.4.

Because our formalisms are based on bag theory and transition systems, we start

with some useful notations and a formal de�nition of transition systems.

2.2 Notations

IN is the set of natural numbers including zero. IR is the set of reals. It is convenient

to adjoin to IR two additional elements, ∞ and −∞ (not belonging to IR) with the

order properties −∞ < a < ∞ for any a ∈ IR. We `extend' the addition operator
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Figure 2.2: An ITCPN, t1 and t2 are enabled
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for reals such that for all a ∈ IR: a +∞ = ∞ + a = ∞ and ∞ +∞ = ∞. Similar

conventions hold for −∞. The expressions ∞−∞ and −∞+∞ are unde�ned.

The Cartesian product of two sets A and B, denoted by A × B, is the set of all

ordered pairs 〈a; b〉 with a ∈ A and b ∈ B. If x = 〈a; b〉 ∈ A×B then �1(x) = a and

�2(x) = b. For n ∈ IN, A1; A2; ::; An sets, x ∈ A1 × A2 × :: × An and i ∈ {1; ::; n},
�i(x) denotes the i

th component of x.

A binary relation R on a set S, is a subset of S×S. If S a set and R ⊆ S×S then:

R
0 = I = {〈s; s〉 | s ∈ S},

R
n = {〈s1; s3〉 ∈ S × S | ∃s2∈S(〈s1; s2〉 ∈ R ∧ 〈s2; s3〉 ∈ R

n−1)}, for n > 0 and

R
∗ = {〈s1; s2〉 | ∃n∈IN 〈s1; s2〉 ∈ R

n} = ∪
n∈INR

n, the reexive and transitive closure

of R.

A partially ordered set, or just poset, is a pair 〈S;R〉 where S is a set and R a binary

relation on S, which satis�es the following conditions:
∀s∈S 〈s; s〉 ∈ R (reexive)

∀s1;s2∈S (〈s1; s2〉 ∈ R) ∧ (〈s2; s1〉 ∈ R) ⇒ (s1 = s2) (antisymmetric)

∀s1;s2;s3∈S (〈s1; s2〉 ∈ R) ∧ (〈s2; s3〉 ∈ R) ⇒ (〈s1; s3〉 ∈ R) (transitive)

In general we denote a partial ordering by `≤' and use an in�x notation. We will

adopt the notations s1 < s2, s1 ≥ s2, s1 > s2 for respectively s1 ≤ s2 ∧ s1 �= s2,

s2 ≤ s1, s2 ≤ s1 ∧ s1 �= s2. A poset 〈S;≤〉 is a linear ordering (total ordering), if

and only if, for all s1; s2 ∈ S: s1 ≤ s2 or s2 ≤ s1.

Set operations are de�ned in the usual way. If A is a set, then #A is the number of

elements in A and IP(A) is the powerset of A (the set of all subsets of A).

For A and B sets, A → B denotes the set of all total functions from A to B and

A �→ B denotes the set of all partial functions from A to B.

If f ∈ A �→ B then dom(f) is the domain of f and rng(f) = {f(x) | x ∈ dom(f)}
is the range of f .

If f a function then f is also de�ned for X ⊆ dom(f): f(X) = {f(x) | x ∈ X}.
f �X denotes the restriction of a function to X ⊆ dom(f), i.e. dom(f �X) = X and

for all x ∈ X: f �X(x) = f(x).

We use the lambda notation or the `set notation' to de�ne functions, i.e. a function

f = �x∈dom(f)f(x) = {〈x; f(x)〉 | x ∈ dom(f)}.
Note that the set notation of a function allows for a number of set operations. If f1,

f2 are functions, then:
#f1 = #dom(f1)

f1 ⊆ f2 i� dom(f1) ⊆ dom(f2) ∧ ∀x∈dom(f1) f1(x) = f2(x)

f1 \ f2 = f1�{x ∈ dom(f1) | x ∈ dom(f2) ⇒ f1(x) = f2(x)}
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Furthermore, if f1, f2 functions with disjoint domains then:

f1 ∪ f2 = {〈x; y〉 | (x ∈ dom(f1) ∧ f1(x) = y) ∨ (x ∈ dom(f2) ∧ f2(x) = y)}

For a totally ordered set A and x; y ∈ A: x min y (x max y) is the minimum

(maximum) of x and y, i.e. if x ≤ y then x min y = x (x max y = y). If A is a

totally ordered �nite non-empty set, then min A is the minimal element of A and

max A is the maximal element of A. If A = ∅, then min A = ∞ and max A = −∞.

If A ⊆ IR ∪ {−∞;∞} then min A (max A) is the supremum (in�mum) of A. If

A is not bounded below (above) then min A = −∞ (max A = ∞). Because

of the completeness axiom for reals (see Depree and Swartz [36]), every subset of

IR ∪ {−∞;∞} has a supremum and in�mum.

Sometimes we use an alternative notation to denote the minimum (maximum) of

the range of a function f on a speci�ed domain A: minx∈Af(x) = min{f(x) | x ∈ A}
and maxx∈Af(x) = max{f(x) | x ∈ A}.

Intuitively a multiset is the same as a set, except for the fact that a multiset may

contain multiple occurrences of the same element. Another word for multiset is bag.

Bag theory is a natural extension of set theory (see Peterson [100]). A multiset, like

a set, is a collection of elements over the same subset of some universe. However,

unlike a set, a multiset allows multiple occurrences of the same element. A multiset

b over A is de�ned by a function from A to IN, i.e. b ∈ A → IN. If a ∈ A then b(a)

is the number of occurrences of a in the multiset b. IB(A) is the set of all multisets

over A.

We now introduce some operations on bags. Most of the set operators can be

extended to bags in a rather straightforward way. Suppose A a set, b1; b2 ∈ IB(A)

and q ∈ A.

q ∈ b1 i� b1(q) ≥ 1 (membership)

b1 ⊆ b2 i� ∀a∈A b1(a) ≤ b2(a) (inclusion)

b1 = b2 i� b1 ⊆ b2 ∧ b2 ⊆ b1 (equality)

b1 ∪ b2 = �a∈A (b1(a) max b2(a)) (union)

b1 ∩ b2 = �a∈A (b1(a) min b2(a)) (intersection)

b1 + b2 = �a∈A (b1(a) + b2(a)) (sum)

b1 \ b2 = �a∈A ((b1(a)− b2(a)) max 0) (di�erence)

min(b1) = min{a ∈ A | a ∈ b1} (minimum)

max(b1) = max{a ∈ A | a ∈ b1} (maximum)

#b1 =
X
a∈A

b1(a) (cardinality of a �nite bag)

We use square brackets to denote multisets by enumeration. Suppose A a set, n ∈ IN

and q0; q1; ::; qn ∈ A then [q0; q1; ::; qn] = �a∈A #{i ∈ {0; ::; n} | qi = a}. Consider,

for example, the following bags over the domain IN: [1; 3], [1; 1; 1], [1; 2; 1; 2]. Note

that [1; 2; 1; 2] and [1; 1; 2; 2] indicate the same bag. We use [ ] to denote the empty

bag.

Although bags are a generalization of sets, we want to be able to represent bags



30 CHAPTER 2. A TIMED COLOURED PETRI NET MODEL

as sets. This can be done by attaching a unique label to every element in the bag.

An advantage of such a labelled bag is the fact that it is possible to identify single

elements in a bag. In the rest of this monograph we assume that there is an in�nite

set of labels called Id, for example Id = IN. More formally: we represent a �nite

bag b ∈ IB(A) by a partial function s ∈ Id �→ A with a �nite domain. In order to be

able to switch between the two types of representation, we introduce two conversion

functions: SB and BS.

De�nition 1

If A is a set then we de�ne SB ∈ (Id �→ A) �→ IB(A) and a BS ∈ IB(A) �→ (Id �→ A)

as follows. For any s ∈ Id �→ A with a �nite domain and for any �nite bag b ∈ IB(A),

we have:

SB(s) = �a∈A#{i ∈ dom(s) | s(i) = a}
SB(BS(b)) = b

Function SB transforms a labelled bag into the conventional representation without

labels. Note that several functions BS satisfying the condition ∀b∈IB(A)SB(BS(b)) =
b are possible (`Axiom of Choice'). It is easy to verify that such a function exists,

e.g. take one element from the bag and label it 1, take an arbitrary other one and

label it 2, etc. For example, if A is a totally ordered set and Id = IN, then we may

de�ne BS as follows. For any �nite b ∈ IB(A): BS(b) = label(Id; b), where for any

X ⊆ Id:

label(X; b) =

(
∅ if b = [ ]

{〈minX;min b〉} ∪ label(X \ {minX}; b \ [min b]) if b �= [ ]

In the remainder of this monograph we assume a given BS, i.e. a �xed function.

De�nition 2

Two labelled bags over A, say s1; s2 ∈ Id �→ A, are equal if and only if the corre-

sponding bags are equal, i.e. SB(s1) = SB(s2).

If two labelled bags are equal, then there is an obvious bijection between the ele-

ments. This is expressed by the following lemma:

Lemma 1

Let A be a set and s1; s2 ∈ Id �→ A. Then SB(s1) = SB(s2) if and only if there

exists a bijective function f ∈ dom(s1) → dom(s2) with:

∀i∈dom(s1) s1(i) = s2(f(i))



2.3. TRANSITION SYSTEMS 31

'

&

$

%
��

��
1; a ��

��
2; b

��

��
3; a

��

��
4; c

��
��

��
��

��
��

��
��

��1

��
��

��
��

��
��

��
��

�1

-

PPPPPPPPPPPPPPPPPPPPq

'

&

$

%

��

��
34; a ��

��
43; b

��

��
76; a

��

��
32; c

Figure 2.5: Two equivalent labelled bags

Proof.

Let s1; s2 ∈ Id �→ A.

(1) Assume that there exists a bijective f ∈ dom(s1) → dom(s2) with for all i ∈
dom(s1): s1(i) = s2(f(i)). Now we have to prove that SB(s1) = SB(s2).
For any a ∈ A: {i ∈ dom(s1) | s1(i) = a} = {i ∈ dom(s1) | s2(f(i)) = a} and

#{i ∈ dom(s1) | s2(f(i)) = a} = #{j ∈ dom(s2) | s2(j) = a} (f is bijective).

Hence, �a∈A#{i ∈ dom(s1) | s1(i) = a} = �a∈A#{j ∈ dom(s2) | s2(j) = a}, i.e.
SB(s1) = SB(s2).

(2) Assume that SB(s1) = SB(s2). Now we have to prove that there exists a bijective

f ∈ dom(s1) → dom(s2) with for all i ∈ dom(s1): s1(i) = s2(f(i)).

For any a ∈ A: #{i ∈ dom(s1) | s1(i) = a} = #{j ∈ dom(s2) | s2(j) = a}, because
SB(s1) = SB(s2).
If X and Y two arbitrary sets and #X = #Y , then there exists a bijective g ∈ X →
Y . Hence, for each a ∈ A, there exists a bijective function fa ∈ {i ∈ dom(s1) | s1(i) =
a} → {j ∈ dom(s2) | s2(j) = a}.
If a1; a2 ∈ A and a1 �= a2, then dom(fa1)∩dom(fa2) = ∅ and rng(fa1)∩rng(fa2) = ∅.
Consequently, f = ∪a∈Afa is bijective and for all i ∈ dom(s1): s1(i) = s2(f(i)).

2

Figure 2.5 shows a bijective function f relating two equivalent labelled bags. In this

case, dom(f) = {1; 2; 3; 4}, f(1) = 34, f(2) = 43, f(3) = 76 and f(4) = 32.

2.3 Transition systems

To formalize the ITCPN model we have to attach a precise meaning to interval

timed coloured Petri nets, this can be done by giving formal semantics. There are

several ways to do this. In literature three styles of semantics are distinguished: (1)

operational semantics, (2) axiomatic semantics and (3) denotational semantics. We
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Figure 2.6: A graphical representation of 〈S;R〉

use operational semantics 1 to describe our formalism, because this seems to be the

most natural way to describe the behaviour of an interval timed coloured Petri net.

Another advantage of using operational semantics is that it makes it easy to compare

two models by establishing a relation between the states of the two models. We use

this property to prove the correctness of some of the analysis methods described in

chapter 3.

The operational semantics (of the behaviour) of our model are given by means of

a transition system. There are several types of transition systems, called labelled

transition systems, non-deterministic machines, process graphs, non-deterministic

automata, etc. (see Milner [91], Hennessy [59], Hesselink [60], Van Hee and Rambags

[49], etc.). We de�ne a transition system as follows:

De�nition 3 (Transition System)

A transition system is a pair 〈S;R〉, where:
S is a set , called the state space

R ⊆ S × S , the transition relation

A similar de�nition is given by Van Hee and Rambags in [49]. Note that actions, i.e.

transitions from one state to another, are not labelled as opposed to many existing

types of transition systems. Although our de�nition deviates from most transition

systems described in literature (e.g. Hesselink [60]), we use de�nition 3 for reasons

of convenience. Furthermore, it is easy to transform our transition systems into any

other type of transition systems and vice versa.

Sometimes it is useful to make a graphical representation of a transition system.

Consider for example the transition system 〈S;R〉, where:
S = IN

R = {〈n+ 2; n+ 1〉 | n ∈ IN} ∪ {〈0; n〉 | n ∈ IN \ {0}}
The corresponding graph is shown in �gure 2.6.

Reachability is the basis for studying the behaviour of a transition system.

1In a sense, our semantics are also denotational semantics, since we specify the meaning of an

ITCPN by mathematical objects, such as sets, functions and relations.
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De�nition 4 (Reachability)

For a transition system 〈S;R〉 and an initial state s ∈ S we de�ne:

R(s) = {ŝ ∈ S | sRŝ}, the one step reachability set of s

R
n(s) = {ŝ ∈ S | sRn

ŝ}, the n-step reachability set of s

RS(s) = ∪
n∈IN R

n(s), the set of all states that are reachable from s

S
T = {ŝ ∈ S | R(ŝ) = ∅}, the set of terminal states

For the transition system depicted in �gure 2.6, R(0) = IN \ {0}, R(1) = ∅, R(2) =
{1}, R(3) = {2}, R2(0) = IN \ {0}, R2(1) = ∅, R2(2) = ∅, R2(3) = {1}, RS(0) = IN

and for n > 0: RS(n) = {k ∈ IN | 1 ≤ k ≤ n}. Note that state 1 is a terminal state.

The process of a transition system starting in an initial state s is described by the

set of all possible execution paths starting in s. These execution paths represent all

possible `behaviours' of the transition system. An execution path is a (maximal)

sequence of states such that any successive pair belongs to the transition relation.

A path starts in an initial state and either it is in�nite or it ends in a terminal state.

De�nition 5 (Process)

For a transition system 〈S;R〉 and an initial state s ∈ S we de�ne:

�(s) = {� ∈ IN �→ S | 0 ∈ dom(�) ∧ �0 = s

∧ ∀i∈dom(�)\{0} (i− 1) ∈ dom(�) ∧ �i−1R�i

∧ ∀i∈dom(�) (∀j∈dom(�) j ≤ i) ⇒ �i ∈ S
T }

�(s) is the process (or behaviour) of the transition system in state s.

Note that the domain of a �ring sequence � is consecutive subset of IN. Consider

the transition system shown in �gure 2.6. Examples of paths starting in state 0

are {〈0; 0〉; 〈1; 1〉}, {〈0; 0〉; 〈1; 2〉; 〈2; 1〉} and {〈0; 0〉; 〈1; 4〉; 〈2; 3〉; 〈3; 2〉; 〈4; 1〉}. �(s)

is the set of all possible execution paths starting in s. For all paths � ∈ �(s) and

n ∈ IN: ��{k ∈ IN | 0 ≤ k < n} is called a trace.

One of the main reasons for choosing operational semantics is the fact that it allows

us to compare the behaviour of two systems. Therefore, we introduce some concepts

to compare transition systems. Most of these concepts have been adopted from

Hesselink [60] and Van Hee and Rambags [49].

The �rst relationship we consider is the so-called morphism from one transition

system to another.

De�nition 6 (Morphism)

Let X = 〈Sx; Rx〉 and Y = 〈Sy; Ry〉 be two transition systems. A function f ∈ Sx →
Sy is a morphism from transition system X to transition system Y if and only if:

{〈f(x1); f(x2)〉 | 〈x1; x2〉 ∈ Rx} ⊆ Ry
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Loosely speaking, a function f is called a morphism from transition system X to

transition system Y if every transition in X corresponds to some transition in Y .

The morphism is said to be strict if:

{〈f(x1); f(x2)〉 | 〈x1; x2〉 ∈ Rx} = Ry

It is easy to verify that the composition of morphisms is transitive:

Lemma 2

Let X = 〈Sx; Rx〉, Y = 〈Sy; Ry〉 and Z = 〈Sz; Rz〉 be transition systems. If f ∈
Sx → Sy is a morphism from transition system X to transition system Y and

g ∈ Sy → Sz is a morphism from transition system Y to transition system Z, then

g ◦ f ∈ Sx → Sz is a morphism from X to Z.

Proof.

Straightforward.

2

If both morphisms are strict, then so is the composition.

Sometimes it is not possible to establish a functional relationship between two tran-

sition systems. Consider for example two transition systems X and Y where one

state in X corresponds to two or more states in Y and vice versa. In this case we

are in need of a weaker relationship. This relationship is called similarity, it is based

on a relation rather than a function.

De�nition 7 (Similarity)

Let X = 〈Sx; Rx〉 and Y = 〈Sy; Ry〉 be two transition systems. Y is similar to X

with respect to a relation C ⊆ Sx × Sy if and only if:

∀〈x1;x2〉∈Rx
∀y1∈Sy (〈x1; y1〉 ∈ C) ⇒ ∃y2∈Sy(〈x2; y2〉 ∈ C ∧ 〈y1; y2〉 ∈ Ry)

This de�nition is illustrated by �gure 2.7. For every transition 〈x1; x2〉 in X and

every state y1 in Y related to x1 (i.e. 〈x1; y1〉 ∈ C), there exists a transition from

y1 to a state y2 such that y2 is related to x2. To clarify this concept, consider

the following example: X = 〈Sx; Rx〉 and Y = 〈Sy; Ry〉 are two transition systems

de�ned as follows:

Sx = IN

Rx = {〈n; n+ 1〉 | n ∈ IN}
Sy = {〈k; l〉 | k ∈ IN ∧ l ∈ IN ∧ k ≤ l}
Ry = {〈〈k; l〉; 〈k + 1; l + 1〉〉 | 〈k; l〉 ∈ Sy}
C = {〈n; 〈k; l〉〉 ∈ Sx × Sy | k ≤ n ≤ l}
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Figure 2.7: The `similarity' relationship

It is easy to verify that Y is similar to X with respect to C. The `soundness'

and `completeness' properties de�ned in chapter 3 are also examples of similarity

relations.

The composition of similarity relations is transitive.

Lemma 3

Let X = 〈Sx; Rx〉, Y = 〈Sy; Ry〉 and Z = 〈Sz; Rz〉 be transition systems. If Y is

similar to X with respect to a relation C1 ∈ Sx × Sy and Z is similar to Y with

respect to a relation C2 ∈ Sy×Sz, then Z is similar to X with respect to the relation:

C = {〈x; z〉 ∈ Sx × Sz | ∃y∈Sy 〈x; y〉 ∈ C1 ∧ 〈y; z〉 ∈ C2}

Proof.

Straightforward.

2

A morphism of two transition systems is a special form of similarity.

Lemma 4

Let X = 〈Sx; Rx〉 and Y = 〈Sy; Ry〉 be transition systems. If f ∈ Sx → Sy is a

morphism from X to Y , then Y is similar to X with respect to a relation C =

{〈x; f(x)〉 | x ∈ Sx}.

Sometimes a similarity relation is bidirectional. Consider the previous example, Y

is similar to X with respect to C = {〈n; 〈k; l〉〉 ∈ Sx × Sy | k ≤ n ≤ l} and X is

similar to Y with respect to Ĉ = {〈〈k; l〉; n〉 ∈ Sy × Sx | k ≤ n ≤ l}. Therefore,

many authors de�ne a concept called bisimilarity (e.g. Hesselink [60]).

De�nition 8 (Bisimilarity)

Let X = 〈Sx; Rx〉 and Y = 〈Sy; Ry〉 be two transition systems. X and Y are said

to be bisimilar with respect to a relation C ⊆ Sx × Sy, if and only if, Y is simi-

lar toX with respect to C and X is similar to Y with respect to {〈y; x〉 | 〈x; y〉 ∈ C}.
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It is easy to see that bisimilarity is reexive, symmetric and transitive, i.e. an

equivalence relation. Note that for any transition system X and Y , X and Y are

bisimilar with respect to C = ∅. Therefore, we introduce a stronger relationship,

called equivalence.

De�nition 9 (Equivalence)

Let X = 〈Sx; Rx〉 and Y = 〈Sy; Ry〉 be two transition systems. X and Y are said to

be equivalent, if and only if, there exists a strict bijective morphism f ∈ Sx → Sy

from X to Y .

Function f in de�nition 9, is called an isomorphism from X to Y (and vice versa). If

two transition systems X and Y are equivalent there is a one-to-one correspondence

between the states of X and Y . A transition between two states of X is possible if

and only if the corresponding transition is possible in Y , i.e x1Rxx2 ⇒ f(x1)Ryf(x2)

and y1Ryy2 ⇒ f
−1(y1)Rxf

−1(y2). Using lemma 4 it is easy to verify that the equiv-

alence of X and Y implies that X and Y are bisimilar with respect to relation

C = {〈x; f(x)〉 | x ∈ Sx}.
This completes our introduction to transition systems.

2.4 The model

An interval timed coloured Petri net (ITCPN) is a directed labelled bipartite graph

with two node types called places and transitions. Places are represented by circles

and transitions by bars. A directed arc (arrow) connects a place and a transition

in only one direction. A place p is called an input place of a transition t if there

exists a directed arc from p to t. A place p is called an output place of a transition

t if there exists a directed arc from t to p. Places may contain zero or more tokens,

drawn as black dots. The number of tokens may change during the execution of the

net. The place where a token `resides' is called the position (or location) of a token.

Besides a position, a token also has a value, a timestamp and some identi�cation.

The timestamp indicates the time the token becomes available. The identi�cation

is merely used to discriminate between two tokens having an identical value and

timestamp.

A transition is called enabled if there are `enough' tokens on each of its input places.

In other words, a transition is enabled if all input places contain (at least) the

speci�ed number of tokens. An enabled transition can �re at time x if all the tokens

to be consumed have a timestamp not later than time x. The enabling time of

a transition is the maximum timestamp of the tokens to be consumed. Because

transitions are eager to �re, a transition with the smallest enabling time will �re

�rst.

Firing a transition means consuming tokens from the input places and producing

tokens on the output places. If, at any time, more than one transition is enabled,

then any of the several enabled transitions may be `the next' to �re. This leads to

a non-deterministic choice if several transitions have the same enabling time.
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Firing is an atomic action, thereby producing tokens with a timestamp of at least

the �ring time. The di�erence between the �ring time and the timestamp of such a

produced token is called the �ring delay. This delay is speci�ed by an interval, i.e.

only delays between a given upper bound and a given lower bound are allowed. In

other words, the delay of a token is `sampled' from the corresponding delay interval.

Note that the term `sampled' may be confusing, because the modeller does not

specify a probability distribution, merely an upper and lower bound. Moreover, it

is possible that the modeller speci�es a delay interval which is too wide, because of

a lack of detailed information. In this case, the actual delays (in the real system)

only range over a part of the delay interval.

The number of tokens produced by the �ring of a transition may depend upon the

values of the consumed tokens. Moreover, the values and delays of the produced to-

kens may also depend upon the values of the consumed tokens. The relation between

the values of the consumed tokens and the bag of produced tokens is described by

a function. Note that, unlike in CPN, the enabling of a transition does not depend

upon the values of the tokens consumed.

De�nition 10 (ITCPN)

An ITCPN is de�ned by a seven tuple, ITCPN = (P; V; T; I; O; F; TS) with:

• P = dom(V ), the set of places

• V is a function with domain P , for all p ∈ P :

Vp is the value set or colour set of p (Vp �= ∅)

• T = dom(I) = dom(O) = dom(F ), the set of transitions

• I ∈ T → IB(P ), the input places of a transition and their weights

• O ∈ T → IP(P ), the output places of a transition

• TS, the time set

• INT = {〈t1; t2〉 ∈ TS × TS | t1 ≤ t2 ∧ t1 < ∞}, the set of all possible

closed intervals

• CT = {〈p; v〉 | p ∈ P ∧ v ∈ Vp}, the set of all possible coloured tokens

• F is the transition function, for all t ∈ T , Ft ∈ IB(CT ) �→ IB(CT × INT ),

such that:

dom(Ft) = {c ∈ IB(CT ) | ∀p∈P (
X
v∈Vp

c(〈p; v〉)) = It(p)}

and for all c ∈ dom(Ft), Ft(c) is a �nite bag and:

∀〈〈p;v〉;x〉∈Ft(c) p ∈ Ot
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Each place p ∈ P has a set of allowed values (colours) attached to it and this means

that a token residing in p must have a value v which is an element of this set, i.e.

v ∈ Vp.

The function I speci�es the bag of input places of each transition. If t ∈ T and

p ∈ It then p is an input place of t with multiplicity It(p). One can think of this

multiplicity as the weight of the arc connecting the input place p and transition

t. A transition t ∈ T is enabled, if each of the input places contains at least the

speci�ed number of tokens, i.e. for all p ∈ It: there are at least It(p) tokens in p.

In the remainder of this monograph, we assume that for all t ∈ T : It �= [ ], i.e.

every transition has at least one input place. We also assume that TS is a subset

of IR+ ∪ {0;∞}, such that for all x; y ∈ TS: x+ y ∈ TS.

The set of output places of each transition is speci�ed by the function O. Note that

Ot (for t ∈ T ) is a set instead of a bag. The reason for this is the fact that the

multiplicity of an output place is variable, i.e. the number of tokens produced for

an output place may depend upon the values of the tokens consumed.

If t ∈ T then Ft speci�es the number of tokens produced (and their values and

delays) given the values of the tokens consumed. The domain of Ft is the set of all

possible bags of tokens consumed by t. Let c ∈ dom(Ft) and 〈〈p; v〉; 〈x; y〉〉 ∈ Ft(c).

If transition t �res while consuming the tokens described by c, then t produces a

token for place p with value v and a delay between x and y. Note that p has to be

an output place of t.

To illustrate our rather formal de�nition of an ITCPN we give a small example:

P = {p1; p2}
Vp1 = IN and Vp2 = {`signal'}
T = {t1; t2}
I = {〈t1; [p1]〉; 〈t2; [p2; p2; p2]〉}
O = {〈t1; {p1; p2}〉; 〈t2; ∅〉}
For all n ∈ IN:

Ft1([〈p1; n〉]) = [〈〈p1; n + 1〉; 〈1; 1〉〉], if n < 10

Ft1([〈p1; n〉]) = [〈〈p1; 0〉; 〈1; 1〉〉; 〈〈p2; `signal'〉; 〈0; 5〉〉], if n ≥ 10

Ft2([〈p2; `signal'〉; 〈p2; `signal'〉; 〈p2; `signal'〉]) = [ ]

Figure 2.8 shows the graphical representation of this ITCPN. The example describes

a counter which produces a signal every 10 `ticks' (with a delay between 0 and

5 `ticks'). There are two places and two transitions. Tokens in place p1 have a

numerical value (natural number) and tokens in place p2 have a string value that

equals `signal'. In this example, the input place of t1 has multiplicity 1. The

input place of t2 has a multiplicity of 3, i.e. transition t2 is enabled if there are at

least three available tokens in place p2. Function Ft1 describes the bag of tokens

produced by the �ring of t1 given the value of the consumed token. Note that

dom(Ft1) = {[〈p1; n〉] | n ∈ IN}. If the value of the token in p1 is smaller than 10,

then t1 produces one token for p1 with a delay of precisely 1. Otherwise two tokens

are produced, one for p1 and one for p2. The delay of the latter token is between 0
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Figure 2.8: A graphical representation of an ITCPN

and 5. Transition t2 only consumes tokens (in packets of three).

2.4.1 Semantics of an ITCPN

We describe the semantics of an ITCPN by a transition system, i.e. a pair 〈S;R〉
where S is the state space and R ⊆ S × S the transition relation.

In the transition system describing an ITCPN we attach a unique label (identi�ca-

tion) to every token (in addition to the timestamp and value). Id is an in�nite set

of token labels. The state space of the transition system is:

S = Id �→ (CT × (TS \ {∞})) (2.1)

So, in fact, a state s ∈ S is a set of quartets representing: identity, position, value

and timestamp, and the �rst one is unique. If s ∈ S then dom(s) is the set of token

labels (identi�cations) corresponding to the tokens in the net. If i ∈ dom(s) then

s(i) is a triplet representing the position, value and timestamp of the corresponding

token. The timestamp of a token represents the time it becomes available, sometimes

we refer to this time as the arrival time of a token. Note that we do not allow tokens

to have a timestamp∞, because there is no (intuitively) clear interpretation for this.

For convenience we de�ne a number of functions to refer to a speci�c aspect of a

token.

De�nition 11

For q ∈ CT × TS (or q ∈ CT × INT ) we de�ne:

place(q) = �1(�1(q))

value(q) = �2(�1(q))

time(q) = �2(q)

We call the �ring of a transition an event. We de�ne E to be the event set:

E = T × S × S (2.2)

An event changes a state into a new state, described by the transition relation.

An event e ∈ E is a triplet indicating the transition that �res (�1(e)), the tokens

consumed (�2(e)) and the tokens produced (�3(e)).
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AE(s) ⊆ E is the set of allowed events in state s ∈ S. An allowed event e ∈ AE(s)

satis�es a number of conditions. One of those conditions is: the delay of a produced

token has to be sampled from the corresponding delay interval as speci�ed by F . To

sample a delay from the delay interval we introduce the concept of specialization.

This concept is vital to a correct understanding of the semantics given in this section.

De�nition 12 (Specialization)

For s ∈ Id �→ (CT × TS) and s ∈ Id �→ (CT × INT ): s / s (s is a specialization of

s), if and only if, there exists a bijective function f ∈ dom(s) → dom(s) with: 2

∀i∈dom(s) place(s(i)) = place(s(f(i))) ∧
value(s(i)) = value(s(f(i))) ∧
time(s(i)) ∈ time(s(f(i)))

If s is a specialization of s (i.e. s / s), then each token in s corresponds to precisely

one token in s (and vice versa) such that they are in the same place, have the same

value and the timestamp of the token in s is an element of the time interval of the

token in s. Figure 2.9 gives a graphical representation of the specialization concept,

each token in s with identity i corresponds to a token in s with identity f(i) such

that place(s(i)) = place(s(f(i))), value(s(i)) = value(s(f(i))) and time(s(i)) is in

the interval time(s(f(i))).
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Figure 2.9: Specialization: s / s

To discard the timestamps of the tokens in a state, we de�ne the function untime ∈
S → (Id �→ CT ). If s ∈ S then:

untime(s) = �i∈dom(s) 〈place(s(i)); value(s(i))〉 (2.3)

Now we can formalize AE(s), the set of allowed events in state s ∈ S. An allowed

2If x ∈ TS and v ∈ INT then x ∈ v ≡ �1(v) ≤ x ≤ �2(v) ∧ x <∞.
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event e ∈ AE(s) satis�es 5 conditions. The �rst condition is about the require-

ment that consumed tokens have to exist. The transition that �res consumes the

correct number of tokens from the input places (condition (b)). Tokens are con-

sumed in order of their timestamps (condition (c)). Produced tokens bear a unique

label, condition (d) checks whether the label of a produced token does not exist

already. Function F partially determines the bag of produced tokens. The delay of

a produced token is sampled from the corresponding delay interval (condition (e)).

AE(s) = {〈t; qin; qout〉 ∈ E | qin ⊆ s ∧ (2.4a)

It = �p∈P #{i ∈ dom(qin) | place(s(i)) = p} ∧ (2.4b)

∀i∈dom(qin)∀j∈dom(s)\dom(qin) place(s(i)) = place(s(j)) ⇒
time(s(i)) ≤ time(s(j)) ∧ (2.4c)

dom(qout) ∩ dom(s) = ∅ ∧ (2.4d)

qout / BS(Ft(SB(untime(qin)))) } (2.4e)

For any event 〈t; qin; qout〉 ∈ AE(s), t is the transition which �res, qin is the labelled

bag of consumed tokens and qout is the labelled bag of produced tokens. The tokens

in qin bear an `absolute' timestamp. On the other hand, the timestamp of a token

in qout is `relative', i.e. this timestamp represents the actual delay of the token.

Requirements (2.4a) and (2.4b) state that consumed tokens have to exist and that

the number of tokens consumed from each place p is equal to the multiplicity of p.

To satisfy the condition that timestamps have to be consumed in order of their

timestamps, the timestamp of each consumed token has to be smaller or equal to

the timestamp of any other token, which is not consumed by t and resides in the

same place. This is stated by requirement (2.4c).

The last two requirements are about the tokens produced by the �ring of t. First of

all, the identity of each produced token is arbitrary as long as it is unique. This is

stated by (2.4d) and the fact that qout is a labelled bag. We use the specialization

concept to state that the delays are sampled from the delay intervals of Ft, i.e. the

actual delay of a produced token is between the upper and lower bound speci�ed

by Ft (see (2.4e)). Since the domain of Ft is a subset of IB(CT ), we have to use the

function untime to delete the timestamps of the consumed tokens. The functions BS
and SB are used to convert the bags into partial functions and vice versa. These

functions are needed because the function F is de�ned in terms of bags and the

transition system uses partial functions (i.e. labelled bags) to denote bags. Note

that the identities of the produced tokens do not depend upon the de�nition of BS,
qout is merely a specialization of BS(Ft(SB(untime(qin)))).

In [58], Van Hee and Verkoulen describe a technique to to assign unique identi�ca-

tions to the produced tokens in a deterministic manner (based on the identi�cations

of the consumed tokens). Although it is possible to use this technique for our model,

we did not do this for reasons of convenience.

The timestamp of a token indicates the time it becomes available. The enabling time



42 CHAPTER 2. A TIMED COLOURED PETRI NET MODEL

of a transition is the maximum timestamp of the tokens to be consumed. Because

�ring is an atomic action and transitions are eager to �re, we de�ne the event time

of an event e ∈ E as follows:

et(e) = max
i∈dom(�2(e))

time(�2(e)(i)) (2.5)

The transition time of a state s ∈ S is the event time of the �rst event to occur, i.e.

the minimum of the event times of the allowed events:

tt(s) = min
e∈AE(s)

et(e) (2.6)

If there are two or more events with an event time equal to the transition time, then

these events are in conict. Conicts are resolved non-deterministically.

Firing is an atomic action, thereby producing tokens with a timestamp of at least

the �ring time. The di�erence between the �ring time and the timestamp of such a

produced token is called the �ring delay. In the transition system we have to add

the �ring time and the time delay. For this purpose we de�ne the function scale. If

s ∈ S and x ∈ TS then:

scale(s; x) = �i∈dom(s) 〈〈place(s(i)); value(s(i))〉; time(s(i)) + x〉 (2.7)

Finally, we de�ne transition relation R. If s1; s2 ∈ S then:

s1Rs2 ≡ ∃e∈AE(s1)
et(e)=tt(s1)

s2 = (s1 \ �2(e)) ∪ scale(�3(e); tt(s1)) (2.8)

If s1Rs2 then there is an event e transforming s1 into s2. This event consumes a

number of tokens (�2(e)) and produces zero or more tokens (scale(�3(e); tt(s1))).

Note that the event time of the selected event is as small as possible, i.e. et(e) =

tt(s1).

The complete transition system is summarized below:

The transition system

An ITCPN = (P; V; T; I; O; F; TS) de�nes a transition system 〈S;R〉, with a state

space S and a transition relation R:

• S = Id �→ (CT × (TS \ {∞})), the state space

• E = T × S × S, event set

• untime(s) = �i∈dom(s) 〈place(s(i)); value(s(i))〉, delete timestamps from s ∈ S

• AE(s) =

{ 〈t; qin; qout〉 ∈ E | qin ⊆ s ∧
It = �p∈P #{i ∈ dom(qin) | place(s(i)) = p} ∧
∀i∈dom(qin)∀j∈dom(s)\dom(qin) place(s(i)) = place(s(j)) ⇒

time(s(i)) ≤ time(s(j)) ∧
dom(qout) ∩ dom(s) = ∅ ∧
qout / BS(Ft(SB(untime(qin)))) }
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, set of allowed events in state s ∈ S

• et(e) = max
i∈dom(�2(e))

time(�2(e)(i)), event time of an event e ∈ E

• tt(s) = min
e∈AE(s)

et(e), transition time of a state s ∈ S

• scale(s; x) = �i∈dom(s) 〈〈place(s(i)); value(s(i))〉; time(s(i)) + x〉, scales the

timestamps of the tokens in s ∈ S with x ∈ TS

• Finally the transition relation R is de�ned by:

s1Rs2 ≡ ∃e∈AE(s1)
et(e)=tt(s1)

s2 = (s1 \ �2(e)) ∪ scale(�3(e); tt(s1)) for any s1; s2 ∈ S

We use a labelled bag to represent the state of an ITCPN. This is convenient, since

it allows us to discriminate between tokens. However, the identi�cation of a token

is an arbitrary number and not very interesting from a modelling point of view.

Moreover, de�nition 10 does not tell anything about identi�cations. Therefore, two

states are called equivalent if and only if the corresponding bags are equal.

De�nition 13

Let s1; s2 ∈ S then s1 and s2 are equivalent (s1 ∼= s2) if and only if SB(s1) = SB(s2).

If two states, s1 and s2, are equivalent then s1 can be transformed into s2 (and vice

versa) by relabelling the tokens in s1 (see lemma 1).

2.4.2 Alternative �ring rules

In section 1.3 we already mentioned that there are several ways to introduce quan-

titative time into Petri nets. One of the things one has to decide on is the location

of the delay. We use a timing mechanism with time in tokens, �ring is atomic

and the transition determines the delay of a produced token. In this section we

show that our style of semantics, that is a transition system with a state space

S = Id → (CT × (TS \ {∞})), can be used to formalize alternative �ring rules.

We consider three alternative timing mechanisms: `place delays', `enabling delays'

and `�ring delays'. For simplicity we only consider deterministic delays, i.e. de-

lays speci�ed by a �xed value. Extensions to delays speci�ed by an interval are

straightforward.

Place delays

In [114], Sifakis proposes a model, called the Timed Place Transition Net model.

In this model, time is associated with places, so that tokens arriving in a place are

unavailable for a speci�ed period. A token in a place may be in one of the following

states: available or unavailable. For every unavailable token a time is given, this
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time speci�es when the token becomes available. The �ring of a transition `takes no

time'. Besides Sifakis, there are other authors proposing place delays, consider for

example Wong et al. [128].

It is easy to adapt the de�nition of the ITCPN model such that it is possible to

specify place delays. Simply add the function PD to de�nition 10.

PD ∈ CT → TS

This function speci�es the length of time a token is unavailable. Note that this delay

may depend upon the colour (value) of the token.

It is also easy to adapt the transition system such that it represents the formal

semantics of the ITCPN model extended with place delays. Add the function apt ∈
S → S to the transition system. For s ∈ S:

apt(s) = �i∈dom(s) 〈〈place(s(i)); value(s(i))〉;
time(s(i)) + PD(〈place(s(i)); value(s(i))〉)〉

And change formula (2.8) into:

s1Rs2 ≡ ∃e∈AE(s1)
et(e)=tt(s1)

s2 = (s1 \ �2(e)) ∪ scale(apt(�3(e)); tt(s1)) (2:8′)

The moment a token in place p and with value v becomes available, is delayed with

PD(〈p; v〉) time units.

We just showed that it is easy to extend our ITCPN model with place delays, but is

there really a need for this extension? We believe not, because our �ring mechanism

is a generalization of the �ring mechanism using place delays. In the ITCPN model

the transition determines the delay of a token, one can think of this delay as the

time a token is unavailable. This is a generalization of place delays, since this delay

may also depend on the transition producing the token.

Enabling delays

The majority of the timed Petri net models proposed in literature, associate time

with the enabling time of a transition ([89], [16], [82], [41], [92], etc.). In these

models a transition �res after a period of being continuously enabled. The �ring

of a transition takes no time. Suppose that the enabling time of each transition is

given by:

ED ∈ T → TS

Assuming that a transition t becomes enabled at time x and remains enabled until

x + EDt, then it will �re at time x + EDt. If this transition becomes disabled

before time x + EDt, then there are two possible interpretations: (1) `remember'

the enabling time and start with this time when the transition becomes enabled again

(`preemptive-resume'), (2) `forget' about the enabling time, the enabling duration

of a newly enabled transition is independent of any previous enabling (`preemptive-

repeat'). Most authors use the later interpretation, so do we. This subject is

discussed by Ajmone Marsan et al. in [81].
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Figure 2.10: A `timeout'

We also have to decide what to do with multiple enabledness of transitions. A

transition t is twice enabled if every input place of t contains at least two times the

required number of tokens (as speci�ed by It). Di�erent interpretations are possible

now. For example, what to do if transition t becomes disabled once? It is diÆcult to

decide on this. In our opinion the `second' enabling is not a�ected by this disabling.

It is easy to extend our ITCPN model with this kind of delay. Simply add the

function ED ∈ T → TS to de�nition 10. The formal semantics of this extended

model are given by a transition system similar to the transition system given in

section 2.4.1. Simply change (2.5) into:

et(e) = max
i∈dom(�2(e))

time(�2(e)(i)) + ED�1(e) (2:5′)

Associating time with the enabling of a transition is a very powerful concept. En-

abling delays allow for the modelling of priorities and timeouts. With a priority we

mean that if two transitions t1 and t2 are both enabled and share an input place,

t1 will �re for sure. Transition t2 only �res if t1 is not enabled. With a timeout

we mean that a transition �res if a condition holds for a speci�ed amount of time.

Consider for example �gure 2.10, EDt1 = 0 and EDt2 = 1. Suppose there is a token

in place p1 with timestamp x and there is a token in place p2 with timestamp y. If

x < y + 1 then t1 will �re. If x > y + 1 then t2 will �re at time y + 1. Transition

t2 represents a timeout, the token in place p2 is `lost' if it has been there for 1 time

unit (i.e. consumed by t2).

It is possible to model priorities and timeouts using our ITCPN. Consider for ex-

ample �gure 2.11, which shows an ITCPN corresponding to the net of �gure 2.10.

Both nets behave in a similar way. This example shows that modelling priorities

and timeouts using an ITCPN is quite complex. There are, however, several reasons

for the fact that we did not extend our ITCPN model with enabling delays. First

of all, the concept of enabling delays allows for several interpretations (multiple en-

abledness, etc.). This makes it diÆcult to understand and to explain the model.

Secondly, we believe that the number of timing mechanisms in the formal ITCPN

model should be restricted to one. Multiple kinds of delays make the model more

complex and diÆcult to use. Another reason for not choosing enabling delays is
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Figure 2.11: The `timeout' modelled by an ITCPN

that we want to use the language ExSpect to specify ITCPNs and ExSpect does not

support enabling delays.

Nevertheless, it is quite easy to add enabling delays to our ITCPN model. Fur-

thermore, most of the concepts and techniques described in this monograph can be

adapted to nets having enabling delays. This is demonstrated by the fact that the

ITPN Analysis Tool (IAT) also supports the analysis of nets with enabling delays

(see chapter 4).

Firing delays

The early timed Petri net models (e.g. [108], [107], [133]) associate a �ring duration

with each transition in the net. In these models the �ring of a transition takes some

time. Such a �ring mechanism seems to be the most natural interpretation of time

in transitions. Suppose that the �ring duration of each transition is given by:

FD ∈ T → TS

A transition with a positive �ring duration is called a timed transition. Suppose

a timed transition t becomes enabled at time x, at this moment the �ring of t is

initiated by removing tokens from the input places of t. The �ring terminates at

time x+ FDt, then the tokens are added to the output places of t. Note that �ring

is no longer atomic, therefore we call the �ring of a timed transition a `two-phase'

�ring. It is possible that a transition becomes enabled while it �res. Some authors

allow multiple �rings, i.e. a transition may be engaged in a number of �rings at the

same time. We do not allow multiple �rings, i.e. a transition can not be enabled

while it �res.

To give the formal semantics of this �ring rule we have to change the transition

system of section 2.4.1 radically. Therefore, we will give the semantics of this �ring

rule in terms of an ITCPN instead of a transition system, i.e. the meaning of

this timing mechanism is given by a construction which replaces each transition by
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a small subnet. This construction is shown in �gure 2.12. A timed transition t

(represented by a small rectangle) is replaced by two (ITCPN) transitions tstart and

t
end, and two places tfree and tbusy. Transition tstart is enabled if the input places of

t contain enough tokens and place tfree contains a token. If tstart �res it adds one

token to tbusy with a value representing the bag of tokens consumed from the input

places and a delay d = FDt. Transition t
end represents the termination of a �ring.

More formally: suppose we have an ITCPN, say (P; V; T; I; O; F; TS), an initial state

s and a function FD ∈ T → TS representing the �ring delay of each transition. To

construct the ITCPN, say (P; V ; T ; I; O; F ; TS), corresponding to (P; V; T; I; O; F;

TS) with the transitions replaced by similar timed transitions, we select a timed

transition t ∈ T and de�ne:

• P = P ∪ {tfree; tbusy}, such that {tfree; tbusy} ∩ P = ∅

• V tfree = {`signal'}, V tbusy = IB(CT ) and for all p ∈ P : V p = Vp

• T = (T \ {t}) ∪ {tstart; tend} , such that {tstart; tend} ∩ T = ∅

• I tstart = It ∪ [tfree], Itend = [tbusy] and for all t̂ ∈ (T \ {t}): I t̂ = It̂

• Otstart = {tbusy}, Otend = Ot ∪ {tfree} and for all t̂ ∈ (T \ {t}): Ot̂ = Ot̂

• for all t̂ ∈ (T \ {t}): F t̂ = Ft̂ , and

for all c ∈ dom(F tstart): F tstart(c) = [〈〈tbusy; c\[〈tfree; `signal'〉]〉; 〈FDt; FDt〉〉]
for all c ∈ dom(F tend): F tend(c) = Ft(value(q)) ∪ [〈〈tfree; `signal'〉; 〈0; 0〉〉] ,

where q is the only element in the bag c (#c = 1)



48 CHAPTER 2. A TIMED COLOURED PETRI NET MODEL

Repeat this until every timed transition is replaced by a subnet. The initial state

of the constructed ITCPN, (P ; V ; T ; I; O; F ; TS), is the initial state of (P; V; T; I;

O; F; TS) with one token in each place of {tfree | t ∈ T} with timestamp zero. Note

that every transition t ∈ T corresponds to precisely one unique place tfree. Similar

statements hold for place tbusy and transitions tstart and t
end.

This construction gives our semantics of timed transitions. We will show that these

semantics correspond to our conception of time in transitions.

Suppose we have an ITCPN, (P; V; T; I; O; F; TS), such that for all t ∈ T , c ∈
dom(Ft) and q ∈ Ft(c): time(q) = 〈0; 0〉, i.e. an ITCPN without delays. If we

construct an ITCPN, (P; V ; T ; I; O; F ; TS), in the way described above, with the

�ring durations given by FD ∈ T → TS, then the constructed net has a very speci�c

structure. We will use this structure to prove a number of properties. In the rest

of this section we assume that 〈S;R〉 is the transition system of the constructed

ITCPN.

Lemma 5

For any t ∈ T and s1; s2 ∈ S such that s1Rs2, we have that if Xt = {tbusy; tfree}
then:

#{i ∈ dom(s1) | place(s1(i)) ∈ Xt} = #{i ∈ dom(s2) | place(s2(i)) ∈ Xt}

Proof.

Suppose e ∈ AE(s1) such that e is an event transforming s1 into s2. There are two

possibilities: either there is a t ∈ T such that �1(e) = t
start or there is a t ∈ T such

that �1(e) = t
end. If �1(e) = t

start, then a token is removed from place tfree and at

the same time a token is added to place tbusy. Otherwise (�1(e) = t
end) a token is

removed from place tbusy and at the same time a token is added to place tfree. In

both cases the total number of tokens in the places tbusy and t
free has not changed.

2

The initial state of the constructed ITCPN is such that each place of {tfree | t ∈ T}
contains one token. This and lemma 5 imply that for any timed transition t there

is a token in t
busy or there is a token in t

free but not in both. This property shows

that a timed transition is either free or busy.

Lemma 6

Let s1; s2 ∈ S such that s1Rs2 then:

∀i∈dom(s1) place(s1(i)) ∈ P ⇒ time(s1(i)) ≤ tt(s1)

⇒
∀i∈dom(s2) place(s2(i)) ∈ P ⇒ time(s2(i)) ≤ tt(s2)

Proof.

For every event e ∈ AE(s1), which transforms s1 into s2, there are two possibilities:
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either �1(e) = t
start or �1(e) = t

end for some t ∈ T . If �1(e) = t
start, then a token

is removed from the places of [tfree] ∪ It and at the same time a token is added to

place tbusy, i.e. tstart only consumes tokens from places in P . If �1(e) = t
end, then

a token is removed from place tbusy and at the same time tokens are added to some

of the places in {tfree} ∪Ot. Every token added to a place in P has a delay of zero,

because for all t ∈ T , c ∈ dom(Ft) and q ∈ Ft(c): time(q) = 〈0; 0〉. This and the

monotonicity of time (see theorem 1 in section 2.5) imply that the timestamps of

the tokens added to P are smaller than or equal to the new transition time (tt(s2)).

2

This lemma says that if initially each token in the places of P has a timestamp

smaller than or equal to the transition time, then this remains so during the exe-

cution of any path. In other words, if all tokens in P are available in state s1 then

every state s2 reachable by some sequence of events is such that each token in s2 is

available if it is located in a place of P . This lemma shows that the timestamps of

the tokens in P do not a�ect the dynamic behaviour of the net, i.e. tokens in the

places of P are always `available'. Therefore, all timing aspects are restricted to the

places added during the construction (in fact the places {tbusy | t ∈ T}).
Lemma 5 and lemma 6 illustrate the behaviour of the constructed net. We expatiated

on this subject, because the construction of �gure 2.12 is often used to model a

resource with a �nite capacity.

We have shown that our style of semantics can be used to formalize the meaning

of various alternative �ring mechanisms in a transparent and compact way. In each

case the state space of the transition system is S = Id �→ (CT × (TS \ {∞})).
The majority of timed Petri net models proposed in literature represent a state as

a pair s = 〈m; d〉 where m is the marking (m ∈ IB(P )) and d is the �ring vector

(d ∈ T �→ TS or d ∈ T �→ IB(TS)). The �ring vector represents the residual enabling

(or �ring) time of each enabled (or �ring) transition in the net. If t ∈ dom(d) then

transition t completes (starts) its �ring at time(s) dt. When a transition t �res,

both the marking and the �ring vector have to be updated. Updating the �ring

vector involves a number of steps: (1) delete disabled transitions and t, (2) shift the

residual enabling (�ring) times and (3) add enabled transitions. The shift operation

is necessary because these models use a relative time scale. For examples of timed

Petri net models de�ned in such a manner, see [16], [17], [133], [81], [64] and [28].

Clearly, a transition system describing the semantics of a timed Petri net model

using states of the form 〈m; d〉 is much more complex than the transition system

given in section 2.4.1. Therefore, we associate time with tokens rather than places

or transitions.

2.5 Some further concepts and properties

In this section we introduce some of the basic concepts and common terms normally

used in Petri net theory. Because our ITCPN model is a timed high-level Petri
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net model, some of these concepts have been extended. We also prove some of the

behavioural properties of an ITCPN.

We use the following notations for the pre-set and post-set of a place p or a transition

t:

•t = {p̂ ∈ P | It(p̂) > 0} (the set of input places of t)

t• = Ot (the set of output places of t)

•p = {t̂ ∈ T | p ∈ Ot̂} (the set of input transitions of p)

p• = {t̂ ∈ T | It̂(p) > 0} (the set of output transitions of p)

An ITCPN is conict free, if for each place p in the net the number of output

transitions is smaller than or equal to 1, i.e. #(p•) ≤ 1.

A place p without any input transition is called a source place, i.e. •p = ∅.
A sink place is a place p without any output transition, i.e. p• = ∅.

An ITCPN is called ordinary, if for each transition t ∈ T of the net:

∀p∈P It(p) ≤ 1 and

∀p∈Ot
∀c∈dom(Ft)

X
q∈Ft(c)
place(q)=p

Ft(c)(q) = 1

In other words, a net is ordinary if all `multiplicities' (weights of input and output

arcs) are equal to 1. Note that a transition in an ordinary net always produces

exactly one token for each of its output places.

A state machine is an ordinary ITCPN such that each transition t has exactly one

input place and one output place, i.e. ∀t∈T #(•t) = #(t•) = 1.

Amarked graph is an ordinary ITCPN such that each place p has one input transition

and one output transition at the most, i.e. ∀p∈P #(•p) ≤ 1 ∧ #(p•) ≤ 1. Some

authors use the term (timed) event graph instead of marked graph.

A free choice net is an ordinary ITCPN such that for each place p with more than

one output transition, this place is the only input place of each of these output

transitions, i.e. ∀p∈P #(p•) ≤ 1 or •(p•) = {p}.3

A non-empty subset of places X ⊆ P in an ITCPN, is called a siphon (also known

as deadlock), if and only if, •X ⊆ X•, i.e. every transition having an output place

in X has an input place in X. A siphon has the behaviour property that, if it is

token free in some state s1, then it remains token free in any state s2 reachable from

s1. A non-empty subset of places X ⊆ P in an ITCPN, is called a trap if X• ⊆ •X,

i.e. every transition having an input place in X has an output place in X. If, in an

ordinary net, a trap contains tokens, then in any successive state the trap contains

tokens.

Sometimes we are only interested in the position of a token and not in its timestamp

3If A ⊆ P or A ⊆ T , then •A = ∪a∈A • a and A• = ∪a∈A a•.
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Figure 2.13: A partitioning of the state space S

or value. This leads to the de�nition of the marking of a state. A marking is denoted

as a multiset of place indices. Function M ∈ S → IB(P ) gives the marking of each

state. If s ∈ S then M(s) = �p∈P #{i ∈ dom(s) | place(s(i)) = p }. The marking

of a state represents the token distribution. For example, if s ∈ S and p ∈ P then

M(s)(p) = 3 means that there are three tokens in place p.

In the remainder of this chapter we assume that 〈S;R〉 is the transition system

describing the semantics of an ITCPN (P; V; T; I; O; F; TS). In section 2.3 we de�ned

concepts such as reachability and process. These concepts are useful in the context

of the transition system 〈S;R〉.
For an initial state s ∈ S, R(s) is the set of states reachable by �ring one transition

in state s (see de�nition 4), i.e if ŝ ∈ R(s) then there exists an allowed event e

with et(e) = tt(s) which transforms s into ŝ. If A ⊆ S is a set of states, then

R(A) is the set of all states reachable by �ring one transition in a state in A, i.e.

R(A) = {ŝ ∈ S | ∃s∈A sRŝ}. RS(A) = ∪
n∈IN R

n(A) is the set of all states reachable

by �ring an arbitrary number of transitions (when starting in a state in A).

The process of an ITCPN is described by the set of all possible (execution) paths

(given a set of initial states A), i.e. �(A). A path � ∈ �(A) is a sequence of

states such that any successive pair belongs to the transition relation. The �rst

state in a path is called the initial state and either the path is in�nite or it ends in

a terminal state (see de�nition 5). For all execution paths � ∈ �(A) and n ∈ IN,

� �{k ∈ IN | 0 ≤ k < n} is called a �ring sequence (or trace). A �ring sequence of

length n describes n− 1 successive �rings.

For a clear comprehension of the transition system describing the semantics of

an ITCPN, it is useful to realize that there are three kinds of states. Suppose

we have a set A ⊆ S of possible initial states. In this case we partition the

state space S into three classes, see �gure 2.13. The �rst class, SRS(A) = {s ∈
S | ∀�∈�(A) ∃i∈dom(�) �i = s}, consists of states visited by any execution path. The

second class, RS(A) \SRS(A), represents the set of states which might be reached,

i.e. these states are reachable, but they are not visited by every execution path stat-

ing in a state in A. The remaining states, S \ RS(A), are the states not reachable
when starting in a state in A.
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For convenience we de�ne the operation place projection ( ��), returning the bag of

timestamps of tokens in a certain place p given a state s.

De�nition 14

For s ∈ S and p ∈ P : s��p = �x∈TS #{i ∈ dom(s) | place(s(i)) = p ∧ time(s(i)) = x}

So, min(s��p) is the smallest timestamp of the (non-empty) bag of tokens in place p.

Sometimes it is useful to know the maximum number of tokens in a place:

De�nition 15

A place p ∈ P is K-bounded in s ∈ S, if the number of tokens in p cannot exceed an

integer K, i.e.

∀ŝ∈RS(s) #(ŝ ��p) ≤ K

A net is called K-bounded in s ∈ S if all places are K-bounded in s. Nets that are

1-bounded are called safe. Places are often used to represent bu�ers. By verifying

that the net is bounded or safe, it is guaranteed that there will be no overow of

any of the bu�ers, no matter what �ring sequence is taken.

De�nition 16

An ITCPN is called conservative with respect to a weighting function W ∈ P → IR,

if and only if, for all s1; s2 ∈ S such that s1Rs2, the following relation holds:

X
i∈dom(s1)

W (place(s1(i))) =
X

i∈dom(s2)

W (place(s2(i)))

All nets are conservative with respect to W = �p∈P 0. If the ITCPN is conservative

with respect to W = �p∈P 1, then the ITCPN is said to be strictly conservative. In

this case, the number of tokens does not change during any �ring sequence. The

concept of conservation is closely related to place invariants. In chapter 3 we will

discuss how to generate invariants.

A path is a sequence of states. Consider the path s0; s1; ::si−1; si; si+1; ::. At time

tt(si−1) an event occurred transforming state si−1 into si. At time tt(si) an event

occurred transforming state si into si+1. Between tt(si−1) and tt(si) the system was

in state si. Since we are often interested in the state at a certain moment in time,

we de�ne H:
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Figure 2.14: Relation between a path and the corresponding state function

De�nition 17 (State function)

If A ⊆ S and � ∈ �(A) then H(�) ∈ TS → S with:

∀x∈TS H(�)(x) = �min{i∈dom(�) | x≤tt(�i)}

is the state function of path �.

The state function uses the following interpretation: at time x the ITCPN is in

the �rst state having a transition time of at least x. Figure 2.14 shows the relation

between a path and the corresponding state function. Note that at time x = tt(�1) =

tt(�2) the ITCPN is in state �1. However, several interpretations are possible,

because �ring is an atomic action.

When we de�ned the state space of the transition system describing the semantics

of an ITCPN, we did not allow tokens to have a timestamp ∞. This allows us to

formulate lemma 7.

Lemma 7

For a state s ∈ S: s ∈ S
T if and only if tt(s) = ∞.

Proof.

The de�nition of ST (the set of terminal states) shows that s ∈ S
T implies that

tt(s) = ∞. On the other hand, since every token has a timestamp smaller than ∞,

the event time of any event is smaller than ∞. Hence, tt(s) = ∞ implies that there

are no allowed events, i.e. s ∈ S
T .

2

An important property of the ITCPN model is the monotonicity of time, i.e. time

can only move forward. We use the following two lemmas to prove this.

Lemma 8

If s1; s2 ∈ S and s1 ⊆ s2 then tt(s1) ≥ tt(s2).
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Proof.

Observe that s1 ⊆ s2 means that state s2 is state s1 with zero or more additional

tokens. First we show that:

∀e1∈AE(s1) ∃e2∈AE(s2) et(e2) ≤ et(e1)

Assume e1 = 〈t; qin; qout〉 and e1 ∈ AE(s1), then e1 is such that the �ve conditions

(2:4a); ::; (2:4e) on page 39 hold. Now we select an event e2 = 〈t; q̂in; q̂out〉 such that

e2 ∈ AE(s2), this is possible because adding tokens cannot disable a transition. The

fact that e2 ∈ AE(s2) implies that condition (2:4c) holds, therefore the tokens are

selected from each input place of t in order of their timestamps. Event e2 consumes

tokens with timestamps smaller than or equal to the tokens in e1, because s2 is state

s1 with zero or more additional tokens. Therefore: et(e2) ≤ et(e1).

This implies that: tt(s1) = mine1∈AE(s1) et(e1) ≥ mine2∈AE(s2) et(e2) = tt(s2)

2

Lemma 9

Let s1; s2 ∈ S such that dom(s1)∩dom(s2) = ∅. If for all i ∈ dom(s2): time(s2(i)) ≥
tt(s1), then tt(s1 ∪ s2) = tt(s1).

Proof.

For any event e ∈ AE(s1 ∪ s2), either e consumes tokens from s2 (i.e. dom(�2(e)) ∩
dom(s2) �= ∅) or not (i.e. dom(�2(e)) ∩ dom(s2) = ∅). If e consumes tokens from

s2 then et(e) ≥ tt(s1), because for all i ∈ dom(s2): time(s2(i)) ≥ tt(s1). Otherwise,

�2(e) ⊆ s1. In this case e ∈ AE(s1) because the �ve conditions (2:4a); ::; (2:4e) on

page 39 hold in state s1 if they hold in state s1 ∪ s2 (�2(e) ⊆ s1). This also implies

that et(e) ≥ tt(s1), i.e. tt(s1∪s2) ≥ tt(s1). Lemma 8 tells us that tt(s1∪s2) ≤ tt(s1),

therefore tt(s1 ∪ s2) = tt(s1).

2

Theorem 1 (Monotonicity)

Let s ∈ S, � ∈ �(s) and i; j ∈ dom(�). If i ≤ j then tt(�i) ≤ tt(�j).

Proof.

First we prove that for all s1; s2 ∈ S with s1Rs2: tt(s1) ≤ tt(s2). If s1Rs2 then

there exists an event e ∈ AE(s1) such that et(e) = tt(s1) and s2 = (s1 \ �2(e)) ∪
scale(�3(e); tt(s1)). Using lemma 8 we see that deleting tokens (�2(e)) does not

decrease the transition time. The tokens of scale(�3(e); tt(s1)) have a timestamp of

a least tt(s1). Using lemma 9 we deduce: tt(s1) ≤ tt(s2).

Note that �iR
j−i

�j. We use induction to prove that for all s1; s2 ∈ S and n ∈ IN:

s1R
n
s2 ⇒ tt(s1) ≤ tt(s2). If n = 0 then s1R

n
s2 ⇒ s1 = s2 and s1 = s2 ⇒ tt(s1) ≤

tt(s2). Assume that for all v ∈ S: s1R
n−1

v ⇒ tt(s1) ≤ tt(v). Because s1R
n
s2 implies

that there is a v ∈ S with s1R
n−1

v and vRs2, we deduce: tt(s1) ≤ tt(v) ≤ tt(s2).
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Figure 2.15: An ITCPN

2

This theorem shows that the transition times are ascending. Note that this does

not imply that `time moves forward' or `time moves past a certain time'. Consider

for example the ITCPN shown in �gure 2.15. If the delay of the token produced for

place p1 is always 0 and initially there is a token in p1 with timestamp 0, then t1

will �re time after time but the transition time remains 0. In this case time does

not move forward. Next, we de�ne the ITCPN shown in �gure 2.15 as follows:

P = {p1; p2}
Vp1 = IN and Vp2 = {`signal'}
T = {t1; t2}
I = {〈t1; [p1]〉; 〈t2; [p2]〉}
O = {〈t1; {p1; p2}〉; 〈t2; {}〉}
For all n ∈ IN:

Ft1([〈p1; n〉]) = [〈〈p1; n + 1〉; 〈(1=2)n; (1=2)n〉〉; 〈〈p2; `signal'〉; 〈5; 5〉〉]
Ft2([〈p2; `signal'〉]) = [ ]

Let it be supposed that initially there is one token in p1 with a value and timestamp

equal to 0. Furthermore, assume that there are no tokens in p2. Every time t1 �res,

the value of the token consumed from place p1 is increased by 1 and restored in place

p1. The delay of the produced token is (1=2)n, where n is the value of the token

consumed. In this case time moves forward, but t2 will never �re. The transition

time of the k
th �ring of t1 is:

P
0≤n<k−1 (1=2)n and the enabling time of t2 is 5.

Consequently, transition t2 will never �re, because limk→∞
P

0≤n<k−1 (1=2)
n = 2.

This example shows that it is possible to specify an ITCPN with a dynamic be-

haviour which is in conict with our intuition, i.e. time does not go by the way we

think it should. This example demonstrates that we are in need of some liveness

concepts. Many authors de�ne liveness as follows: a Petri net is said to be live in a

certain state s if, no matter what state has been reached from s, it is possible to �re

any transition by progressing through some future �ring sequence. Since we added

time to our model, we are interested in liveness with respect to time. Therefore, we

introduce a number of liveness concepts for interval timed coloured Petri nets.
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De�nition 18 (Liveness concepts)

For an initial state s ∈ S, an ITCPN is said to be:

dead, if ∃
k∈IN R

k(s) = ∅
transient , if ∀�∈�(s) ∀i∈dom(�) ∃j∈dom(�) tt(�i) < tt(�j)

livelock free, if ∀�∈�(s) ∀i∈dom(�) �i �∈ S
T ⇒ ∃j∈dom(�) tt(�i) < tt(�j)

weakly progressive, if ∀x∈TS\{∞} ∃�∈�(s) ∃i∈dom(�) tt(�i) > x

progressive , if ∀x∈TS\{∞} ∀�∈�(s) ∃i∈dom(�) tt(�i) > x

A net is dead in state s, if every path ends in a terminal state. Transience is a

concept which characterizes nets where time never stops passing by, i.e. a net is

transient in s if the time in the net continuously increases. Sometimes this concept

is too strong. Thus, we relax the transience condition and de�ne livelock free. A net

is livelock free for an initial state, if the time in the net is increasing until a terminal

state is encountered. A net is weakly progressive for an initial state, if there is no

upper bound for the transition times, i.e. a net can reach an arbitrarily large time.

A net is progressive, if an arbitrary time x ∈ TS \ {∞} can and will be reached.

The net shown in �gure 2.15 (with delay (1=2)n) is a non-progressive transient

ITCPN in any state with a token in p1. If there is no token in p1, then the net is

dead. Some of these liveness concepts are related. For example, if an ITCPN is dead

in s, then it is also progressive in s. These relations are expressed in the following

lemma:

Lemma 10

For an ITCPN and an initial state s ∈ S:

1. If the net is dead in s, then the net is progressive in s.

2. If the net is dead in s, then the net is not transient in s.

3. If the net is transient in s, then the net is livelock free in s.

4. If the net is progressive in s, then the net is weakly progressive in s.

5. If the net is progressive in s, then the net is livelock free in s.

Proof.

We only prove the �rst and the last property, the rest is easy to verify.

(1) Suppose the net is dead, then ∃
k∈IN R

k(s) = ∅. This implies that for any

� ∈ �(s) there exists a k ∈ IN\{∞} such that #� = k. Note that �k−1 is a terminal

state, i.e. �k−1 ∈ S
T . Recall that for every �k−1 ∈ S

T : tt(�k−1) = ∞ (see lemma 7).

Therefore, the net is progressive in s (see the de�nition of progressive).

(5) Suppose the ITCPN is progressive in s, i.e ∀x∈TS\{∞} ∀�∈�(s) ∃i∈dom(�) tt(�i) > x.
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Figure 2.16: Hierarchy of dynamic properties

Since {y ∈ TS \ {∞} | i ∈ dom(�) ∧ tt(�i) = y} ⊆ TS \ {∞}, the progressiveness
implies that:

∀�∈�(s) ∀x∈{y∈TS\{∞} | i∈dom(�) ∧ tt(�i)=y} ∃j∈dom(�) tt(�j) > x

Lemma 7 shows that: �i �∈ S
T if and only if tt(�i) �= ∞. Hence:

∀�∈�(s) ∀i∈dom(�)

�i �∈ST
∃j∈dom(�) tt(�i) < tt(�j)

That is, the ITCPN is livelock free in s.

2

The relations between the liveness properties are shown in �gure 2.16. In this

monograph we often require a net to be progressive in the initial states. Therefore,

we give suÆcient conditions to guarantee that an ITCPN is progressive.

Lemma 11

Let an ITCPN be given with the additional properties: there is an m ∈ IN and an

� ∈ TS such that � > 0 and:

∀t∈T ∀c∈dom(Ft) (#Ft(c) ≤ m) and (∀b∈Ft(c) �1(time(b)) ≥ �)

then the net is progressive for any initial state s ∈ S having a �nite number of

tokens (∃
n∈IN #s = n).

Proof.

Let it be supposed that F satis�es the conditions mentioned and s ∈ S such that

#s = n (n < ∞). Now we have to prove that for any � ∈ �(s):

∀x∈TS\{∞} ∃i∈dom(�) tt(�i) > x

We can prove this by showing that the following property holds for any x ∈ TS\{∞}:

{i ∈ dom(�) | tt(�i) ≤ x} is a �nite set
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Figure 2.17: A (acyclic) progressive ITCPN

We prove this property for any k ∈ IN, x = k�, using induction.

For k = 0 the property holds because the number of tokens with a timestamp of 0

is �nite (≤ n) and all produced tokens have a timestamp of at least �, therefore the

maximum number of �rings with a transition time of 0 is n.

Assume, the property holds for x = k�, then we prove that it also holds for

x = (k + 1)�. The number of produced tokens with a timestamp in (k�; (k + 1)�]

is �nite, because (1) there are only �nitely many �rings possible with a transition

time in [0; k�] (induction hypothesis), (2) the number of tokens produced by every

�ring is �nite (see conditions) and (3) we started with a �nite number of tokens.

Theorem 1 shows us that events with transition time later than (k + 1)� do not

produce tokens for (k�; (k + 1)�]. Events with a transition time in (k�; (k + 1)�] do

not produce tokens with a timestamp in (k�; (k+1)�] because of the minimal delay �.

Since the total number of tokens (produced and initially present) with a timestamp

in (k�; (k+1)�] is �nite the number of �rings with a transition time in (k�; (k+1)�]

is also �nite. This implies that the number of �rings in (0; (k+ 1)�] is �nite (induc-

tion hypothesis). Induction shows that this holds for any k and therefore for any

x ∈ TS \ {∞} (use k = min{l ∈ IN | l� ≥ x}).
2

Lemma 11 gives us suÆcient conditions to construct a progressive net. However,

there are many progressive nets that do not satisfy the conditions stated in lemma 11.

Consider for example the net shown in �gure 2.17. This net contains delays equal

to 0, nevertheless the net is progressive for any (�nite) initial state s. To extend

lemma 11 we de�ne a directed circuit as follows:

De�nition 19 (Circuit)

For an ITCPN, a (directed) circuit is a mapping � ∈ IN �→ T such that there ex-

ists an n ∈ IN such that dom(�) = {k ∈ IN | k ≤ n}, �n • ∩ • �0 �= ∅ and for all

i ∈ dom(�) \ {0}: �i−1 • ∩ • �i �= ∅.



2.5. SOME FURTHER CONCEPTS AND PROPERTIES 59

Informally speaking: a circuit (or loop) is a sequence of interconnected transitions

and places such that the last transition is connected to the �rst transition via some

place. Note that the arcs connecting the places and transitions have to point in the

proper direction. A net without circuits is called acyclic. It is easy to verify that an

acyclic ITCPN is dead for any (�nite) initial state:

Lemma 12

Let an acyclic ITCPN be given such that there exists an m ∈ IN and:

∀t∈T ∀c∈dom(Ft) #Ft(c) ≤ m

then the net is dead for any initial state s ∈ S having a �nite number of tokens

(∃
n∈IN #s = n).

Proof.

Suppose, we have a net satisfying these conditions. For any token in state s the

number of tokens produced directly and indirectly using this token is �nite. If a

token in a place p1 is consumed during the �ring of a transition, then this �ring

produces a �nite number of direct successors (≤ m). Because the net is acyclic,

these direct successors (i.e. tokens on the output places of the transition that �red)

cannot be used to produce tokens for place p1. Consider an arbitrary direct succes-

sor in some place p2, this successor cannot be used to produce tokens for p1 and p2

(the net is acyclic), etc. Hence, the total number of successors of a token is smaller

than 1 +m +m
2 + ::m

k with k = #P . Initially, there are n tokens, therefore the

maximum number of consecutive �rings is n(1+m+m
2+ ::m

k), i.e. the net is dead.

2

This lemma implies that an acyclic net is progressive (see lemma 10). The following

theorem shows that if every circuit in a net contains a transition which produces

tokens with a positive delay (≥ �), then the net is progressive (provided that the

initial state has a �nite number of tokens).

Theorem 2

Let an ITCPN be given with the additional properties:

∃
m∈IN ∀t∈T ∀c∈dom(Ft) #Ft(c) ≤ m

and there is an � > 0 such that for every circuit �:

∃i∈dom(�) ∀c∈dom(F�i )
∀b∈F�i(c) �1(time(b)) ≥ �

then the net is progressive for any initial state s ∈ S having a �nite number of

tokens (∃
n∈IN #s = n).

Proof.

The proof of this theorem is similar to the proof of lemma 11. We prove progres-

siveness by showing that the following property holds for any x ∈ TS \ {∞}:
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{i ∈ dom(�) | tt(�i) ≤ x} is a �nite set

.

We prove this property for any k ∈ IN, x = k�, using induction. For k = 0 the

property holds because the initial number of tokens with a timestamp of 0 is �-

nite (≤ n) and the number of tokens produced with a timestamp 0 is �nite. The

number of tokens produced with a timestamp 0 is �nite because we can omit at

least one transition in every circuit �, without e�ecting the behaviour at time 0.

Note that in every circuit � there is a transition �i with i ∈ dom(�) such that

∀c∈dom(F�
i
) ∀b∈F�

i
(c) �1(time(b)) ≥ �, this means that �i produces tokens with a time-

stamp of at least �. If we (temporarily) remove these transitions we have an acyclic

net. lemma 12 tells us an acyclic net is dead. Hence, the number of �rings with a

transition time of 0 is �nite.

Assume that the property holds for x = k�, then we have to prove that it also holds

for x = (k+1)�. The number of produced tokens with a timestamp in (k�; (k+1)�]

is �nite, because (1) there are only �nitely many �rings possible with a transition

time in [0; k�] (induction hypothesis), (2) the number of tokens produced by every

�ring is �nite (see conditions), (3) we started with a �nite number of tokens and

(4) every circuit contains a transition with only positive delays. Theorem 1 shows

us that events with transition time later than (k + 1)� do not produce tokens for

(k�; (k+1)�]. Events with a transition time in (k�; (k+1)�] produce a �nite number

of tokens with a timestamp in (k�; (k+1)�], because of we can disregard at least one

transition in every circuit (delay ≥ �), i.e. for the �rings in (k�; (k + 1)�] it suÆces

to consider an acyclic net. Lemma 12 tells us an acyclic net is dead. Hence, the

total number of produced tokens with a timestamp in (k�; (k + 1)�] is �nite. Since

the total number of tokens with a timestamp in (k�; (k + 1)�] is �nite, the number

of �rings with a transition time in (k�; (k + 1)�] is also �nite. This implies that the

number of �rings in (0; (k + 1)�] is �nite (induction hypothesis). Induction shows

that this holds for any k and therefore for any x.

2

Theorem 2 enables us to recognise the progressiveness of many nets by observing the

de�nition of the net only, i.e. we can prove that an ITCPN is progressive without

considering the set of reachable states or possible �ring sequences. Figure 2.18

shows a net having a circuit and a delay `zero'. Yet, we can prove that this net is

progressive (for any �nite initial state), by applying theorem 2.

2.6 Interesting performance measures

It is useful to show that an ITCPN satis�es certain properties, such as progres-

siveness and boundedness. However, we are also in need of concepts to calculate

the performance of the system modelled by an ITCPN. With performance we mean

characteristics, such as: response times, occupation rates, transfer rates, throughput

times, failure rates, etc.
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Figure 2.18: A progressive ITCPN
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Figure 2.19: A queueing system whose environment is modelled explicitly

When analysing the performance of a system, there are three important aspects: (1)

the behaviour of the system, (2) the initial state of the system and (3) the behaviour

of the environment of the system. Clearly, performance measures such as occupation

rates and response times also depend upon the initial state of the system (e.g. the

initial number of capacity resources) and the environment of the system (e.g. the

number of requests per hour).

The fact that the performance of a system depends on the behaviour of environment,

stimulated many authors working on (timed) Petri nets to model the environment

of the system explicitly. Consider for example the single server queue shown in

�gure 2.19. Tokens in place p1 represent arriving customers (e.g. jobs). Every job

requires some service (service time between 1 and 3). There is only one server (e.g.

a machine) modelled by a token in place p2 or p3 (but not in both). Jobs leave the

system via place p4.

If we want to analyse the performance of this net (e.g. throughput), then we may

decide to model the environment explicitly. To model the arrival of jobs we add an

extra place (k) and a transition (v). If the initial state is such that there is one token
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Figure 2.20: A queueing system whose environment is simulated by the initial state

in place k, then the interarrival time of jobs is equal to 2. If we want to analyse the

system under various circumstances, we have to adapt the net de�nition.

The ITCPN model allows for an alternative approach. This approach uses the initial

state to represent the behaviour of the environment of the system. Now it is possible

to analyse the system under various circumstances without having to change the net

description. Figure 2.20 shows the single server queue modelled by an ITCPN with

an initial state which also speci�es the behaviour of the environment. Initially

p1 contains tokens with timestamps describing the time of their arrival. In this

approach, the net is considered to be a function or algorithm that can be applied

to some initial state, i.e. given an initial state the net `calculates' the dynamic

behaviour of the system.

Note that it is not possible to use this approach to model environments which `in-

teract' with the system, i.e. an environment which gives feedback. However, the

ITCPN model also allows for the explicit modelling of complex reactive environ-

ments, which cannot be modelled using the initial state.

In many cases it is very convenient to simulate the environment by choosing a

suitable initial state, because we often want to analyse a number of alternatives

under various circumstances. The latter approach prevents us from having to change

the net description every time we vary the load of the system. In a way, this

approach looks upon the net as a `black box' which responds to inputs generated by

the environment. Another advantage of this approach is that it allows for a stepwise

analysis of large nets. Consider for example �gure 2.21, where the rectangles A, B,

C and D represent subnets. In this example, we are able to analyse subnet A in

isolation, because A is not inuenced by the rest of the net. A thorough analysis

of subnet A gives us all possible `inputs' for subnets B and C. If we have analysed

B and C, then we can analyse D. Now we are able to tell something about the

`overall' performance of the system.

There are two reasons why most authors model the environment explicitly. The

�rst reason for this is that they use models with time in transitions or time in

places instead of time in tokens. Consequently, they are unable to express events
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Figure 2.21: Stepwise analysis of a large net

and conditions in the future using the initial state only. Consider for example the

queueing system shown in �gure 2.20, to specify the arrival of an extra job at time x,

they need to add an extra transition. The second reason is that they are interested

in the steady-state behaviour of a system. A steady-state functioning of the net

is only possible if the environment has some `regular' behaviour. In this case, it

suÆces to model the environment by a simple subnet.

What are the typical performance measures de�ned in Petri net literature?

People working on deterministic timed Petri nets are mainly interested in the min-

imal cycle time of a periodically operated Petri net. The cycle time is the time it

takes to complete a �ring sequence leading to a state having a marking equal to the

initial state. See [62], [107], [28] and [113] for further information.

Researchers using stochastic timed Petri nets are interested in the steady-state dis-

tribution, i.e. the probability of being in a speci�c marking. It is possible to derive

several interesting performance measures from such a steady-state distribution, see

for example Ajmone Marsan et al. [83] or [80].

Many of systems we are interested in, are not stable, i.e. we also consider processes

having an initial transient period and processes which never stabilize. Consider for

example a production unit, at the beginning and ending of a working-day there

are all kinds of disturbances and the load of the production unit may vary during

the day. The fact that we use interval timing and our interest in the analysis of

non-stationary processes forces us to develop new performance measures. These are

de�ned in the remainder of this section.

If one models systems where time aspects are important, one is often interested in

characteristics, such as throughput times and response times. This is the reason we

developed the measures earliest and latest �rst arrival time for a place in the net.

The earliest (latest) �rst arrival time of a place p is the largest (smallest) lower

(upper) bound for the timestamp of the `�rst' token in place p (given some initial

state).
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De�nition 20 (EAT ;LAT )
Given an ITCPN, a state s ∈ S and a place p ∈ P we de�ne:

EAT (s; p) = min
�∈�(s)

min
i∈dom(�)

min(�i ��p)

LAT (s; p) = max
�∈�(s)

min
i∈dom(�)

min(�i ��p)

for the earliest �rst arrival time and the latest �rst arrival time respectively.

To clarify these concepts we give a small example. Let the ITCPN shown in �g-

ure 2.20 be de�ned by:

P = {p1; p2; p3; p4}
Vp1 = Vp4 = {`job'}
Vp2 = {`busy'}
Vp3 = {`free'}
T = {t1; t2}
I = {〈t1; [p1; p3]〉; 〈t2; [p2]〉}
O = {〈t1; {p2}〉; 〈t2; {p3; p4}〉}
Ft1([〈p1; `job'〉; 〈p3; `free'〉]) = [〈〈p2; `busy'〉; 〈1; 3〉〉]
Ft2([〈p2; `busy'〉]) = [〈〈p3; `free'〉; 〈0; 0〉〉; 〈〈p4; `job'〉; 〈0; 0〉〉]

Let it be supposed that we have an initial state s with one token in place p1 and

one token in place p3, and both tokens have a timestamp 0. It is easy to see that:

EAT (s; p1) = LAT (s; p1) = 0 and EAT (s; p3) = LAT (s; p3) = 0. In this case, t1
�res at time 0 followed by a �ring of t2 at some time between 1 and 3. This implies

that: EAT (s; p2) = 1, LAT (s; p2) = 3, EAT (s; p4) = 1 and LAT (s; p4) = 3.

Note that EAT (s; p) and LAT (s; p) are only de�ned for the �rst token to `arrive'

in p. However, it is possible to generalize these concepts for a set of initial states

A ⊆ S and n tokens:

De�nition 21 (EAT n;LAT n)

For an ITCPN, a set of states A ⊆ S, a place p ∈ P and n ∈ IN \ {0} we de�ne:

EAT n(A; p) = min
�∈�(A)

min
i∈dom(�)

bminn(�i ��p)

LAT n(A; p) = max
�∈�(A)

min
i∈dom(�)

bminn(�i ��p)

where bminnb = min
b̂⊆b ∧ #b̂=n(max b̂).

If a bag b ∈ IB(TS) contains at least n elements, then bminnb is the n
th timestamp

in the bag (selected in ascending order), otherwise bminnb is in�nite.

If EAT n(A; p) = x, then x is the smallest value such that there exists a path starting

in a state s ∈ A that visits a state with at least n tokens in p each with a timestamp
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less or equal to x. If LAT n(A; p) = x, then x is the largest value such that there

exists a path such that all the states visited by this path do not have n tokens in p

each with a timestamp smaller than x. Note that EAT n({s}; p) = EAT (s; p) and
LAT n({s}; p) = LAT (s; p).
If p is a sink place (i.e. p• = ∅), then EAT n(A; p) can be interpreted as a lower

bound for the arrival time of the nth token, that is earliest nth arrival time. In this

case, LAT n(A; p) can be interpreted as the latest nth arrival time.

Again, we use the net shown in �gure 2.20 to illustrate these performance measures.

Suppose we have an initial state s = {〈−1; 〈〈p3; `free'〉; 0〉〉} ∪ {〈i; 〈〈p1; `job'〉; 2i〉〉 |
i ∈ IN}, i.e. a state with one token in p3 (timestamp 0) and an in�nite number of

tokens in p1 (timestamp 2i). Note that the interarrival time between two jobs

is 2 time units. If n ∈ IN \ {0} then EAT n(s; p1) = LAT n(s; p1) = 2(n − 1),

EAT n(s; p4) = 2n− 1 and LAT n(s; p4) = 3n. The throughput time of the nth job,

i.e. waiting time and service time, is between EAT n(s; p4) − LAT n(s; p1) = 1 and

LAT n(s; p4)− EAT n(s; p1) = n + 2.

The following lemma tells us that it is also possible to de�ne the earliest and latest

n
th arrival time (i.e. EAT n and LAT n) recursively.

Lemma 13

EAT n(s; p) = bminn(s��p) min minŝ∈R(s)EAT n(ŝ; p)

LAT n(s; p) = bminn(s��p) min maxŝ∈R(s)LAT n(ŝ; p)

Proof.

We derive the �rst equation in a number of steps:

bminn(s��p) min minŝ∈R(s)EAT n(ŝ; p)

= <| de�nition of EAT n >|
bminn(s��p) min minŝ∈R(s)(min�̂∈�(ŝ)mini∈dom(�̂) bminn(�̂i ��p))

= <| ŝ ∈ R(s) ∧ �̂ ∈ �(ŝ) ⇔ � ∈ �(s) (where � =\s�̂") >|
bminn(s��p) min (min�∈�(s)mini∈dom(�)\{0} bminn(�i ��p))

= <| �(s) �= ∅ >|
min�∈�(s)(bminn(s��p) min mini∈dom(�)\{0} bminn(�i ��p))

= <| �0 = s >|
min�∈�(s)mini∈dom(�) bminn(�i ��p)

= <| de�nition of EAT n >|
EAT n(s; p)

Note that we use brackets (<| >| ) to delimit comments. There is an analogous proof

for the latest nth arrival time.

2
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We use EAT n and LAT n to measure characteristics, such as throughput times and

response times. Another interesting characteristic of a system is the utilization of a

resource, consider for example the occupation rate of a machine or the stock level in

a distribution centre. These performance measures are closely related to the number

of tokens in a certain place during the execution of the net. Because our model is

non-deterministic, we start with the de�nition of the average number of tokens in a

place given an execution path.

De�nition 22 (U)

If s ∈ S, � ∈ �(s), p ∈ P , t ∈ TS and t > 0 then:

U(�; p; t) =
1

t

Z t

0
M(H(�)(x))(p) �(d x)

is the average number of tokens in p during [0; t], where � is the Lebesgue measure.

Now we are able to de�ne a lower and an upper bound for the occupation rate of a

place.

De�nition 23 (LOR;HOR)
If s ∈ S, p ∈ P , t ∈ TS and t > 0 then we de�ne:

LOR(s; p; t) = min�∈�(s) U(�; p; t)

HOR(s; p; t) = max�∈�(s) U(�; p; t)

for the lowest occupation rate and highest occupation rate respectively.

Given an initial state s the average number of tokens in p during [0; t] is between

LOR(s; p; t) and HOR(s; p; t). This allows us to analyse logistical concepts, such

as machine utilization and stock levels.

For the net shown in �gure 2.20, n ∈ IN\{0} and an initial state s = {〈−1; 〈〈p3; `free'〉;
0〉〉} ∪ {〈i; 〈〈p1; `job'〉; 2i〉〉 | i ∈ IN}: LOR(s; p1; n) = ∞, HOR(s; p1; n) = ∞,

HOR(s; p2; n) = 1 and LOR(s; p2; 2n) = 0:5. These last two �gures tell us that

the occupation rate of the server is between 0.5 and 1, because there is one token in

place p2 if and only if the server is busy.

The simplicity of the queueing system example allowed us to calculate performance

measures, such as LOR;HOR; EAT n and LAT n manually. For large and complex

nets it is not possible to do this by hand. Therefore, we are in need of eÆcient

and powerful tools for the automatical calculation of these measures. This is the

reason we developed a number of analysis methods, which are presented in the

following chapter. Based on these analysis methods we also developed a software

tool, called IAT, to analyse interval timed coloured Petri nets. This tool is described

in chapter 4.
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2.7 Conclusion

In this chapter we have de�ned the ITCPN model. Compared to conventional timed

Petri net models, there are three notable di�erences:

The �rst di�erence with conventional timed Petri net models is the fact that we

have a high-level model, i.e. tokens are coloured. Many authors have extended the

basic Petri net model with coloured or typed tokens ([46], [70], [132], [53]). In these

models tokens have a value, often referred to as colour. There are several reasons

for such an extension. One of these reasons is the fact that (uncoloured) Petri nets

tend to become too large to handle. Another reason is the fact that tokens often

represent objects or resources in the modelled system. As such, these objects may

have attributes, which are not easily represented by a simple Petri net token. A

`coloured' Petri net model allows the modeller to make much more succinct and

manageable descriptions. Although several high-level Petri net models have been

proposed in literature, only a few of these models also incorporate time.

The second di�erence with conventional timed Petri nets is the fact that time is in

tokens and each token bears a unique label, this we adopted from Van Hee et al.

[58]. As a result, our ITCPN model has transparent semantics (considering the fact

that we have a coloured Petri net model with interval timing) and a very compact

state representation (S = Id �→ (CT × (TS \ {∞}))). We have shown that the

complete formal semantics of our model �ts on one page, see section 2.4.1. In our

model, �ring is atomic and the transition which �res determines the delays of the

tokens produced. We also investigated alternative �ring rules, e.g. place delays and

enabling delays. We have demonstrated that our timing mechanism is suitable for

the modelling of discrete dynamic systems. Nevertheless, it is quite easy to add

other timing mechanisms to the ITCPN model (see section 2.4.2).

The third di�erence is the fact that the �ring delay is non-deterministic and non-

stochastic. In our model we use intervals to describe time delays. Specifying the

delay by means of an interval rather than a deterministic value or a stochastic vari-

able, allows for the representation of time constraints. This is very important when

modelling time-critical systems. Examples of such systems are real-time (computer)

systems and just-in-time manufacturing systems.

To our knowledge, only one other model has been presented in literature which also

uses delays speci�ed by an interval. This model was presented by Merlin in [89] and

[90]. In this model the enabling time of a transition is speci�ed by a minimal and a

maximal time. Another di�erence with our model is the fact that Merlin's model is

not a high-level Petri net model because of the absence of typed (coloured) tokens.

Compared to our model, Merlin's model has a rather complex formal semantics,

which was presented in [16] by Berthomieu and Diaz. This is caused by a redundant

state space (marking and enabled transitions are represented separately) and the fact

that they use a relative time scale and allow for multiple enabledness of transitions

(see section 2.4.2).

We use a transition system to describe the semantics of the ITCPN. This transition
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system has been used to de�ne a number of concepts in a compact and elegant

manner.

The fact that we use interval timing and our interest in processes without a `steady-

state' behaviour forced us to develop a number of new performance measures. In

section 2.6, we have de�ned the measures: EAT n;LAT n;LOR and HOR. EAT n

and LAT n are used to calculate upper and lower bounds for characteristics, such

as throughput times and response times. LOR and HOR are used to estimate

measures, such as occupation rates, stock levels and average queue lengths.

In the next chapter, we will discuss methods to calculate these performance mea-

sures and to verify several behavioural properties. To prove the correctness of these

analysis methods, we will use the preliminaries given in section 2.2 and section 2.3.



Chapter 3

Analysis of time in nets

3.1 Introduction

In this chapter we present an approach to verify certain properties and to calculate

bounds for all sorts of performance measures. This approach is based on a number of

new analysis methods, three of which are presented in this chapter. These methods

have in common that they utilize the interval timing aspect of our ITCPN model.

In chapter 1 we expressed our interest in discrete dynamic systems, i.e. systems

characterized by the words: discrete, dynamic and distributed. Petri nets extended

with time and colour are appropriate for the modelling of these systems, in partic-

ular logistic systems (this will be demonstrated in chapter 5). Therefore, we have

developed the ITCPN model de�ned in the previous chapter.

Modelling a complex discrete dynamic system in terms of an ITCPN is useful for

a number of reasons. First of all, the ITCPN model serves as an aid to thought,

since model building forces us to organize, evaluate and examine the validity of our

thoughts. Since we are interested in distributed systems, the graphical nature of

Petri nets agrees with the applications we have in mind. Secondly, we can formalize

certain properties of the system. In section 2.5 we stated a number of interesting

properties, for example the absence of traps and siphons (deadlocks), progressiveness

and boundedness. Thirdly, we can use an ITCPN to analyse the performance of the

system. In section 2.6 we de�ned a number of interesting performance measures.

In most cases, performance analysis and the veri�cation of certain properties are

the main goals of model building. For this reason we have developed a number of

analysis methods based on our ITCPN model.

In section 1.4 we already mentioned other analysis techniques applicable to Petri

nets. Only a few of these techniques have been developed (or extended) for the

analysis of timed and coloured Petri nets. Existing techniques which can be used to

analyse the dynamic behaviour of such nets, may be subdivided into three classes:

• simulation

• reachability analysis

69
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• Markovian analysis

Simulation is a technique to analyse a system by conducting controlled experiments

(see Shannon [112]). These experiments are used to verify the correctness of the

model and to predict the behaviour of the system under consideration. Because

simulation does not require diÆcult mathematical techniques, it is easy to under-

stand for people with a non-technical background. Simulation is also a very powerful

analysis technique, since it does not set additional restraints. However, sometimes

simulation is expensive in terms of the computer time necessary to obtain reliable

results. Another drawback is the fact that (in general) it is not possible to use sim-

ulation to prove that the system has the desired set of properties (at least not the

properties we are interested in, see section 2.5 and section 2.6). Nevertheless, exten-

sive simulation can be used to test certain assumptions and to predict performance

measures (and their accuracy).

Recent developments in computer technology stimulate the use of simulation for

the analysis of timed coloured Petri nets. The increased processing power allows

for the simulation of large nets. Modern graphical screens are fast and have a

high resolution. Therefore, it is possible to visualize a simulation graphically (i.e.

animation).

Reachability analysis is a technique which constructs a reachability graph, sometimes

referred to as reachability tree or occurrence graph (cf. Jensen [71], Peterson [100],

Murata [93]). Such a reachability graph contains a node for each possible state

and an arc for each possible state change. Reachability analysis is a very powerful

method in the sense that it can be used to prove all kinds of properties. Another

advantage is the fact that it does not set additional restraints.

Obviously, the reachability graph needed to prove these properties may, even for

small nets, become very large (and often in�nite). If we want to inspect the reach-

ability graph by means of a computer, we have to solve this problem. This is the

reason several authors developed reduction techniques (Hubner et al. [67] and Val-

mari [120]). Unfortunately, it is not known how to apply these techniques to timed

coloured Petri nets.

For timed coloured Petri nets with certain types of stochastic delays it is possible

to translate the net into a continuous time Markov chain. This Markov chain can

be used to calculate performance measures like the average number of tokens in a

place and the average �ring rate of a transition.

If all the delays are sampled from a negative exponential probability distribution,

then it is easy to translate the timed coloured Petri net into a continuous time

Markov chain. Several authors attempted to increase the modelling power by allow-

ing other kinds of delays, for example mixed deterministic and negative exponential

distributed delays, and phase-distributed delays (see Ajmone Marsan et al. [80]).

Nearly all stochastic Petri net models (and related analysis techniques) do not allow

for coloured tokens, because the increased modelling power is o�set by computa-

tional diÆculties. This is the reason stochastic high-level Petri nets are often used
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in a simulation context only. Nevertheless, a number of stochastic high-level net

models have been proposed in literature (Lin and Marinescu [76], Zenie [131] and

Dutheillet and Haddad [38]).

Besides the aforementioned techniques to analyse the behaviour of timed coloured

Petri nets, there are several analysis techniques for Petri nets without `colour' or

explicit `time'.

An interesting way to analyse a coloured Petri net is to calculate (or verify) place

and transition invariants (P and T-invariants). Place and transition invariants can

be used to prove properties of the modelled system. A mapping W ∈ CT → ZZ is a

place invariant, if for all s1; s2 ∈ S such that s1Rs2, the following relation holds:1

X
i∈dom(s1)

W (〈place(s1(i)); value(s1(i))〉) =
X

i∈dom(s2)

W (〈place(s2(i)); value(s2(i))〉)

Intuitively, a place invariant assigns a weight to each token such that the weighted

sum of all tokens in the net remains constant during the execution of any �ring

sequence. By calculating these place invariants we �nd a set of equations which

characterizes all reachable states. Transition invariants are the duals of place in-

variants and the main objective of calculating transition invariants is to �nd �ring

sequences with no `e�ects'.

Note that we can calculate these invariants for timed coloured Petri nets (e.g. an

ITCPN). However, in this case, we do not really use the timing information. There-

fore, in general, these invariants do not characterize the dynamic behaviour of the

system. On the other hand, they can be used to verify properties which are timing

independent.

For more information about the calculation of invariants in a coloured Petri net, see

Jensen et al. [71], [72] and [69].

In our ITCPN model, a delay is described by an interval rather than a �xed value

or some delay distribution. On the one hand, interval delays allow for the modelling

of variable delays, on the other hand, it is not necessary to determine some arti�cial

delay distribution (as opposed to stochastic delays). Instead, we have to specify

bounds. These bounds are used to specify and to verify time constraints. This is

very important when modelling time-critical systems, i.e. real-time systems with

`hard' deadlines. These deadlines have to be met for a safe operation of the system.

An acceptable behaviour of the system depends not only on the logical correctness

of the results, but also on the time at which the results are produced. Therefore,

we are interested in techniques to verify these deadlines and to calculate upper and

lower bounds for all sorts of performance criteria.

1This de�nition of a place invariant is the straightforward extension of place invariants for

uncoloured nets. Other authors (e.g. Jensen [70]) use a slightly more complicated de�nition,

where the weight function maps token colours into multisets over a common colour set A (instead

of integers), i.e. W ∈ CT → IB(A).
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To our knowledge, for Petri nets with interval timing, only one analysis method has

been proposed which really uses this timing behaviour. This method was presented

by Berthomieu, Diaz and Menasche in [17] and [16], and uses Merlin's timed Petri

nets ([89]) to describe the system. The method generates a reachability graph where

nodes represent state classes instead of states. This approach is more or less related

to one of the analysis methods presented in this chapter.

Since this method is based on Merlin's timed Petri net model, there are some serious

drawbacks. First of all, the model does not allow for coloured tokens. This implies

that it is diÆcult to make manageable models for large and complex systems. Sec-

ondly, this analysis method can only be used for nets with the environment modelled

explicitly, because time is associated with transitions rather than tokens (see sec-

tion 2.6). Thirdly, they use a relative time scale, which prohibits the calculation of

the performance measures de�ned in section 2.6, e.g. the upper and lower bound for

the arrival time of the nth token in a place p (i.e. EAT n(s; p) and LAT n(s; p), see

de�nition 21). Furthermore, as a result of the fact that this method uses a relative

time scale, it is not possible to verify liveness properties such as progressiveness and

transience.

To meet these problems, the author of this monograph has developed four new

analysis methods, all based on the ITCPN model. This chapter deals with three of

these methods.

The most powerful method we have developed is the Modi�ed Transition System

Reduction Technique (MTSRT), described in section 3.3. The MTSRT method

can be applied to an arbitrary ITCPN. This method generates a reduced reachability

graph. In an ordinary reachability graph, a node corresponds to a state. To calculate

such an ordinary reachability graph, we start with an initial state. For every state

s, we obtain `new states'. These are the states reachable by �ring a transition in

state s. New states are connected to s by an arc. Repeating this process results

in a graph representation of the reachable states. Even for simple examples, these

graphs tend to be very large (in general in�nite). The MTSRT method proposes a

number of reductions, resulting in a reduced reachability graph. In such a graph a

node corresponds to a set of places, called a state class, instead of a single state. To

generate a graph representation of these state classes, we use a modi�ed transition

system, where a time interval is associated with a token rather than a timestamp.

The other three methods can only be applied to a restricted set of interval timed

Petri nets.

The Persistent Net Reduction Technique (PNRT) can only be applied to persistent

nets. In section 3.4 we will investigate the behaviour of such nets. The PNRT

method uses the special structure of a persistent net to create an even further reduced

reachability graph. This method is quite eÆcient and calculates EAT n and LAT n.

The Arrival Times in Conict Free Nets (ATCFN) method can be applied to conict
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free nets, i.e. nets where the number of output arcs of each place is smaller than or

equal to 1. This method produces upper and lower bounds for the arrival time of

the �rst token in a place using a polynomial-time algorithm. This method will be

presented in section 3.2.

We have developed one method, called the Steady State Performance Analysis Tech-

nique (SSPAT), to analyse periodically operated Petri nets. The SSPAT method

calculates upper and lower bounds for the cycle time of a net. This is a general-

ization of the technique described by Ramamoorthy and Ho in [107]. The SSPAT

method has been presented in Van der Aalst [2].

To keep the size of the reduced reachability graph generated by the MTSRT (or

PNRT) method manageable, it may be necessary to simplify the ITCPN by means

of re�nements in combination with uncolouring. The basic idea behind this approach

is to ignore certain aspects of complex token colours. This idea is also the starting

point of the concept of colour set restrictions mentioned by Jensen in [71] and the

concept of projections introduced by Genrich in [43]. However, our approach can

be applied to timed coloured Petri nets. In section 3.5 we will show that re�ning or

uncolouring does not a�ect the validity of the analysis results. We use an example

to illustrate this approach (section 3.6).

3.2 Method ATCFN

The �rst analysis method we present, called Arrival Times in Conict Free Nets

(ATCFN), calculates bounds for the arrival time of the �rst token in a place,

i.e. given an initial state s and a place p, this method calculates EAT (s; p) and
LAT (s; p). Unfortunately, this method can only be applied to conict free progres-

sive ITCPNs, where all input arcs have multiplicity 1. However, in section 3.2.1,

we will show that this is not a serious restriction in the �eld of project engineering.

Furthermore, if we consider an ITCPN that does not satisfy these restrictions (con-

ict free, progressive, multiplicity 1), then the results produced by this algorithm

can be interpreted as lower bounds for EAT (s; p) and LAT (s; p).
There is some similarity with `the Dijkstra algorithm' to calculate the shortest path

([37]) and the methods to calculate the earliest event times in an activity network,

e.g. CPM and PERT (see Price [105], Lock [77] and Whitehouse [125]). It is in fact

an extension to the situation with two node types: transitions and places.

In order to describe the algorithm, we have to quantify the relation between a

transition and a place.

De�nition 24 (Dmin
; D

max)

Given an ITCPN, a transition t and a place p:

D
min(t; p) = minc∈dom(Ft) min{�1(time(q)) | q ∈ Ft(c) ∧ place(q) = p}

D
max(t; p) = maxc∈dom(Ft) min{�2(time(q)) | q ∈ Ft(c) ∧ place(q) = p}
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D
min(t; p) (Dmax(t; p)) is the minimal (maximal) di�erence in time between the �ring

of t and the `arrival' of the �rst token in p produced by this �ring. Recall, we use the

term arrival time to refer to the time a token becomes available, i.e. its timestamp.

If p is not an output place of t, then D
min(t; p) = ∞ and D

max(t; p) = ∞. An

interpretation of Dmin(t; p) (Dmax(t; p)) is the minimal (maximal) `time distance'

between a transition t and a place p. Note that this distance does not depend on

the values of the consumed tokens. Since the ITCPN model associates delays with

produced tokens rather than consumed tokens, the distance between a place and a

transition is zero.

First, we consider the algorithm to calculate EAT given an initial state s ∈ S. In

this algorithm we assign a label to each place in the net. There are two kinds of

labels: permanent and tentative labels. A label has a (time) value indicating the

earliest arrival time of the �rst token in the corresponding place.

We represent the set of places bearing a permanent label by Xp and the set of places

bearing a tentative label by Xt. The value of each label is given by dmin ∈ P → TS.

For a place p with a permanent label, dmin(p) is the earliest arrival time of a token

in p, i.e. if p ∈ Xp, then d
min(p) = EAT (s; p). If p ∈ Xt, then d

min(p) is the earliest

arrival time found so far.

Initially, each place bears a tentative label. In the algorithm the set Xp is extended

successively.

Algorithm for the calculation of EAT (s; p)

step 1 Assign a tentative label to each place in the net (Xt = P , Xp = ∅). For

each place p, the (time) value is set to the smallest timestamp of the tokens

initially present in p. If, initially, there are no tokens in p, then the value of

the label is set at ∞. In other words: dmin(p) = min(s��p).

step 2 If there are no places with a tentative label and a �nite (time) value, then

terminate. Otherwise, select a place p with a tentative label and the smallest

value (i.e. p ∈ Xt and d
min(p) = min{dmin(l) | l ∈ Xt}). Declare the label of

p to be permanent instead of tentative.

step 3 Consider all transitions t satisfying the following conditions: p is an input

place of t and all input places bear a permanent label (t ∈ p• and •t ⊆ Xp).

For every such t, consider all output places k that bear a tentative label (k ∈
(t•) ∩ Xt). If the value of the label attached to k is greater than d

min(p) +

D
min(t; k), then change the value of the label attached to k to d

min(p) +

D
min(t; k).

If all relevant transitions t with the corresponding output places k have been

considered, then go to step 2.

Alternatively, we can give a more compact description of the algorithm using `pseudo-

code', see �gure 3.1. There is a similar algorithm to calculate LAT : Dmin and dmin
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input ITCPN,s

Xt := P ;

Xp := ∅;
for p ∈ P do d

min(p) = min(s��p) end;

while min{dmin(l) | l ∈ Xt} < ∞
do

select p ∈ Xt with d
min(p) = min{dmin(l) | l ∈ Xt};

Xt := Xt \ {p};
Xp := Xp ∪ {p};
for t ∈ {v ∈ p • | • v ⊆ Xp}

do

for = k ∈ (t•) ∩Xt

do

d
min(k) := d

min(k) min (dmin(p) +D
min(t; k));

end;

end;

end;

output Xt; Xp; d
min

Figure 3.1: A description of the algorithm ATCFN in pseudo-code

are replaced by D
max and d

max. The following theorem shows us that these algo-

rithms calculate EAT and LAT for a restricted class of nets.

Theorem 3

Let s ∈ S be the initial state of an ITCPN that satis�es three conditions: (1) the

ITCPN is conict free, (2) the ITCPN is progressive in s and (3) all input arcs have

multiplicity 1. For any place p ∈ P , we have:

d
min(p) = EAT (s; p)

d
max(p) = LAT (s; p)

Proof.

We prove this theorem by showing that there exists an invariant and a termination

argument. The outer loop in the algorithm satis�es four invariant relations (see

�gure 3.1):

Q1(Xt; Xp; d
min): Xp ∪Xt = P and Xp ∩Xt = ∅

Q2(Xt; Xp; d
min): ∀k∈Xp

∀l∈Xt
d
min(k) ≤ d

min(l)

Q3(Xt; Xp; d
min): ∀k∈Xp

d
min(k) = EAT (s; k)
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Q4(Xt; Xp; d
min): ∀k∈Xt

d
min(k) = (min s��k) min

(minv∈T
•v⊆Xp

maxl∈•v dmin(l) +D
min(v; k))

Initially, Xt = P , Xp = ∅ and for all l ∈ P : dmin(l) = min(s ��l). It is easy to show

that each of the invariant relations holds after initialization.

Suppose the invariant relations hold just before an element p is transferred from Xt

to Xp, i.e. Q1 = Q1(Xt; Xp; d
min), Q2 = Q2(Xt; Xp; d

min), Q3 = Q3(Xt; Xp; d
min)

and Q4 = Q4(Xt; Xp; d
min) hold, p ∈ Xt and d

min(p) = min{dmin(l) | l ∈ Xt}.
If X ′

t = Xt \ {p}, X ′
p = Xp ∪ {p} and d

min′ is the updated mapping (see step

3), then we have to prove that Q1′ = Q1(X ′
t; X

′
p; d

min′), Q2′ = Q2(X ′
t; X

′
p; d

min′),
Q3′ = Q3(X ′

t; X
′
p; d

min′) and Q4′ = Q4(X ′
t; X

′
p; d

min′) hold.
In is easy to see that Q1′ holds. Invariant Q2′ also holds, because p is a minimal

element of Xt.

Q3′ holds, because d
min(p) = EAT (s; p), this follows from Q2,Q3 and Q4. To

prove this, observe the subexpression (minv∈T
•v⊆Xp

maxl∈•v dmin(l) +D
min(v; k)) of Q4.

Since, all input places l are permanent, we have d
min(l) = EAT (s; l) (use Q3).

It is suÆcient to consider transitions with permanent input places only, because

all transitions having a tentative input place do not �re before dmin(p) (use Q2).

Furthermore, a transition v will �re at its enabling time, because the net is conict

free and progressive. Therefore, the value of this subexpression is equal to the

smallest possible timestamp of a token in p produced by any transition.

If the smallest possible timestamp of a token in p was not produced by a transition,

then it was initially there, i.e. EAT (s; p) = min (s ��p). Using Q4 this implies that

d
min(p) = EAT (s; p) (i.e. Q3′ holds).
Invariant Q4′ is violated by the transfer of p from Xt to Xp. This is repaired by the

two inner `for loops', see �gure 3.1.

The algorithm terminates, because the number of elements in Xt is decreasing. The

remaining places in Xt are not reachable and got the value ∞ initially.

Note that we need the three conditions to prove this theorem, i.e. if we drop one

of the conditions, then it is not guaranteed that maxp∈•v EAT n(s; p) is the earliest

possible �ring time of transition v.

An analogous proof holds for the upper bound of the �rst arrival.

2

This theorem tells us that the algorithm can be used to calculate EAT and LAT
for a restricted class of nets. A serious restriction is the fact that conicts between

transitions are not allowed. If there are conicts in the net, for example to model

shared resources, the algorithm can give incorrect results. However, sometimes it is

possible to model certain kinds of parallelism and synchronization without having

conicts.

The condition that the net has to be progressive in s is not very restrictive. In

section 2.5 we gave suÆcient conditions to guarantee progressiveness.
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If the ITCPN does not satisfy the conditions mentioned in theorem 3, then dmin(p) ≤
EAT (s; p) and d

max(p) ≤ LAT (s; p) (for an arbitrary ITCPN, any place p and any

initial state s ∈ S), i.e. the algorithm produces lower bounds for EAT and LAT .
For an arbitrary net, the �rst token in place p does not arrive before dmin(p) and it

is possible to construct a �ring sequence where the �rst token does not arrive before

d
max(p).

Theorem 4

For an arbitrary ITCPN, any place p ∈ P and any initial state s ∈ S, we have:

d
min(p) ≤ EAT (s; p)

d
max(p) ≤ LAT (s; p)

Proof.

The proof of this theorem is analogous to the proof of theorem 3. Replace invariant

relation Q3(Xt; Xp; d
min) with:

Q3(Xt; Xp; d
min) ≡ ∀k∈Xp

d
min(k) ≤ EAT (s; k)

Suppose the invariant relations hold just before an element p is transferred from Xt

to Xp.

First, we prove the invariance of Q1, Q2 and Q4, this can be done in the same way

as in the proof of theorem 3. The proof of the invariance of Q3 is slightly di�erent.

If we drop one of the conditions stated in theorem 3, then maxp∈•v EAT n(s; p) is

merely a lower bound for earliest possible �ring time of transition v. If the net con-

tains conicts, then v may become disabled. If the net is not progressive in s, then it

is not guaranteed that time progresses past the enabling time of v. Finally, multiple

input arcs may delay the enabling time of a transition. Consequently, omitting one

(or more) of the conditions of theorem 3 results in the calculation of lower bounds

for EAT (s; p) and LAT (s; p).
2

Now let us consider the complexity of the algorithm ATCFN. Clearly, the computing

time depends upon the number of places n = #P , the number of transitionsm = #T

and the number of tokens in the initial state l = #s.

The worst-case (time) complexity of the algorithm presented in this section is

O(l +mn
2) and it requires O(n) storage space.2 However, the algorithm ATCFN

is usually a lot faster. If the number of output transitions of each place is smaller

than some constant c and the number of tokens in the initial state is rather small,

then the worst-case (time) complexity of the algorithm is quadratic in the number

of places (i.e. O(n2)). Since these assumptions are quite reasonable, the compu-

tational cost of our algorithm is comparable to the computational cost required by

2Let f(n) and g(n) be two functions of n. Function f is said to be `the big O of a function

g ' (notation f(n) = O(g(n))), if there is an N and a constant C such that for all n ≥ N :

f(n) ≤ Cg(n), see Wilf [127].



78 CHAPTER 3. ANALYSIS OF TIME IN NETS

x

x

x

x

x

x
x x

x

x x�
�
�
�
��

-
@
@
@
@
@R

-

-

-

H
H
H
HHj

�
�
�
��*

-
H
H
H
HHj

�
�
�
�
��

-

develop A
2 days

develop B
4 days

develop C
5 days

assemble D
2 days

assemble E
4 days

T1
0.5 days

T2
0.5 days

T3
0.75 days

T4
0.25 days

Figure 3.2: An activity network

the Dijkstra algorithm to calculate the shortest path between two nodes in a graph

(see [37]). It turns out that the algorithmic eÆciency of our method is suÆcient for

the applications we have in mind.

The most serious drawback of the ATCFN method is that it only produces state-

ments about the arrival time of the �rst token in a place. In general, we are interested

how the system performs under a speci�c workload and therefore equally interested

in the subsequent tokens. We usually also want to verify dynamic properties such

as liveness and boundedness. This is the reason we have developed a more general

analysis method, which is described in section 3.3.

3.2.1 Application to project engineering

Although the ATCFN method has a number of serious drawbacks, it can be used

successfully in the discipline called project engineering (Whitehouse [125], Lock [77]).

Project engineering, also known as project planning, is concerned with the problem

of developing and supervising project plans. We start with a short introduction

to the main techniques used in this discipline, followed by an example showing the

application of interval timed coloured Petri nets to project planning.

Network planning is an established technique for project planning. In general, it

used when a project becomes too complex to plan it just by intuition. There are

three basic network types which are used for project planning: activity networks,

event networks and precedence networks (see Price [105]).

In an activity network, activities (or tasks) are represented by arcs each beginning

and ending in an identi�able node of the network. These nodes are called events and

are represented by circles or vertexes (do not confuse these events with events in an

ITCPN). Events are instantaneous and activities are time consuming (i.e. they have

a time duration). Figure 3.2 shows an activity network. The nodes representing an

event have an AND/AND logic, i.e. an event is realized when all input activities

have terminated, at this time each of its output activities can start.

For an event network, the interpretation di�ers from an activity network. Arcs
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represent events, circles represent milestones. Now time is associated with events.

Since the semantics of activity networks and event networks are nearly identical

(except for the terminology), we will concentrate on activity networks.

In a precedence network an activity is represented by a node and arrows are used

to de�ne the relations between activities. There are four types of relations, i.e.

�nish-to-start, start-to-�nish, �nish-to-�nish and start-to-start (see Lock [77]). A

start-to-�nish relationship between two activities A and B means that B cannot

�nish until a given time after the start of the preceding activity A. Note that it is

possible to transform a precedence network into an equivalent activity network.

Two widespread network planning systems are the CPM (Critical Path Method)

system and the PERT (Program Evaluation and Review Technique). They are both

based on activity networks. In a PERT-network, the time duration of an activity is

speci�ed by an optimistic estimate, a pessimistic estimate and a most likely estimate.

An event is called a start event if there is no input arc. Events without output arcs

are called end events. In general, a planning network is acyclic and it is de�ned in

such a way that it has one start event and one end event.

The critical path in a planning network is the longest path from the start event to

the end event. The project duration is given by the length of this critical path. The

critical path can be calculated using a forward calculation (an activity starts at the

time where all previous activities have �nished) or backward calculation (an activity

ends at the time where one of next activities has to start). A forward calculation

produces the earliest event time of all events, a backward calculation produces the

latest event time of all events. The critical path of the example shown in �gure 3.2

includes the activities develop B, T2, assemble D, T3 and assemble E. The length

of the critical path is 11.25 days. Note that for each event on the critical path, the

earliest event time equals the latest event time.

The term oat time (or slack time) is used to describe the amount of extra time

available for the completion of an activity. There are various kinds of oat time,

e.g. total oat, free oat, independent oat. These oat times are calculated using a

forward and backward calculation. For more information on network planning, see

[125], [105], [77] and [98].

Interval timed coloured Petri nets are a generalization of the classical activity net-

works in the sense that they allow for the de�nition of optimistic and pessimistic

estimates of the time durations and in the sense that there are AND/AND nodes

(transitions) and OR/OR nodes (places). In [98], Pagnoni discusses the application

of (untimed) Petri nets to project planning.

It is easy to specify an activity network in terms of an ITCPN. An event in a

planning network corresponds to a transition in an ITCPN, an activity corresponds

to a place. In other words, replace the nodes in the plan by transition bars and the

arcs by places connecting two transitions, i.e. precedence relations are represented
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Figure 3.3: An ITCPN representing an activity network

by input and output places. Figure 3.3 shows the ITCPN net corresponding to the

the activity net shown in �gure 3.2.

An ITCPN constructed this way contains no circuits and has one transition without

input places (start event) and one transition without any output places (end event).

The transition without the input places �res once (at time 0), this can be modelled

by an input place with initially one token with timestamp 0. Note that the interval

timed coloured Petri nets constructed like this are acyclic marked graphs (see sec-

tion 2.5). These nets satisfy the conditions of theorem 3. A forward calculation can

be done by applying method ATCFN, the results are upper and lower bounds for the

earliest event time. By redirecting of all the arcs in the ITCPN (associate the delay

of an activity with the corresponding output arc of the transition which represents

the succeeding event), such a calculation produces upper and lower bounds for the

latest event time. Therefore, it is possible to calculate various kinds of oat times.

Since we use interval timing rather than deterministic delays, we are able to model

activities of which the durations are not precisely known. PERT also allows for the

modelling of uncertainty. PERT needs three estimates to describe the duration of

each activity: an optimistic time, the most likely time and the pessimistic time ([77],

[125]). PERT uses these three estimates to specify a beta distribution. Based on

this distribution, PERT calculates the average and variance of the duration of the

corresponding activity. This information is used to calculate things like the expected

(or variance of the) length of the critical path. Note that these results di�er from

the results produced by the ATCFN method which calculates the upper and lower

bound of the length of the critical path.

The traditional network planning techniques, like PERT, do not allow for the rep-

resentation of `alternatives', `choices' and `cycles'. With an `alternative' we mean:

an event is realized if one (or several) of its input activities terminate. A `choice'

situation is such that if an event is realized, only one of the output activities will

start. A `cycle' is necessary to specify the repeated execution of a set of activities,

this way it is possible to represent repetitive schedules (e.g. iterative processes).

Interval timed coloured Petri nets allow for the representation of these aspects. Nets
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containing `alternatives', i.e. places with multiple input arcs, can be analysed with

the ATCFN method. If a net contains `choices' (conicts) or `cycles' (circuits),

then we have to use one of the analysis methods presented in the remainder of this

chapter.

3.3 Method MTSRT

Although the ATCFN method can be used to analyse nets originating from speci�c

application domains (e.g. project planning), it does not meet the requirements set

by the systems we want to analyse.

The systems we are interested in often have a behaviour characterized by the words

`choice' and `repetition'. Consider for example the ITCPN shown in �gure 3.4.

This ITCPN models two parallel machines A and B, both capable of doing some

operationX. Jobs, requiring an operationX, enter the system via place p1 and leave

the system via place p2 the moment their operation has been completed. Note that

the machines share an input bu�er (p1), i.e. a job visits the �rst available machine.

As long as there are jobs waiting in the input bu�er, both machines are active.

Place p1 is called a conict place, because this place has two output arcs. If both

machines are free, the next job to be processed selects one of the machines in a

non-deterministic manner, i.e. some non-deterministic `choice' has to be made.

The system is also a `repetitive' system, because the machines have to process a

number of jobs (e.g. 50 jobs). Therefore, we are interested in the completion time of

the nth job, i.e. EAT n(s; p2) and LAT n(s; p2). We are also interested in performance

measures like the occupation rate of a machine, i.e. LOR and HOR. Since the

ATCFN method is not suitable for the analysis of these systems, we have developed

more powerful methods like the Modi�ed Transition System Reduction Technique

(MTSRT).

The MTSRT technique is related to the reachability analysis method for usual Petri

nets (e.g. Peterson [100]) and is presented in the following.

The transition system 〈S;R〉 describing the semantics of an ITCPN (see section 2.4.1)

de�nes a so-called reachability tree. The root of this tree is the initial state s1. This

root is connected to a number of states s11; s12; s13; :: reachable from s1 by the �ring

of some transition, i.e. {s11; s12; s13; ::} = R(s1). These states are called the `suc-

cessors' (or children) of the root. Every state s1i in R(s1) is connected to the root

and the states reachable from s1i, i.e. its successors R(s1i). Repeating this process

produces the graphical representation of the reachability tree, see �gure 3.5. Such a

reachability tree contains all relevant information about the dynamic behaviour of

the system. If we are able to generate this tree, we can answer `any' kind of question

about the behaviour of the system, for example the performance measures de�ned

in chapter 2.

Several authors present analysis methods based on the generation of (a part) of the

reachability tree. In [133], Zuberek proposes such an analysis method, this method
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is based on a model with time in transitions and a deterministic �ring duration.

In [17] and [16], Berthomieu et al. propose a method to analyse Merlin's timed Petri

nets. Although this method uses quite di�erent mathematical techniques, there are

some similarities with our MTSRT method. Therefore, they will be compared later.

Other authors have presented analysis techniques for the eÆcient calculation of a

reachability tree of an untimed coloured Petri net (e.g. [120], [71], [67], [30]). These

techniques are only appropriate if the number of reachable states is �nite or if the
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set of reachable states has a special structure.

In general the number of reachable states of an ITCPN (given an initial state) is

in�nite. This is mainly caused by the fact that we use interval timing. Consider an

enabled transition. In general, there is an in�nite number of allowed �ring delays, all

resulting in a di�erent state. Look, for example, at the ITCPN shown in �gure 3.6

and suppose that the initial state is such that there is one token in p1 with timestamp

0. If TS = IR+∪{0}, then the number of successors of this state is in�nite, because all
states with one token in p2 having a timestamp x ∈ [1; 2] are reachable. It may seem

unreasonable that this simple example corresponds to a reachability tree with an

in�nite number of states. This is the reason we developed the Modi�ed Transition

System Reduction Technique. This technique generates the reachability tree and

uses, for computational reasons only, an alternative transition system, called the

modi�ed transition system 〈S;R〉. In a sense, this modi�ed transition system gives

alternative semantics. The main di�erence between this transition system and the

original one is the fact that we attach a time interval to every token instead of a

timestamp, i.e. S = Id �→ (P × INT ).

We will show that, using these semantics, it is possible to calculate the set of reach-

able states (or at least a relevant subset). The MTSRT method uses the modi�ed

transition system to generate (a part of) the reachability tree. Since, the reach-

ability tree of the modi�ed transition system is much smaller and more coarsely

grained than the original one, we call it the reduced reachability tree. Every state

in the reduced reachability tree corresponds to a (in�nite) number of states in the

reachability tree of the original model. One may think of these states as equivalence

or state classes. One state class s ∈ S corresponds to the set of all states being a

specialization of s, i.e. {s ∈ S | s / s}. Informally speaking, state classes are de�ned

as the union of `similar' states having the same token distribution (marking) but

di�erent timestamps (within certain bounds).

Note that it is not our objective to de�ne new semantics, the semantics given in

section 2.4.1 specify the meaning of an ITCPN correctly. We use the modi�ed

transition system only for reasons of eÆciency. However, calculating the reduced

reachability tree only makes sense if the reduced reachability tree can be used to
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deduce properties of the reachability tree which gives the semantics of the ITCPN.

The modi�ed transition system described in the next section has been developed

with this objective in mind.

In section 3.3.2, we will show how these two transition systems relate to each other.

We will see that the process described by the modi�ed transition system di�ers

from the process described by the original transition system. Nevertheless, we will

see that we can use the modi�ed transition system to answer questions about the

original transition system and, therefore, about the behaviour of the ITCPN.

3.3.1 The modi�ed transition system

The modi�ed transition system 〈S;R〉 is similar to the transition system describing

the semantics of an ITCPN. The main di�erence is the fact that the modi�ed tran-

sition system associates a time interval with each token rather than a timestamp.

As a consequence the state space is de�ned as follows:

S = Id �→ (CT × INT ) (3.1)

If s ∈ S, then dom(s) is the set of token labels corresponding to the tokens in the

net. If i ∈ dom(s), then s(i) is a triplet representing the position, value and time

interval of the corresponding token. The time interval of a token represents the

upper and lower bound for the time it becomes available.

We want to use this state space for reasons of computational eÆciency. On the

other hand, we are interested in a transition system which resembles the original

transition system given in section 2.4.1 as much as possible, because we want to

use the modi�ed transition system to analyse the behaviour of the ITCPN (which

is described by the original transition system). Therefore, we de�ne the transition

relation R as follows.

For convenience we de�ne a number of functions to refer to a speci�c aspect of a

token.

De�nition 25

For q ∈ CT × INT we de�ne:

place(q) = �1(�1(q))

value(q) = �2(�1(q))

time(q) = �2(q)

time
min(q) = �1(�2(q))

time
max(q) = �2(�2(q))

If s ∈ S and i ∈ dom(s) is the label of a token in this state, then the arrival time

(the time the token becomes available) is between time
min(s(i)) and time

max(s(i)).
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We de�ne E to be the event set of the modi�ed transition system:

E = T × S × S (3.2)

An event changes a state into a new state, described by the transition relation. An

event e ∈ E is a triplet indicating the transition that �res �1(e), the tokens which

are consumed �2(e) and the tokens which are produced �3(e).

AE(s) ⊆ E is the set of allowed events in state s ∈ S. An allowed event e ∈ AE(s)

satis�es �ve conditions, which are similar to the conditions given on page 39. In

the original transition system, tokens are selected in order of their timestamps. The

modi�ed transition systems associates a time interval with each token (instead of a

timestamp). Therefore, we de�ne the relation ≤i to compare intervals, i.e. to select

tokens in order of their timestamps.

De�nition 26 (≤i)

If v; w ∈ INT , then: v ≤i w ≡ (�1(v) ≤ �1(w)) ∧ (�2(v) ≤ �2(w))

Note that ≤i de�nes a partial ordering, because ≤i is reexive, antisymmetric and

transitive. Sometimes we use the notation v <i w to denote that v ≤i w and v �= w.

We use �gure 3.7 to illustrate this relation, an interval is represented by a line

segment, the lower bound of the interval is represented by a left bracket ([), the

upper bound of the interval is represented by a right bracket (]). In �gure 3.7(a)

and (b) we see situations where v ≤i w and w ≤i v respectively. The intervals of

�gure 3.7(c) and (d) are incomparable, i.e. ¬(v ≤i w) and ¬(w ≤i v).

Suppose a place p contains two tokens with time intervals as in �gure 3.7(c), then it

is impossible to decide which token is consumed �rst, because w contains timestamps

smaller than any timestamp in v and timestamps larger than any timestamp in v. If

a transition t having this place as its input place (It(p) = 1) is enabled, then there

are at least two allowed events, one consuming the token with time interval v and

one consuming the token with time interval w. On the other hand, if place p contains

two tokens having the same value, one with time interval v and the other with time

interval w such that v <i w, then if suÆces to consider the event consuming the

token with timestamp v (see lemma 27 in the appendix of this chapter). In other

words: tokens having the same value are consumed in non-descending order rather

than ascending order. We do this, because ≤i is not a total ordering (see appendix).

To discard the timestamps of the tokens in a state, we de�ne the function untime ∈
S → (Id �→ CT ). If s ∈ S, then:

untime(s) = �i∈dom(s) 〈place(s(i)); value(s(i))〉 (3.3)

Now we can formalize AE(s), the set of allowed events in state s ∈ S. An allowed
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Figure 3.7: Comparing two intervals v and w

event e ∈ AE(s) satis�es 5 conditions. The �rst condition is about the requirement

that consumed tokens have to exist. The transition that �res consumes the cor-

rect number of tokens from the input places (condition (b)). Tokens in the same

place having the same value are consumed in non-descending order (condition (c)).

Produced tokens bear a unique label, condition (d) checks whether the label of a

produced token does not exist already. The delay interval of a produced token is as

speci�ed by function F (condition (e)).

AE(s) = {〈t; qin; qout〉 ∈ E | qin ⊆ s ∧ (3.4a)

It = �p∈P #{i ∈ dom(qin) | place(s(i)) = p} ∧ (3.4b)

∀i∈dom(qin)∀j∈dom(s)\dom(qin) ( place(s(i)) = place(s(j)) ∧
value(s(i)) = value(s(j)) ) ⇒ ¬(time(s(j)) <i time(s(i))) ∧ (3.4c)

dom(qout) ∩ dom(s) = ∅ ∧ (3.4d)

SB(qout) = Ft(SB(untime(qin))) } (3.4e)

Each of the requirements (3.4a), (3.4b), .. (3.4e) corresponds to one of the conditions

mentioned before. The delay intervals of the produced tokens are given by the

expression Ft(SB(untime(qin))). Because the domain of Ft is a subset of IB(CT ),

we have to use the function untime to omit the timestamps of the consumed tokens.

The function SB is needed, because the function F is de�ned in terms of bags and

the transition system uses partial functions to denote bags.

The point of time a token becomes available is speci�ed by an interval, therefore it

is impossible to specify the event time of an event. However, it is possible to give

an upper and lower bound for the event time of an event e ∈ E:
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Figure 3.8: etmin(e) and et
max(e)

et
min(e) = max

i∈dom(�2(e))
time

min(�2(e)(i)) (3.5)

et
max(e) = max

i∈dom(�2(e))
time

max(�2(e)(i)) (3.6)

This is illustrated in �gure 3.8 where the time intervals of the tokens to be consumed

are represented by horizontal line segments. The event time of an event e in isolation

is between et
min(e) and et

max(e).

The transition time is the event time of the �rst event to occur, i.e. the minimum

of the event times of the allowed events. Since the event time of an event in the

modi�ed transition system is characterized by an interval, the transition time of a

state s ∈ S is also characterized by an interval:

tt
min(s) = min

e∈AE(s)
et

min(e) (3.7)

tt
max(s) = min

e∈AE(s)
et

max(e) (3.8)

This means that the �rst event in state s will occur between tt
min(s) and tt

max(s),

this is illustrated in �gure 3.9. An allowed event e ∈ AE(s) may occur, if and only

if, etmin(e) ≤ tt
max(s). If it occurs, then it occurs at a time between et

min(e) and

tt
max(s).

For an allowed event e ∈ AE(s), the time intervals in �3(e) correspond to the �ring

delays of the produced tokens. Therefore, we have to rescale the (relative) intervals
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Figure 3.9: ttmin(s) and tt
max(s)

of these produced tokens. For this purpose we de�ne the function scale. If q ∈ S

and x; y ∈ TS, then:

scale(q; x; y) = �i∈dom(q) 〈〈place(q(i)); value(q(i))〉;
〈timemin(q(i)) + x; time

max(q(i)) + y〉〉 (3.9)

This function is used to add et
min(e) to the lower bound of each delay interval and

to add tt
max(s) to the upper bound of each delay interval.

Finally, the transition relation of the modi�ed transition system is de�ned by:

s1Rs2 ≡ ∃e∈AE(s1)
etmin(e)≤ttmax(s1)

s2 = (s1 \ �2(e)) ∪ scale(�3(e); et
min(e); ttmax(s1)) (3.10)

for s1; s2 ∈ S.

The complete transition system is summarized below.

The modi�ed transition system

An ITCPN = (P; V; T; I; O; F; TS) de�nes a modi�ed transition system 〈S;R〉, with
a state space S and a transition relation R:

• S = Id �→ (CT × INT ), the state space

• E = T × S × S, event set

• untime(s) = �i∈dom(s) 〈place(s(i)); value(s(i))〉, deletes the time intervals in

state s ∈ S
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• AE(s) =

{ 〈t; qin; qout〉 ∈ E | qin ⊆ s ∧
It = �p∈P #{i ∈ dom(qin) | place(s(i)) = p} ∧
∀i∈dom(qin)∀j∈dom(s)\dom(qin) ( place(s(i)) = place(s(j)) ∧

value(s(i)) = value(s(j)) ) ⇒ ¬(time(s(j)) <i time(s(i)) ∧
dom(qout) ∩ dom(s) = ∅ ∧
SB(qout) = Ft(SB(untime(qin))) } ,

the set of allowed events in state s ∈ S

• et
min(e) = maxi∈dom(�2(e)) time

min(�2(e)(i)), lower bound event time of e ∈ E

• et
max(e) = maxi∈dom(�2(e)) time

max(�2(e)(i)), upper bound event time of e ∈ E

• tt
min(s) = mine∈AE(s) et

min(e), lower bound transition time in s ∈ S

• tt
max(s) = mine∈AE(s) et

max(e), upper bound transition time in s ∈ S

• scale(q; x; y) = �i∈dom(q) 〈�1(q(i)); 〈timemin(q(i)) + x; time
max(q(i)) + y〉〉,

scales timestamps, q ∈ S and x; y ∈ TS

• Finally, the transition relation R is de�ned as follows. If s1; s2 ∈ S, then:

s1Rs2 ≡ ∃e∈AE(s1)
etmin(e)≤ttmax(s1)

s2 = (s1 \ �2(e)) ∪ scale(�3(e); et
min(e); ttmax(s1))

Note the resemblance with the original transition system described in section 2.4.1.

Comparing the two transition systems shows that all di�erences stem from the

fact that the modi�ed transition system associates a time interval (instead of a

timestamp) with each token. As a result of these intervals, the event time of an

event and the transition time of a state are both characterized by an upper and

lower bound, etc.

To give an impression of the modi�ed transition system, consider the net shown in

�gure 3.10. Initially, there is one token in place p1 with an interval of [0; 3], there is

one token in p2 with an interval of [2; 5] and there is one token in p3 with an interval

of [4; 6]. Note that this state in the modi�ed transition system (i.e. a state class)

corresponds to an in�nite number of states in the original model, for instance the

state with a token in p1 with timestamp 2:4 and a token in p2 with timestamp �

and a token in p3 with timestamp 31=6.

There are two allowed events, event e1 is the �ring of t1 while consuming the tokens

in p1 and p2, event e2 is the �ring of t2 while consuming the tokens in p2 and p3.

The event time of e1 is between 2 (etmin(e1)) and 5 (etmax(e1)), the event time of e2
is between 4 (etmin(e2)) and 6 (etmax(e2)). All events having a lower bound for the

event time (etmin) smaller than or equal to the upper bound of the transition time
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Figure 3.10: An example used to illustrate the modi�ed transition system

(ttmax) can happen. If e1 occurs, it will be between 2 (etmin(e1)) and 5 (ttmax(s)).

If e2 occurs, it will be between 4 (etmin(e2)) and 5 (ttmax(s)). In both cases a token

is produced for place p4. There are two possible terminal states: one with a token

in p3 and p4 and one with a token in p1 and p4. In the �rst case the time interval

of the token in p4 is [2; 7], because the delay interval of a token produced by t1 is

[0; 2]. In the second case the time interval of the token in p4 is [5; 8]. Using intervals

rather than timestamps prevented us from having to consider all possible delays

in the intervals [0; 2] and [1; 3], i.e. it suÆces to consider upper and lower bounds.

Nevertheless, we will see that the process described by the modi�ed transition system

di�ers from the process described by the original transition system.

In the remainder of this chapter, we assume that 〈S;R〉 is the transition system

describing the semantics of an ITCPN (P; V; T; I; O; F; TS) and 〈S;R〉 is the cor-

responding modi�ed transition system. Symbols superscripted by a horizontal line

are associated with the modi�ed transition system, this to avoid confusion.

For example, if A ⊆ S, then R(A) is the set of all states reachable by �ring one

transition in a state in A. RS(A) = ∪
n∈IN R

n
(A) is the set of all states reachable

by �ring an arbitrary number of transitions (when starting in a state in A). S
T
=

{s ∈ S | R(s) = ∅}, the set of terminal states.
The process which corresponds to the modi�ed transition system and a set of initial

states A ⊆ S, is described by the set of all possible paths. Recall, a path is a

sequence of states such that any successive pair belongs to the transition relation

of the modi�ed transition system. A path starts in an initial state and either it is

in�nite or it ends in a terminal state (see de�nition 5).

The other properties and performance measures de�ned in chapter 2 are also de�ned

for the modi�ed transition system in a straightforward manner. To distinguish

these performance measures from the original ones, we also superscript them by a

horizontal line.

Most of the theorems of chapter 2, based on the original transition system, are also
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valid for the modi�ed transition system. Consider for example the theorem about

the `monotonicity of time' (theorem 1), i.e. the property that time can only move

forward. The following theorem shows that the upper and lower bounds of the

transition times in the modi�ed transition system are also `non-decreasing'.
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Theorem 5

Let 〈S;R〉 be the modi�ed transition system of an arbitrary ITCPN. For any state

s ∈ S, any path � ∈ �(s) and any i; j ∈ dom(�) such that i ≤ j, we have:

tt
min(�i) ≤ tt

min(�j) and tt
max(�i) ≤ tt

max(�j).

Proof.

First, we prove that for all s1; s2 ∈ S with s1Rs2: tt
min(s1) ≤ tt

min(s2) and

tt
max(s1) ≤ tt

max(s2).

Because s2 ∈ R(s1), there exists an event e ∈ AE(s1) such that etmin(e) ≤ tt
max(s1)

and s2 = (s1 \�2(e)) ∪ scale(�3(e); et
min(e); ttmax(s1)). The de�nition of scale tells

us that the lower bound of the produced token is at least etmin(e) and the upper

bound is at least ttmax(s1). Hence, for all new events h ∈ AE(s2) \ AE(s1) we

�nd that etmin(h) ≥ et
min(e) ≥ tt

min(s1) and et
max(h) ≥ tt

max(s1). All events that

where already enabled also have a lower bound event time of at least ttmin(s1) and

an upper bound event time of at least ttmax(s1). By the de�nition of ttmin and ttmax

we conclude that ttmin(s1) ≤ tt
min(s2) and tt

max(s1) ≤ tt
max(s2).

Note that �iR
j−i

�j. Using induction in n ∈ IN it is easy to prove that �iR
n
�j implies

that ttmin(�i) ≤ tt
min(�j) and tt

max(�i) ≤ tt
max(�j).

2

3.3.2 Using the modi�ed transition system

We have developed the modi�ed transition system for computational reasons. How-

ever, calculating the reduced reachability tree only makes sense if the reduced reach-

ability tree can be used to deduce properties of the reachability tree which gives the

semantics of the ITCPN. Therefore, we investigate the relation between the two

transition systems. Examples indicate that such a relation exists. Since the original

transition system describes the semantics of an ITCPN, it is necessary to establish

a formal relation between the two transition systems. Without this formal rela-

tionship we are unable to answer questions about the ITCPN using the modi�ed

transition system.

It is easy to see that the two transition systems are not equivalent. Moreover,

there is no sensible morphism between these two transition systems. We will use

a small example to show this. Consider a net composed of one place p and with-

out transitions, Vp = {`signal'} and TS = IR+ ∪ {0}. The corresponding orig-

inal and modi�ed transition system are given by 〈S;R〉 and 〈S;R〉 respectively.

If x ∈ TS and 〈y; z〉 ∈ INT , then s = {〈1; 〈〈p; `signal'〉; x〉〉} ∈ S and s =

{〈1; 〈〈p; `signal'〉; 〈y; z〉〉〉} ∈ S. In this case our intuition says that s and s are

`related' if and only if y ≤ x ≤ z. There is no morphism capable of expressing this

relation, because s corresponds to a lot of states in S and s corresponds to a lot of

states in S. This is a direct result of the fact that we use interval timing.

However, it is possible that there exists a useful similarity relationship. The small

example shows that it is sensible to use the specialization concept de�ned in sec-

tion 2.4.1 to relate the states of the two transition systems. Recall that for s ∈ S and
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s ∈ S, s is a specialization of s (notation: s/s), if and only if, there exists a bijective

function f ∈ dom(s) → dom(s) such that every token with label i ∈ dom(s) corre-

sponds to a token with label f(i) ∈ dom(s) that is in the same place, has the same

value and has an interval containing the timestamp of i. Based on this concept, we

de�ne two similarity relations. See section 2.3 for a formal de�nition of similarity.

De�nition 27 (Soundness)

For an ITCPN (P; V; T; I; O; F; TS), the combination of the corresponding original

transition system X = 〈S;R〉 and modi�ed transition system Y = 〈S;R〉 is called
sound, if and only if, Y is similar to X with respect to the specialization relation

{〈s; s〉 ∈ S × S | s / s}.

De�nition 28 (Completeness)

For an ITCPN (P; V; T; I; O; F; TS), the combination of the corresponding orig-

inal transition system X = 〈S;R〉 and modi�ed transition system Y = 〈S;R〉
is called complete, if and only, if X is similar to Y with respect to the relation

{〈s; s〉 ∈ S × S | s / s}.

Informally speaking, soundness means that states reachable in the original model are

also reachable in the modi�ed transition system based on state classes. Completeness

means that all transitions possible in 〈S;R〉 are also possible in 〈S;R〉.
If both similarity relations hold, we speak about bisimilarity with respect to spe-

cialization. Since bisimilarity w.r.t. the specialization relation is a rather strong

property, this property would have been very useful.

Unfortunately, completeness does not always hold, this is caused by the fact that

dependencies between tokens are not taken into account. Consider for example the

net shown in �gure 3.11. Suppose there is one token in p1 with a time interval [0; 1]

and the other places are empty. In this case t �res between time 0 (etmin(e)) and

time 1 (ttmax(s)). The next state in the modi�ed transition system will be the state

with one token in p2 (with interval [1; 3]) and one token in p3 (with interval [3; 5]).

This suggests that it is possible to have a token in p2 with timestamp 1 and a token

in p3 with timestamp 5. However, this is not possible (in the original transition

system), because these timestamps are related (i.e. they where produced at the

same time).

Fortunately, for any ITCPN the soundness property holds:

Theorem 6 (Soundness)

For any ITCPN (P; V; T; I; O; F; TS), we have that the combination of the cor-

responding original transition system X = 〈S;R〉 and modi�ed transition system

Y = 〈S;R〉, is sound.

Proof.

Let s1 ∈ S and s1 ∈ S such that s1 / s1, and s2 ∈ R(s1), see �gure 3.12. Now we

have to prove that there exists an s2 ∈ R(s1) such that s2 / s2 (see de�nition 7).
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Figure 3.11: Non-completeness caused by dependencies

Since s1 / s1, there exists a specialization function f , i.e. there exists a bijective

function f ∈ dom(s1) → dom(s1) such that every token with label i ∈ dom(s1)

corresponds to a token with label f(i) ∈ dom(s1) that is in the same place, has the

same value and has an interval containing the timestamp of i.

Because s1Rs2, there is an event e such that:

(i) e ∈ AE(s1)

(ii) et(e) = tt(s1)

(iii) s2 = (s1 \ �2(e)) ∪ scale(�3(e); tt(s1))

De�ne e = 〈�1(e); s1 �f(dom(�2(e))); q〉 ∈ E, where q ∈ S such that conditions

(3.4d) and (3.4e) on page 84 hold. This is always possible, because condition (3.4e)

speci�es the labelled bag q precisely (except for the labels) and condition (3.4d) says

that the labels have to be `new'. Note that �3(e) / q.

De�ne s2 = s1 \ �2(e) ∪ scale(�3(e); et
min(e); ttmax(s1)).

Now it suÆces to prove that:

(i) e ∈ AE(s1)

(ii) etmin(e) ≤ tt
max(s1)

(iii) s2 / s2

(i) Event e is an element of AE(s1) if it satis�es the �ve conditions stated in the

de�nition of AE. All conditions except condition (3.4c) follow directly from the

de�nition of e and the fact that e ∈ AE(s1). To prove the fact that condition (3.4c)

holds, we have to impose additional restrictions on f , however, it is always possible

to transform (`massage') f such that (3.4c) holds (see the appendix of this chapter,

lemma 27).

(ii) Since �2(e) / �2(e), we have:
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Figure 3.12: The soundness property, i.e. 〈S;R〉 is similar to 〈S;R〉 with respect to

the specialization relation {〈s; s〉 ∈ S × S | s / s}

et
min(e) = maxi∈dom(�2(e)) time

min(�2(e)(i)) ≤ maxi∈dom(�2(e)) time(�2(e)(i)) = et(e)

That is, etmin(e) ≤ et(e). It is also easy to verify that: tt(s1) ≤ tt
max(s1), because

s1 / s1.

Therefore: etmin(e) ≤ et(e) = tt(s1) ≤ tt
max(s1).

(iii) From s1/s1 and the de�nition of �2(e) we deduce that: (s1\�2(e)) / (s1\�2(e))
Since etmin(e) ≤ tt(s1) ≤ tt

max(s1) and �3(e) / �3(e), we have:

scale(�3(e); tt(s1)) / scale(�3(e); et
min(e); ttmax(s1))

This implies that s2 / s2.

2

This theorem tells us that if a transition is possible from s1 to s2 in the original

transition system, there is a corresponding transition in the modi�ed transition

system from every state s1 that `covers' s1.

How are the paths in the modi�ed transition system related to the paths in the

original transition system? To investigate this, we also de�ne the specialization

concept for paths (/�).

De�nition 29 (Specialization)

For � ∈ IN �→ S and � ∈ IN �→ S: � /� � ≡ (dom(�) = dom(�) ∧ ∀i∈dom(�) �i / �i)

Now it is possible to show that soundness also holds for the processes (� and �)

generated by the two transition systems.

Lemma 14

For all s1 ∈ S and s1 ∈ S such that s1 / s1: ∀�∈�(s1) ∃�∈�(s1) � /� �
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Proof.

If � is an in�nite path (i.e. dom(�) = IN), then we have to prove that there is a �

such that dom(�) = IN and ∀i∈dom(�) �i / �i. Since s1 / s1, we �nd that �0 / �0. For

all i ≥ 0 take �i+1 ∈ R(�i) such that �i+1 / �i+1. This is possible, because of the

soundness property (theorem 6). If � is a �nite path of length n, then we have to

prove that �n−1 is a terminal state. We know that R(�n−1) = ∅ and that �n−1/�n−1.

Moreover, R(�n−1) = ∅, if and only, if there is no transition enabled, i.e. there is

no transition with suÆcient tokens on each of its input places. This implies that

R(�n−1) = ∅, because if AE(�n−1) = ∅, then AE(�n−1) = ∅.
2

Despite the non-completeness, the soundness property allows us to answer some of

the questions stated in section 2.6. We can prove that a system has a desired set of

properties by proving it for the modi�ed transition system. For example:

Lemma 15

For any p ∈ P , K ∈ IN, s ∈ S and s ∈ S such that s / s, we have:

∀ŝ∈RS(s) #(ŝ ��p) ≤ K ⇒ ∀ŝ∈RS(s) #(ŝ��p) ≤ K

Proof.

If ŝ ∈ S, s′ ∈ S and ŝ / s
′, then for any p ∈ P : #(ŝ ��p) = #(s′ ��p) (see de�nition of

specialization).

Theorem 6 implies that for any ŝ ∈ RS(s), there exists a s′ ∈ RS(s) such that ŝ / s′

(we can prove this by induction).

Assume that for all s′ ∈ RS(s): #(s′ ��p) ≤ K. Now it is easy to see that for any

ŝ ∈ RS(s): #(ŝ��p) ≤ K, because if there exists a ŝ ∈ RS(s) such that #(ŝ��p) > K,

then there also exists a s′ ∈ RS(s) such that #(s′ ��p) > K (i.e. a contradiction).

2

This lemma states the fact that if the modi�ed transition system indicates that an

ITCPN is K-bounded (or safe) for an initial state, then the net is K-bounded (or

safe) for that initial state with respect to the original transition system. In other

words, we can use the modi�ed transition system to prove boundedness.

We also use the modi�ed transition system to calculate bounds for the arrival times

of tokens in a place. Although these bounds are sound (i.e. safe) they do not have

to be as tight as possible, because of possible dependencies between tokens (non-

completeness). First, we de�ne the earliest and latest arrival time for the modi�ed

transition system. To do this we need to de�ne place projection (��min and ��max) for

S.

De�nition 30 (��min
; ��max)

For all s ∈ S, p ∈ P :

s��min
p = �x∈TS #{i ∈ dom(s) | place(s(i)) = p ∧ time

min(s(i)) = x}
s��max

p = �x∈TS #{i ∈ dom(s) | place(s(i)) = p ∧ time
max(s(i)) = x}
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That is, s ��min
p (s ��max

p) gives the bag of lower (upper) bounds of the intervals of

the tokens in p).

De�nition 31 (EAT n;LAT n)

If A ⊆ S and p ∈ P , then:

EAT n(A; p) = min
�∈�(A)

min
i∈dom(�)

bminn(�i ��
min

p)

LAT n(A; p) = max
�∈�(A)

min
i∈dom(�)

bminn(�i ��
max

p)

The following lemma shows that we can use the modi�ed transition system to deduce

bounds for the arrival time of the nth token. In this way we can prove that certain

deadlines are met.

Lemma 16

If A ⊆ S;A ⊆ S; p ∈ P and ∀s∈A ∃s∈A s / s, then:

• EAT n(A; p) ≤ EAT n(A; p)

• LAT n(A; p) ≥ LAT n(A; p)

Proof.

If s / s, then bminn(s��
min

p) ≤ bminn(s��p) ≤ bminn(s��
max

p).

Use these inequalities and lemma 14 to verify the assertion of this lemma.

2

It is also possible to de�ne LOR and HOR in such a way that they have similar

properties. In this way the modi�ed transition system can be used to derive `safe'

upper and lower bounds for performance measures like occupation rate and (average)

stock levels. Note that if the original transition system and modi�ed transition

system would have been bisimilar with respect to the similarity relation (i.e. sound

and complete), then these bounds would have been as tight as possible.

We have demonstrated that we can use the modi�ed transition system to answer

all kinds of questions about the original model. This is only useful if the corre-

sponding reduced reachability tree is �nite. In other words, the MTSRT method is

unable to answer questions which require the generation of an `unbounded' reduced

reachability tree. However, the following theorem shows that progressive nets can

be analysed using the MTSRT method, because the relevant part of the reduced

reachability tree is �nite.

Theorem 7 (Computability)

Let an ITCPN be given such that m ∈ IN and:

∀t∈T ∀c∈dom(Ft) #Ft(c) < m
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If this ITCPN is progressive for an initial state s ∈ S, having a �nite number of

tokens (i.e. ∃
l∈IN #s = l), then the number of (really di�erent) states reachable

from s, having a minimal transition time smaller than some y ∈ TS \ {∞}, is �nite,
i.e.

#{SB(ŝ) | ŝ ∈ RS(s) ∧ tt
min(ŝ) < y} is �nite

Proof.

The ITCPN is progressive in s ∈ S, i.e. for all y ∈ TS \ {∞}:

∀�∈�(s) ∃i∈dom(�) tt
min(�i) > y

Hence, there exists an n ∈ IN such that for all � ∈ �(s):

#{i ∈ dom(�) | ttmin(�i) ≤ y} ≤ n

For any ŝ ∈ S having a �nite number of tokens (#ŝ = l):

(i) #SB(R(ŝ)) is �nite, because the number of really di�erent events (disre-

gard token identi�cations) allowed in ŝ is �nite (observe condition (3.4a) on

page 84). In fact #SB(R(ŝ)) ≤ 2l, because 2l is the number of possible subsets

of ŝ.

(ii) For all ^̂s ∈ R(ŝ) : #^̂s is �nite, because the number of produced tokens is

smaller than m (i.e. #^̂s < l +m).

This implies that for all i ∈ IN with i ≤ n: #SB(Ri
(ŝ)) is �nite (use induction).

This and the progressiveness property imply that the number of (really di�erent)

states reachable from s having a minimal transition time smaller than y, is �nite.

2

This theorem says that the relevant part of the reachability graph, i.e. those states

which have a transition time smaller than some arbitrary y, is �nite. Note that we

leave equivalent states aside, i.e. two states in the reachability graph, say s1 and s2,

are considered to be equivalent if and only if SB(s1) = SB(s2) (see de�nition 13).

To prove the property stated in theorem 7, we have to assume that: (1) the net is

progressive for an initial state s, (2) s is `�nite' and (3) the number of produced

tokens is always �nite. This is not a surprise, since our model has a computable

power equivalent to Turing machines (Wilf [127]). References [74], [93], [100] and

[99] show that any signi�cant strengthening of the basic Petri net model leads to

equivalence with Turing machines. Furthermore, in [74], Jones, Landweber and Lien

prove that reachability and boundedness properties are undecidable for Merlin's

times Petri net model. This also holds for our ITCPN model. However, because of

the three assumptions and the fact that we are only interested in the behaviour of

the system until time y, these properties become decidable.

Note, the assumptions we make are not very restrictive, e.g. progressiveness is

often a desirable property rather than a restriction. Recall that it is possible to
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recognise the progressiveness of many nets by observing the de�nition of the net

only (see theorem 2). Note that it is possible to adapt theorem 2 such that it holds

for the modi�ed transition system. Theorem 7 implies that if we are interested in

performance measures like EAT n, LAT n, LOR and HOR or properties like K-

boundedness until some arbitrary time y, then the MTSRT method will terminate,

because the number of states to be generated is �nite. Although we are able to

compute upper and lower bounds for these performance measures, in some cases the

time and space complexity of the algorithm may be exorbitant. This problem will

be addressed in the remaining sections of this chapter.

A possible drawback of the analysis method MTSRT is the fact that answers are not

always as strict as possible, because of dependencies between tokens. For example,

the bounds generated for the arrival times do not have to be as tight as possible.

However, experimentation shows that the calculated bounds are often of great value

and far from trivial.

To our knowledge, only one analysis method has been proposed for Petri nets with

interval timing. This method was presented in [17] and [16] by Berthomieu et al.

and uses Merlin's timed Petri nets ([89]) to describe the system. This method also

generates a reachability graph where nodes represent state classes instead of states.

This approach is more or less related to our MTSRT method, although they use

totally di�erent mathematical techniques. Instead of trying to relate two transition

systems, they solve linear equations to calculate state classes.

Because the method of Berthomieu et al. is based on Merlin's timed Petri net model,

there are some serious drawbacks. First of all, the model does not allow for coloured

tokens. This implies that it is diÆcult to make manageable models for large and

complex systems. Secondly, they use a relative time scale, which prohibits the calcu-

lation of performance measures such as EAT n(s; p) and LAT n(s; p). Furthermore,

it is not possible to de�ne liveness properties such as progressiveness.

The number of states generated by Berthomieu's method is smaller than the number

of states generated by the MTSRT method. However, the time needed to calculate

one state is much larger. Therefore, it is diÆcult to determine which of these meth-

ods is most eÆcient, because it highly depends on the net and the initial state.

We think it is possible to extend Berthomieu's method for our ITCPN model. How-

ever, if this method uses an absolute time scale, then the computational eÆciency

decreases, because the number of states generated becomes comparable to the num-

ber of states generated by the MTSRT method.

3.4 Method PNRT

The MTSRT method presented in the previous section is a very powerful method,

since it can be used to analyse any ITCPN. Recall, the basic idea behind this method

is to construct a tree which contains at least one node for each reachable state and

an arc for each possible change of state. Obviously such a tree may, even for a small
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Figure 3.13: Confusion caused by a conict between two transitions

ITCPN, become very large (and perhaps in�nite). To improve the computational

eÆciency of this method, we want to construct a reduced reachability tree without

loosing too much information. In the previous section a powerful reduction was

obtained by associating time intervals with tokens rather than timestamps.

A very simple way to reduce the reachability tree is to construct the tree such that

equivalent states correspond to only one node in the tree. In this case we speak

about the reachability graph rather than the reachability tree. If there are several

ways (�ring sequences) to reach a speci�c state, this reduction is quite useful. Several

authors have developed techniques to reduce the reachability graph (see Hubner et

al. [67], Valmari [120], Chiola et al. [30] and Jensen [71]). These reductions often

have side-e�ects like loosing the ability to answer certain questions. For the moment,

it is only possible to construct reachability graphs for relatively small systems or

parts of systems. Applying this kind of analysis to larger systems often results in

an `explosion' of the reachability graph.

Based on practical experience we identify two main causes for this `explosion': colour

and confusion.

The fact that we use coloured tokens allows us to specify a number of attributes

of the entity represented by a token. Often the number of possible colours (token

values) is in�nite, this may result in an explosion of the reachability graph. In the

next section we will concentrate on this problem.

Another phenomenon which may cause an `explosion' of the reachability graph is

called confusion. There are two typical forms of confusion: conicts between tran-

sitions and conicts between tokens.

A conict between transitions occurs if there is a place p such that #(p•) > 1.

Consider for example the net shown in �gure 3.13. Every time there is a token in

place p a non-deterministic choice has to be made: either t1 �res or t2 �res. In this

situation there is a conict between t1 and t2. If such a conict occurs several times,



3.4. METHOD PNRT 101

&%

'$

p
t

-yyvw

Figure 3.14: Confusion caused by a conict between two tokens

the reachability graph is likely to `explode'.

The second form of confusion is a conict between two or more tokens. In the

modi�ed transition system tokens (having an identical value) are consumed in non-

descending order, i.e. if tokens have equal or incomparable time intervals, a non-

deterministic choice has to be made. Consider for example the situation shown in

�gure 3.14, where place p contains two tokens one with interval v and one with

interval w. If v = w and the values of the tokens di�er, then there are two events

possible. If ¬(v <i w), ¬(w <i v) and v �= w, then the intervals are incomparable

and there are also two events possible. In both cases, we say that there is a conict

between these tokens. There is no confusion if v <i w (or w <i v) and the values of

the tokens are identical, because in this case t consumes the token with time interval

v (w).

Confusion is closely related to persistence. Informally speaking, an ITCPN is called

persistent if, for any `enabled' event e, the execution of another event will not `dis-

able' event e. An event, once it is `enabled', will stay enabled until it occurs. Clearly,

any form of confusion endangers persistence. However, the absence of confusion does

not guarantee persistence. To guarantee persistence of an ITCPN with respect to

some initial state, we have to add the requirement that the time intervals of the to-

kens in each place have to be ascending in order of arrival, i.e. tokens produced for a

place have a time interval of at least the time interval of any token already present in

this place. Consider the ITCPN shown in �gure 3.15. Initially, there is one token in

p1 with interval v, there is one token in p2 with interval w and there is one token in p3
with interval u. Suppose v = 〈0; 4〉, w = 〈2; 6〉 and u = 〈0; 0〉. Initially, two events

are enabled. Event e1 corresponds to the �ring of t1 (et
min(e1) = 0, etmax(e1) = 4)

and event e2 corresponds to the �ring of t2 (etmin(e1) = 2, etmax(e1) = 6). If e1
occurs �rst, then e2 may become disabled, because v <i w and the tokens are con-

sumed in non-descending order (provided that they have the same value), i.e. t2

may consume the token produced by t1 rather than the token with interval w. Nev-

ertheless, there is no confusion. This example shows that the absence of confusion

does not imply persistence.

To formalize the persistence concept, we start with the de�nition of a well-ordered

state.
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Figure 3.15: A non-persistent ITCPN without confusion

De�nition 32 (Well-ordered)

A state s ∈ S is well-ordered, if and only if, for any i; j ∈ dom(s):

place(s(i)) = place(s(j)) ⇒ (time(s(i)) ≤i time(s(j)) ∨ time(s(j)) ≤i time(s(i)))

A state is well-ordered if the time intervals of any pair of tokens in the same place

are comparable. In other words, of any two tokens in the same place, one interval

is smaller than or equal to the other.

De�nition 33 (Persistence)

An ITCPN is persistent with respect to s ∈ S, if and only if:

1. the net is conict free

2. for any ŝ ∈ RS(s): ŝ is well-ordered

3. for any ŝ ∈ RS(s), ~s ∈ R(ŝ), i ∈ dom(ŝ) and j ∈ dom(~s) \ dom(ŝ):

place(ŝ(i)) = place(~s(j)) ⇒ time(ŝ(i)) ≤i time(~s(j))

The third requirement says that the time intervals of the tokens arriving in each

place have to be ascending in the order of their arrival. All produced tokens have a

time interval of at least any interval of the tokens contained by the (corresponding)

place until then.

A persistent net has the nice property that, if an event `occurs', then it will not

`disable' any other event (this will be formalized later).

Note that our de�nition of persistence slightly deviates from the more traditional

de�nition, where persistence means that the �ring of a transition will not disable

any other enabled transition (see Murata [93]).

In this section we concentrate on persistent nets. Clearly, for an arbitrary net (and

initial state) it may be diÆcult to verify whether the net is persistent. Therefore, we

will show that an important class of ITCPNs is persistent. We will use an example
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to demonstrate that this class allows for the modelling of meaningful repetitive

manufacturing processes.

Persistent interval timed coloured Petri nets have a number of interesting properties.

We have developed an analysis method that exploits persistence to reduce the reach-

ability graph. The method is called Persistent Net Reduction Technique (PNRT).

This technique is based on a slightly altered version of the modi�ed transition system

used by the MTSRT method. In this section we restrict ourselves to `uncoloured'

Petri nets. The extension of this method to coloured nets is straightforward if we

add some additional requirements (inter alia the requirement that no two tokens in

a place have the same time interval).

Assumption

The interval timed coloured Petri nets considered in this section are `colourless' (i.e.

∀p∈P #Vp = 1) and the corresponding modi�ed transition system is altered in the

following way, equation (3:10) is replaced by (3:10′):

s1Rs2 ≡ ∃e∈AE(s1)
etmin(e)≤ttmax(s1)

s2 = (s1 \ �2(e)) ∪ scale(�3(e); et
min(e); etmax(e)) (3.10')

Note that ttmax(s1) is replaced by etmax(e). This assumption is valid for the rest of

section 3.4.

We assume a colourless ITCPN to avoid confusion between tokens having the same

time interval. Replacing (3:10) by (3:10′) makes the timestamps of the produced

tokens independent of the other (allowed) events. Since etmax(e) ≥ tt
max(s1), many

of the properties mentioned in the previous section remain valid, e.g. the sound-

ness property. Moreover, performance measures, such as EAT n, LAT n, HOR and

LOR, calculated using this transition system are still `safe'.

A persistent ITCPN with respect to s has the nice property that, if it is dead w.r.t.

s, then it always terminates in the `same' state. This property is stated in the

following theorem:



104 CHAPTER 3. ANALYSIS OF TIME IN NETS

Theorem 8

If an ITCPN is persistent and dead with respect to an initial state s ∈ S, then:

#{SB(ŝ) | ŝ ∈ RS(s) ∧ R(ŝ) = ∅} = 1

Proof.

Because the cardinality of the colour set of each place is 1 (i.e. ∀p∈P #Vp = 1) and

all ŝ ∈ RS(s) are well-ordered (see de�nition of persistence), there are no conicts

between tokens, i.e. if there are two tokens in a place p with time intervals v and w,

then v ≤i w or w ≤i v. Note that if v = w, then the tokens are identical, although

they may have di�erent labels.

Two events are equivalent if the consumed tokens are identical w.r.t. their time

interval (and value). More formally: for any e1; e2 ∈ E, we have: e1
:
= e2, if and

only if, �1(e1) = �1(e2) and SB(�2(e1)) = SB(�2(e2)) and SB(�3(e1)) = SB(�3(e2)).
Since there are no conicts between tokens, e1; e2 ∈ AE(ŝ) and �1(e1) = �1(e2)

imply that e1
:
= e2.

Once an event e is `enabled', i.e. e ∈ AE(ŝ), it remains enabled until it occurs. In

other words, an event can and will not be disabled by any other event. If another

event, say h (h � := e), occurs in ŝ, then e is still enabled in: ^̂s = (ŝ \ �2(h)) ∪
scale(�3(h); et

min(h); etmax(h)), because:

1. dom(�2(h)) ∩ dom(�2(e)) = ∅, because of the absence of conicts between

transitions and �1(h) �= �1(e). Consequently, �2(e) ⊆ ^̂s, i.e. condition (3.4a)

in the de�nition of AE holds (see page 84).

2. For any i ∈ dom(�2(e)) and j ∈ dom(^̂s) \ dom(�2(e)), we have:

place(^̂s(i)) = place(^̂s(j)) ⇒ ¬(time(^̂s(j)) <i time(^̂s(i))),

because the produced tokens have time intervals which are not smaller than

the tokens already present in the corresponding place (persistence). Therefore,

condition (3.4c) in the de�nition of AE holds.

3. The other conditions (3.4b, 3.4d and 3.4e) in the de�nition of AE still hold for

e (sometimes �3(e) has to be relabelled, because some of its labels are already

used).

If an event e occurs, the intervals of the produced tokens only depend upon e and

not upon any other event (see equation (3:10′)). This implies that the ordering of

events is not important, i.e. all �ring sequences executing a given set of events result

in the `same' state.

Moreover, if etmin(e) ≤ tt
max(ŝ), then etmin(e) ≤ tt

max(^̂s), because ttmax is ascending

(see theorem 5).

The net is dead, therefore the set of enabled events becomes empty after a while.

This and the fact that an event will not be disabled implies that all �ring sequences

executing a given set of events result in the `same' state, i.e. #{SB(ŝ) | ŝ ∈
RS(s) ∧ R(ŝ) = ∅} = 1. Suppose that this is not the case (i.e. there are multiple

terminal states), then there are two paths � and �
′ resulting in a di�erent termi-

nal state. We just showed that all �ring sequences executing a given set of events
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Figure 3.16: The reachability graph of a persistent dead ITCPN

result in the `same' state. Hence, there is an event ek transforming �k−1 into �k

(k ∈ dom(�) \ {0}), which does not `occur' in the �ring sequence �′. By backtrack-

ing these �ring sequences we learn that this is not possible. We do not prove this

formally, but rely on the intuition of the reader (see �gure 3.16).

2

This theorem tells us that it does not matter which events are chosen during the

execution of the net, i.e. all paths (�ring sequences) lead to the same terminal state

in the modi�ed transition system. Therefore, this terminal state can be calculated

very eÆciently, i.e. resolve all choices by selecting an arbitrary event. Figure 3.16

illustrates this property.

For an arbitrary net it is very diÆcult to verify whether the net is persistent. How-

ever, there is an important class of nets for which we can prove that they are

persistent. This is expressed by theorem 9. To prove theorem 9, we need the fol-
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lowing lemma which tells us that the maximal (interval) sequence of two ascending

(interval) sequences is ascending.

Lemma 17

If n ∈ IN, v1; v2; ::; vn ∈ INT and w1; w2; ::; wn ∈ INT such that

∀i∈{1::n−1} (vi ≤i vi+1) ∧ (wi ≤i wi+1), then:
3

∀i∈{1::n−1} (vi max wi) ≤i (vi+1 max wi+1)

Proof.

For i ∈ {1::n− 1}, vi ≤i vi+1 ∧ wi ≤i wi+1 implies that

�1(vi) ≤ �1(vi+1), �1(wi) ≤ �1(wi+1), �2(vi) ≤ �2(vi+1) and �2(wi) ≤ �2(wi+1).

�1(vi max wi) = �1(vi) max �1(wi) ≤ �1(vi+1) max �1(wi+1) = �1(vi+1 max wi+1)

�2(vi max wi) = �2(vi) max �2(wi) ≤ �2(vi+1) max �2(wi+1) = �2(vi+1 max wi+1)

Therefore: (vi max wi) ≤i (vi+1 max wi+1).

2

In chapter 2 we de�ned a marked graph as follows: a marked graph (or timed event

graph) is an ordinary ITCPN such that each place has 0 or 1 input transitions and

0 or 1 output transitions, i.e. ∀p∈P #(•p) ≤ 1 ∧ #(p•) ≤ 1.

Recall, a source place, is a place without any input transitions, i.e. P
S = {p ∈

P | • p = ∅} is the set of source places.

A marked graph is persistent, if the initial state is well-ordered, all tokens in the

`non-source' places (P \ P S) have the same interval, say v, and every token in a

source place has a time interval of at least v (i.e. ≥i v). This property of marked

graphs is expressed in the following theorem.

Theorem 9

A marked graph with an initial state s ∈ S such that:

1. s is well-ordered

2. ∀i;j∈dom(s) (place(s(i)) = place(s(j)) ∈ (P \ P S)) ⇒ time(s(i)) = time(s(j))

3. ∀i;j∈dom(s) place(s(i)) ∈ (P \ P S) ∧ place(s(j)) ∈ P
S ⇒

time(s(i)) ≤i time(s(j))

is persistent with respect to s.

Proof.

By de�nition a marked graph is conict free. Remains to prove that:

(i) for any ŝ ∈ RS(s): ŝ is well-ordered

(ii) for any ŝ ∈ RS(s) and ~s ∈ R(ŝ), i ∈ dom(ŝ) and j ∈ dom(~s) \ dom(ŝ):

place(ŝ(i)) = place(~s(j)) ⇒ time(ŝ(i)) ≤i time(~s(j))

3If v; w ∈ INT , then v max w = 〈�1(v) max �1(w); �2(v) max �2(w)〉.
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Suppose that (ii) holds, in this case it is easy to prove (i). If ŝ ∈ RS(s), then

there exists an n ∈ IN such that ŝ ∈ R
n
(s). Let P (n) be the proposition that all

ŝ ∈ R
n
(s) are well-ordered. P (0) is trivial, because ŝ ∈ R

0
(s) = {s} is well-ordered.

Suppose n > 0 and P (n− 1) (induction hypothesis). For all ~s ∈ R
n
(s) there exists

a state ŝ ∈ R
n−1

(s) such that ~s ∈ R(ŝ). Because ŝ is well-ordered (induction), the

corresponding event e which transforms ŝ into ~s adds one token to each output place

such that the state remains well-ordered. This is guaranteed by the fact that the

net is a marked graph and for any produced token with interval v and any token

(with interval w) contained by the corresponding place until then, we have w ≤i v

(see (ii)).

Remains to prove that (ii) holds. For convenience, we de�ne Q(p) as follows:

Q(p) ≡ ∀ŝ∈RS(s) ∀~s∈R(ŝ) ∀i∈dom(ŝ) ∀j∈dom(~s)\dom(ŝ)

(place(ŝ(i)) = p ∧ place(~s(j)) = p) ⇒ time(ŝ(i)) ≤i time(~s(j))

Note that ∀p∈P Q(p) implies (ii).

A �rst observation tells us that Q(p) holds for all tokens in the source places P S,

because no event will add tokens to one of these places.

If t ∈ T is a transition such that the tokens in each of its input places satisfy

requirement (ii) (i.e. for all p ∈ •t: Q(p)), then each output place also satis�es (ii)

(i.e. for all p ∈ t•: Q(p)), because t is the only transition producing tokens for these

places, the tokens initially available satisfy (1.), (2.) and (3.) and lemma 17 tells us

that if the intervals of the tokens on the input places are ascending, then the tokens

in the output places are also ascending.

Consider a place p ∈ P with •p �= ∅. Suppose that Q(p) does not hold, then there

exists a state ŝ ∈ RS(s) with a token in p with time interval v and an event e which

transforms ŝ into ~s, such that e adds tokens to p with an interval w which is not at

least v, i.e. ¬(v ≤i w).

In this case, either the token with time interval v already existed in the initial state

s or the token with time interval v was produced by the same transition t which

produced the token with time interval w.

If the token already existed in s, then v ≤i w (i.e. a contradiction), because all

tokens produced by some transition have an interval of at least v (see requirements

(2.) and (3.)). Hence, both tokens have been produced by the same transition t

(every place has only one input transition). But this means that one of the input

places of t contained a token with interval v̂ and a token with interval ŵ such that

the token with interval v̂ existed before the token with interval ŵ and ¬(v̂ ≤i ŵ), this

follows from lemma 17. Continue this reasoning until a contradiction is encountered,

either because all input places of t have no incoming arcs or because one reaches the

initial state s which is well-ordered.

Hence, Q(p) holds for any place p.

2
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This theorem tells us that, given some conditions, a marked graph is persistent.

If the net is dead, then there is only one terminal state in the modi�ed transition

system. This terminal state can be calculated very eÆciently. The time complexity

of the PNRT method is O(#�(#P +#T )), where � is an arbitrary execution path

(the time required to calculate an event and to execute this event isO(#P+#T ), see

Van den Heuvel [61]). Note that this is comparable to the time needed to simulate

the net once, i.e. one simulation run of length #� (events).

Since the soundness properties stated in section 3.3 are also valid for the transition

system used by the PNRT method, we can answer a number of questions. For

example, we can calculate the earliest nth arrival time (EAT n) and the latest nth

arrival time (LAT n) of sink places, i.e. places without outgoing arcs. Note that

these bounds are as `tight' as possible.

The dynamic behaviour of (timed) marked graphs (timed event graphs) has been

studied by a lot of people. Analysis techniques to analyse the steady-state behaviour

of a marked graph have been presented by Ramamoorthy and Ho in [107] and

Chretienne et al. in [28] and [31]. These authors analyse timed marked graphs where

a deterministic delay is associated with each transition in the net. These analysis

techniques evaluate all circuits to calculate the `performance' of the system.

A generalization of these methods has been presented by Van der Aalst in section 5

of [2]. The method described in this report is called the Steady State Performance

Analysis Technique (SSPAT). It is a generalization in the sense that it is based

on the ITCPN model which uses interval delays rather than deterministic delays.

The SSPAT method calculates upper and lower bounds for the `performance' of the

system. A detailed description of this method is not included in this monograph,

because it can only be applied to strongly connected marked graphs (i.e. periodically

operated Petri nets) and it does not answer any of the performance measures de�ned

in chapter 2 (this also holds for the other techniques described in [107], [28] and [31]).

A lot of applications have been modelled and analysed using marked graphs, see

for example Hillion and Proth [62], Silva and Valette [115] or Chretienne et al.

[28]. Typical application areas of timed marked graphs are: project engineering (see

section 3.2.1), exible manufacturing and production scheduling. To illustrate the

modelling power of timed marked graphs, we model a small production system in

terms of a marked graph that will be analysed using the PNRT method.

The production system we are interested in, produces items named H using raw

materials A, B and C. There are also a number of intermediate products: D, E , F ,

G. There are three machines, M1 transforms A into D, M2 transforms B into E
and M3 transforms C into F . There is one subassembly composing D and E into

G and one �nal assembly composing G and F into H. Figure 3.17 shows the bill of

materials.

The ITCPN shown in �gure 3.18 is used to model the production system. Places
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Figure 3.17: The bill of materials

p1,p2, .. and p11 are used to represent the ow of products. Raw materials A, B
and C enter the system via places p1, p2 and p3 respectively. Product D is stored in

p6, E in p7, F in p8, G in p9 and H in p10. Finished products H leave the system

via place p11. The demand for product H arrives via the place demand.

Note that we use the initial state to represent the behaviour of the environment

(e.g. demand and supply). In this way we can analyse the system under various

circumstances, without changing the net (see 2.6).

Machine M3 transforms products C into F and is modelled by a queueing system

represented by the subnetwork containing transitions t1 and t2. Initially, there is

one token in place free3 indicating that the machine is ready to operate.

Machines M1 and M2 need a setup every time an item is processed. This setup is

performed by a person working on both machines. We may think of this person as

a shared resource. The setup ofM1 is represented by transition t4, the setup ofM2

is represented by transition t3. The person is represented by a token in place h1

or place h2. Note that the person alternates between M1 and M2. The remaining

parts of M1 and M2 are modelled similar to M3. Note that we use a push control

to direct machines M1, M2 and M3. Each time raw material is available and the

machine is free, an operation is started.

We use a pull control to direct the two assembly processes (i.e. assemble to order).

In this example a Kanban-like control technique is used to reduce the in-process

inventory. This technique has been developed in Japan to achieve a Just-in-Time

production (see Sugimori et al. [117]). Assembling is allowed if the components

needed for the assembly are available and if a certain card, called Kanban, has been

received. A new Kanban is supplied the moment an assembled product is removed.

In this way one gets a demand-driven assembly process.

The subassembly and the �nal assembly are represented by t9 and t10. The delivery

of item H is modelled by transition t11. Transition t11 �res, if there is a demand
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Figure 3.18: A production system

and a �nished product. If t11 �res, a new Kanban is supplied to the �nal assembly

process (t10). If t10 �res, a new Kanban is supplied to the subassembly process

(t9). Note that the maximum amount of stored products G and H depends on the

number of tokens initially available in kanban1 and kanban2.

Figure 3.18 also shows the delay intervals associated with every time consuming

operation.

Let us assume that the production system receives a steady ow of raw materials

(A,B and C). Every 20 minutes the system receives an order for one product H
(starting at time 0). Initially, there is one Kanban in kanban1 and one Kanban in

kanban2. Now we are interested in the arrival times of tokens in place p11. Table 3.1
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ordernumber EAT n LAT n minimal maximal

(n) lead time lead time

1 49 66 49 66

2 69 88 49 68

3 89 110 49 70

10 229 264 49 84

50 1029 1144 49 164

Table 3.1: Some results obtained using the PNRT method

shows some results obtained using method PNRT. Note that this is possible because

all the conditions of theorem 9 are satis�ed, i.e. the net is persistent. For example

the 10th order (generated after (10-1)*20 = 180 minutes) was delivered between

229 (EAT 10) and 264 (LAT 10) minutes. Therefore, the lead time of this order is

between 49 and 84 minutes.

The maximal lead time is increasing, because the �nal assembly of product H may

need 22 minutes and this is longer than the interarrival time (=20 minutes). The

minimal lead time is constant, because under ideal circumstances there is an abun-

dance of capacity.

The PNRT analysis method calculates the terminal state of a marked graph very

eÆciently. There are however some drawbacks. First of all, there is the limitation

that the PNRT method can only be applied to marked graphs or, more precisely,

persistent nets. Another restriction is the fact that the method only obtains results

about the terminal state, therefore it is not possible to calculate performance mea-

sures like LOR and HOR. Thirdly, the net has to be dead. This is not a serious

restriction, because we are often interested in nets with a number of source places

representing the input of the system and these nets are usually dead, i.e. if we use

a �nite initial state s to model the environment, then the net is often dead w.r.t. s.

If we want to analyse nets that are not dead, then we can use the SSPAT method

described in [2] to analyse the steady-state performance of the net. Finally, there is

the restriction that the PNRT method described in this section cannot be applied

to `coloured' nets, i.e. ∀p∈P #Vp = 1. To relax this restriction, we have to impose

other ones.

Note that if one of these limitations prevents us from using the PNRT method, we

can always resort to the MTSRT method described in the previous section.

3.5 Dealing with large colour sets

The MTSRT method presented in section 3.3 is a very powerful analysis method,

since it can be applied to almost any ITCPN encountered in practice. An obvious

restriction of this method is that the reduced reachability graph constructed by
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Figure 3.19: A queueing system modelled by an ITCPN

the MTSRT method may become very large, thus making analysis time and space

consuming. We already mentioned the two main causes for such an explosion: colour

and confusion. In the previous section we saw that, if we are able to avoid confusion

(e.g. by using marked graphs), then we can use more eÆcient methods like the PNRT

method. In this section we demonstrate techniques to deal with computational

problems caused by the colouring of tokens.

Consider the following ITCPN:

P = {p1; p2; p3; p4}
Vp1 = IN, Vp2 = IN, Vp3 = {∅} and Vp4 = IN

T = {t1; t2}
I = {〈t1; [p1; p3]〉; 〈t2; [p2]〉}
O = {〈t1; {p2}〉; 〈t2; {p3; p4}〉}
For all k ∈ IN:

Ft1([〈p1; k〉; 〈p3; ∅〉]) = [〈〈p2; k〉; 〈(k mod 3) + 10; (k mod 3) + 15〉〉]
Ft2([〈p2; k〉]) = [〈〈p3; ∅〉; 〈0; 0〉〉; 〈〈p4; k〉; 〈0; 0〉〉]

Figure 3.19 shows the graphical representation of this ITCPN. Initially, there is one

token in place p3 with value ∅ and timestamp 0. There are n tokens in place p1
also with timestamp 0 and the corresponding values range from 1 to n, i.e. there

is one token with value 1, one token with value 2, .. etc. The reachability tree

used by the MTSRT method contains n! di�erent terminal states. If n = 50 the

MTSRT method has to evaluate 3:04 ·1064 di�erent �ring sequences of length 100 to

calculate EAT 50(s; p4) = 51 + 50 · 10 = 551 and LAT 50(s; p4) = 51 + 75 · 10 = 801.

This explosion of the reduced reachability tree is caused by the fact that the tokens

in p1 (p2,p4) have di�erent values. If t1 �res for the �rst time, it has to make a

non-deterministic choice of 50 tokens all having a di�erent value. If t1 �res for the

second time, it has to make a non-deterministic choice of 49 tokens, etc. We will

use this example to illustrate how to deal with these explosions caused by relatively

large colour sets.
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3.5.1 Approach 1: remove the colour

A straightforward but rigourous approach is to `remove' the colouring. Removing

the colouring does not a�ect the network structure, i.e. P , T , I and O remain

the same. The value set (colour set) of each place is replaced by a set containing

one element (e.g. ∅), i.e. ∀p∈P Vp = {∅}. To produce `safe' results, Ft1 and Ft2

are modi�ed such that the lower (upper) bound of the delay interval of a produced

token corresponds to the smallest (largest) possible delay. For the example shown

in �gure 3.19:

F
′
t1([〈p1; ∅〉; 〈p3; ∅〉]) = [〈〈p2; ∅〉; 〈10; 17〉〉]

F
′
t2([〈p2; ∅〉]) = [〈〈p3; ∅〉; 〈0; 0〉〉; 〈〈p4; ∅〉; 〈0; 0〉〉]

Note that min{(k mod 3) + 10 | k ∈ IN} = 10 and max{(k mod 3) + 15 | k ∈ IN} =
17. In this case the MTSRT method calculates only one terminal state, i.e. the

MTSRT method has to evaluate only one �ring sequence of length 50 to calculate

EAT ′
50(s; p4) = 500 and LAT ′

50(s; p4) = 850.

Although these bounds are not as `tight' as possible, they are safe in the sense

that: EAT ′
50(s; p4) ≤ EAT 50(s; p4) and LAT ′

50(s; p4) ≥ LAT 50(s; p4). We will

prove that this is always the case provided that the number of produced tokens is

independent of the values of the consumed tokens.

Replacing an ITCPN by a colourless ITCPN is called uncolouring. Uncolouring is

only possible if the following assumption holds.

Assumption

There is a function prod ∈ (T × P ) → IN, such that for any t ∈ T and p ∈ P :

∀c∈dom(Ft) (
X

q∈Ft(c)
place(q)=p

Ft(c)(q)) = prod(t; p)

This assumption is used throughout section 3.5.1. Informally speaking, this assump-

tion restricts the class of nets we consider to those nets where the number of tokens

produced by any transition does not depend upon the values of the consumed tokens.

Let N = (P; V; T; I; O; F; TS) be an ITCPN and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′)
be the corresponding uncoloured ITCPN. First, we show how to construct this N ′,
then we will investigate the relation between these nets.

The set of places of the uncoloured ITCPN equals the set of places of the coloured

net, i.e. P ′ = P . Similar statements hold for the set of transitions, the input places,

the output places and the time set, i.e. T ′ = T , I ′ = I, O′ = O and TS ′ = TS. The

value set of each place is the set {∅}, i.e. dom(V ′) = P and for all p ∈ P : V ′
p = {∅}.

If t ∈ T , then dom(F ′
t) = {uncolour(c) | c ∈ dom(Ft)}, where uncolour ∈
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IB(CT ) → IB(CT ′) such that for c ∈ IB(CT ):

uncolour(c) = �〈p;∅〉∈CT ′ (
X
v∈Vp

c(< p; v >))

Note that we use primes (e.g. CT ′) to avoid confusion between symbols correspond-

ing to N and N
′. The function uncolour transforms a bag of `coloured' tokens into

a bag of `uncoloured' tokens, i.e. tokens with value ∅. Note that #dom(F ′
t) = 1,

because for any c ∈ dom(Ft): uncolour(c) = �〈p;∅〉∈CT ′ It(p).

To de�ne F ′, we need to determine the smallest and largest possible delay of a token

produced by a transition t ∈ T for a place p ∈ P .

low(t; p) = min
c∈dom(Ft)

min{timemin(q) | q ∈ Ft(c) ∧ place(q) = p}

high(t; p) = max
c∈dom(Ft)

max{timemax(q) | q ∈ Ft(c) ∧ place(q) = p}

Any token produced by a �ring of transition t for a place p has a delay between

low(t; p) and high(t; p). If p is not an output place of t, then low(t; p) = ∞ and

high(t; p) = −∞.

The delays of the tokens in N may depend upon the values of the consumed tokens.

Removing the colouring implies that the delays have to become independent of the

tokens consumed. Therefore, the delays in N
′ are sampled from a delay interval

containing all the corresponding delay intervals in N . More formally, for any t ∈ T :

F
′
t(�〈p;∅〉∈CT ′ It(p)) = �〈〈p;∅〉;〈x;y〉〉∈CT ′×INT

8><
>:
prod(t; p) if x = low(t; p) and

y = high(t; p)

0 otherwise

If we apply these rules properly, then the uncoloured ITCPN corresponding to the

coloured ITCPN shown in �gure 3.19 is de�ned as follows:

P
′ = {p1; p2; p3; p4}

V
′
p1
= V

′
p2
= V

′
p3
= V

′
p4
= {∅}

T
′ = {t1; t2}

I
′ = {〈t1; [p1; p3]〉; 〈t2; [p2]〉}
O

′ = {〈t1; {p2}〉; 〈t2; {p3; p4}〉}
F

′
t1([〈p1; ∅〉; 〈p3; ∅〉]) = [〈〈p2; ∅〉; 〈10; 17〉〉]

F
′
t2([〈p2; ∅〉]) = [〈〈p3; ∅〉; 〈0; 0〉〉; 〈〈p4; ∅〉; 〈0; 0〉〉]

In general, the (reduced) reachability tree of the uncoloured ITCPN is much smaller

than the (reduced) reachability tree of the coloured ITCPN. Obviously there is

some relation between the transition systems of these two nets. We want to use the

uncoloured net to answer questions about the coloured net, therefore we have to

establish a formal relationship between the corresponding transition systems.

It is easy to see that the transition systems are not equivalent. There is, however, a

very convenient morphism between the transition systems of N and N
′.
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Theorem 10

Let N = (P; V; T; I; O; F; TS) be an ITCPN, the semantics of which is described

by a transition system X = 〈S;R〉 and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′) be the

corresponding uncoloured ITCPN, the semantics of which is described by a transition

system Y = 〈S ′
; R

′〉. Then the function rmc ∈ S → S
′ is a morphism from X to Y ,

where rmc is de�ned as follows:

dom(rmc) = S

∀s∈S rmc(s) = �i∈dom(s) 〈〈place(s(i)); ∅〉; time(s(i))〉

Proof.

For any s1; s2 ∈ S such that s1Rs2, we have to prove that rmc(s1)R
′
rmc(s2). Be-

cause s1Rs2, there exists an event e such that:

(i) e ∈ AE(s1)

(ii) et(e) = tt(s1)

(iii) s2 = (s1 \ �2(e)) ∪ scale(�3(e); tt(s1))

De�ne e′ = 〈�1(e); rmc(�2(e)); rmc(�3(e))〉 ∈ E
′.

Now it suÆces to prove that:

(i) e
′ ∈ AE

′(rmc(s1))

(ii) et(e′) = tt(rmc(s1))

(iii) rmc(s2) = (rmc(s1) \ �2(e′)) ∪ scale(�3(e
′); tt(rmc(s1)))

(i) Event e′ is an element of AE ′(rmc(s1)) if it satis�es the �ve conditions stated
in the de�nition of AE ′ (see section 2.4.1, page 39). All conditions except condition

(3.4e) follow directly from the de�nition of e′ and the fact that e ∈ AE(s1). To

prove that condition (3.4e) also holds, we use the fact that F ′
�1(e)

is de�ned such

that the number of tokens produced by transition �1(e) in the uncoloured net (N ′)
matches the number of tokens produced by �1(e) in N (see assumption) and the

delay interval of a produced token in N is a sub-interval of the corresponding delay

interval in N
′. This and �3(e) / BS(F�1(e)(SB(untime(�2(e))))) imply that �3(e

′) /
BS(F ′

�1(e′)(SB(untime(�2(e
′))))), i.e. condition (3.4e) holds. See Odijk [94] for a

more detailed proof.

(ii) Since rmc does not a�ect the timestamps of the tokens: et(e′) = et(e) and

tt(rmc(s1)) = tt(s1). Therefore, et(e
′) = tt(rmc(s1)).

(iii) Because e′ = 〈�1(e); rmc(�2(e)); rmc(�3(e))〉:
(rmc(s1) \ �2(e′)) ∪ scale(�3(e

′); tt(rmc(s1)))
= rmc(s1) \ rmc(�2(e)) ∪ scale(rmc(�3(e)); tt(s1))

= rmc(s1 \ �2(e)) ∪ rmc(scale(�3(e); tt(s1)))
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= rmc((s1 \ �2(e)) ∪ scale(�3(e); tt(s1)))

= rmc(s2).

This completes our proof of this theorem.

2

A similar property also holds for the corresponding processes (� and �′) generated
by the two transition systems:

Lemma 18

Let N = (P; V; T; I; O; F; TS) be an ITCPN and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′)
be the corresponding uncoloured ITCPN. If X = 〈S;R〉 and Y = 〈S ′

; R
′〉 are the

corresponding transition systems, then for any s ∈ S and � ∈ �(s), the `uncoloured'

path �
′ = �i∈dom(�) rmc(�i) is a path in Y , i.e. �′ ∈ �′(rmc(s)).

Proof.

Suppose that � ∈ �(s) and �
′ = �i∈dom(�) rmc(�i), then we have to prove that

�
′ ∈ �′(rmc(s)). Hence, we prove that (see section 2.3):

(i) 0 ∈ dom(�′)

(ii) �′
0 = rmc(s)

(iii) ∀i∈dom(�′)\{0} (i− 1) ∈ dom(�′) ∧ �
′
i−1R

′
�
′
i

(iv) ∀i∈dom(�′) (∀j∈dom(�′) j ≤ i) ⇒ �
′
i ∈ S

T ′

(i) and (ii) follow directly from the de�nition of �′. For any i ∈ dom(�′): (i− 1) ∈
dom(�′), because dom(�′) = dom(�). Moreover, theorem 10 and �

′
i−1 = rmc(�i−1),

�
′
i = rmc(�i) and �i−1R�i imply that �′

i−1R
′
�
′
i, hence (iii) holds. If �i ∈ S

T , then

�
′
i ∈ S

T ′
, i.e. R(�i) = ∅ ⇒ R

′(�′
i) = ∅, because AE(�i) = ∅ implies AE ′(rmc(�i)) =

∅.
Hence, (iv) holds.

2

Theorem 10 and lemma 18 indicate that there is an interesting relationship between

a net N and the corresponding uncoloured net N ′. Note, there are some similarities

with the soundness properties described in section 3.3.2 (recall, a morphism is also

a similarity relation, see section 2.3).

We exploit theorem 10 and lemma 18 to show that it is possible to use the uncoloured

net N ′ to prove certain properties of N . The uncoloured net N ′ can also be used to

obtain bounds for performance measures like EAT n, LAT n, LOR and HOR.

Lemma 19

Let N be an ITCPN and N ′ be the corresponding uncoloured ITCPN. For any initial
state s ∈ S, we have that if N ′ is K-bounded w.r.t. rmc(s), then N is K-bounded

w.r.t. s.
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Proof.

Use theorem 10.

2

Lemma 20

Let N be an ITCPN and N ′ be the corresponding uncoloured ITCPN. The transition
system describing the semantics of N is 〈S;R〉. For any s ∈ S, we have that if N ′

is dead w.r.t. rmc(s), then N is dead w.r.t. s.

Proof.

Use theorem 10.

2

Similar statements hold for transient, livelock free or (weakly) progressive nets.

Lemma 21

Let N = (P; V; T; I; O; F; TS) be an ITCPN, the semantics of which is described

by a transition system X = 〈S;R〉 and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′) be the

corresponding uncoloured ITCPN, the semantics of which is described by a transition

system Y = 〈S ′
; R

′〉. If EAT n and LAT n are de�ned for N and EAT ′
n and LAT ′

n

are de�ned for N ′ (see section 2.6), then for s ∈ S, p ∈ P and n ∈ IN:

EAT ′
n(rmc(s); p) ≤ EAT n(s; p)

LAT ′
n(rmc(s); p) ≥ LAT n(s; p)

Proof.

For any � ∈ �(s) and i ∈ dom(�): bminn(�i��p) = bminn(rmc(�i)��p). Lemma 18 tells

us that � ∈ �(s) implies that �′ = (�i∈dom(�) rmc(�i)) ∈ �′(rmc(s)). Therefore,

EAT ′
n(rmc(s); p) ≤ EAT n(s; p) and LAT ′

n(rmc(s); p) ≥ LAT n(s; p) (see de�nition

of EAT n and LAT n).

2

Lemma 22

Let N = (P; V; T; I; O; F; TS) be an ITCPN and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′)
be the corresponding uncoloured ITCPN. If LOR and HOR are de�ned for N and

LOR′ and HOR′ are de�ned for N ′ (see section 2.6), then for s ∈ S, p ∈ P and

x ∈ TS \ {∞}:

LOR′
n(rmc(s); p; x) ≤ LOR(s; p; x)

HOR′
n(rmc(s); p; x) ≥ HOR(s; p; x)
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Proof.

Use lemma 18.

2

These lemmas indicate that the approach which `removes' all colouring may be use-

ful. An important advantage of this method is that it produces, in a straightforward

manner, an ITCPN which is easier to analyse. A disadvantage is the rigour of this

approach, i.e. in most cases essential information is lost, thus making analysis use-

less. Consider for example the ITCPN shown in �gure 3.19, although the analysis of

the corresponding uncoloured net produces safe bounds for the performance of the

ITCPN, these bounds are not as `tight' as possible. Another disadvantage of this

approach is the fact that it is not possible to answer questions involving the value

of tokens, for example questions like `What is the maximum number of tokens in

place p2 having a value l ?'.

The approach assumes that the number of tokens produced by the �ring of a transi-

tion does not depend upon the values of the consumed tokens. This is not a necessary

restriction, we restricted ourselves to this class of nets for reasons of simplicity. In

Odijk [94] a construction is given which translates any ITCPN into an uncoloured

ITCPN. Moreover, this problem will be addressed in the following subsection.

Note that an uncoloured net also allows for more traditional kinds of analysis like

the calculation of siphons, traps and place and transition invariants. The results

calculated for the uncoloured net N ′ can be interpreted for N , e.g. if X ⊆ P is a

siphon (trap) in N
′, then X is also is a siphon (trap) in N . In this way we can use

Petri net theory, based on untimed uncoloured Petri nets, for our high-level Petri

net model. A drawback of this approach is that these traditional kinds of analysis

disregard all timing information in an ITCPN.

3.5.2 Approach 2: re�ne the net

The rigour of the �rst approach poses a number of problems if the delays and/or

the number of tokens produced by a transition depend strongly on the values of

the consumed tokens. To deal with these problems, we present an approach which

decomposes some of the places into sets of places. A place p is decomposed into a

number of places, say q1,q2 .. qn, such that the value set of p is partitioned into the

value sets of the places q1,q2 .. qn. This is called a re�nement. To re�ne a place p, we

have to modify the input transitions and duplicate the output transitions. We re�ne

the ITCPN until the `desired' level of detail is visible in the network structure. Then

we `remove' all colouring, thus yielding an uncoloured net that can be analysed by

the MTSRT method or some method based on uncoloured Petri nets. If we re�ne a

net properly, we often obtain better analytic results. Compared to the �rst approach

the latter approach is less rigourous.

Let N = (P; V; T; I; O; F; TS) be an ITCPN and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′)
be the re�nement of N with respect to a place pR ∈ P , a set of new places Q and

a function D ∈ VpR → Q, notation: N ′ = rf(N; pR; Q;D). First, we show how to
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Figure 3.20: An ITCPN N

construct this N ′, then we will investigate the relation between these nets.

This re�nement decomposes a place pR into a number of new places. We assume

that Q ∩ P = ∅. We replace pR by a set of places Q:

P
′ = (P \ {pR}) ∪Q

The value set of an `old' place (i.e. p ∈ P \ {pR}) remains the same. Each new

place has a value set that is a subset of VpR. Moreover, the value sets of the new

places form a partitioning of the value set of pR. Function D determines how VpR is

partitioned:

∀p∈P\{pR} V
′
p = Vp

∀p∈Q V
′
p = {v ∈ VpR | D(v) = p}

Assume t is an output transition of pR. It is not possible to map t to exactly one

output transition t̂ (#Q > 1). If t̂ is connected to each place in Q, this output

transition remains disabled until all places of Q contain enough tokens. If t̂ is not

connected to a place p in Q and there are enough tokens in p (It(pR)), then t̂ may

be disabled. Clearly this is not our intention. Therefore, each output transition of

pR has to be replaced by a number of `new' transitions in such a way that at least

one of these new transitions is enabled in N ′ if the corresponding transition in N is

enabled. Consider for example the net N shown in �gure 3.20. If pR is decomposed

into two places, q1 and q2, then the re�ned net contains three new transitions, say

t21, t22 and t23, see �gure 3.21. Transition t2 in N is enabled if there are at least two

tokens in pR. Therefore, at least one of the transitions t21, t22 t23 has to be enabled

if there are at least two tokens in q1 and q2. Note that all other transitions in N

(e.g. t1) correspond to precisely one transition in the re�ned net.

A transition t ∈ T with It(pR) = 1 corresponds to exactly #Q transitions in N
′.

If It(pR) > 1, then it is more diÆcult to calculate the corresponding number of

transitions in the re�ned net. In this case, we have to count the number of ways

in which it is possible to take precisely It(pR) tokens from #Q places, i.e. #{m ∈
IB(Q) | #m = It(pR)}. Note that this number of ways equals: 

#Q + It(pR)− 1

#Q− 1

!
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Figure 3.21: The re�ned net N ′

In the example t2 is replaced by

 
2 + 2− 1

2− 1

!
=

3!

1!(3− 1)!
= 3 transitions.

We name the new transitions as follows: t ∈ pR• is replaced by a set of transitions

identi�ed by a pair 〈t;m〉, where m is a bag of places which speci�es the number of

tokens consumed from the `new' places, i.e.

Y (t) = {〈t;m〉 | m ∈ IB(Q) ∧ #m = It(pR)}

Y (t) is the set of transitions in N
′ which correspond to transition t ∈ pR• in N .

T
′ = (T \ pR•) ∪

[
t∈pR•

Y (t)

Note that for all t1; t2 ∈ T : Y (t1) ∩ T = ∅ and Y (t1) ∩ Y (t2) = ∅.
Given the new set of transitions T ′, the bag of input places of a transition in N

′ is
de�ned rather straightforward:

∀t∈T\pR• I
′
t = It

∀t∈pR• ∀t̂∈Y (t) I
′
t̂
= (It \ {〈pR; It(pR)〉}) ∪ �2(t̂)

A new transition 〈t;m〉 consumes m(p) tokens from each `new' place p ∈ Q and

It(p) tokens from each `old' place p ∈ P \ {pR}.
The set of output places of each transition is de�ned as follows:

∀t∈T\(pR•∪•pR) O
′
t = Ot

∀t∈(T\pR•)∩•pR O
′
t = (Ot \ {pR}) ∪Q

∀t∈pR•\•pR ∀t̂∈Y (t) O
′
t̂
= Ot

∀t∈pR•∩•pR ∀t̂∈Y (t) O
′
t̂
= (Ot \ {pR}) ∪Q

If a transition is not `connected' to pR, the set of output places remains the same.

If a transition is an input transition of pR, then the set of output places is modi�ed
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as follows: pR is replaced by Q (if present). A `new' transition `inherits' the output

places of the corresponding `old' transition in N . If a `new' transition is also an

input transition of pR, then pR is replaced by Q.

There is no reason for adapting the time set, i.e.

TS
′ = TS

To de�ne F ′, we introduce some conversion functions. The function conv ∈ CT →
CT

′ converts an element of CT into an element of CT ′, i.e. for 〈p; v〉 ∈ CT :

conv(〈p; v〉) =
(

〈p; v〉 if p �= pR

〈D(v); v〉 if p = pR

Note that conv is a bijection. The functions convTS ∈ (CT × TS) → (CT ′ × TS
′)

and conv
INT ∈ (CT × INT ) → (CT ′ × INT

′) have similar de�nitions, i.e. for

〈p; v〉 ∈ CT , x ∈ TS and w ∈ INT :

conv
TS(〈〈p; v〉; x〉) = 〈conv(〈p; v〉); x〉

conv
INT (〈〈p; v〉; w〉) = 〈conv(〈p; v〉); w〉

For convenience, we also de�ne these functions for bags of tokens, e.g. if b ∈ IB(CT ),

then conv(b) = �c∈CT ′ b(conv−1(c)) ∈ IB(CT ′). Now we are able to de�ne F ′. If

t ∈ T \ pR•, then:

dom(F ′
t ) = dom(Ft)

∀c∈dom(F ′
t
) F

′
t (c) = conv

INT (Ft(c))

Informally speaking, for the transitions not consuming tokens from Q, it suÆces to

convert the bag of produced tokens. If a transition t̂ consumes tokens from a place

in Q, i.e. there exists a t ∈ T such that t̂ ∈ Y (t), then the domain of F ′
t̂
has to be

adapted.

dom(F ′
t̂
) = {conv(c) | c ∈ dom(Ft) ∧ �p∈P ′ (

X
v∈V ′

p

conv(c)(〈p; v〉) ) = I
′
t̂
}

∀c∈dom(F ′
t̂
) F

′
t̂
(c) = conv

INT (F�1(t̂)(conv
−1(c))))

To clarify these rather formal notations, we re�ne the ITCPN shown in �gure 3.19

with respect to the place p1, the set Q = {q0; q1; q2} and the function D ∈ IN → Q

such that for n ∈ IN:

D(n) =

8><
>:
q0 if n mod 3 = 0

q1 if n mod 3 = 1

q2 if n mod 3 = 2

The re�ned net N ′ = rf(N; p1; Q;D) is shown in �gure 3.22.

P
′ = {q0; q1; q2; p2; p3; p4}

V
′
q0
= {n ∈ IN | n mod 3 = 0},

V
′
q1
= {n ∈ IN | n mod 3 = 1},
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Figure 3.22: The re�ned net N ′ = rf(N; p2; {q0; q1; q2}; D)

V
′
q2
= {n ∈ IN | n mod 3 = 2},

V
′
p2
= IN, V ′

p3
= {∅} and V

′
p4
= IN

T
′ = {〈t1; [q0]〉; 〈t1; [q1]〉; 〈t1; [q2]〉; t2}

I
′ = {〈〈t1; [q0]〉; [q0; p3]〉; 〈〈t1; [q1]〉; [q1; p3]〉; 〈〈t1; [q2]〉; [q2; p3]〉; 〈t2; [p2]〉}
O

′ = {〈〈t1; [q0]〉; {p2}〉; 〈〈t1; [q1]〉; {p2}〉; 〈〈t1; [q2]〉; {p2}〉; 〈t2; {p3; p4}〉}
TS

′ = TS

dom(F ′
〈t1 ;[q0]〉) = {[〈q0; k〉; 〈p3; ∅〉] | k ∈ IN ∧ k mod 3 = 0}

dom(F ′
〈t1 ;[q1]〉) = {[〈q1; k〉; 〈p3; ∅〉] | k ∈ IN ∧ k mod 3 = 1}

dom(F ′
〈t1 ;[q2]〉) = {[〈q2; k〉; 〈p3; ∅〉] | k ∈ IN ∧ k mod 3 = 2}

For k ∈ IN:

F
′
〈t1 ;[q0]〉([〈q0; 3k〉; 〈p3; ∅〉]) = [〈〈p2; 3k〉; 〈10; 15〉〉]

F
′
〈t1 ;[q1]〉([〈q1; 3k + 1〉; 〈p3; ∅〉]) = [〈〈p2; 3k + 1〉; 〈11; 16〉〉]

F
′
〈t1 ;[q2]〉([〈q2; 3k + 2〉; 〈p3; ∅〉]) = [〈〈p2; 3k + 2〉; 〈12; 17〉〉]

F
′
t2
= Ft2

Informally speaking, a re�nement reduces the size of a colour set (VpR) and moves

information to the `network level'. If we uncolour the re�ned net shown in �gure 3.22,

then we obtain the following ITCPN:

P
′′ = {q0; q1; q2; p2; p3; p4}

V
′′
q0
= V

′′
q1
= V

′′
q2
= V

′′
p2
= V

′′
p3
= V

′′
p4
= {∅}

T
′′ = {〈t1; [q0]〉; 〈t1; [q1]〉; 〈t1; [q2]〉; t2}

I
′′ = {〈〈t1; [q0]〉; [q0; p3]〉; 〈〈t1; [q1]〉; [q1; p3]〉; 〈〈t1; [q2]〉; [q2; p3]〉; 〈t2; [p2]〉}
O

′′ = {〈〈t1; [q0]〉; {p2}〉; 〈〈t1; [q1]〉; {p2}〉; 〈〈t1; [q2]〉; {p2}〉; 〈t2; {p3; p4}〉}
TS

′′ = TS

F
′′
〈t1 ;[q0]〉([〈q0; ∅〉; 〈p3; ∅〉]) = [〈〈p2; ∅〉; 〈10; 15〉〉]

F
′′
〈t1 ;[q1]〉([〈q1; ∅〉; 〈p3; ∅〉]) = [〈〈p2; ∅〉; 〈11; 16〉〉]

F
′′
〈t1 ;[q2]〉([〈q2; ∅〉; 〈p3; ∅〉]) = [〈〈p2; ∅〉; 〈12; 17〉〉]

F
′′
t2
([〈p2; ∅〉]) = [〈〈p3; ∅〉; 〈0; 0〉〉; 〈〈p4; ∅〉; 〈0; 0〉〉]
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The reachability tree used by the MTSRT method to analyse the uncoloured re�ned

net N ′′ contains only a few terminal states compared to the number of terminal

states in the reduced reachability tree of N . To calculate EAT ′′
50(s; p4) = 551 and

LAT ′′
50(s; p4) = 801, the MTSRT method has to evaluate a much smaller number

of �ring sequences. Note that these bounds are as `tight' as possible. This example

shows that an approach of a number of re�nements followed by an `uncolouring' can

be very useful. Not every re�nement is useful, perhaps even harmful in the sense

that we may end up with less restrictive bounds. A successful re�nement requires

an intelligent selection of the places that have to be decomposed and a rational

partitioning of the corresponding colour sets. Consider for example the net shown

in �gure 3.19, if we re�ne place p2 into two places q0 and q1 for even and odd numbers

respectively, then the re�ned net is not likely to give better analytic results.

We want to use the re�ned net N ′ to answer questions about the net N , therefore

we have to establish a formal relationship between the corresponding transition sys-

tems. The transition systems are not equivalent, but there exists a very convenient

morphism.

Theorem 11

Let N = (P; V; T; I; O; F; TS) be an ITCPN, the semantics of which is described

by a transition system X = 〈S;R〉 and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′) be the

re�ned ITCPN with respect to a place pR, a set Q and a function D ∈ Vp → Q,

i.e. N ′ = rf(N; pR; Q;D). The semantics of N ′ is described by a transition system

Y = 〈S ′
; R

′〉. Now the function dcp ∈ S → S
′ is a morphism from X to Y , where

dcp is de�ned as follows:

dom(dcp) = S

∀s∈S dcp(s) = �i∈dom(s) conv
TS(s(i))

Proof.

We con�ne ourselves to an outline of this proof. For any s1; s2 ∈ S such that s1Rs2,

we have to prove that dcp(s1)R
′
dcp(s2). Because s1Rs2, there exists an event e such

that:

(i) e ∈ AE(s1)

(ii) et(e) = tt(s1)

(iii) s2 = (s1 \ �2(e)) ∪ scale(�3(e); tt(s1))

De�ne e′ = 〈t̂; dcp(�2(e)); dcp(�3(e))〉 ∈ E
′, where t̂ ∈ Y (t) such that:

SB(untime(dcp(�2(e)))) ∈ dom(F ′
t̂
).

Note that there is precisely one t̂ satisfying these requirements.

Now it suÆces to prove that:
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(i) e
′ ∈ AE

′(dcp(s1))

(ii) et(e′) = tt(dcp(s1))

(iii) dcp(s2) = (dcp(s1) \ �2(e′)) ∪ scale(�3(e
′); tt(dcp(s1)))

Proving (i), (ii) and (iii) proceeds straightforwardly, but requires a lot of space. A

formal proof of this theorem is given by Odijk in [94].

2

A property similar to the property of theorem 11, holds for the corresponding pro-

cesses (� and �′) generated by the two transition systems.

Lemma 23

Let N = (P; V; T; I; O; F; TS) be an ITCPN, the semantics of which is described

by a transition system X = 〈S;R〉 and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′) be the

re�ned ITCPN with respect to a place pR, a set Q and a function D ∈ Vp → Q,

i.e. N ′ = rf(N; pR; Q;D). The semantics of N ′ is described by a transition system

Y = 〈S ′
; R

′〉.
Then for any s ∈ S and � ∈ �(s), the `re�ned' path �′ = �i∈dom(�) dcp(�i) is a path

in Y , i.e. �′ ∈ �′(dcp(s)).

Proof.

Similar to the proof of lemma 18, use theorem 11.

2

Note that there is a lot of resemblance between these proofs and the proofs of theo-

rem 10 and lemma 18. We can use theorem 11 and lemma 23 to obtain safe bounds

for the performance measures de�ned in section 2.6. It is also possible to prove

certain properties of the ITCPN via a re�ned ITCPN, for example boundedness and

liveness properties.

Lemma 24

Let N be an ITCPN and N
′ be a re�ned ITCPN. The transition system describing

the semantics of N is 〈S;R〉. For any s ∈ S: if N ′ is dead w.r.t. dcp(s), then N is

dead w.r.t. s.

Proof.

Use theorem 10.

2

Similar statements hold for transient, livelock free, bounded or (weakly) progressive

nets. To interpret the analytic results obtained using the re�ned net, we have to

extend the de�nition of EAT n, LAT n, LOR andHOR in a straightforward manner:
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De�nition 34 (EAT n;LAT n)

For an ITCPN, a set of states A ⊆ S, a set of places Q ⊆ P and n ∈ IN \ {0}, we
de�ne:

EAT n(A;Q) = min
�∈�(A)

min
i∈dom(�)

bminn(�i ��Q)

LAT n(A;Q) = max
�∈�(A)

min
i∈dom(�)

bminn(�i ��Q)

where for s ∈ S: s��Q = �x∈TS #{i ∈ dom(s) | place(s(i)) ∈ Q ∧ time(s(i)) = x}.

Lemma 25

Let N = (P; V; T; I; O; F; TS) be an ITCPN, the semantics of which is described

by a transition system X = 〈S;R〉 and let N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′) be the

re�ned ITCPN with respect to a place pR, a set Q and a function D ∈ Vp → Q,

i.e. N ′ = rf(N; pR; Q;D). The semantics of N ′ is described by a transition system

Y = 〈S ′
; R

′〉. If EAT n and LAT n are de�ned for N and EAT ′
n and LAT ′

n are

de�ned for N ′, then for s ∈ S, p ∈ P \ {pR} and n ∈ IN:

EAT ′
n(dcp(s); p) ≤ EAT n(s; p)

LAT ′
n(dcp(s); p) ≥ LAT n(s; p)

EAT ′
n(dcp(s); Q) ≤ EAT n(s; pR)

LAT ′
n(dcp(s); Q) ≥ LAT n(s; pR)

Proof.

Assume p ∈ P \ {pR}.
For any � ∈ �(s) and i ∈ dom(�): bminn(�i ��p) = bminn(dcp(�i) ��p).

Lemma 23 tells us that � ∈ �(s) implies that �′ = (�i∈dom(�) dcp(�i)) ∈ �′(dcp(s)).
Therefore, EAT ′

n(dcp(s); p) ≤ EAT n(s; p) and LAT ′
n(dcp(s); p) ≥ LAT n(s; p) (see

de�nition of EAT n and LAT n).

For any � ∈ �(s) and i ∈ dom(�): bminn(�i ��pR) = bminn(dcp(�i) ��Q).

Therefore, we can also prove that EAT ′
n(dcp(s); Q) ≤ EAT n(s; pR) and LAT ′

n(dcp(s); Q) ≥
LAT n(s; pR).

2

De�nition 35 (LOR;HOR)
If s ∈ S, Q ⊆ P and 0 < t ∈ TS, then we de�ne:

LOR(s;Q; t) = min�∈�(s) U(�;Q; t)

HOR(s;Q; t) = max�∈�(s) U(�;Q; t)

for the lowest occupation rate and highest occupation rate respectively, where U is

extended in a straightforward manner (see section 2.6).
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Lemma 26

Let N = (P; V; T; I; O; F; TS) be an ITCPN, the semantics of which is described by

a transition system X = 〈S;R〉 and let N ′ = rf(N; pR; Q;D) be the corresponding

uncoloured ITCPN, the semantics of which is described by a transition system Y =

〈S ′
; R

′〉. If LOR and HOR are de�ned for N and LOR′ and HOR′ are de�ned for

N
′, then for s ∈ S, p ∈ P \ {pR} and x ∈ TS \ {∞}:

LOR′
n(dcp(s); p; x) ≤ LOR(s; p; x)

HOR′
n(dcp(s); p; x) ≥ HOR(s; p; x)

LOR′
n(dcp(s); Q; x) ≤ LOR(s; pR; x)

HOR′
n(dcp(s); Q; x) ≥ HOR(s; pR; x)

Proof.

Use lemma 23.

2

These lemmas show that a re�ned net can be used to analyse the original net. The

advantages of a re�ned net are straightforward: if we uncolour the re�ned net, we

may improve the usefulness of the analytic results. A drawback is that this approach

is often more time (and space) consuming than the �rst approach, but probably less

so than analysing the original (coloured) net. Note that it is always possible to re�ne

until the assumption of section 3.5.1 holds, i.e. the number of consumed tokens does

not depend upon the values of the tokens consumed. In this way it is possible to

uncolour any ITCPN.

We only considered re�nements which decompose only one place. It is easy to extend

this approach to allow a simultaneous decomposition of multiple places. Suppose

we want to decompose two places with two re�nements. The order in which these

re�nements take place does not matter (except for the naming of `new' transitions).

Moreover, a simultaneous re�nement of these two places also yields an equivalent

net.

An overview of the two approaches presented in this section is shown in �gure 3.23.

Suppose we have a question about a system modelled in terms of an ITCPN. We

may try to analyse this net directly using the MTSRT method. This may lead

to computational problems, since the reduced reachability graph is too large. To

overcome this problem, we may decide to remove all colouring and apply analytic

methods like the MTSRT method, the PNRT method, the ATCFN method or cal-

culate the invariants of the net. Note that applying the PNRT method and the

ATCFN method is not always possible (e.g. for a net with conicts). An uncoloured

net also allows for more traditional kinds of analysis like the calculation of siphons,

traps and place and transition invariants.

In general, the results based on the analysis of the uncoloured net are not satis-

factory, because they are not suÆciently detailed or the calculated bounds for the

performance measures are rather trivial. To overcome these problems, we propose
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Figure 3.23: How to analyse an ITCPN

the following approach: �rst we decompose a number of places, i.e. re�ne the net,

then we uncolour the re�ned net. Analysis of this uncoloured net will probably

yield better results. If the results are still not satisfactory, then try some more

re�nements, .. etc.

Suppose we start with a net N = (P; V; T; I; O; F; TS), this net is re�ned (in a

number of steps) into a net N ′ = (P ′
; V

′
; T

′
; I

′
; O

′
; F

′
; TS

′). Then we remove the re-

maining colouring and obtain the uncoloured netN ′′ = (P ′′
; V

′′
; T

′′
; I

′′
; O

′′
; F

′′
; TS

′′).
If we analyse N ′′, then the analytic results for this uncoloured re�ned net can be

interpreted in terms of the original net N . For example, if N ′′ is bounded, then N is

also bounded and, if N ′′ is dead, then N is also dead. Upper and lower bounds for

various performance bounds of N ′′ are also valid for the original net N . For example,

if p ∈ P ∩P ′′, then EAT ′′
n(s

′′
; p) ≤ EAT n(s; p) and LAT ′′

n(s
′′
; p) ≥ LAT n(s; p). The

more we re�ne the net, the `better' these bounds may become, but the larger the

corresponding uncoloured ITCPN becomes, thus making analysis more time (and
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Figure 3.25: The bill of materials of end-products I and J

space) consuming. In general, we have to balance between the quality of the results

(e.g. how `tight' the bounds are) and the e�ort it takes to analyse the net (e.g.

computation time).

3.6 An example

We use an example to illustrate and demonstrate some of the concepts and tech-

niques presented in this chapter. In this section we model and analyse a manufac-

turing system. This manufacturing system is divided into �ve units, see �gure 3.24.

The manufacturing system receives raw materials and transforms them into end-

products. The raw materials are divided over two production units. Each produc-

tion unit transforms raw materials into intermediate products. These intermediate

products are assembled into end-products by the assembly unit. The packing unit

prepares these products for shipment.

In this particular case, there are two kinds of end-products I and J . To manufacture

I, we need two kinds of raw material: A and B. A is transformed into E , B is

transformed into F and E and F are assembled into I. J has a similar production

process. The bill of materials of these two end-products is shown in �gure 3.25.

We model this manufacturing process in terms of an ITCPN. This ITCPN has an
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Figure 3.27: The divider

`input' place p1 to receive raw materials and an `output' place p18 which contains

end-products ready to be shipped. These two places are the only places having

interactions with the environment of the manufacturing system, see �gure 3.26.

Tokens in these places represent products (or materials) and have a value which

describes, the kind of product it represents, the identi�cation of the product and

some status information. Therefore, we de�ne the value (colour) set of each place

containing products (or material) as follows:

PT = {`A'; `B'; `C'; `D'; `E '; ::}
ID = IN

STAT = IR

Vp1 = Vp18 = PT × (ID × STAT )

The divider works as follows: it takes raw materials from place p1 and distributes

them over the two production units. Moreover, the divider di�erentiates between

the four kinds of raw material. Figure 3.27 shows the divider which is modelled by

a transition t1 dividing the raw material over four places p2, p3, p4 and p5. The

value sets of these places are equal to the value sets of the places p1 and p18, i.e.

Vp2 = Vp3 = Vp4 = Vp5 = PT × (ID × STAT ). Transition t1 �res if there is some
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Figure 3.28: Production unit I

raw material available, material of kind A goes to place p2, material of kind B goes

to place p4, material of kind C goes to place p3 and material of kind D goes to place

p5. If x ∈ PT × (ID × STAT ), then:

Ft1([〈p1; x〉]) =

8>>><
>>>:

[〈〈p2; x〉; 〈0; 0〉〉] if �1(x) = `A'

[〈〈p3; x〉; 〈0; 0〉〉] if �1(x) = `C'
[〈〈p4; x〉; 〈0; 0〉〉] if �1(x) = `B'
[〈〈p5; x〉; 〈0; 0〉〉] if �1(x) = `D'

Although the value sets of the places p2, p3, p4 and p5 are equal to Vp1, in this case

they contain only one kind of products. Note that we assume that distributing these

goods takes no time.

The �rst production unit transforms products of type A into E and products of

type C into G. These transformations are performed by one machine alternately

working on products of type A and C. This machine needs between 0.35 and 0.37

hours to transform A into E and between 0.78 and 0.81 hours to transform C into

G. Figure 3.28 shows this production unit in terms of an ITCPN. The machine has

four states:

(i) busy, transforming A into E

(ii) busy, transforming C into G

(iii) free, waiting for product A

(iv) free, waiting for product C

Initially, the machine is in state (iv). In this example tokens in c1 and c2 are

colourless (Vc1 = Vc2 = {∅}) and the tokens in the other places represent products

(Vp2 = Vp3 = Vp6 = Vp7 = Vp10 = Vp11 = PT × (ID × STAT ) ). The delay of a
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Figure 3.29: Production unit II

token produced by t2 is between 0.35 and 0.37, the delay of a token produced by t3

is between 0.78 and 0.81.

The second production unit has a similar structure, see �gure 3.29. There are

two identical machines, this is represented by the initial state, where there is one

token in c3 and one token in c4. Both machines are capable of doing two kinds of

transformations: B into F and D into H. Transforming B into F takes between

1.58 and 1.61 hours. Transforming D into H takes between 0.18 and 0.20 hours.

Initially, one of the machines is ready to transform B into F , the other one is ready

to transform D into H.

There is one assembly unit. This unit is capable of assembling E and F into I and

G and H into J . Products are assembled in order of their arrival, i.e. the assembly

unit uses a `First Come First Served' discipline. The assembly unit consists of

two dedicated assembly lines, one for end-product I and one for end-product J .

Figure 3.30 shows these two assembly lines. The assembly lines share a number of

operators. Free operators are represented by tokens in the place o. Initially, there

are �ve operators in the place o. To assemble E and F into I two operators are

needed, this takes between 0.5 and 0.6 hours. The transition t10 consumes two

tokens from place o and produces one token for place p14. Transition t12 produces

two tokens for place p14 and one token for place p16. To assemble G and H into J
three operators are needed, this takes between 1.3 and 1.4 hours. Transitions t11

and t13 represent the beginning and ending of this operation. Note that place p16

contains two kinds of products: I and J .

The packing unit is used to prepare end-products I and J for shipment. To prepare

these products, they are packed in wooden crates. Moreover, end-products J have

to be tuned. The time needed to prepare a product for shipment depends on the
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Figure 3.30: The assembly unit
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Figure 3.31: The packing unit

type of product: packing I takes between 0.2 and 0.3 hours, packing and tuning

product J takes between 2.3 and 2.5 hours. The packing unit handles the products

one by one. Figure 3.31 shows the corresponding net.

If we connect these units to each other, we get the ITCPN depicted in �gure 3.32.

Given this �gure and the informal description already given, the formal de�nition

N = (P; V; T; I; O; F; TS) is rather straightforward.

The net N contains a conict (see place o), therefore it is not possible to use the

ATCFN or PNRT method. We can analyse this net directly using the MTSRT
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Figure 3.32: The ITCPN
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Figure 3.33: The divider in the re�ned net rf(N; p1; Q;D)

method. This is rather time consuming, since the appropriate software is lacking.

Therefore, we uncolour the net. Uncolouring an ITCPN is always possible, see Odijk

[94]. However, to uncolour the net as de�ned in section 3.5.1, we have to re�ne place

p1, because the number of tokens produced by t1 for a speci�c output place depends

on the value of the consumed token. Place p1 is decomposed into four places: p1A,

p1B, p1C and p1D. Note that we assume that there are only four kinds of raw

material. Place p1A contains tokens which represent raw material of type A, place
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n EAT n(s
′
; p18) LAT n(s

′
; p18) LAT n(s

′
; p18)−

EAT n(s
′
; p18)

1 1.48 3.91 2.43

2 2.61 6.41 3.80

3 3.08 8.91 5.83

4 3.74 11.41 7.67

5 4.38 13.91 9.53

6 4.87 16.41 11.54

7 5.68 18.91 13.23

8 6.00 21.41 15.41

9 6.98 23.91 16.93

10 7.18 26.41 19.23

11 8.26 28.91 20.65

12 8.46 31.41 22.95

13 9.39 33.91 24.52

14 9.59 36.41 26.82

15 10.88 38.91 28.03

16 12.18 41.41 29.23

Table 3.2: Some results produced by the MTSRT method

p1B contains tokens which represent raw material of type B, etc. In other words:

we re�ne N with respect to the place p1, the set Q = {p1A; p1B; p1C; p1D} and a

function D ∈ Vp1 → Q such that for x ∈ Vp1:

D(x) =

8>>><
>>>:
p1A if �1(x) = `A'

p1B if �1(x) = `B'
p1C if �1(x) = `C'
p1D if �1(x) = `D'

Figure 3.33 shows this re�nement. Note that, although t11 is connected to p3, p4

and p5, it only produces tokens for place p2, i.e. we can omit the other arcs without

a�ecting the behaviour of the net.

Now it is possible to uncolour the net, in the way it was described in the previous

section. Assume that initially there are 32 pieces of raw material available (8 of

each kind), i.e. in the initial state s there are 32 tokens in p1, eight with a value

x such that �1(x) = `A', .. etc. The corresponding uncoloured re�ned net has

an initial state s′ with eight tokens in place p1A, eight tokens in place p1B, eight

tokens in place p1C and eight tokens in place p1D. Using the MTSRT method we

can calculate several performance measures, for example upper and lower bounds

for the arrival time of tokens in place p18. Table 3.2 shows EAT n(s
′
; p18) and

LAT n(s
′
; p18) for 1 ≤ n ≤ 16, calculated using the MTSRT method. Based on

these �gures, we can guarantee that the 5th end-product becomes available between
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n EAT n(s
′′
; p18) LAT n(s

′′
; p18) LAT n(s

′′
; p18)−

EAT n(s
′′
; p18)

1 1.48 1.71 0.23

2 2.61 2.89 0.28

3 5.18 5.51 0.33

4 5.38 8.01 2.63

5 5.58 10.51 4.93

6 6.00 13.01 7.01

7 8.08 15.51 7.43

8 8.28 18.01 9.73

9 8.48 20.51 12.03

10 9.39 23.01 13.62

11 10.98 23.31 12.33

12 13.28 23.61 10.33

13 15.58 24.20 8.62

14 17.87 24.51 6.64

15 20.17 24.81 4.64

16 22.47 25.11 2.64

Table 3.3: Some results produced by the MTSRT method

4.38 and 13.91. Note that the bounds calculated for this uncoloured net are quite

`wide'.

If we re�ne place p16 into p16I and p16J , we obtain `better' bounds, see table 3.3.

This table shows some analytic results for the uncoloured re�ned net. This re-

�nement decomposes place p16 into two places and transition t14 is split into two

transitions, one for preparing end-products I and one for preparing end-products

J . The calculated bounds are more `tight', because the preparation time in the

packing unit is highly dependent of the kind of product (I or J ). This re�nement is

useful, but not totally satisfactory, because we are not able to distinguish between

products I and J (see table 3.3).

Therefore, we also re�ne place p17 and place p18, place p17 is decomposed into p17I

and p17J , and place p18 is decomposed into p18I and p18J . Figure 3.34 shows the

re�ned net. Now we are able to calculate bounds for the completion time of the

two kinds of end-products separately, see table 3.4. The results shown in this table

are quite useful, e.g. based on these �gures, we can guarantee that at time 20.00

there are 5, 6 or 7 products J available, etc. Note that we can use the techniques

presented in this chapter to prove dynamic properties, e.g. the MTSRT method can

be used to guarantee that certain deadlines are met.

We could have analysed the coloured net, shown in �gure 3.32, directly (without

uncolouring the net �rst). We did not do this, because we implemented the MTSRT

method for uncoloured nets only, see chapter 4. To obtain useful results, the net
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Figure 3.34: The re�ned ITCPN

should be re�ned properly before analysing the uncoloured net. The advantage of

creating an uncoloured net is the fact that we can apply many analysis techniques

based on uncoloured Petri nets without having an `explosion' in the size of the net.

Examples of Petri net based analysis techniques are place and transition invariants,

traps, siphons and several reduction or decomposition techniques (see Murata [93]).

A place invariant W ∈ P → ZZ is called a minimal support invariant, if and only if,

W is non-negative (i.e. ∀p∈P W (p) ≥ 0) and there is no other non-negative place

invariant W ′ ∈ P → ZZ, such that ∀p∈P W
′(p) ≤ W (p). The set of all minimal

support place invariants can be used to generate the other invariants, i.e. any

place invariant can be written as a linear combination of the minimal support place

invariants. This property also holds for minimal support transition invariants (see

Memmi and Roucairol [88] or Martinez and Silva [84]).

If we calculate the minimal support place invariants of the uncoloured ITCPN shown

in �gure 3.34, then we obtain the following results:

p14 + c5 = 1

p15 + c6 = 1

2p14 + 3p15 + o = 5

p17I + p17J + c7 = 1

p6 + p7 + c1 + c2 = 1

p1 + p2 + p6 + p10 + p15 + p16J + p17J + p18J = 8

p1 + p3 + p7 + p11 + p14 + p16I + p17I + p18I = 8

p1 + p3 + p6 + p7 + p10 + p15 + p16J + p17J + p18J + c2 = 8

p1 + p2 + p6 + p7 + p11 + p14 + p16I + p17I + p18I + c1 = 9
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n EAT n(s
′′′
; p18I) LAT n(s

′′′
; p18I) LAT n(s

′′′
; p18I)−

EAT n(s
′′′
; p18I)

1 1.48 1.71 0.23

2 2.61 2.89 0.28

3 5.38 23.31 17.73

4 5.58 23.61 18.03

5 6.00 23.91 17.91

6 8.28 24.51 16.23

7 8.48 24.81 16.33

8 9.39 25.11 15.72

n EAT n(s
′′′
; p18J) LAT n(s

′′′
; p18J) LAT n(s

′′′
; p18J)−

EAT n(s
′′′
; p18J)

1 5.18 5.51 0.33

2 7.48 9.21 1.73

3 9.78 12.61 2.83

4 12.08 15.11 3.03

5 14.38 17.61 3.23

6 16.68 20.11 3.43

7 18.98 22.61 3.63

8 21.28 25.11 3.83

Table 3.4: Upper and lower bounds for the completion time of products I and J

p8 + p9 + c3 + c4 = 2

p1 + p4 + p8 + p12 + p15 + p16J + p17J + p18J = 8

p1 + p5 + p9 + p13 + p14 + p16I + p17I + p18I = 8

p1 + p5 + p8 + p9 + p12 + p15 + p16J + p17J + p18J + c4 = 9

p1 + p4 + p8 + p9 + p13 + p14 + p16I + p17I + p18I + c3 = 9

The third place invariant (2p14+3p15+o = 5) indicates that the number of operators

remains constant. The other invariants show that machines and products cannot

get `lost'. There are no transition invariants.

We have modelled and analysed some other examples using the approach presented

in this chapter. A more detailed description of the application of this approach to

production logistics and some examples are given by Odijk in [94]. Other examples

can be found in Van der Aalst [2] and Van den Heuvel [61].



138 CHAPTER 3. ANALYSIS OF TIME IN NETS

��
��

��1

PPPPPPq

��
��

��1

PPPPPPq

��
��

��1

PPPPPPq&%

'$

c
t

-

[d1; d2]

&%

'$
&%

'$

b

a

��
��

��1

PPPPPPq

y
[b1; b2]

y
[a1; a2]

Figure 3.35: A part of some ITCPN

3.7 Conclusion

In this chapter we have introduced three new methods of analysis based on the

interval timed coloured Petri net model developed in the previous chapter. These

analysis techniques have been proved useful in the context of the questions raised

in section 2.6.

The ATCFN method distinguishes itself by its simplicity. Although the ATCFN

method has a number of serious drawbacks and limitations, it can be used in the

discipline called project engineering (see section 3.2.1).

The ATCFN method cannot be used to analyse complex systems with repetitive

events, such as logistic systems and production systems. The MTSRT method is a

much more powerful method, since it can be applied to arbitrary nets and answers

a large variety of questions. The method generates a reduced reachability graph.

Even for small timed coloured Petri nets this reachability graph tends to become

too large if there are a lot of conicts or the colour sets are very large.

For a subclass of nets (marked graphs satisfying some additional constraints), we

can use the PNRT method to analyse the net more eÆciently.

To deal with large colour sets, we propose the two approaches described in sec-

tion 3.5.

Because the duration of each delay is speci�ed by an interval, the analysis techniques

presented in this chapter produce upper and lower bounds for performance measures

like throughput time and occupation rate. Consider for example the re�ned net

shown in �gure 3.34. Analysis shows that the completion time of the 7th product

of type J is between 18.98 and 22.61 (see table 3.4). If the speci�ed delay intervals

are safe, then the calculated bounds are guaranteed to be safe.

However, there is a problem if we have to estimate some of the delay intervals.

Another possibility is that we deliberately shorten the length of an interval to test

the sensitivity of the calculated bounds. In both cases we are interested in the risk

of calculating inaccurate bounds.
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For this purpose, we consider a typical situation, shown in �gure 3.35. This �gure

shows a part of some ITCPN. We will use this subnet to reason about the sensitivity

of the results produced by the MTSRT method.

A possible state in the reduced reachability graph generated by the MTSRT method

is the following one: there is one token in place a with time interval [a1; a2] and there

is one token in place b with time interval [b1; b2] (see �gure 3.35). Assume that we

know that the actual delay of the token produced by transition t is in [d1; d2] with

probability 1 − pd. Also assume that the time intervals of the tokens in the places

a and b are the result of `unsafe' delay intervals, i.e. the actual timestamp of the

token in a is in [a1; a2] with probability 1 − pa and the actual timestamp of the

token in b is in [b1; b2] with probability 1 − pb. Furthermore, assume that t is the

only enabled transition. In this case, transition t will �re, the resulting state in

the reduced reachability graph has a token in c with a time interval [c1; c2], where

c1 = (a1 max b1) + d1 and c2 = (a2 max b2) + d2. Now we are interested in the

probability that the actual timestamp of this token is in this time interval calculated

by the MTSRT method.

More formally, if Xa is a random variable representing the actual timestamp of the

token in a, Xb is a random variable representing the actual timestamp of the token

in b and Xd is a random variable representing the actual delay of the token produced

by t, then we are interested in the random variable Xc = (Xa max Xb) + Xd, i.e.

the actual timestamp of the token in c. We know that pa = IP[Xa �∈ [a1; a2]], pb =

IP[Xb �∈ [b1; b2]], pd = IP[Xd �∈ [d1; d2]] and are interested in pc = IP[Xc �∈ [c1; c2]].

IP[Xc �∈ [c1; c2]]

= IP[Xc �∈ [(a1 max b1) + d1; (a2 max b2) + d2]]

= 1− IP[Xc ∈ [(a1 max b1) + d1; (a2 max b2) + d2]]

≤ 1− IP[Xa ∈ [a1; a2] ∧ Xb ∈ [b1; b2] ∧ Xd ∈ [d1; d2]]

= 1 − (1− pa)(1− pb)(1− pd)

≤ pa + pb + pd

If we add the extra assumption that the lower bounds of the intervals are safe, i.e.

IP[Xa ≥ a1] = IP[Xb ≥ b1] = IP[Xd ≥ d1] = 1, then we deduce:

IP[Xc �∈ [c1; c2]]

= IP[Xc �∈ [(a1 max b1) + d1; (a2 max b2) + d2]]

= IP[Xc > (a2 max b2) + d2]

≥ IP[Xa > a2 ∧ Xb > b2 ∧ Xd > d2]

= papbpd

Note that we also assumed that IP[Xa = a2] = IP[Xb = b2] = IP[Xd = d2] = 0. A

similar deduction holds for safe upper bounds instead of safe lower bounds. In both

cases we conclude:

papbpd ≤ pc = IP[Xc �∈ [c1; c2]] = pa + pb + pd
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Suppose pa = pb = pd = 0:1, then papbpd = 0:001 and pa + pb + pd = 0:3, i.e.

0:001 ≤ pc ≤ 0:3. Obviously these �gures do not tell us much. If pc is near 0:001

the e�ect of `unsafe' intervals will fade away. On the other hand, if pc is near 0:3

the e�ect of several `unsafe' delay intervals is ampli�ed, i.e. the error probabilities

add up.

To obtain more information about pc, we need to know more about the distribution

of the random variables Xa, Xb and Xd.

These results show that we have to be very careful when deciding on the delay

intervals. This may seem disappointing, but it also indicates that the calculated

bounds are far from trivial, because assuming an `unsafe' delay interval makes the

calculated bounds more `tight', but also unreliable.

We also investigated the probability distribution of performance measures like the

arrival time of the nth token in a place p under the assumption that all delays are

sampled from some probability distribution (e.g. a uniform distribution). Exper-

imentation shows that the probability distribution of such a performance measure

depends on the speci�c situation and it is impossible to make general statements.

Consider for example the location of the probability mass. Sometimes it is mainly

in the middle of the calculated interval, at other times an important part is near

one of the borders of the interval [EAT n(s; p);LAT n(s; p)].

There are several factors which prevent us from making a reasonable prediction of

the shape of the probability density function of such a performance measure.

In the ITCPN model, conicts between transitions are resolved non-deterministically.

If we assume a probability distribution associated with the choice of the transition

to be �red among several enabled transitions, then a conict between transitions

may result in a probability density function which contains multiple local maxima.

If at some moment one of the input places contains an abundant number of tokens

having overlapping time intervals, then the probability mass of the distribution of the

timestamp of a produced token is shifted towards the lower bound of the calculated

interval. In other words, conicts between tokens may shift the probability mass

towards the lower bound of the interval.

Other phenomena e�ecting the shape of the probability density function of a per-

formance measure like the arrival time of the nth token in a place, are dependencies

between tokens and feedbacks.

Again these results may seem disappointing, but they indicate three features. First

of all, the calculated bounds are non-trivial because the probability mass may be

near one of the bounds. Secondly, they show us that it is not possible to predict the

distribution of performance measures without assuming very speci�c delay distri-

butions (e.g. negative exponential distributed delays). Thirdly, the use of interval

timing allows for the answering of a meaningful but limited set of questions. If we

are really interested in characteristics like the means and variances of certain perfor-

mance measures, then we should use other techniques like simulation or stochastic

analysis (e.g. Markovian analysis based on a stochastic Petri net model, see sec-

tion 1.4).
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Figure 3.36: A survey of potential methods for the analysis of ITCPNs

Based on these observations we propose a situation where interval analysis is used

in combination with simulation and other Petri net based analysis techniques, see

�gure 3.36. In this �gure we distinguish four kinds of analysis: simulation, `interval

analysis', `stochastic analysis' (e.g. stochastic Petri nets) and `structural analysis'.

All these analysis techniques can be used to analyse a timed coloured Petri net, for

example an ITCPN. Note that if we use the ITCPN model, then we have to supply

extra information to simulate the net (this also holds for stochastic analysis). On

the other hand, most kinds of structural analysis do not require timing information.

Simulation can be used in the modelling phase and the (performance) analysis phase.

In the modelling phase simulation can reveal errors, i.e. it can be used to `debug' the

model. In the analysis phase, simulation can be used to investigate the performance

of the system. Stochastic Petri nets are also used to investigate the performance of

the system. Compared to simulation, Markovian analysis of these nets is faster but

it requires more pro�ciency and we have to assume that the delays are sampled from

a rather speci�c probability distribution. Interval analysis can be used in the early

investigation of the performance of the system, because it requires less information

than Markovian analysis and simulation. It can also be used to prove the (temporal)

correctness of the system. Structural analysis is mainly used to validate the logical

correctness of the system.

Note that the ITCPN model can be used as a `blueprint' of the system, which allows

for various kinds of analysis. This is very convenient, since it prevents us from having

to remodel the system every time we want to use another analysis technique. We

are also interested in supporting other analysis techniques, e.g. queueing networks,

linear programming, etc. (see chapter 5).

An ideal situation is the following one: there is one model that can be analysed by
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several analysis techniques without having to change the model. In order to use

several kinds of analysis at the same time, it is necessary to develop software tools

based on one central timed coloured Petri net model (e.g. the ITCPN model ex-

tended with stochasticity). In chapter 4 we describe the software we have developed

to realize this goal.

Finally, we conclude with our plans for future research in this area. To handle very

large systems, we have to add more reduction techniques to the MTSRT method.

Several examples show that conicts between transitions often cause computational

problems. We have a number of ideas to prevent this from happening (e.g. to

aggregate states having the same marking and consecutive intervals). We are also

interested in extending existing analysis methods for our ITCPN model. For exam-

ple, we are convinced that it is possible to extend the analysis method proposed by

Berthomieu et al. in [17] and [16].

Another item for further research is the use of perturbation analysis for the analysis

of timed coloured Petri nets (see Ermoliev, Uryas'ev and Wessels [40]). One of the

disadvantages of simulation and most of the other analysis techniques described in

this chapter is that they only evaluate one scenario, without giving much help in

�nding better scenarios. Perturbation analysis is a method which estimates the

gradient of some performance measure with respect to a parameter �, based on a

simulation run for only one value of � only (see Suri [118]). Although perturbation

analysis is still in its infancy, it might provide techniques which help us to �nd better

scenarios, i.e. a better design (see Ermoliev, Uryas'ev and Wessels [40]).
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3.8 Appendix

In this appendix, we present lemma 27 which is used to prove theorem 6 (see sec-

tion 3.3.2).

In section 2.4.1 we have de�ned the semantics of an ITCPN. These semantics are

such that tokens are consumed in order of their timestamps (see requirement (2.4c)

on page 39).

However, in the modi�ed transition system, (only) tokens having the same value are

consumed in non-descending order (see requirement (3.4c) on page 84).

In order to prove theorem 6, we investigate this di�erence.

Assume s1 ∈ S and s1 ∈ S such that s1 / s1, and e is an event transforming s1 into

s2 (i.e. s2 ∈ R(s1)).

We have to show that for any e transforming s1 into s2 there exists a `corresponding'

event e, such that tokens having the same value are consumed in non-descending

order.

Since s1 / s1, there exists a specialization function f , i.e. there exists a bijective

function f ∈ dom(s1) → dom(s1) such that every token with label i ∈ dom(s1)

corresponds to a token with label f(i) ∈ dom(s1) that is in the same place, has the

same value and has an interval containing the timestamp of i.

De�ne e = 〈�1(e); s1�f(dom(�2(e))); q〉 ∈ E, as in the proof of theorem 6.

Now we have to prove that we can change f into an `order-preserving' function

g satisfying the same constraints, i.e for all i ∈ dom(�2(e)) and j ∈ dom(s1) \
dom(�2(e)), such that place(s1(i)) = place(s1(j)) and value(s1(i)) = value(s1(j)),

we have that ¬(time(s1(j)) <i time(s1(i)))

For simplicity, we consider only one place, say p. For tokens having a di�erent

value, requirement (3.4c) holds. Therefore, we concentrate on tokens having the

same value, i.e. assume that all tokens in p have an identical value.

Let q ∈ Id �→ TS represent the contents of place p in state s1. Let q ∈ Id �→ INT

represent the contents of place p in state s1.

Since s1 / s1, there exists a bijective function f ∈ dom(q) → dom(q) such that for

all i ∈ dom(q), we have that q(i) ∈ q(f(i)).

Lemma 27 (Assignment Problem)

If q ∈ Id �→ TS and q ∈ Id �→ INT such that there exists a function f ∈ dom(q) →
dom(q) with:

(i) f is bijective

(ii) ∀i∈dom(q) q(i) ∈ q(f(i))

then there also exists a function g ∈ dom(q) → dom(q) with:

(iii) g is bijective
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�1(q(f(j))) �1(q(f(i))) �2(q(f(j))) �2(q(f(i)))q(k) q(j)

Figure 3.37: Interval q(f(i)) and interval q(f(j))

(iv) ∀i∈dom(q) q(i) ∈ q(g(i))

(v) ∀i;j∈dom(q) q(i) ≤ q(j) ⇒ ¬(q(g(j)) <i q(g(i)))

Proof.

It is easy to �nd a function g that satis�es (iii) and (iv), because f is such a function.

In this proof we will show that it is possible to `transform' f until (v) holds (i.e. we

give an algorithm to calculate g). First, we de�ne a linear (total) ordering (≤l) on

dom(q) such that i ≤l j ⇒ q(i) ≤ q(j). This is possible, because q(i) ≤ q(j) de�nes

a pre-ordering (a pre-ordering (quasi-ordering) is reexive and transitive).

Now we are able to de�ne the conict set of f :

C(f) = {〈i; j〉 ∈ dom(q)× dom(q) | i ≤l j ∧ q(f(i)) >i q(f(j))}

Note that C(f) = ∅ implies that ∀i;j∈dom(q) q(i) ≤ q(j) ⇒ ¬(q(f(i)) >i q(f(j))).

Consider the following program to transform f (in pseudo code):

while C(f) �= ∅
begin

〈i; j〉 ∈ C(f)

{ select an i and j in conict }
f := (f �(dom(q) \ {i; j}) ∪ {〈i; f(j)〉; 〈j; f(i)〉}
{ swap i and j }

end

Because, C(f) = ∅ implies (v), it is suÆcient to prove that (iii) and (iv) are invariant

and that the program terminates.

First, we prove that (iii) and (iv) are invariant. Initially, both invariants hold,

because of the de�nition of f . Suppose (iii) and (iv) hold and 〈i; j〉 ∈ C(f) and

f̂ := (f �(dom(q) \ {i; j}) ∪ {〈i; f(j)〉; 〈j; f(i)〉}
Now we have to show that both invariants hold for f̂ .

If f bijective, then f̂ also bijective ( (iii) holds).
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To prove (iv), we have to show that for any k ∈ dom(q): q(k) ∈ q(f̂(k)).

(a) If k �= i and k �= j, then q(k) ∈ q(f(k)) = q(f̂(k)).

(b) If k = i, then q(i) ∈ q(f(i)) = q(f̂(j)).

We also know that q(i) ≤ q(j) and q(f(i)) >i q(f(j)), because 〈i; j〉 ∈ C(f).

The fact that q(f(i)) >i q(f(j)) implies that (�1(q(f(i))) ≥ �1(q(f(j)))) and

(�2(q(f(i))) ≥ �2(q(f(j)))). This situation is shown in the following �gure 3.37.

q(k) ≥ �1(q(f(k))) ≥ �1(q(f(j))) = �1(q(f̂(k)))

q(k) ≤ q(j) ≤ �2(q(f(j))) = �1(q(f̂(k)))

So q(k) ∈ q(f̂(k)).

(c) A similar reasoning holds for k = j.

Finally, we have to prove that the program terminates. Observe that there are only

a �nite number of bijective functions from dom(q) to dom(q) ((#dom(q))!).

Using the linear ordering ≤l it is possible to construct a lexicographic ordering (≤f)

on the set of functions from dom(q) to dom(q): If f; f ′ ∈ dom(q) → dom(q), then:

f ≤f f
′ ≡ ∃k∈dom(q)(∀l∈dom(q)

l<
l
k

f(l) = f
′(l)) ∧ q(f(k)) <i q(f

′(k))) ∨

∀k∈dom(q) f(k) = f
′(k)

This ordering is a partial ordering, because ≤i is a partial ordering. It is easy to

verify that ≤f is reexive and antisymmetric (≤i is antisymmetric). The ordering

is also transitive: f ≤f f
′ and f

′ ≤f f
′′ implies that f ≤f f

′′ (≤i is transitive).

If f̂ is the result of swapping i and j in f , then f̂ <f f , because ∀l∈dom(q)

l<
l
i

f̂(l) = f(l)

and q(f̂(i)) <i q(f(i))).

The fact that f is `descending' with respect to ≤f and that the number of possible

functions is �nite tells us that the algorithm will terminate. Therefore, there exists

a function g that satis�es the conditions (iii),(iv) and (v).

2

Suppose, event e consumes the tokens with a label in X ⊆ dom(q) from place p.

Because of requirement (2.4c), we know that:

∀i∈X ∀j∈dom(q)\X q(i) ≤ q(j)

Using lemma 27, we deduce that there exists a g such that (iii), (iv) and (v) hold.

This implies that:

∀i∈g(X) ∀j∈dom(q)\g(X) ¬(q(j) <i q(i))

Consequently, there exists an e such that requirement (3.4c) holds.

The modi�ed transition system consumes tokens having a di�erent value in a non-

deterministic manner (see requirement (3.4c) on page 84). Consider for example a
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place p containing two tokens having di�erent values. One of these tokens has a

time interval v and the other one has a time interval w. If t is an output transition

of p (It(p) = 1) and t is enabled, then there are at least two allowed events (one for

each token), no matter how the time intervals v and w are related. If, for example,

v = 〈1; 3〉 and w = 〈4; 6〉 (i.e. all timestamps in v are smaller than any timestamp

in w), then the modi�ed transition system considers the event consuming the token

with timestamp w an allowed event.

To avoid this, we can add an extra requirement to the de�nition of AE on page 84.

This requirement says that if all timestamps in v are smaller than any timestamp

in w, then the token with time interval v is consumed before the token with time

interval w (even though the values of the two tokens may di�er).

More formally, we add the requirement:

∀i∈dom(qin)∀j∈dom(s)\dom(qin) place(s(i)) = place(s(j)) ⇒
time

min(s(i)) ≤ time
max(s(j))) (3.4f)

For the event e = 〈�1(e); s1 �f(dom(�2(e))); q〉 ∈ E in the proof of theorem 6, this

requirement holds, because requirement (2.4c) holds for the corresponding event e.

Therefore, the soundness property, that is theorem 6, also holds for the modi�ed

transition system extended with requirement (3.4f). We did not add this requirement

in the �rst place for the sake of simplicity.



Chapter 4

Language and tool

4.1 Motivation

In the previous chapters we have shown that the ITCPN model can be used to model

and analyse discrete dynamic systems. However, the practical use of this Petri net

model depends to a large extent on the existence of adequate computer tools. Note

that this holds for most formal models.

To construct or modify ITCPNs, we need an editor. We also need one or more

analysis programs based on the techniques discussed in the previous chapter.

In section 2.4 we de�ned an ITCPN by a seven tuple (P,V,T,I,O,F,TS). This is

a de�nition in terms of sets, bags and mappings. To create, store, modify and

analyse such an ITCPN using a computer, it is necessary to choose a convenient

representation comprehensible to a computer program. This representation is called

a language. In addition a language can have a number of features to facilitate the

modelling or analysis of ITCPNs.

We use the speci�cation language ExSpect to represent ITCPNs (see Van Hee,

Somers and Voorhoeve [53], [55], [56]). The reason we use ExSpect, is the fact

that this language is based on a timed coloured Petri net model, called DES, which

is closely related to the ITCPN model (see Van Hee, Somers and Voorhoeve [53]). In

fact, the ITCPN model is a generalization of the DES model in the sense that delays

are described by an interval rather than a deterministic value. Therefore, ExSpect

can be used for the formal speci�cation of a restricted class of interval timed coloured

Petri nets. There is a straightforward relation between this speci�cation language

and the ITCPN model.

In this monograph we will use the term `speci�cation' for descriptions in terms

of the language ExSpect. Note that there is a strong relation between the terms

`speci�cation' and `model'. The term `model' emphasizes the representation of one

or more aspects of a real system. The term `speci�cation' is used to denote a concise

description of the functional behaviour of a system (or software).

As already stated, ExSpect is based on the DES model, a timed coloured Petri

net model with deterministic delays. The reason we use the ITCPN model rather

147
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than the DES model is the fact that the ITCPN model is more expressive. Another

reason for using the ITCPN model is the fact that interval timing allows for new

and powerful analysis techniques. Consider, for example, the concepts re�nement

and uncolouring de�ned in chapter 3. It is not possible to de�ne these concepts

in terms of the DES model, because in the DES model delays are described by a

deterministic value instead of a delay interval.

The reason we pay attention to ExSpect is twofold: (1) we can use ExSpect to

specify an ITCPN and (2) we can use the analysis methods described in chapter 3

to analyse ExSpect speci�cations.

In section 4.2 of this chapter, we will discuss some of the features of ExSpect which

facilitate the speci�cation of complex systems.

Based on this language, a software package, also called ExSpect, has been developed

(see Somers et al. [9]). This software package is composed of a number of tools

which have been developed to create, modify and analyse ExSpect speci�cations.

These tools include: a shell, a design interface, a type checker, an interpreter, a

runtime interface and an analysis tool.

The author of this monograph participated in the development of two of these tools,

viz. the design interface and the analysis tool named IAT. The design interface is

a graphical editor which can be used to create and modify an ExSpect speci�cation

in a user-friendly and graphical manner. The analysis tool can be used to analyse

ITCPNs speci�ed by an ExSpect speci�cation. This tool uses the analysis methods

described in chapter 3.

Both the ExSpect language and the ExSpect software support the modelling of com-

plex systems in various application domains. However, ExSpect is a general purpose

speci�cation language, and therefore, this language is not close to the the profes-

sional language used in a speci�c application domain. This is the reason ExSpect

allows for the development of domain speci�c libraries. These libraries increase the

productivity of the modelling process and facilitate the modelling of large and com-

plex systems. The author of this monograph has developed two libraries: one for

the modelling of queueing systems (see section 4.5 or [3]) and one for the modelling

of complex logistic systems (see section 5.5, [4] or [5]).

4.2 The language

ExSpect (EXecutable SPECi�cation Tool) is a language to describe discrete dynamic

systems (see [53], [55], [52], [56], [51], [57], [8], [7]). Moreover, ExSpect is a construc-

tive speci�cation language which means that objects (e.g. functions) are speci�ed

by a stepwise decomposition into objects that are simple and easily understood. As

a result the language is executable. Therefore, we can use the ExSpect speci�cation

for simulation (or prototyping) purposes.
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Like any language ExSpect has a syntax and semantics. The syntax of a language

is a grammar describing the systematic rules of the language. The semantics of

ExSpect can be given in terms of the ITCPN model. A part of the semantics of

ExSpect is given in Van Hee, Somers and Voorhoeve [51].

ExSpect speci�cations are stored in modules. A module contains a number of def-

initions. Each de�nition in a module has a (possibly empty) interface and an im-

plementation. A user of the module only knows about the interface, and the imple-

mentation is hidden from the user. This modularization concept is also known as

encapsulation. Encapsulation hides unnecessary details and if the implementation is

changed, a user is not a�ected as long as the interface is not changed. Note that this

is analogous to some of the concepts found in many modern programming languages.

In ExSpect there are four kinds of de�nitions:

• type de�nitions

• function de�nitions

• processor de�nitions

• system de�nitions

ExSpect is a typed functional language. Type de�nitions are used to specify the

value set of each place (Vp). Function de�nitions are used to specify operations on

the value of a token (Ft). ExSpect uses the term processor instead of transition. A

system is an aggregate of transitions, places and subsystems. In the remainder of

this section we discuss these four kinds of de�nitions. For a more detailed description

of ExSpect, see the ExSpect User Manual [9].

4.2.1 Type de�nitions

Tokens have a value. This value can be very simple (e.g. a number) or very complex

(e.g. a database state). Each place has a type which determines which values

are allowed for the tokens it contains. To create the suitable types, we need type

de�nitions.

The type system of ExSpect consists of some primitive types and a few type con-

structors. There are �ve primitive types: void, bool, num, real and str denoting

the `empty' type, booleans, numerals, reals and strings respectively. The type con-

structors are set ($), Cartesian product (><) and mapping (->). From a set of types

and the type constructors we can form type expressions that symbolize new (com-

posite) types. We can attach names to type expressions, thus de�ning new types.

The following type de�nitions illustrate this:

type weight from real with [x] x >= 0.0;

type volume from real with [x] x >= 0.0;

type manufacturer from str;
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type truck from manufacturer >< (weight >< volume);

type truck id from num;

type fleet of trucks from truckid -> truck;

type cargo from weight >< volume;

Note that we can add a with part for restricting the type.

4.2.2 Function de�nitions

To specify the value of a produced token, we need function de�nitions. In general,

these function de�nitions are composed out of simpler ones. Our set of basic func-

tions includes all well-known set-theoretical, logical and numerical constants and

functions. Some of these basic functions are polymorphic. Because of some `sugar-

ing' it is possible to write these functions in their usual symbolic in�x or `circum�x'

notation. As an example we show two function de�nitions operating on the types

de�ned above:

transportable by truck[ c : cargo, t : truck ]

:=

(pi1(c) <= pi1(pi2(t))) and (pi2(c) <= pi2(pi2(t))) : bool;

transportable by fleet[ c : cargo, f : fleet of trucks ]

:=

if f = {}
then false --i.e. there are no trucks left

else transportable by truck(c,pi2(pick(f)))

or transportable by fleet(c,frest(f))

fi : bool;

The functions pi1, pi2 (projections), pick and frest (respectively taking and delet-

ing an element from a mapping) are examples of basic functions.

To de�ne a polymorphic function, we use type variables. Consider for example the

following function:

union[ x : $T, y : $T ]

:=

if x = {}
then y

else ins(pick(x),union(rest(x),y))

fi: $T;

This function de�nes the union of two sets having the same type. Since T is a type

variable this function can be applied to two sets having an arbitrary type and the

result of this function is of the same type. The function is recursive and uses the

basic functions pick, ins and rest (respectively taking, inserting and deleting an

element from a set).
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4.2.3 Processor de�nitions

In ExSpect we have processors and channels corresponding to transitions and places

respectively. There is also a special kind of channel (place), called store, which

always contains precisely one token. ExSpect uses these terms, because they seem

more natural for people not familiar with Petri nets.

Processor de�nitions are split in a header and contents part. The header part

(sometimes called signature) contains the processor name, its interaction structure

and its parameters. The interaction structure is given by (possibly empty) lists of

input channels, output channels and stores. The contents part consists of concurrent

(conditional) assignments of expressions to output channels and stores. A simple

example runs as follows:

proc transport function[in leave:truck,

out arrive:truck,

val d:time]

:=

arrive <- leave delay d;

This processor can be used to model the transport. If there is a token in the input

channel leave, then the processor is enabled. If the processor transport function

remains enabled, it �res (executes) at the time given by the timestamp of the token

to be consumed. If it �res, then it produces a token for output channel arrive with

a value equal to the value of the token consumed. The time between the departure

and arrival of a truck is set by a value parameter (val) d. Note that delay is a

keyword.

ExSpect has a number of features to make a processor de�nition highly generic.

Besides value parameters it is possible to have function parameters (fun). It is

also possible to de�ne polymorphic functions. Consider for example the following

processor de�nition:

proc p [in a:S, out b:T, val g:$S,

fun t[x:S] : T, d[x:S] : real]

:=

if a in g

then b <- t(a) delay d(a)

fi;

This processor consumes tokens from the input channel a. There is one value param-

eter (g) and there are two function parameters (t and d). If the value of the token

consumed is in the set g, then the processor produces a token for output channel b.

Otherwise, the processor �res without producing a token. The value and delay of

the token produced depend on the value of the token consumed. S and T are type
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Figure 4.1: A part of a distribution network modelled without preconditions

variables, i.e. the types of the input and output channel are arbitrary. Note that

the types of the value and function parameters depend on the actual type of the

input and output channel. We will come back to this.

ExSpect release 3.0 (and higher) has been extended with preconditions for processors.

Consider for example the following processor de�nition:

proc q [in a:real, out b:real | pre a > 0]

:=

b <- ln(a) delay 5.2;

This function consumes positive valued tokens from input channel a. If this input

channel only contains tokens with a value ≤ 0, then q can not �re. In this example

we added the precondition, because the logarithm of the value of the consumed

token (ln(a)) is de�ned for positive values only.

The concept of preconditions has been added to ExSpect to facilitate the model-

ling of certain situations that are diÆcult to specify without preconditions. These

situations are found in many logistic systems.

Consider for example a distribution network with one factory and a number of ware-

houses. Products produced by the factory are transported to one of the warehouses.

Figure 4.1 shows a part of this distribution network modelled in terms of channels

(places) and processors (transitions) without preconditions. Processor (f) sends a
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Figure 4.2: A part of a distribution network modelled with preconditions

token to one of the output channels c1; c2; ::cn. Each of the processors w1; w2; ::wn

represents the acceptance of products in the corresponding warehouse.

For large and more complex distribution networks it is not convenient to model the

network like this, because there are a lot of channels and connections. Another

drawback is the fact that, every time we decide to add or remove warehouses, we

have to change the de�nition of processor f .

Using preconditions we can avoid these problems. Figure 4.2 shows the part of

the distribution network in terms of channels and processors with preconditions.

Processor w1 only accepts products whose destination is the warehouse represented

by w1, etc. Note that there is only one intermediate channel (c) and we can add

extra warehouses without changing the de�nition of f .

In the ITCPN model there is no concept comparable to these preconditions. How-

ever, it is possible to transform an ExSpect speci�cation with preconditions into an

equivalent ExSpect speci�cation without preconditions (e.g. replace place c by a

subnet which tests the preconditions and sends the tokens to a proper transition, if

possible). Furthermore, it is possible to extend the ITCPN model and the MTSRT

analysis method with preconditions.

4.2.4 System de�nitions

The main objective of the approach developed in this monograph is to model and

analyse large and complex discrete dynamic systems, for example a large distribution
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Figure 4.3: The transformation of an open system (the target system) into a closed

system (the target system and its environment)

network. Clearly, a speci�cation of such a system in terms of processors (transitions)

and channels (places) tends to become too large to handle. This is the reason we

added a hierarchy construct, called system, to ExSpect.

This construct can be used to structure large and complex systems. The idea is

analogous to the hierarchy constructs found in many graphical description languages,

e.g. SADT (Marca and McGowan [79]), Yourdon (Yourdon [130]), Statecharts (Harel

[48]) and CPN (Jensen [71]).

To clarify this construct, we start with a number of concepts adopted from systems

analysis (Wetherbe [124]). System analysis is involved with the development of a

framework of methods and techniques for evaluating system behaviour. Systems

analysis uses an approach which conceptualizes phenomena in terms of wholes con-

sisting of entities or subsystems with the emphasis placed on their interrelationships.

In a general sense, a system is a group of elements working in an interrelated fashion

toward a set of objectives. These elements are the smallest parts to be considered,

sometimes referred to as entities or objects. Each element can be characterized by

the relations with its environment. Examples of elements are humans, machines,

goods or information processing equipment.

The system boundary de�nes which `part of the world' is considered and which part

is out of scope. It is possible to compose a number of systems into a new system.

It is also possible to decompose a system into a number of sub-systems. The latter

process can be repeated until we reach the level of elements.

A closed system is a system without any interactions with `some' environment. An

open system is a system which has a certain (external) interaction structure. Note

that it is always possible to transform an open system into a closed system by

explicitly modelling its environment. This is expressed in �gure 4.3.

Systems are represented by rectangles. We use arrows to denote relations between

systems. Nearly all `real-life' systems are open. Consider for example a human-

machine system, i.e. a person interacting with a machine. From a modelling point
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Figure 4.4: The di�erence between composition and aggregation

of view we can consider such a system as a closed system. This is often useful for

analysis. Yet, the human needs food and beverage and the machine needs electricity

and maintenance. Note that the environment of a system can only be de�ned after

the system boundary has been de�ned.

There are a lot of ways to decompose (compose) a system into (from) a number of

smaller subsystems without changing the set of elements (entities). Decomposition is

a way to deal with the complexity of systems, because it allows for the consideration

of only a small part of the system at the same time. The level of abstraction remains

the same, because the set of entities is not changed. If a systemX is decomposed into

a number of subsystems X1; X2; ::Xn, then the proper composition of X1; X2; ::Xn

yields the original system. If we use another set of elementary objects (elements)

to model the same system, we speak about aggregation (disaggregation) rather than

composition (decomposition). Using the terminology introduced in section 2.3,

we say that the decomposed system is equivalent (see de�nition 9) to the original

one, but the aggregated system is merely similar (see de�nition 7) to the original

one. An alternative term for aggregation is `abstraction', i.e. an aggregation step

decreases the level of detail. Figure 4.4 shows the di�erence between composition

and aggregation. Note that the decomposed system is equal to the original system.

However, the aggregated system is di�erent from the original system, because some

of the details are omitted.
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In general, a (dis)aggregation or (de)composition step focusses on a speci�c aspect.

Typical aspects are (1) functional aspects, (2) spatial aspects and (3) timing aspects.

Consider for example a decomposition of a transportation system. We may decom-

pose the system into a number of (geographical disjunct) regions, thus focussing

on the spatial aspect. On the other hand, we may decompose the system into two

subsystems, one for the transportation of `uids' and one for the transportation of

`solids'. In the latter case we focus on a functional aspect.

If we disaggregate a system with respect to the timing aspect, then the dynamical

behaviour of a system is modelled more precisely. For example, we model the state

of a system every hour instead of every day. In this case, we change the timescale.

Several methods to develop a model (or speci�cation) of a system have been pro-

posed. Top down development starts with a model at a high abstraction level, this

model is re�ned by a number of disaggregation steps until the desired level of detail

has been reached. To deal with the increasing size and complexity of the model,

a disaggregation step often coincides with a decomposition step. Bottom up devel-

opment starts with a model for each of the subsystems. These models are detailed

descriptions of some aspect or part of the system, i.e. they have a low abstraction

level. These submodels are composed into a model of the entire system. If the overall

model becomes too complex, an aggregation step is applied to abstract from some

of the details. `Pure' top down development is often impractical. `Pure' bottom up

development would be a mess. In our opinion, a mixture of top down and bottom

up development is the most sensible way to build a model (or speci�cation).

This concludes our introduction to some of the main concepts of systems analysis.

We use a Petri net based approach. The elements (entities) of a system modelled in

terms of a Petri net are places (channels) and transitions (processors). The relations

between these elements are represented by (graphical) connections.

ExSpect has a hierarchy construct to compose and decompose speci�cations. This

construct is called the system de�nition.

We de�ne a system as an aggregate of processors, connected by channels and stores.

A store is a special kind of channel: it always contains precisely one token. A

system may also contain other (sub) systems. If a system has no interaction with

its environment, then we call it a closed system, otherwise an open system. Open

systems communicate with the outside world via input and output channels and

stores. Therefore, a system de�nition consists of a header similar to a processor

header and a contents part. A system can have value, function, processor and even

system parameters. Thus, it is possible to de�ne generic systems. In this way, a

system can be customized or �ne-tuned for a speci�c situation. The contents part

is a list of all the objects (processors, systems and local stores and channels) in the

system. As an example we show the following system de�nition:
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sys ts

:=

channel a: truck,

channel b: truck,

transport function(in a, out b, val 7.25);

This is the de�nition of a closed system with name ts, containing two channels and

one processor already de�ned in the previous subsection. Note that there is a clear

distinction between the de�nition of a processor as in:

proc transport function[in leave:truck,

out arrive:truck,

val d:time]

:=

arrive <- leave delay d;

and the installation in a system as in:

transport function(in a, out b, val 7.25)

Installing a processor means connecting the input and output channels of the pro-

cessor de�nition to actual channels inside a system, i.e. to actually use a de�nition,

we must instantiate the parameters with actual entities. Note that this is analogous

to the separation of a function de�nition (e.g. add[x:real,y:real] := x + y :

real) and a function call (e.g. add(1,2)).

It is also possible to install systems inside an other system:

proc p1 [in i1:S, i2:str, out o:S, fun d[x:S]:real]

:=

o <- i1 delay d(i1);

proc p2 [in i:S, out o1:S, o2:str ]

:=

o1 <- i delay 0.0,

o2 <- 'nil';

sys s1 [in x:S, out y:S, fun d[x:S]:real]

:=

channel free: str init 'nil',

channel busy: S,

p1(in x,free, out busy, fun d),

p2(in busy, out y,free);
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wait[x:real]

:=

if x < 0.0 then 0.0 else x fi:real;

sys s2

:=

channel c1: real,

channel c2: real,

s1(in c1, out c2, fun wait),

s1(in c1, out c2, fun wait);

System s2 is a closed system (i.e. there are no input and output channels), con-

taining two channels and two subsystems. Note that these subsystems are both

installations of the system de�nition s1.

System s1 has an input channel and an output channel and a function parameter.

S is a type variable. If we install this system, we can connect the input channel and

the output channel to channels of an arbitrary type (as long as they are the same).

The two installations of system de�nition s1 in s2, are both connected to channels

of type real. Note that the (required) type of the function parameter (d) depends

on the type of these channels. Both installations of the system de�nition s1 in s2

use the function wait with one parameter of type real.

The contents of system de�nition s1 is formed of two channels and installations of

the polymorphic processor de�nitions p1 and p2.

Figure 4.5 shows a graphical representation of system de�nition s2.

Note that we can replace any system composed of subsystems by a system composed

of channels, stores and processors, In other words: it is possible to translate a hi-

erarchical system de�nition into a behaviourally equivalent non-hierarchical system

de�nition. Consider for example the system de�nition shown in �gure 4.5. If we

wipe out the boundaries of the subsystems and rename the internal processors and

channels, then we obtain an equivalent non-hierarchical system de�nition.

For practical applications of ExSpect, the system concept is of the utmost impor-

tance. The system concept can be used to structure large speci�cations. At one

level we want to give a simple description of the system (without having to consider

all the details). At another level we want to specify a more detailed behaviour. This

is supported by a hierarchy construct like our system concept. The system concept

also reduces the length of a speci�cation, because we can reuse a system speci�-

cation (i.e. install a system several times). Polymorphism and several parameter

types facilitate the reuse of speci�cations. De�nitions are stored in modules. This

way it is possible to hide the implementation of a system de�nition from the user.

Clearly, the system concept can be used to (de)compose systems. However, in the

beginning of this section we also discussed (dis)aggregation, i.e. (dis)abstracting

certain aspects. Note that these processes are not supported by a particular con-
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Figure 4.5: System de�nition s2

cept provided by the ExSpect language. For example, if we decide to disaggregate

a system with respect to the timing aspect, then we have to add more detail to

various parts of the speci�cation. It is diÆcult to extend the language ExSpect with

concepts which facilitate (dis)aggregation, because changing the abstraction level

requires sophisticated transformations a�ecting varying parts of the speci�cation.

Nevertheless, these processes can be supported by tools which facilitate complex

modi�cations of the speci�cation (e.g. replacing a processor by a system).

This concludes our introduction to the language ExSpect. For more information

consult the ExSpect User Manual [9] or Van Hee et al. [51]. There are several

papers describing the application of ExSpect, see [6], [8], [7], [4] and [5].

As already stated, the reason we pay attention to ExSpect is twofold: (1) we can use

ExSpect to specify an ITCPN and (2) we can use the analysis methods described

in chapter 3 to analyse ExSpect speci�cations. The relation between an ExSpect

speci�cation and an ITCPN is straightforward except for some details which are

discussed by Odijk in [94].

4.3 The software package

To support the language ExSpect, we have developed a software package, also called

ExSpect (EXecutable SPECi�cation Tool), see Somers et al. [54], [9]. This software
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package contains a number of computer tools. Basically the set of tools consists of a

shell, a graphical editor (design interface), a type checker, an interpreter, a runtime

interface and an analysis tool.

For practical applications, the support of computer tools is necessary. There are

several reasons which make computer support of crucial importance.

First of all, computer support makes it possible to obtain results which could not

have been achieved manually. Most of the analysis techniques mentioned in chap-

ter 3 are unworkable without the aid of an analysis tool. Consider for example the

MTSRT method which constructs reachability graphs with thousands of states: it

is impracticable to do this manually.

Secondly, computer tools can reduce the number of errors. Calculations by hand are

often more error-prone. Furthermore, software can be developed to check the model

(speci�cation) for (syntactical) correctness and consistency. This software detects

errors like processors without input channels and typing errors. It is also possible

to detect deadlocks (traps), siphons, and the absence of certain invariants, etc.

Thirdly, computer support can be used to facilitate the maintenance of models

(speci�cations), because tools can be used to modify a model more easily. With

computer support it is often possible to obtain faster results (e.g. modifying or

simulating a model).

Finally, there are some additional advantages such as an improved drawing quality

of nets, which exceeds the manual capabilities, several on-line `help' facilities, etc.

As already stated, ExSpect is a set of tools, i.e. a workbench, based on the speci-

�cation language ExSpect. Figure 4.6 shows the set of tools of ExSpect. These

tools are integrated in a shell, from which the di�erent tools can be started. The

design interface is a graphical mouse driven editor, which is used to construct or

to modify an ExSpect speci�cation. Such a speci�cation is stored in a source �le

(module). This source �le is checked by the type checker for type correctness. If

the speci�cation is correct, then the type checker generates an object �le, otherwise

the errors are reported to the design interface. The interpreter uses the object �le

to simulate the speci�cation. This interpreter is connected to one or more runtime

interfaces. These interfaces enable one or more users to interact with the running

simulation. It is also possible to interact with one or more external programs, for

example presentation software. Recently we added the ITPN Analysis Tool (IAT)

to ExSpect. This tool translates a speci�cation into an ITPN, i.e. an ITCPN whose

colour sets have a cardinality of 1, that is analysed using the methods described in

chapter 3. The tool also allows for more traditional kinds of analysis, such as the

generation of P and T-invariants.

The ExSpect tools have been implemented using C and run under UNIX on SUN

hardware. The tools rely heavily on the (simulated) parallelism o�ered by the UNIX

operating system and the graphical capabilities of a SUN workstation.
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Figure 4.6: The toolset ExSpect

4.3.1 The shell

The primary function of the shell is to integrate the other tools of ExSpect. The

shell is used to access other tools, it displays the �les in the current directory and

it is used to reorganize parts of the �le system. Although these things can be done

without the aid of the shell, the shell o�ers more support and is more convenient.

All ExSpect tools have a mouse driven interface and the relevant information can

be seen in a number of windows. In the shell you can start one of the other tools

by selecting a command from a menu. It is also possible to perform operations on

a �le by selecting it from a window displaying the current directory.

The shell can be customized by adding personal commands and by specifying your

favourite text editor(s).

4.3.2 The design interface

Every module is stored in a separate �le, often called source �le. To create or modify

a module, one can use a text editor such as vi or jove (like when using a programming

language). However, such an editor does not meet the requirements set by a language

based on a graphical formalism. This is the reason we have developed a graphical

editor, called the design interface. This tool is window oriented and allows the user

to observe, alter and create speci�cations more easily.

The user is able to edit windows containing graphical representations of systems

formed of channels, stores, processors, etc. These windows can be used to create,

change or delete graphical objects like channels, stores, processor installations and
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system installations. Processor, function and type de�nitions are edited via easy-

to-use forms. At any moment we can print or save (parts of) the speci�cation.

There are a number of settings to modify some of the properties of the tool. This

way you can customize the design interface. Most of these settings refer to the

graphical part. For example, it is possible to change the default size and shape of

the symbols used to represent channels, stores, processors, etc. It is also possible to

create new graphical symbols, e.g. an image representing a truck.

Using the design interface instead of a text editor, o�ers several advantages.

The most important advantage is the fact that given a graphical representation and

some additional information, the tool automatically generates a source �le. This �le

also contains some graphical information. At any moment it is possible to switch

from the graphical editor to a text editor and vice versa. If the source �le does not

contain graphical information (or this information is incomplete), then the design

interface generates a default screen layout for the system de�nitions in this �le. The

user can use the design interface to adjust this layout.

Other advantages are the possibility to do a number of checks and the fact that it

is impossible to make certain errors (e.g. connect a processor to a processor).

An additional advantage is the fact that casual and novice users do not have to

know the precise syntax of the language. Especially for users who use a rather small

subset of the language, the amount of training required is reduced.

The design interface o�ers the features one nowadays expects from a graphical editor.

To conclude we mention two important features.

First of all, the way we handle arcs di�ers from existing tools in this �eld (e.g.

Design/CPN described in Jensen [71]). A connection (arc) between a processor (or

system) and a channel (or store) is considered to be a subordinate to the processor

(or system) instead of a separate object. This has the advantage that a connection

can be generated implicitly, i.e. the user does not have to bother about drawing a

nice arc between two objects. The shape of the generated arc is such that it does

not cross objects in the system and the length of the arc is as `short' as possible.

Moreover, if we edit a source �le without any graphical information (e.g. a �le

created with a text editor), then the design interface generates a default layout for

each system de�nition in the �le.

Another characteristic of the design interface is the fact that it supports bottom

up and top down design. We can use already existing de�nitions by simply typing

the name of a de�nition. This way the user can build a system de�nition from

other, already existing, system de�nitions (i.e. bottom up). On the other hand,

it is also possible to use system de�nitions (processor de�nitions) which have not

been de�ned yet. By using a non-existing system (processor) de�nition we implicitly

specify its interface. If we start de�ning this subsystem (processor), then we `inherit'

its interface (i.e. input and output channels, etc.) based on the way it was used in

the suprasystem, i.e. the header of the system (processor) de�nition is generated

automatically. This way it is possible to work top down in a very convenient manner.



4.3. THE SOFTWARE PACKAGE 163

4.3.3 The type checker

A source �le, created by either a text editor or the design interface, is checked by a

tool, called the type checker. This tool checks the type correctness and consistency

of the de�nitions in the source �le (also system de�nitions!). Since ExSpect is a

`strong typed' language, all type checking is done statically. All errors which have

been detected are reported in a separate window. If the source �le is correct, then

the type checker produces an object �le (see �gure 4.6).

Every source �le corresponds to a module. To hide unnecessary details, only a

selected set of de�nitions is visible outside the module. These de�nitions can be used

in other modules which import this module. Each module is checked separately, i.e.

type checking is done on a �le-by-�le basis.

4.3.4 The interpreter and the runtime interface

The object �le generated by the type checker can be used to simulate the speci�cation

of a system. Simulation is one of the most powerful techniques to analyse a complex

system. Simulation is easy to use and exible in the sense that its application is

not limited to a restricted class of systems. An important advantage of simulation

is that it helps the experimenter to understand and to gain a feel for the system. In

a way, simulation is similar to the debugging of a program, in the sense that it can

reveal errors of a (simulation) model.

The task of the interpreter is to simulate a speci�cation. The interpreter is connected

to one or more asynchronous user interfaces, called runtime interfaces (see �gure 4.6).

Each runtime interface is implemented as a separate UNIX process. These interfaces

may run on di�erent machines (this is useful for training purposes).

A runtime interface is used to interact with a simulation performed by the inter-

preter. For example, a runtime interface is able to inspect, add or remove tokens

from a channel. All interactions take place via forms. A form has a default layout or

it is user de�ned. This way it is possible to customize the presentation of a running

simulation.

It is also possible to connect other external programs to the interpreter. Such a

program may be used to present the results in a more convenient way or to analyse

some of the data generated by the simulation (e.g. spreadsheets, statistical software).

Unlike many other simulation packages, ExSpect does not support animation. At the

moment, the only way to observe the status of a running simulation, is to inspect

the channels. This suÆces for most simulation purposes, because we are able to

present aggregated results in forms. However, for the debugging of a speci�cation,

animation seems to be more convenient.

4.3.5 The ITPN Analysis Tool

Although simulation is a very powerful analysis method, it has a number of draw-

backs. For example, if the speci�cation contains a lot of non-determinism (e.g. con-
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icts) or has a highly stochastic behaviour, simulation may be expensive in terms

of the computer time necessary to obtain reliable results. Another drawback is the

fact that it is not possible to use simulation to prove that the system has the desired

set of properties. Note that these are the reasons we have developed the analysis

methods described in chapter 3.

However, most of the analysis techniques mentioned in chapter 3 are unworkable

without the aid of an analysis tool. Consider for example a typical reachability

graph, generated by the MTSRT method, with thousands of states. It is impracti-

cable to construct such a graph manually. This is the reason we have developed an

analysis tool, called IAT (ITPN Analysis Tool).

Because of (software) technical reasons, IAT can only analyse ITCPNs whose colour

sets have a cardinality of one. These nets are called interval timed Petri nets

(ITPNs). Fortunately, it is possible to uncolour an ITCPN, see section 3.5.1 and

Odijk [94]. The corresponding uncoloured net can be analysed using the three anal-

ysis methods described in chapter 3. The analysis results generated by IAT can be

interpreted for the ITCPN that corresponds to the ExSpect speci�cation. In princi-

ple it is also possible to re�ne the ITCPN to obtain better results (see section 3.5.2).

At the moment this has to be done manually.

place p1;

place p2;

place p3 init 2;

place p4;

place p5;

trans t1 in p1, p3 out p2[1.,2.];

trans t2 in p2 out p3, p4[0.,0.5];

trans t3 in p4 out p5[1.,5.];

trans t4 in p4 out p5[2.,8.];

Figure 4.7: An IAT source �le

To analyse an ExSpect speci�cation, this speci�cation is automatically translated

into an IAT source �le. This �le contains a list of all the places and transitions in

the net. Consider for example the �le shown in �gure 4.7. This example represents

a computer system that consists of one CPU and two disks. The structure of the

ITCPN for this computer system is given in �gure 4.8. In the �gure we see that

jobs, arriving at the system (p1), visit the CPU unit before they visit one of the

disks. The CPU unit is composed of two parallel processors (initially there are two

tokens in p3). The service time at the CPU is between 1 and 2 seconds. Disk 1 has

an access time between 1 and 5 seconds. Disk 2 has an access time between 2 and
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Figure 4.8: An ITCPN for a computer system

8 seconds. Note that the service time at the disk is independent of the load. After

a visit to one of the disks, the job leaves the system via p5.

At the moment IAT supports four kinds of analysis:

• ATCFN

• MTSRT

• PNRT

• calculation of all minimal support place and transition invariants

To calculate the minimal support invariants, we use the algorithm presented by

Martinez and Silva in [84] and the modi�cations described in Colom and Silva [32].

To give an impression of the functionality of the tool, we give some results produced

by IAT.

For the net shown in �gure 4.8, there are two minimal support place invariants:

p2 + p3 = 2

p1 + p2 + p4 + p5 = 0

There are no minimal support transition invariants.

If we tell IAT to compute results based on the ATCFN method, then the window

depicted in �gure 4.9 appears on the screen. Note that the calculated EAT and

LAT �gures are lower bounds for the actual bounds of the arrival time of the �rst

token, because the net contains a conict (see section 3.2).
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STATIC REPORT:

net id : ex

comments : none

remarks name place nof in trans nof out trans EAT LAT tentative symEAT symLAT init

start p1 , 0 , 0 , 1 , 0.000000 , 0.000000 , 0 , - , - , 0

p2 , 1 , 1 , 1 , 1.000000 , 2.000000 , 0 , t1 , t1 , 0

p3 , 2 , 1 , 1 , 0.000000 , 0.000000 , 0 , - , - , 2

conict p4 , 3 , 1 , 2 , 1.000000 , 2.500000 , 0 , t2 , t2 , 0

end p5 , 4 , 2 , 0 , 2.000000 , 7.500000 , 0 , t3 , t3 , 0

(end of report)

Figure 4.9: Results calculated using the ATCFN method

DYNAMIC REPORT:

net id : ex

initial state : ex

comments : none

from : 1 to : 3

number number of

of available

place tokens tokens 1 2 3

min max min max EAT LAT EAT LAT EAT LAT

p1 0 3 0 2 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000

p2 0 2 0 2 1.000000 2.000000 2.000000 INF INF INF

p3 0 2 0 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

p4 0 3 0 3 1.000000 2.500000 2.000000 INF 2.000000 INF

p5 0 3 0 3 2.000000 10.500000 3.000000 11.500000 3.000000 12.500000

(end of report)

Figure 4.10: Results calculated using the MTSRT method

Figure 4.10 shows a window which contains some results calculated using the MT-

SRT method. This window displays information about the arrival times and bound-

edness given some initial state. There are several ways to calculate the reachability

graph. It is possible to select a suitable `strategy' for this purpose (see Van den

Heuvel [61]). Depending on the net and the chosen strategy, IAT is able to generate

up to 100.000 states in less than a minute (on a SUN SPARC SLC). Experience tells

us that the upper limit of the performance of IAT is more likely to be set by the
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available memory than by the processor speed.

An extensive description of IAT is given in Van den Heuvel [61]. Examples of the

application of IAT are given in Odijk [94] and in [2].

4.4 Engineering the modelling process

Both the ExSpect language and the ExSpect software, support the modelling and

speci�cation of large and complex systems. Although this is true, ExSpect is not a

panacea. For example, the powerful constructs provided by ExSpect can be abused

to produce unreadable speci�cations.

As long as the system to be modelled is small there are no problems. However, the

modelling process becomes problematic when the system is large or complex. The

speci�cation of such a system is often too complex and not transparent enough to

comprehend.

To deal with this problem, we propose the development of domain speci�c libraries

of reusable components. Examples of reusable components are prede�ned generic

system de�nitions, mathematical function de�nitions and typical type de�nitions.

The use of these reusable components instead of ad hoc de�nitions, results in a high-

level speci�cation of the system, i.e. the size and complexity of the speci�cation is

reduced. There are some other advantages. First of all, reusability is a way to

increase the productivity of the modelling process, i.e. it is possible to specify the

system in less time. Secondly, domain speci�c libraries of reusable components can

be used to capture knowledge. When making a reusable component, some domain

knowledge is acquired by the modeller. In a way, this knowledge is stored in the

components. Reusing these components facilitates the di�usion of this knowledge.

A domain speci�c library is composed of a number of modules containing all sorts

of de�nitions. These prede�ned de�nitions are called components or building blocks.

The term `building block' expresses the fact that we are able to combine system

de�nitions graphically. This is also the reason we sometimes use the term toolbox

instead of domain speci�c library.

Basically, there are two ways to reuse these components.

The most easy way to reuse prede�ned components, is to use them without any

modi�cations. Consider for example the use of a library containing standard math-

ematical functions. Another example is the use of prede�ned subsystems like a

`generator', `duplicator' and `absorber'. If present, parameters can be used to cus-

tomize the component. Suitable parameters make a component generic, i.e. it can

be applied in many situations. To use components in this manner, it suÆces to know

the header of the de�nition (i.e. it is not necessary to know the internal structure).

Another way to reuse speci�cations, is to modify parts of already existing compo-

nents. This kind of reuse poses a number of problems. To modify existing de�nitions,

the user needs information about the exact (internal) behaviour of such a compo-

nent. Without a full understanding of the operation of the component, this kind of
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Figure 4.11: The result of domain analysis

reuse is dangerous and likely to cause errors. Therefore, we dissuade this kind of

reuse by novice users.

Our main interest in domain speci�c libraries stems from the realization that reuse

supports and speeds up the modelling process. We aim at a `80=20'-situation, where

80 percent of the components needed are already available in standard libraries and

take up only 20 percent of your time. But the 20 percent you have to create yourself

take up 80 percent of your time. This 80 percent includes the time used to modify

existing components.

Clearly, this is an ambitious goal. We think this situation is feasible in various

domains (supported by a domain speci�c library), because ExSpect has a number

of constructs that allow for the development of highly generic components, which

are easy to use. To motivate this statement, we list some of the constructs which

have been described in section 4.2.

ExSpect supports composition and decomposition by a hierarchy construct, called

system. The system concept o�ers the possibility to use generic building blocks that

can be combined graphically.

The module concept can be used to hide unnecessary details (encapsulation).

Polymorphism by type variables is very powerful, since it allows for the development

of components which are (partially) independent of the actual type of an instantiated

parameter. For example, it is possible to de�ne functions that can be applied to any

kind of set (e.g. the de�nition of union).

Processor and system de�nitions can have several parameters (a system de�nition

can even have processor and system parameters). This way it is possible to develop

highly generic components, which can be customized for a speci�c application.

To develop powerful toolboxes, we have to do some domain analysis. In this mono-

graph we consider domain analysis as an activity prior to the actual modelling of a
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particular system and whose output supports the modelling of any system in this

domain. Domain analysis tries to generalize situations rather than focus on a par-

ticular system. The result of domain analysis is a library which transcends a speci�c

application.

In a way, ExSpect and such a library make up a domain speci�c language. This

way it is possible to create a language which is close to the user's professional

language. Nevertheless, for some application domains this is not suÆcient, because

the complexity of the problem requires a systematic approach. To support the use

of a library in such an application domain, we have to supply a method. This is

expressed in �gure 4.11. Such a method is a collection of rules and guidelines to

support the modelling process in a systematic manner.

A library is formed of a number of modules. Some of these modules are also part of

other libraries. At the moment there are �ve standard modules:

basic elementary mathematical and logical functions, like set insertion, etc.

utils more mathematical and logical functions

stat statistical functions, e.g. a function to generate random numbers

adt operations on abstract data types like arrays, lists and bags

qn components that can be used to model queueing networks

We have used ExSpect to model all sorts of systems: queueing systems, information

systems, protocols, production systems, etc. However, our main interest is in the

�eld of logistics. In chapter 5 we describe a library that has been developed for this

domain. In this chapter we also propose a method to facilitate the modelling of

logistic systems.

To illustrate the use of a domain speci�c library, we sketch the QNM library, which

is composed of only one module: the qn module (see Van der Aalst [3]). Since

the components in this module are self-explanatory for users familiar with queueing

networks, we restrain ourselves from presenting a method.

4.5 A library: QNM

In the last twenty years, queueing networks have become popular in the �eld of

performance analysis of computer systems, communication networks and production

systems. A common feature of all these systems is the fact that there is a limited

resource which must be shared among a number of competing customers that require

service. Examples of typical shared resources are CPUs, memory, I/O devices,

transport aids and machines. Since these resources are limited, customers may have

to wait. These waiting customers form a queue in front of the shared resource. This

is the reason these systems are called queueing systems. In other words: a queueing
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system is a network of queues and servers containing a number of customers (clients)

circulating in the network.

There exist two approaches for the analysis of queueing networks.

The most exible and easy-to-use method is simulation. Simulation can be applied

in many situations and, by nature, it provides the opportunity to model and analyse

systems which are mathematically intractable.

Simulation is not the only way to analyse queueing systems; `pure' queueing sys-

tems also allow for analytical methods. In fact the main reason for which queueing

networks have become so popular is due to the product form solution property that

holds for a fairly large class of queueing networks (see Baskett et al. [13]). Nev-

ertheless, several practically important features, like synchronization, blocking and

the splitting of customers can usually not be modelled in such a way that the model

still has the product form solution (see Ajmone Marsan [83]). For non-product-form

queueing networks there are approximative methods of analysis available, but these

are not generally applicable and require an expert consultant. Therefore, for a more

detailed analysis of queueing systems simulation is practically unavoidable.

We propose a hybrid approach. This approach is based on the Queueing Network

Module (QNM), a library containing one module (qn). This module contains a

number of building blocks, like a generator, a server, a queue, etc. These building

blocks allow for the modelling of a fairly large class of queueing networks, in a

graphical manner. The design interface automatically generates a simulation model

allowing for all sorts of measurements.

Under certain conditions, it is possible to translate such a model into a BCMP

network (see Baskett et al. [13]). Such a network can be analysed using standard

analytical techniques. If these conditions are violated, then the simulation results

are still useful; they can be used to obtain parameters for an approximated BCMP

network or to compare them with the results of an analytical technique.

See [3] for more information about the relation between QNM and BCMP networks.

One can think of QNM as an interface on top of ExSpect. This interface prevents

the user familiar with queueing networks from having to learn a new formalism. It

fully utilizes the features of the language ExSpect such as polymorphism, value and

function parameters, hierarchical modelling and encapsulation.

The qn module contains de�nitions of the following building blocks:

generator The generator component takes care of the generation of new cus-

tomers.

server The server component satis�es the needs or requirements of arriving cus-

tomers. Most servers have a limited capacity, i.e. the number of customers

being served at the same time is restricted.
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queue When a server is too busy to serve incoming customers, these customers

have to wait for their turn. Upon completion of a service, the queue selects the

customer that must be serviced next, according to some queueing discipline.

The queue component takes care of the bu�ering and selection of waiting

customers.

assign Sometimes we want to model one queue in front of a number of (possibly

non-identical) servers. To do this we have to use the assign building block.

selector The selector component takes care of the routing of customers.

assemble The assemble building block is used to synchronize two queues.

term Customers arriving at the term component leave the queueing network.

Each component has its own graphical symbol. Figure 4.12 shows the symbols used

by the design interface to picture a queueing network. A complete description of

these components is given in [3]. In this section we focus on two components: the

server and queue system.

Server

The customers in the network travel from server to server until they leave the system.

At each server they o�er a certain amount of work (the workload) and they wait until

the server has completed the service. One can think of a server as a service point or

a workstation. A server is always connected to a queue (sometimes indirectly via an

assemble and/or an assign system). If the server is free and there are customers

waiting to be processed by this server, then the server system starts serving one

of the customers. The service time is given by a probability distribution which may

depend upon the value of the customer. One can also use the server system to

model a number of identical parallel servers or an in�nite server (i.e. a station with

an in�nite number of servers).

The header of the server system looks as follows:

sys server[

in i:S,

out o:T, sig:signal,

val name:str,

seed:real,

nofservers:num,

fun servicetime[x:S,r:real]:real,

transform[x:S]:T

];

The server system is polymorphic, because S and T are type variables. Input

channel i and output channel o are used to model the arrival and departure of

customers. There is one other output channel, called sig, that is used to inform the
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Figure 4.12: The symbols used by the design interface

preceding queue system (or assign or assemble system) that the server is ready to

process another customer. The output channel sig is of type signal, a prede�ned

type with only one element, also called signal. The value parameter name is used

to specify the name of the server and seed is used to set the random generator. The

number of parallel servers inside the server system can be speci�ed via nofservers,

this value parameter is set to INF to model an in�nite server. The service time of

a customer is given by the function parameter servicetime and may depend upon

the value of the customer (x) and a random number (r). Note that the service time

may be �xed, calculated by an expression or random with a particular probability

distribution. Since a service can change the attributes of a customer, a function

parameter, called transform, is supplied. The input of this function is the value of

the arriving customer (x), the output is the value of the processed customer. Note

that the resulting type of this function and the type of the output channel o have

to `match'.
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Queue

A queue is used to store the customers waiting to be served. The order in which

the customers leave the queue is de�ned by the service discipline, for example

FIFO (�rst-in-�rst-out), LIFO (last-in-�rst-out) or SIRO (select-in-random-order).

A queue system is always followed by a server, assemble or assign system.

sys queue[

in i:T, sig:signal,

out o:T,

val name:str,

seed:real,

fun discipline[n:num,x:T,r:real]:real

];

Input channel i and output channel o are used to model the arrival and departure of

customers in a queue. Note that T is a type variable. The input channel i receives

customers from generator, server and selector systems. There is also an input

channel called sig used by a server, assemble or assign system to send a message

to tell the queue that it is ready to accept new customers. If the queue contains

customers and there is a token in the input channel sig, then a customer is selected

and sent to the server, assemble or assign system. The name of the queue is

speci�ed by a value parameter called name. The function parameter discipline is

used to specify the service discipline, which may depend upon the arrivalnumber (n),

the value of the customer (x) and a random number (r). The function returns a real

value for every queued customer, i.e. discipline assigns a weight to every waiting

customer. The queue always selects the customer with the highest weight to leave

the queue. Note that this way it is possible to specify various service disciplines,

e.g. FIFO, LIFO, SIRO, priority scheduling, etc.

To illustrate the use of the QNM library, we present a small example. In this example

the QNM building blocks are used to model a jobshop producing rolled products.

The jobshop receives iron bars from a blast-furnace plant. These bars are trans-

formed into steel plates using rolling mills to atten the iron bars, and cutting

machines. This transformation process takes a number of steps. The sequence of

operations transforming an iron bar into a �nished product is called a job. Since

the QNM building blocks are polymorphic, we have to specify a type describing the

attributes of a customer. If the user does not want to bother about this, (s)he can

use a prede�ned type, called client (see [3]). In most cases this type is convenient.

However, in this example we de�ne our own type (job):

type product from str;

type operation from str;

type date from real;

type duration from real;
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job

product operation seq. date date

num operation duration

1 'weldingA436' 1.2

2 'weldingB476' 1.6

'AA34234' 3 'cuttingC132' 0.2 11.28 12.5

4 'weldingB462' 2.0

5 'cuttingC773' 0.4

Table 4.1: A value of type job

type job from product >< -- product code

(num -> (operation >< duration)) >< -- operation seq.

date >< -- start date

date; -- due date

A job has four attributes, viz. a product code, a sequence of operations, a start

date and a due date. The product code speci�es the type of product that has to be

produced. The sequence of operations represents the (ordered) set of operations that

have to be performed before the product is ready. For every operation we specify

the estimated processing time. The start date is the date the job has been released.

The due date represents the date the product has to be available. A value of type

job is shown table 4.1.

The jobshop described in this example has two rolling machines, a `two-high rolling

mill' and a `universal rollingmill'. For convenience, we will call these machines A and

B. Every rolling operation is assigned to precisely one rolling mill, i.e. operations are

machine speci�c. There is also one universal cutting machine (machine C). A rolling

operation is always followed by a lubrication operation, performed by machine D.

This machine applies a lubricant to make the product smooth.

Figure 4.13 shows the corresponding queueing network in terms of the QNM building

blocks. Every server system corresponds to a machine. The service time distribu-

tion at a server depends on the type of operation. The selector systems take care of

the routing of jobs. The service discipline of the cutting machine is �rst-in-�rst-out

(FIFO). The two rolling mills have a queueing discipline to minimize the lateness of

jobs. This service discipline is called EarliestDueDate, i.e. jobs with the earliest

due date are selected �rst.

EarliestDueDate[ n : num, x : job, r : real ]

:= - pi2(x) : real;
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Figure 4.13: A jobshop modelled with QNM-ExSpect

Note that jobs are selected in descending order of their due date (pi2(x)). Machine

D uses priority scheduling, jobs are discriminated by the machine they come from.

Products coming from machine A have priority over products coming from machine

B, because they tend to be voluminous. Products coming from the same machine

are serviced in order of their arrival (FIFO).

The graphical representation (�gure 4.13) of the jobshop was created with de de-

sign interface of ExSpect. The structure of the model is de�ned in a completely

graphical way. This only takes a few minutes. To feed the model with parameters

(distributions, queueing disciplines, etc.) also takes a few minutes. Then the model

is ready to be simulated. The runtime interface allows the user to observe a running

simulation. During the simulation the runtime interface reports several measure-

ments (waiting times, queue lengths, etc.). It is also possible to export data to a

statistical package or presentation software.

For an important class of queueing systems we have created a `100/100'-situation,

i.e. all components (100 percent) needed are already available in the qn module,

and therefore, the usage of these components takes up 100 percent of your time.

This class includes queueing systems subject to phenomena such as synchronization,
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blocking and the splitting of customers. Features which cannot be modelled with

the building blocks described in this section, are `preemption' (i.e. a service is

interrupted) and service times depending on the queue length.

The module qn fully exploits the graphical capabilities of ExSpect. Our approach

combines the advantages of a simulation package (focused on a limited �eld of appli-

cations) and a simulation language (exible, but not easy to use). Another advan-

tage is the possibility to create your own building blocks using a hierarchy construct.

This is an important improvement compared to other graphical simulation tools. A

much more detailed description of QNM can be found in [3].



Chapter 5

Modelling logistic systems

5.1 Introduction

Modern organizations are required to o�er a wide variety of products, in less time

than previously and at competitive prices. To meet these requirements such an

organization has to devote a lot of energy to a continuous improvement of its lo-

gistic performance. To improve the overall logistic performance, it is necessary to

investigate how the logistic components contribute to the logistic performance of

the organization as a whole. Clearly, this is a complicated task. In this chapter we

focus on means to support this task. In particular, we investigate which role the

theory, tools and methods described in the previous chapters can play in the area.

Our contribution to the solution of problems related to the modelling and analysis

of complex logistic systems is threefold:

1. An answer to the question: `Why Petri nets?'. To motivate the fact that we

use a Petri net based approach, we will show that, in general, a logistic process

can be represented by a Petri net in a very natural manner (e.g. goods and

capacity resources are represented by tokens, bu�ers, storage space and media

are represented by places, and operations are represented by transitions). We

also show how to model typical logistic processes in terms of timed coloured

Petri nets. Other reasons to use Petri nets are the graphical nature, the

�rm mathematical foundation, the analysis methods and the availability of

computer support. Furthermore, we will compare our approach with more

conventional approaches used to model and/or analyse logistic systems.

2. Another contribution of this research lies in the construction of a `systems

view' of logistics. Based on a taxonomy of the ows in a logistic system,

we describe a systematic approach to the modelling of logistic systems. This

approach is used to structure the �eld of logistics, e.g. we identify typical

control structures.

3. Finally, we have developed an ExSpect library of logistic components, based

on our systems view of logistics. These components are generally applicable

177
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and therefore they can be used in a variety of logistic applications. In a way,

ExSpect and this library make up a domain speci�c language, close to the

user's professional language.

In the previous chapters we discussed concepts, techniques and tools to model and

analyse discrete dynamic systems. Therefore, we restrict ourselves to logistic systems

which are discrete, i.e. the ows of goods, materials, capacity resources, information

and control are composed of identi�able entities.

The approach presented in this chapter is characterized by a number of salient

features.

First of all, our approach provides an integrated perspective for various logistic

ows, i.e. ows of goods, capacity resources, information and control are modelled

using the same concepts. Moreover, we focus on the main logistic functions (e.g.

transport, demand, supply, production and stock holding) in a unifying way. This

is possible, because we restrict ourselves to the functional behaviour of the system

and we ignore aspects like administration, safety, personnel, etc. If convenient, we

also abstract from the physical reality, i.e. we are not interested in the actual layout

of a logistic system, mechanical aspects, communication protocols, etc.

Secondly, our approach is characterized by the fact that during the modelling process

the user is not shackled by the techniques that are going to be used to analyse the

model. Many techniques used in operations research, enforce implicit modelling

decisions, i.e. the problem statement is simpli�ed to allow for analytical solutions.

Furthermore, the analysis techniques to be used depend on the questions that have to

be answered, i.e. sometimes di�erent types of analytical models (solvers) are used

to answer di�erent questions within the same situation. Therefore, in [122] and

[123], Wessels advocates the use of a `solver-independent' medium for the modelling

of the system, e.g. Petri nets. Modelling in terms of timed coloured Petri nets is

characterized by a high degree of freedom. Moreover, timed coloured Petri nets

allow for various kinds of analysis, see chapter 3. Therefore, we can use one model

to analyse the system using di�erent kinds of analysis.

To clarify the problems we are dealing with, we start with a short introduction

to logistics. The rest of this chapter deals with our approach, based on timed

coloured Petri nets, concepts from systems analysis and knowledge from logistics as

an application domain.

5.2 Logistics

This section provides a short introduction to the nature and purpose of logistics,

intended for readers not familiar with logistics.

A logistic process consists of the ow of goods and services and the monitoring

and control of these ows. Typical activities include: transportation, inventory

management, order processing, warehousing, distribution and production. Logistics
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management is concerned with the development of functions to support these activi-

ties. A simpli�ed de�nition of logistics is: \The process of having the right quantity

of the right item in the right place at the right time" (Hutchinson [68]).

The period of the early 1950s through the 1960s represents the takeo� period for

logistic theory and practice. Prior to this time, the �eld was in a state of dormancy

(except for military logistics). Business fragmented their management of the key

logistic activities, i.e. there was no integration of the logistic activities. Some reasons

for the increased interest in logistics are: a squeeze on pro�ts during this period

because of the economic climate and the increased variety in the goods demanded

by the consumers. The recession in the early 1970s stimulated a change in priorities

from the production of products to the service of demand. There was a shift from

a `sellers market' to a `buyers market', which forced companies to o�er a diversity

of products in a swiftly evolving market. Companies were forced to react swiftly

upon changes in the market and to deliver an increasing variety of high-quality

products within tight terms of delivery. To meet these requirements, companies

had to improve the control of their logistic activities. During these years there was

a trend towards the integration of the logistic activities to improve eÆciency and

to reduce costs. This trend still exists and is stimulated by progress in computer

technology allowing for more complex calculations.

Logistics management often has to deal with conicting interests within the same

enterprise. Consider, for example, the stock levels inside a company. The marketing

and production departments like to have high stock levels to be able to sell from

stock and to produce in large batches. The �nancial department, however, likes to

have minimal inventories to reduce interest costs and the costs of loss of inventory

due to deterioration or getting out of date. To avoid sub-optimal solutions the

total cost concept was developed. The total cost concept reects the recognition

that conicting cost patterns should be examined collectively. For example, when

choosing the mode of transportation, the total cost concept would encourage us to

consider the impact of the decision on the �rms inventory.

The two main objectives of logistics management are a reduction of the overall lo-

gistic costs and an improvement of the service provided to the customers of the

�rm. These objectives have to be balanced at optimum (depending on the branch

of industry and the �rm's competitive situation). Therefore, we divide the logistic

performance into the internal logistic performance and the external logistic per-

formance. The external logistic performance is often called the customer service

capability. Elements of customer service are: availability, average delivery time,

deviation of delivery time, exibility and quality. The internal logistic performance

refers to the eÆciency of a logistic system to maintain a certain customer service

level. Elements of the internal logistic performance are: stock levels, number of

transports, number of setups, required supplier performance, average lead time and

handling costs. Note that the internal logistic performance is directly related to the
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Figure 5.1: A schematic view of a logistic chain

total cost of the logistic process.

The logistic performance is often measured using (key) performance indicators. A

performance indicator quanti�es a speci�c aspect of the logistic performance. Ex-

amples of performance indicators are the percentage of deliveries exceeding their

due date, the percentage of backorders and the average stock levels.

We often call the channel with goods ows and information from supplier to con-

sumer the logistic chain. The ow of materials and products in a logistic chain

proceeds through a series of consecutive locations as it moves from origin to the

�nal destination. This ow of goods has to be controlled, logistics management (or

business logistics) takes care of the overall coordination of the logistic chain. For

discussion, logistic operations are divided into three categories: (1) supply logistics,

(2) production logistics and (3) distribution logistics.

The task of supply logistics is to satisfy the needs of an operating system, such

as a manufacturing production line or a warehouse, i.e. it controls the inbound

ow of materials. Supply logistics manages the part of the logistic chain called

supply channel. Typical activities in the supply channel are: acquisition of materials,

materials handling, transportation of supplies to the plant and the maintenance of

the inventories at the plant.

Production logistics controls the ow of semi�nished components, i.e. the ow of

goods between the stages of manufacturing. The objective of production logistics

is to control the goods ow such that the products are produced at the right time

in the right quantity given the operational (capacity) constraints of the production

process.
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Distribution logistics is concerned with the movement of products to the customers.

It deals with the transport, storage and service of goods that need no further pro-

cessing within the �rm. These �nished goods are stored in a central warehouse, a

�eld warehouse or shipped directly to the customer. The main objective of distri-

bution logistics is to provide the availability of the product to the customers as and

when they desire it and at minimal costs. The part of the channel controlled by

distribution logistics is called the distribution channel. Typical decisions are: where

to locate inventories (and how large) and the mode of transportation.

Figure 5.1 shows a logistic chain. Several authors (e.g. Bowersox [24]) use the

terms materials management and physical distribution instead of supply logistics and

distribution logistics respectively. However, these terms are also used to describe

speci�c aspects of logistics management.

Note that the total logistic chain (from raw material to the consumption of end-

products) often stretches out over a number of di�erent enterprises. If we consider a

number of companies at the same time, we talk about interorganizational logistics.

The role of a company depends upon the scope of the logistic chain we want to

consider. From a manufacturers point of view a retailer is a consumer. From a

retailers point of view a customer is a consumer and the manufacturer is a supplier.

The management of the set of logistic processes can be decomposed into a hierarchy.

Figure 5.2 shows a typical control hierarchy for the �eld of logistics. Most authors

distinguish three categories of decisions: (1) strategical decisions, (2) tactical deci-

sions and (3) operational decisions (see Anthony [11]).

Decision making at a strategical level is the process of establishing corporate goals

and organizational objectives. Expanding marketing activities into a new geograph-

ical territory, introducing new products and building plants are typical strategical

decisions. An interesting strategical question in the �eld of physical distribution is:

`Do we need regional warehouses?'. The time span of such a decision is long (several

years) and the impact is high.

Tactical decisions are made to select the methods to achieve organizational objec-

tives. At this level we are concerned with aggregate production rates and aggregate

inventory levels. Examples of tactical decisions are the decision to buy an extra

machine and the construction of the Master Production Schedule (MPS).

Operational decisions are made to control the manufacturing and logistic processes

from day to day. These decisions are at a detailed level and the impact on the

entire logistic chain is low. However, the frequency of these decisions is very high.

Examples are detailed scheduling, dispatching and routing.

Note that each level has a di�erent function and operates on a di�erent time scale.

Time scales may range from years and months to minutes and seconds on the shop

oor. Even within the same level, these time scales may vary considerably.

In this chapter we propose an approach to the modelling and analysis of logistic

systems, based on the concepts introduced in the previous chapters. The total cost
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- marketing planning

- product planning

- facilities location

- production planning

- inventory planning

- transport planning

- production scheduling

- real-time scheduling

- order picking

- routing
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✻

❄

operational

decisions

✻

❄

tactical
decisions

✻

❄

strategical

decisions

Figure 5.2: A control hierarchy

concept and the importance of a good customer service force us to consider the

entire logistic chain. The observation that there are at least three levels of control

(strategical, tactical and operational) shows the need for an integrated framework,

i.e. a framework which is able to deal with logistic problems at various abstraction

levels.

We propose a framework based on a timed coloured Petri net model. This framework

is made up of the software package ExSpect, a logistic library and a method which

provides guidelines for modelling with this library.

5.3 Why Petri nets ?

To realize the objectives, set out in the previous section, we use a framework based

on a timed coloured Petri net model. In this section we will motivate our choice to

use a Petri net based approach. We will show that Petri nets allow for a natural

representation of discrete logistic processes. Note that there are several other reasons

to use Petri nets, e.g. the graphical nature, the �rm mathematical foundation, the
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analysis methods and the availability of computer support. We also discuss some of

the features of ExSpect in the light of logistics.

Logistic systems take care of the ow and storage of raw materials, in-process inven-

tory and �nished goods. Since stored goods can be seen as owing goods with speed

zero, the main objective of logistics is to control the ow of goods. We suppose that

these goods are discrete, i.e. it is possible to identify single products. Examples

of non-discrete logistic systems are the production and transportation via pipelines

of liquids and gasses. In most cases, however, it is possible to model a continuous

process in a discrete way.

Besides the ow of goods, a logistic system comprises a diversity of information ows

(e.g. control ow, orders, requests) and means (e.g. machines, tools, manpower).

Hence, we require a framework which allows for the modelling of these ows in a

unifying way.

A logistic system is distributed over a number of sites. For example: demand,

supply, production and storage often occur at di�erent geographical locations. This

implies that various processes happen at the same time, i.e. in parallel. To model

these processes it is convenient to have a graphical formalism which expresses the

distributed aspect of a logistic system.

Since a logistic system comprises processes happening in parallel, it is necessary to

be able to model synchronization. Synchronization is also induced by assembly (an

operation has to wait for speci�c goods) and control (an operation has to wait for

the proper command), etc.

In the remainder of this section we will show that Petri nets, extended with time

and colour, come up to the requirements just stated.

First of all, Petri nets are well suited to model many di�erent logistic ows in a uni-

fying way. Modelling the ow of goods, means, information, etc., by tokens seems

to be very natural. A place either represents a medium through which something is

sent or some storage space (i.e. a bu�er). The fact that ows are represented graphi-

cally is a very important quality, since it makes the overall structure comprehensible

and supports the communication between people having di�erent backgrounds.

We focus on discrete processes, i.e. products, pieces of information, etc. are iden-

ti�able. Having discrete ows of products implies the existence of operations on

these products. The de�nition of the set of logistic operations depends on the scope

and the level of detail we want to consider. For this purpose, elementary steps are

aggregated into operations. Consider, for example, an assembly process. Elemen-

tary steps in such a process are: `fetch tools', `set-up', `load part1', `load part2',

`move robot arm', etc. In most cases we want to model such a sequence of steps
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as a single operation. Another example is the production in `batches', where all

elementary steps are per piece. In this case we often consider operations de�ned per

batch instead of per piece. These examples learn that the de�nition of an operation

depends on the desired level of detail.

In a logistic process there are all sorts of operations. When modelling, we often

identify the following �ve attributes of a logistic operation:

1. required goods (materials, goods)

2. required capacity resources

3. processing time of an operation (without waiting times)

4. usage pattern of the capacity resources during the operation

5. produced goods

Generally, these attributes capture the essence of a logistic operation. The �ring

mechanism of a Petri net allows for the modelling of an operation in a very elegant

and transparent way. We can think of an operation as a set of events and activities.

Events are represented by transitions. An activity is associated with the �ring of a

transition or with the presence of a token in a place. An event occurs if all input

conditions are met, i.e. each of the input places of a transition contains enough

tokens. In this section, we will show that timed coloured Petri nets are well suited

to model the �ve attributes of a logistic operation.

Petri nets also allow for the modelling of true parallelism and synchronization.

By true parallelism we mean that parallelism is clearly di�erentiated from non-

determinism, as opposed to the interleaving of events. To get an impression of the

modelling capabilities of Petri nets we show some elementary network structures.

Causality

��
��

��
��

✲ ✲

There is a causality relation between the input places and the output places

of a transition. No event may be generated `spontaneously', i.e. without an

input event that directly or indirectly caused it.

Divergence There are two kinds of divergence:

��
��
✲ ✲

❍❍❍❍❥

✟✟
✟✟✯
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A token produced by a transition is assigned to some other transition in a

non-deterministic manner. Only one of the output transitions consumes the

produced token. These transitions (events) are said to be in conict with each

other. This way it is possible to specify a non-deterministic routing.

��
��

✲
��
��
✲

��
��❍❍❍❍❥

��
��

✟✟
✟✟✯

The consumption of a token by some transition results in a number of tokens.

This may be interpreted as breaking up an object into a number of (smaller)

objects. One can think of a disassembly of a product or an operation having

side-e�ects. An alternative interpretation for this net structure is: one condi-

tion implies a number of other conditions. Note that if we use a coloured Petri

net model, the number of tokens produced for each output place may depend

upon the value(s) of the token(s) consumed. For example, this network struc-

ture also matches a `switch' which sends a token in one out of three possible

directions.

Convergence There are also two kinds of convergence:

��
��

✲✲

✟✟
✟✟✯

❍❍❍❍❥

Several events cause the same result, i.e. there are several ways to meet a

condition. This way it is possible to model a converging ow of goods. For

example, a number of production units producing products that are stored in

the same warehouse.

��
��
✲��

��
✲

��
��

✟✟
✟✟✯

��
��

❍❍❍❍❥

This is a synchronization primitive comparable to the join operation in a

computer system. An event occurs if a number of conditions hold. Compare

this with the assembly of a number of components into a product.
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circuit A circuit in a net is a sequence of places and transitions connected to

each other such that the sequence starts and ends in the same place. Such a

construct is often used to model capacity constraints, reusable materials or a

cyclic demand. An example of a capacity constraint is a shared resource, for

instance an operator working on a number of machines.

Circuits play an important role in the modelling of logistic systems.

M

��
��

outgoods
��
��

ingoods
start operation �nish operation

✲ ✲
��
��

busy

✲✲
d1 d2

��
��
•n
free

�
�

�
�✲

✛

Figure 5.3: A machine having a �nite capacity

First of all, they are used to model a �nite capacity. Consider for example the net

shown in �gure 5.3. This net represents a machine (or a set of machines) capable

of handling n jobs at the same time (n is the number of tokens initially in place

free). Delay d1 represents the time a job uses a capacitated resource, delay d2 is

the remaining processing time.

B

��
��

outgoods
��
��

ingoods
store pick

✲ ✲��
��

occupied

✲✲

��
��
•n
free

✟✟✟✟✙ ❍❍
❍❍

d1 d2

��
��

��
��push pop

& %✲ ✛

Figure 5.4: A bounded bu�er

Another example of a resource with a �nite capacity is a bu�er of size n, i.e. a

bounded bu�er (see �gure 5.4). The tokens in place occupied represent the stored

products. The bu�er `releases' a product if there is a token in pop and the bu�er

contains at least one product. To store a product there has to be a token in place

ingoods and in place push, and there has to be enough space in the bu�er. We often

omit the place push to model the property that goods are stored as soon as possible.
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Figure 5.5: A competitive shared resource
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Figure 5.6: A cyclic shared resource

Circuits are also used to model shared resources. Many operations use one or more

shared resources. Examples of shared resources are: an operator working on a

number of machines, loading/unloading facilities and the central computer system.

In fact a machine itself can be seen as a shared resource (shared by the di�erent

products).

A competitive shared resource is a resource shared among a number of processes

which may claim the resource at the same time. For example: machine M1 and

machine M2 compete for a resource, see �gure 5.5. If both machines want the

resource at same time, it is not determined which one wins. It is also possible to

model priorities (i.e. one machine comes before the other) or to model a cyclic shared

resource. Figure 5.6 shows an example of a cyclic shared resource. In this case the

resource is used alternately (round-robin). A disadvantage of such a resource is the

fact that there can be unnecessary waiting.

An interesting example of a competitive shared resource is a bu�er shared by a

number of production lines. In this case the storage space inside the bu�er is a

capacity resource, see �gure 5.7. The bu�er comprises n units of space (initially

there are n tokens in place free). A product of type A requires k1 units of space, a
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Figure 5.7: A shared bu�er
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Figure 5.8: A demand process

product of type B requires k2 units of space ( k1 and k2 denote the multiplicity of

the corresponding arc). A product of type A can only be stored if there is enough

space left, i.e. the number of tokens in free is at least k1.

Finally, we also use circuits to model cyclic processes, for example a demand process.

Figure 5.8 shows such a process. Note a token (i.e. an order) is generated every d

time units.

The concept of multiple input and output arcs is very handy when modelling the

production of batches of products or the assembly of components. Consider, for

example, the assembly machine in �gure 5.9. This machine uses k1 products A and

k2 products B, to assemble k3 products C.
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Figure 5.9: An assembly machine

In the examples we assumed that we have a Petri net model with explicit time, this

allowed us to specify the duration of several operations. Petri nets without time

are un�t for the modelling of logistic processes, because time plays a prominent

part in logistics. For the sake of simplicity, we used deterministic delays. However,

for modelling a real logistic system, we advocate a Petri net model with time in

tokens and delays speci�ed by an interval. In chapter 2, we motivated this choice.

In our opinion, interval timing is useful when modelling a logistic system, because

the precise duration of a logistic operation is often unknown. On the other hand,

we want to guarantee a speci�c logistic performance.

To verify or to estimate logistic performance measures, we need analysis tools. We

provide three kinds of analysis: simulation, structural analysis (invariants) and in-

terval analysis (MTSRT, PNRT, ATCFN), see chapters 3 and 4.

To model `real' logistic systems, we have to use a model with coloured tokens, because

a token often represents an object having a number of meaningful attributes. If a

token represents a product, then it might be useful to model the type of the product,

an identi�cation number, its destination, etc. This is the reason we use a coloured

(high-level) Petri net model. A coloured Petri net model allows the modeller to

make more succinct and manageable descriptions.

When modelling a logistic system with a (timed) coloured Petri net model, we

often have to choose between `putting information in the net structure' and `putting

information in the value of a token'. Putting more information in the net structure

results in a larger and more complex Petri net. Putting more information in the

value of a token results in more complex operations on the value of a token, and

therefore, in a more complex description of the behaviour of some of the transitions

in the net. To model a logistic system in terms of a coloured Petri net, we have to

balance continuously between the complexity of the net structure and the complexity

of the token values.

Consider for example a machine shop with three machines: 1, 2 and 3. The machines

are able to process one kind of operation, e.g. drilling. The time required to process

a drilling operation is variable. However, for each machine we know an upper and
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Figure 5.10: Three parallel machines (1)
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Figure 5.11: Three parallel machines (2)

lower bound for the processing time. We can model this by an ITCPN having

the structure shown in �gure 5.10. Transition t11 (t12) represents the start (end)

of an operation performed by machine 1, transition t21 (t22) represents the start

(end) of an operation performed by machine 2, etc. Initially, there is one token

in place f1 indicating that machine 1 is free, etc. Place p1 represents a bu�er in
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Figure 5.12: Three parallel machines (3)

front of the machines. Assume, it suÆces to model machines by `colourless' tokens,

i.e. we are not interested in attributes representing aspects like wear, maintenance,

disturbances, etc. In this case most of the information about the machines is in the

net structure.

Another way to model the jobshop is shown in �gure 5.11. Transition t1 (t2) rep-

resents the start (end) of an operation performed by one of the three machines.

Initially, there are three tokens in place f indicating that the three machines are

free. To distinguish between the machines these tokens have a value (e.g. 1, 2 and

3).

It is also possible to represent the state of the machine shop by a single token in a

place s, see �gure 5.12. The value of this token represents information about the

three machines.

Finally, it is possible to model the entire system, i.e. the machine shop and its

environment, by the net shown in �gure 5.13. Note that any ITCPN can be replaced

by an equivalent ITCPN which is composed of one place and one transition (like in

�gure 5.13).

For this example, the nets shown in �gure 5.10 and 5.11, seem to be natural. In

general, it is diÆcult to provide guidelines concerning the trade-o� between the

complexity of the net structure and the complexity of the token values.

Note that this issue is related to the re�nement concept. A re�nement of a net

results in a transfer of information from the token values to the net structure. In

section 3.5.2 we discussed the formal relationship between an ITCPN and a re�ned

ITCPN.

Although we have extended our Petri net model with time and colour, modelling a

real logistic system in terms of an ITCPN often results in a net which is too large

to comprehend. This is the reason a hierarchy construct, called system, has been

added to ExSpect (see chapter 4). There are some other powerful features which

have been added to ExSpect: encapsulation, polymorphism, etc.

Clearly, an approach based on a timed coloured Petri net model and supported by a

language (and tools) like ExSpect is suitable for the modelling of large and complex

logistic systems. However, we have to compare our approach with more conventional
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Figure 5.13: Three parallel machines(4)

approaches used to model and/or analyse logistic systems. Alternative formalisms

or tools used in the �eld of logistics are:

data models (ER, relational model)

data ow models (ISAC, SADT, DFD)

analytical models (QN, LP, DP)

simulation languages (SIMULA, SPSS)

speci�c simulation packages (SIMFACTORY, TAYLOR)

Data models are used to describe complex state spaces, for example a database

scheme for an MRP system. Some well-known data models are the entity relation-

ship model (Chen [29]) and the relational model (Ullman [119]). A drawback of

these models is the fact that they only describe the static data aspect of a system,

i.e. they fail to describe the dynamic structure of a system.

There are several informal frameworks to describe data ow, often using graphical

languages. Frequent used frameworks are SADT (Marca and McGowan[79]), ISAC

(Lundeberg et al. [78]) and DFD (Ward and Mellor [121]). Most of these frameworks

also have methods to describe the data structure. The result of using such an

approach is an informal description, that does not allow for quantitative analysis.

Analytical models are mathematical models such as, a queueing model, a linear

programming model, a dynamic programming model, etc. Sometimes, we have to

simplify the problem statement to be able to use these models. Moreover, modelling

a `real' system in terms of such a mathematical model is often quite diÆcult and

requires expert consultation.

We distinguish between two kinds of simulation languages: (1) general purpose pro-

gramming languages and (2) block-oriented languages. Examples of general purpose

programming languages suitable for simulation are: SIMULA (Dahl and Nygaard
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Figure 5.14: ExSpect compared with other tools

[33]) or more conventional languages with libraries of subroutines. Most block ori-

ented languages are based on queueing networks. Examples are SLAM, Q-GERT,

SAINT and SIMAN (see Pidd [103]). These languages are exible and quite fast.

However, they are hard to customize, not user friendly and it takes great e�ort to

implement a model. Note that we speak about implementation rather than speci�-

cation.

Finally, there are speci�c simulation packages. These packages are application spe-

ci�c. Examples are SIMFACTORY and TAYLOR (Pidd [103]). Most of these

packages simulate the internal behaviour of a production unit. These packages are

easy to use and have animation facilities. The fact that they are tailored towards a

speci�c application makes them inexible.

Our claim is that ExSpect combines the advantages of these alternative approaches,

as shown in �gure 5.14. A token in ExSpect can have an arbitrarily complex type.

We are working on the integration of a new data model into our framework (see

Van Hee and Verkoulen [58]). Our system concept and the design interface support

`dataow-like' diagrams. This is very useful in the early modelling phases. Note

that we support hierarchical decomposition, comparable to SADT (Marca and Mc-

Gowan [79]). The module concept allows for the development of domain speci�c

libraries containing generally applicable building blocks. These building blocks tend

to be very generic because of polymorphism and parameterization. The speci�ca-
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tion language is very expressive allowing for special purpose constructs, this way it

is possible to specify parts of the system not covered by standard building blocks.

The tool ExSpect is easy to use because of a mouse oriented interface with `pop-up'

menus. Besides simulation, we also support static type checking and several analysis

techniques (e.g. simulation, invariants, MTSRT, etc.). These analysis methods are

possible, because we use a formal framework which is based on Petri nets (which

have a �rm mathematical foundation).

We think it is also possible to use the ExSpect speci�cation as a starting point

for analysis using mathematical techniques such as, dynamic programming, linear

programming, Markovian analysis, etc. (see Wessels [122] and [123]). To use these

analytical models it is often necessary to restrict ourselves to a limited set of speci�-

cations. Consider for example a speci�cation composed of the queueing components

described in section 4.5. Such a speci�cation may be analysed using analytical tech-

niques developed for queueing networks. Another example is the use of an ExSpect

speci�cation of a distribution network, as input for a linear programming model.

In this case, the ExSpect speci�cation is used as a `blueprint' (i.e. a detailed de-

scription) of the logistic system. Suitable projections of such a blueprint may allow

for analysis using mathematical models. Clearly, the integration of these analytical

models into our framework requires a considerable amount of research.

Additional advantages of ExSpect are the open architecture, the software and the

possibility to connect several runtime interfaces (running on di�erent machines) to

an interpreter, all interacting with the same simulation (ideal for training purposes).

See chapter 4 for more information about the features of ExSpect.

Considering the requirements for a speci�cation language for (discrete) logistics, it

may be concluded that ExSpect is a sensible choice for the modelling and analysis of

logistic systems. However, other Petri net based tools (e.g. CPN [71]) or approaches

based on process algebra (see Biemans and Blonk [20] and Mauw [85]) are worth

considering. See chapter 1 for a discussion on this subject.

5.4 Structuring logistic systems

In the area of logistics many books are available, nearly all of which deal with the

control and design of production, inventory and transport systems. These books

reect the fact that research in the �eld of logistics developed along two separate

lines.

The �rst line concentrates on solving mathematical problems related to logistics.

Investigations in this area are part of a discipline called operations research. The

models used in this discipline are elegant and allow for powerful methods of analysis.

However, it is often diÆcult to model a real system in terms of such an analytical

model. Therefore, the problem statement is often simpli�ed to allow for analytical

solutions. Consider for example the application of queueing networks to scheduling

problems and the application of linear programming to transport planning. Al-
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though these analysis methods help us gain insight in the problem, they can only

be applied in rather speci�c situations or require expert consultation. Moreover,

some of the results reported in this area describe techniques for problems that do

not even exist.

The second line of research concentrates on practical logistic problems. The results

are often qualitative and informal. The approaches used in this area are mainly

discipline oriented, i.e. they focus on a speci�c aspect of logistics. Examples are the

research on customer service, storage equipment, communication facilities (EDI),

personnel requirements, etc.

Both of these lines did not lead to a complete and comprehensive model of logistics.

Recent literature in the �eld of production control stresses the need for a systematic

approach to production planning and control (Bertrand, Wortmann and Wijngaard

[18], Biemans et al. [21], [19]). In [19], Biemans attempts to structure manufac-

turing planning and control using a `reference model', i.e. a representation of an

idealized production organization, de�ning the tasks of the components as well as

the interactions between the components. In [18], Bertrand et al. describe a number

of general concepts for the design of production control systems.

In our opinion, there is also a need for a systematic approach to logistics. The main

reason to structure logistics is the growing complexity of the control problems in

logistics. This complexity is partly caused by the total cost concept, described in

this chapter, which forces us to consider the entire logistic chain. Another reason

for the increased complexity is the progress in information technology allowing for

more sophisticated management systems.

In this chapter we structure the �eld of logistics by making a �rst step towards a

comprehensive `reference model' for logistics (see also [4] and [5]). To realize this,

we use a systematic approach based on concepts from systems analysis (see sec-

tion 4.2.4). Similar approaches have been developed for other application domains,

e.g. in [35], De Leeuw uses a systems approach to structure organization theory.

Our approach is intentionally abstract. Therefore, we focus on the main logistic

functions (e.g. transport, demand, supply, production and stock holding) and ignore

aspects like administration, safety, personnel, etc. Moreover, sometimes we abstract

from the physical reality, i.e. we are not interested in the actual layout of a logistic

system, mechanical aspects, communication protocols, etc.

To structure logistics, we identify and specify typical ows and activities in the

context of logistics. This results in a taxonomy of the logistic ows and a formal

de�nition of a logistic system. This formal de�nition is a �rst step towards a com-

prehensive reference model for logistics. The term `reference model' was introduced

by Biemans in [19] and [21]. A reference model describes a complex system as a

con�guration of interacting subsystems (components) that each execute a speci�c

task. Compared to the reference model for manufacturing planning and control, de-

scribed in Biemans [19], our approach is more formal (and abstract) and addresses

another application domain.
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Figure 5.15: A taxonomy of the ows inside a logistic system

Based on our de�nition of a logistic system, we have developed a logistic library,

that will be described in section 5.5. The prede�ned components in this library are

formal speci�cations of the logistic subsystems identi�ed in this section.

To structure the �eld of logistics we start with a taxonomy of the ows inside a

logistic system. Figure 5.15 shows our taxonomy, the arrows should be interpreted

as `is subtype of'. For example, the ow of goods is a subtype of the ow of resources.

Resources (1) are the physical or abstract objects in a system. We distinguish be-

tween goods (1.1) and means (1.2). Goods are the materials, components and prod-

ucts owing through the logistic chain. In general these goods are physical objects.

Examples of non-physical goods are bank accounts or reservations, we call these

objects abstract objects. The resources needed to create, maintain or distribute

both kinds of goods are called means, e.g. machines, tools, trucks, manpower, etc.

Means are employed, but not consumed like materials. Sometimes we use the term

capacity resources to refer to these means. It is hard to draw a strict dividing line

between goods and means, think for example of a tool in a machine that wears o�

signi�cantly when it is used. In general, means are active and goods are passive

resources.

We use the term information (2) for all other kinds of interaction. Information can
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be characterized by: `all the messages needed to get the right quantity of goods at

the right time at the right place'. Information itself is not an object to pursue. In

most cases information is kept to a minimum. We divide the class of information

ows into four subclasses: master/slave interactions (2.1), client/server interactions

(2.2), reports (2.3) and administrative information (2.4).

Master/slave interactions are the messages exchanged between a control system

(master) and a subordinate system (slave). The master sends commands to the

slave and the slave sends some status information to the master. Essential is the

fact that their relationship is not based on equality. Examples of such interactions

are: (real-time) production control (2.1.1), production planning (2.1.2), inventory

control (2.1.3), inventory planning (2.1.4), transport routing (2.1.5) and transport

planning (2.1.6). For the moment this classi�cation is self-explanatory. Although

our classi�cation of master/slave interactions is not exhaustive, we think it covers

most control interactions encountered in logistics. We will return to this subject in

section 5.5.

Client/server interactions are based on the equality of both parties involved. An

alternative term for client/server interactions is coordination. Coordination is based

on requests and responses instead of commands and status information. The client

sends a request (2.2.1) to a server. Typical requests are: the ordering of goods and

services, inquiries about the charges and the reservation of capacity resources. Note

that placing an order with a supplier is a request rather than a command. A request

is always followed by a response (2.2.2) from the server to the client. There are two

kinds of requests and responses: with and without a `commit'. A request without a

commit means that the client only inquires about some service or goods. Otherwise

(with commit), the request is satis�ed by the server if possible. In this case there is

response with a commit indicating that the server will deliver the requested service

or goods. In all other cases there is a response without a commit. Note that this

classi�cation conforms with the ideas emerging from the �eld of Electronic Data

Interchange (EDI).

Finally, we have the ows of reports and administrative information. These are the

information ows not covered by the ows (2.1) and (2.2). A detailed description of

these ows is beyond the scope of this chapter.

We introduce a graphical convention to denote these ows: ows of resources are

represented by a double arrow and ows of information are represented by single

arrows. To distinguish ows of means from ows of goods, we represent ows of

means by dashed double arrows. Client/server interactions are also represented by

dashed arrows. All other ows of information are represented by an ordinary arrow.

Figure 5.16 shows these graphical notations. This concludes our taxonomy of the

ows inside a logistic system. In section 5.5 we will show how to model these ows

in terms of ExSpect types.

Figure 5.16 shows the general form of a logistic system. The behaviour of a `real'

logistic system is often too complex to comprehend, therefore we propose a top down
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Figure 5.16: A logistic system

approach. This approach deals with the complexity by decomposing the logistic

system into subsystems. Each of these subsystems represents a separate logistic

process with a distinct task in the context of the overall system. It is possible to

repeat this process until the lowest level is reached. At the lowest level there are

three kinds of systems:

• physical elementary systems (PES)

• information elementary systems (IES)

• control systems (CS)

Physical elementary systems (PES) are systems dealing with resources and are con-

trolled by master/slave interactions. Examples of PES are machines, automated

guided vehicles and people doing manual work. Schematically a PES looks as fol-

lows:

PES

✻
❄

✲✲ ✲✲

✻✻
❄❄

This �gure shows a `typical' PES, e.g. it is also possible to have a PES without
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master/slave interactions or a PES which does not exchange means with its envi-

ronment.

Information elementary systems (IES) are systems dealing only with information.

An IES is also controlled by master/slave interactions. Schematically:

IES

✻
❄

✲ ✲

✛ ✛

Examples of IES are demand forecast and order entry systems. An IES is controlled

by some higher authority and communicates with other (information) systems via

requests and responses (client/server interactions).

Elementary systems (PES and IES) are controlled by a control system (CS). A

control system controls subordinate systems via master/slave interactions and is

controlled by master/slave interactions. Examples of CS are: real-time controllers,

MRP-modules and managers. In general an incoming command is translated into a

number of commands for the subordinate systems. Schematically:

CS

✻
❄

❄
✻

❄
✻

❄
✻

Now we can give a recursive de�nition of a logistic system (LS): a logistic system is

an elementary system (PES or IES) or a set of logistic systems controlled by a control

system (CS). Figure 5.17 shows an example of a logistic system. Our de�nition of a

logistic system (LS) is summarized in �gure 5.18. Physical elementary systems and

information elementary systems are logistic systems. A group of logistic systems is

a logistic system. One or more logistic systems controlled by some control system is

also a logistic system. In [50], Van Hee and Somers use a similar recursive de�nition

of a production system.

Our top down approach produces a hierarchy of systems. A logistic system, which

is too complex to comprehend, is decomposed into a number of logistic subsystems.

This decomposition process is repeated until the logistic subsystems are considered

elementary.

The de�nition of a logistic system summarized in �gure 5.18 and the taxonomy
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Figure 5.17: A logistic system

PES = physical elementary system

IES = information elementary system

CS = control system

LS = PES | IES | LS-list | CS,LS-list

Figure 5.18: A recursive de�nition of a logistic system

shown in �gure 5.15 constitute a basis for a reference model for logistics. The

recursive de�nition of a logistic system tells us how to decompose a logistic system

into meaningful subsystems, i.e. decompositions have to meet the criteria stated

in �gure 5.18. Based on these criteria, we �nd relatively independent subsystems

executing a speci�c task and having a typical interaction structure. Expressing the

interaction structure in terms of the ows identi�ed in �gure 5.15, helps us to �nd

characteristic components. Identifying a limited set of characteristic components,

large enough to represent most of the logistic systems encountered in practice, yields

a reference model. The development of a comprehensive reference model for logistics

requires a lot of research and experience with the modelling of many real logistic

systems. We are convinced that this is possible, this is forti�ed by the existence

of an informal reference model for production planning and control presented by

Biemans in [19].

Clearly, the development of such a reference model is beyond the scope of the re-

search reported in this monograph. Instead, we give a short informal description

of the typical logistic activities and control structures encountered in practice. In

section 5.5 we will map the activities and control structures onto components spec-
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i�ed with ExSpect. The result is a logistic library. With this this library we hope

to attain a `80/20'-situation, i.e. a situation where 80 percent of the components

needed are already available in a logistic library and take up only 20 percent of

your time. But the 20 percent you have to create yourself take up 80 percent of

your time. It is obvious, that it is not possible to attain this situation without a

rigorous structuring of logistics. Moreover, the development of a library based on a

comprehensive reference model for logistics, would yield a situation where nearly all

of the components needed are already available (e.g. a `94/15'-situation 1).

5.4.1 Typical logistic activities

As stated, we con�ne ourselves to a short informal description of the typical logistic

activities and control structures. We start with a review of the primary logistic ac-

tivities: (1) demand, (2) supply, (3) transport, (4) transformation and (5) inventory.

The logistic library described in section 5.5 contains a component (building block)

for each of these activities.

Demand

Demand is the trigger for all logistic activities (although demand may be stimu-

lated by marketing). The demand for end-products is generated by a number of

consumers. In our opinion the identity (or de�nition) of a consumer depends upon

the scope of the logistic chain we want to consider. Suppose we have an audio

manufacturing �rm supplying a number of wholesale dealers. Each wholesale dealer

supplies a number of retailers, and �nally, each retailer sells audio equipment to its

customers. Depending on the scope of the logistic chain we want to consider, we

de�ne the wholesale dealers or the retailers or the customers to be the entities that

generate the demand.

The demand (for a speci�c product) is often instable and subject to trends and

seasonal patterns. If there is a frequent ordering of small quantities, we speak about

independent demand. If there are only a few consumers ordering (relatively) large

quantities or there is a strong correlation between the demand for a number of

products, we speak about dependent demand.

It is often useful to classify the products demanded by the consumers into three

classes: A, B and C. Class A contains products having a high demand, class B

represents products having an `average' demand, products in class C are ordered

sporadically. In most situations a small percentage of the products account for a

large percentage of the total demand, i.e. the products in class A represent the main

part of the demand. This classi�cation process is often called ABC-analysis.

194 percent of the components needed are already available in a logistic library and take up

only 15 percent of your time. But the 6 percent you have to create yourself take up 85 percent of

your time.
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Supply

The supply process takes care of the input of raw materials and components into the

logistic chain. The identity of a supplier also depends upon the scope of the logistic

chain we want to consider. The performance of supplier is measured in terms like:

lead time, variations in lead time, product quality, capacity and price.

Transport

Transport is a key factor in today's logistics. We distinguish between two kinds

of transport: internal transport and external transport. Internal transport is the

transport inside a plant or warehouse, external transport moves goods between

plants and warehouses. This distinction is not absolute, for example it is diÆcult to

classify the transport between two production units.

The forklift truck is the most popular transportation aid in internal transport. It

is often used in conjunction with pallets. Next in popularity is the conveyor. Con-

veyor systems are particularly useful for moving items along a �xed route. There

are a number of di�erent conveyor types (wheel, roller or belt) to accommodate

speci�c needs. A relatively new way to transport materials inside a building is the

Automated Guided Vehicle (AGV).

There are �ve basic transportation modes for external transport: rail, highway,

water, pipeline and air. Each transport mode has its own characteristics. For

example, transport via water is slow but cheap for high volumes, transport via

highways is more expensive but faster and more exible. The selection of transport

mode depends upon the products to be transported, required speed, locations and

costs.

Note that from a modelling point of view the transport mode is not important, only

the relevant characteristics matter.

Transformation

A transformation process uses one or more resources to produce one or more (possi-

bly di�erent) resources. One can think of a step in a manufacturing process or the

servicing inside a bank or hospital.

The two main characteristics of a transformation process are the speed and capacity.

Note that a step in a manufacturing process may result in a converging or diverging

ow of goods. For example, an assembly process combines several types of products

into one product.

Remember that we distinguish between two kinds of resources: goods and capacity

resources (means). If a number of transformation systems share a capacity resource,

we speak about a shared resource. Examples of shared resources are: manpower,

machines, etc.

Inventory

Inventories are needed for a number of reasons:
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Production needs Warehousing may be part of the production process because

certain products require a period of aging. For example, painted products

have to dry and cheese has to age.

Coordination of supply and demand If there is a seasonal demand or produc-

tion, then supply and demand have to be coordinated. For example, canned

fruits have a constant demand and a seasonal production. Therefore, compa-

nies producing canned fruits have to stockpile production output in order to

meet the demand during the rest of the year. To guarantee a fast delivery, if

necessary, end-products are stored close to the customer.

Costs Transportation of large volumes is relatively cheap. Production in large

batches reduces the production costs. Therefore, it is sometimes possible to

reduce transportation or production costs by trading them for warehousing

costs.

Inside a production process there are bu�ers to allow machines to continue work-

ing while another machine undergoes maintenance, tool changes, or repairs. The

materials contained by these bu�ers are referred to as in-process inventory.

Inventory ties up capital, uses storage space, deteriorates and sometimes becomes

obsolete. Therefore, the main objective of inventory management is to minimize the

inventory without disturbing the production or distribution process. To conclude,

we mention that there are two alternative interpretations of inventory: `transport

with speed zero' and `transformation in time'.

5.4.2 Typical control structures

We de�ne logistics control as the coordination of the logistic activities to achieve a

speci�c external performance at minimum costs. This coordination is often diÆcult,

because there are conicting objectives. For example, economic objectives are often

in conict with customer service objectives or exibility objectives.

One way to avoid sub-optimal control is to centralize the control function. However,

it is hard to centralize the control of a complex logistic system without a large invest-

ment in information systems. Instead of a centralized approach it is also possible to

create self-contained activities. Using self-contained activities simpli�es the control

function. A hierarchical approach combines the advantages of a centralized control

and self-contained units. The application of a hierarchical approach to production

control is advocated by a number of authors (see Meal [87] and Bertrand at al. [18]).

We distinguish four typical control structures in logistics: (1) local control, (2) push

control, (3) pull control and (4) integral control. We will show that these control

structures �t in the framework described in this section. At the same time, we

illustrate that it is possible to use this framework to express recent developments in

logistics (e.g. JIT, MRP, DRP, BSC, Kanban).
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Figure 5.19: Local control

Local control

A classical approach towards logistics control is the creation of a completely self-

contained units. Such a unit is only driven by the arrival of goods. This situation

is depicted in �gure 5.19. Many intermediate steps in a manufacturing process have

`local control'. An example of such a process is an assembly conveyor.

Push control

A set of successive logistic activities is controlled by `push control', if the �rst activity

is controlled by a master plan and all intermediate activities have a local control (see

�gure 5.20). This master plan is based on demand forecasts and initial inventories.

This kind of control is easy to realize but it su�ers from a number serious drawbacks:

low exibility and large inventories or a poor delivery performance. These drawbacks

are the result of the absence of real-time feedback from the demand. Examples of

`pure' push systems are found in the �eld of continuous production, engineer-to-order

and production-to-stock (driven by forecasts) systems.

LS

CS

✻
❄

LS

CS

✻
❄

LS

CS

✻
❄

✲✲ ✲✲ ✲✲ ✲✲

❄

Figure 5.20: Push control

Pull control

A `pull system' is a system where all activities are triggered by demand (see �g-

ure 5.21). Pull controlled systems are demand driven: a production or supply ac-

tion is issued at the moment a product is requested or inventory is below a given

value. The classical inventory management systems, often referred to as Statistical
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Figure 5.21: Pull control

Inventory Control (SIC) systems, are examples of pull systems. The objective of

these systems is to replenish stocks at the `right moment' in the `right quantity'.

There are basically two ways to determine when to order: (1) order at the moment

the stock falls below a (�xed) minimum level called the order point (B) or (2) check

the inventory periodically, i.e. if stock is below a certain level (s), a replenishment

order is issued. There are two ways to determine the quantity: (1) a �xed quantity

(Q) or (2) a quantity depending on the current operating stock (S). An example of

an (s,S) inventory management system is a system checking the stock at the end of

every month and the order quantity is the di�erence between a prede�ned maximum

level and the current operating stock.

We already mentioned a number of reasons for the existence of inventory. Some of

these reasons are in conict with the Just-In-Time (JIT) philosophy. The goal of

the JIT approach is to reduce inventories (`zero inventory') and waste (`total qual-

ity control') by obtaining or producing, just what is needed, just when it is needed.

Removing excess inventory and inspection forces problems to surface. The JIT ap-

proach tries to solve these problems continuously. The rise of JIT is closely related

to the success of the Japanese industry and the development of the Kanban produc-

tion system. The Kanban system, developed at the Toyota Motor Company, uses a

pull control. This pull control is implemented using two kinds of cards (kanbans):

withdrawal (or transport) kanbans and production kanbans. The withdrawal kanban

shows the quantity of products that the subsequent process should withdraw from

the preceding one. The production kanban shows the quantity that the preceding

process should obtain or produce.

Consider, for example, we have a process A followed by a process B as shown in �g-

ure 5.22. Products ow from process A to process B via a store I. Initially there are

a number of free withdrawal kanbans in B and a number of free production kanbans

in A. Process A produces the products associated with the production kanbans,

attaches the kanbans to these products and stores them in the storage location.

Process B takes a free withdrawal kanban to the storage location (I), withdraws the

required number of products, detaches the production kanban and attaches the with-

drawal kanban. The withdrawal kanban becomes free if the corresponding products

have been used by process B. Note that this way the in-process inventory is limited
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Figure 5.22: A kanban system

by the number of kanbans. The JIT philosophy aims at a continuous reduction of

the number of kanbans by improving the production process. There are a number

of alternative kanban systems, for example, a kanban system with only one type of

cards (kanbans).

The Kanban system of in-process inventory control works particularly well in situ-

ations with small batches and a continuous demand.

Both the JIT approach and the introduction of the Kanban system require set-up

time reductions, improved quality control and employee involvement and exibility.

Note that information processing hardly plays a role.

Integral control
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Figure 5.23: Integral control

The increasing availability of computing power stimulated a more centralized ap-

proach towards logistics control. Such a centralized control is used to integrate the

control of a number of logistic processes. Examples of integral control are: MRP

(Materials Requirements Planning), MRP-II (Manufacturing Resources Planning),

OPT (Optimized Production Technology), BSC (Base Stock Control), DRP (Dis-

tribution Requirements Planning) and DRP-II (Distribution Resources Planning).

Other examples of integral control are found in the �eld of computer aided manu-

facturing (CAM) and exible manufacturing.

Perhaps the most widespread form of integral control is Materials Requirements
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Planning (MRP). MRP produces a production schedule given: (1) the Bill-Of-

Materials (BOM), (2) current inventory, (3) lead times and expected demand for

�nal products (Master Production Schedule). The Bill-Of-Materials (or goes-into

graph) is a graph specifying the required products and materials needed in each

production step. This combined with the production lead times allows MRP to

`explode' the requirements into a production and purchase schedule. The MRP

mechanism has been extended in several ways: safety stocks, minimal batch sizes,

failure rates, etc. A serious drawback of MRP is that it does not take capacity con-

straints into account. This is the main reason for the development of Manufacturing

Resources Planning (MRP-II). MRP-II checks whether it is possible to meet the

Master Production Schedule (MPS) using a rough-cut capacity planning. If there

exist serious capacity bottlenecks, the MPS is repeatedly adapted until the MPS is

feasible. Using the MPS, it is possible to anticipate a future trend and to balance the

load on bottleneck machines. Note that the MPS is no longer a direct translation

of external demand. Figure 5.24 shows the two level control hierarchy of MRP-II.

CS (detailed scheduling)

LS
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✻
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✻
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❄

✻
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❄

✻

✛ IES
❄

✻

✛

Figure 5.24: MRP-II

OPT is an approach based on a scheduling system. The main characteristic of this

approach is the emphasis on the eÆcient use of bottlenecks.

Distribution Requirements Planning (DRP) is a technique to determine when, where

and how to replenish in a distribution network. A typical distribution network con-

trolled by DRP consists of factories, a central warehouse, regional warehouses and

retailers. DRP uses: (1) current inventories at each location, (2) transport and han-

dling times and (3) expected demand at each location, to determine a replenishment

plan. This plan tells how and when products should be moved among the various

locations in the distribution network. DRP applies the MRP principles and tech-

niques to distribution instead of production. Distribution Requirements Planning

is often used in combination with MRP, in this case DRP generates the MPS. It is

also possible to extend DRP to Distribution Resources Planning (DRP-II). DRP-II

checks whether the distribution system can handle the generated plan. If not, the

plan is revised until all capacity constraints are satis�ed.
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Another way to manage inventories is Base Stock Control (BSC). BSC is closely

related to Statistical Inventory Control. In a BSC system all warehouses are aware

of the actual demand and the stock levels of the warehouses `downstream'. In

case of a central warehouse supplying a number of regional warehouses, the central

warehouse knows the actual demand and the stock levels of the regional warehouses.

BSC reduces the total inventory in the distribution system and is not subject to

shock waves of unexpected demand.

CS
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Figure 5.25: A Flexible Manufacturing System (FMS)

Inside a production unit or warehouse there are all sorts of integral control. Think for

example of the scheduling of a jobshop or a Flexible Manufacturing System (FMS).

An FMS is formed of a set of exible machines, an automatic transport system and a

sophisticated control system to decide at each instant what has to be done on which

machine. Figure 5.25 shows a schematic view of an FMS, the subsystem named T

represents the transport system, the subsystems named M represent the machine

cells. Note that a product follows a route which is not restricted by the physical

layout of the shop oor.

This completes our brief review of existing control techniques in logistics. For

more information on production control, the reader is referred to Biemans [19],

[21], Bertrand et al. [18], Fogarty and Ho�mann [42]. Although many of the con-

cepts for production control apply to logistics control, the management of inventories

and transport requires some more attention. Therefore, we focus on the location of

inventory and typical distribution structures in a logistic system.

A way to characterize a logistic system is to identify the location of inventories. In

the �eld of production logistics we see three typical structures: (1) make-to-order,

(2) assemble-to-order and (3) make-to-stock. In a make-to-order situation, the pro-

duction of a product starts at the moment an actual demand occurs. In this case

there is no inventory of �nished and semi-�nished products. In a make-to-stock sit-

uation, demand for �nished products is suÆciently large to allow for production in
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Figure 5.26: A typical distribution structure

advance of actual demand. Assemble-to-order means that subassemblies are manu-

factured in advance and the assembly of end-products starts on the basis of actual

demand.

These three situations can be de�ned in terms of the location of the so-called decou-

pling points. A decoupling point holds inventory to decouple demand from produc-

tion or supply. This inventory is replenished by a planned production or delivery.

Products are withdrawn from this inventory on the basis of actual demand. For

example, a make-to-stock situation is characterized by a customer order decoupling

point, which is near the customer and holds end-products.

In the �eld of physical distribution there are three typical structures: (1) direct

delivery, (2) a central warehouse and (3) regional warehouses. In the direct deliv-

ery distribution structure, products are supplied directly to the customers without

holding inventories in separate warehouses. Sometimes a number of factories supply

a central warehouse. This central warehouse supplies the customers. To provide

a speci�ed level of customer service these distribution structures utilize high-speed

transport. Another possibility is to create a number of regional warehouses close

to the customers. Figure 5.26 shows a distribution structure with one central ware-

house and a number of regional warehouses. The ow of goods is represented by

double arrows, the ow of information is represented by single arrows. Note, that
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Figure 5.27: The proposed logistic framework

this �gure does not specify what kind of information (master/slave interactions,

client/server interactions, reports or administrative information) is exchanged be-

tween the various locations.

For more information on logistics control we refer to Bowersox [24], Fogarty and

Ho�mann [42].

5.5 A logistic library

Based on the approach described in the previous section, we have developed a small

logistic library. This library contains a number of generally applicable logistic com-

ponents.

In section 4.4 we discussed the purpose of such a domain speci�c library. The two

main reasons to develop a logistic library are:

• a logistic library facilitates and speeds up the modelling process

• a logistic library can be used to capture and distribute logistic knowledge

However, for the logistic application domain, a logistic library is not suÆcient. To

support the use of the library, we have to supply a method. This method tells

you, how to use the logistic components (see �gure 5.27). We have developed a

rather simple method based on the approach described in the previous section. This

method is outlined in section 5.6.

Basically, our logistic library consists of two parts: (1) a number of type de�nitions

to model the ows of resources and information, and (2) a number of generic system

de�nitions to model typical logistic activities. The type de�nitions are based on the

taxonomy shown in �gure 5.15. Because of the graphical nature of ExSpect, we use

the term `component' or `building block' to denote a prede�ned system de�nition.
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We have used the de�nition of a logistic system shown in �gure 5.18, to identify

useful components. This implies that a component is: (1) a physical elementary

system, (2) an information elementary system, (3) a control system, (4) a system

composed of a set of relatively independent logistic components, or (5) a system

composed of a set of logistic components controlled by a control system.

The usefulness of the logistic library highly depends upon the utility of the individual

components. A building block (component) is considered to be useful if it is:

• easy to use

• powerful

• exible

• robust

A component is easy to use, if it is easy to understand its semantics and there is

a straightforward relation with the world we want to model. This is only possible

if the component represents a typical logistic activity with a relatively independent

task. The modelling power of a library depends on: (1) the expressive power of

the building blocks (is it possible to model something?) and (2) the average size of

a model in terms of the building blocks. Note that it is possible to have building

blocks allowing for the modelling of a large class of systems, but in a roundabout

way. Compare this to programming in assembler, it is possible to program any-

thing, but it takes a lot of e�ort. The exibility of a component also depends on

two aspects: (1) is it easy to adapt the component and (2) are the important char-

acteristics of a component parameterized. Parameterized building blocks are useful,

because they can be tailored for a speci�c situation, i.e. parameterization is used

to make a component generally applicable so that it can be used in a wide variety

of applications. Finally, a building block has to be robust in the sense that it can

handle various inputs, i.e. the number of assumptions about the environment of the

component has to be as small as possible.

Besides the usefulness of the individual components, the conceptual integrity of the

library is important. This means that it has to be possible to compose components

into a system having a `natural' structure.

The logistic library described in the rest of this chapter tries to maximize the �ve

objectives: easy to use, powerful, exible, robust and conceptual integrity. Note

that some of these objectives may be contradictory. Our goal is not to present an

exhaustive list of logistic components covering all situations encountered in logistics,

but to show that it is possible to create a comprehensive set of generic logistic

building blocks. Our aim is to capture logistic knowledge in this library and to

validate the `80/20-situation' described in the previous section.

The library we propose is hierarchical, i.e. some of the building blocks are composed
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type id from num;

type location from str;

type prod from str;

type operation from str;

type capacity from real;

type timewindow from real >< real;

type commit from bool;

type conditions from real;

type age from real;

type material from prod -> real;

type task from operation >< capacity;

type route from (num -> (location >< $task)) >< num;

Table 5.1: Some basic type de�nitions

of other building blocks. ExSpect supports the user of this library in making his

own building blocks from already existing ones. This way the user is enabled to

make complex hierarchical models with a lot of levels. Therefore, we provide some

guidelines: (1) the number of levels in the hierarchy (visible to the user) should be

smaller than 6, (2) the number of di�erent building blocks at the same level (in a

subsystem) should be smaller than 10. In other words: avoid a shallow or extremely

deep hierarchy. Note that these �gures are only guidelines, they depend on the

system to be modelled.

5.5.1 The type de�nitions

In section 5.4 we presented a taxonomy of the ows inside a logistic system. We will

use this to classify the type de�nitions used by the logistic building blocks. A list

of basic type de�nitions is given in table 5.1.

The type material is a mapping from products (prod) to reals representing the

quantity of each product. The type timewindow is used to denote an interval of

time. Another interesting type is the type route. A route is a list of pairs and a

pointer pointing to a pair in the list. Each pair is formed of a location and a set

of tasks. The pointer is used to identify the current location and the tasks to be

executed at this location. Note that the list is implemented as a mapping from num

to location >< $task. Table 5.2 shows a value of type route.

We have de�ned some standard functions for this type:
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route

num location $ task num

operation capacity

1 'EindhovenDC'

2 'ParisPU8' 'drillingFA8' 2.55

'grindingDR7' 1.08

'grindingRT6' 1.29 2

3 'LyonPU9' 'paintHG9' 4.93

'polishIR7' 0.08

4 'MadridDC'

Table 5.2: A value of type route
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{ 1.1

type goods from id >< route >< material;

{ 1.2

type means from id >< (operation -> capacity) >< age;

{ 2.1.1

type realtimeprodcommand from material >< means >< task >< material;

type realtimeprodsignal from material >< $means;

{ 2.1.2

type aggprodcommand from prod -> ((timewindow -> real) >< conditions);

type aggprodsignal from (prod >< timewindow) -> real;

{ 2.1.3

type delivercommand from goods;

type receivesignal from goods;

type stocklevel from material;

type acceptedorder from goods >< timewindow;

type replenishcommand from (prod >< timewindow) -> real;

type replenishsignal from material;

type ordervolume from ((prod >< timewindow) -> real) >< (material);

type orderlimit from prod ->((timewindow -> real) >< conditions);

{ 2.1.4

type replenishmentstrategy from prod -> (str >< real >< real >< real);

type inventorylevels from prod -> (real >< real >< real);

{ 2.1.5

type routecommand from (num -> (location >< $goods >< $goods)) >< means;

type routesignal from means >< location;

type availabletranscap from timewindow -> (operation ->

(capacity >< conditions));

type acceptedtransorder from goods;

{ 2.1.6

type transportstrategy from str >< real >< real >< real;

type transportperformance from real >< real >< real;

{ 2.2

type request from id >< route >< material >< timewindow ><

conditions >< commit;

type response from id >< route >< material >< timewindow ><

conditions >< commit;

{ 2.3

type report from str;

{ 2.4

type admin from str;

{ internal types

type billofmaterial from prod -> (material >< task);

Table 5.3: Some logistic type de�nitions
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export current[ x : route ] :=

pi1(x).pi2(x)

: location >< $task;

export atend[ x : route ] :=

all([i : dom(pi1(x)) | i <= pi2(x) ])

: bool;

export atstart[ x : route ] :=

all([i : dom(pi1(x)) | i >= pi2(x) ])

: bool;

export next[ x : route ] :=

pi1(x).min(set([i : dom(pi1(x)) | i > pi2(x)]))

: location >< $task;

export prev[ x : route ] :=

pi1(x).max(set([i : dom(pi1(x)) | i < pi2(x)]))

: location >< $task;

All other types de�nition in table 5.1 are self-explanatory.

Table 5.3 shows some other type de�nitions, each corresponding to a speci�c kind of

ow in a logistic system. The ow of goods is represented by the type goods. Goods

owing through the network have an identi�cation, some routing information and

some materials associated with it. Examples of objects of type goods are: a truck

load, a pallet, a parcel or a single product. Table 5.4 shows a value of type goods

representing a set of parts, needed to produce a car with identi�cation 897654. Note

that currently the parts are located in Paris, where they have to be assembled.

Objects of type means have an identi�cation, an age and a capacity for each kind of

operation the object can perform. This type is used to specify capacity resources,

such as machines, trucks, etc.

Client/server interactions are represented by objects of the type request and re-

sponse. A request has an identi�cation, a route, a contents (material), a time

window, a condition and a commit �eld. The usual interpretation of a request is:

`can you deliver me some materials within a time window, given some conditions'. If

the commit �eld is `true', then the request is automatically satis�ed if possible. The

conditions �eld is used to specify the requested conditions, for example maximal

price or minimal quality. In all cases a request is followed by a response having the

same identi�cation.

The other types (mainly master/slave interactions) will be discussed when we de-

scribe the corresponding building blocks. Note that we chose `the easy way out' to

model reports and administrative information.
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goods

id route material

num location $ task num prod real

operation capacity

1 'EindhovenDC' 'chassisX19' 1

2 'ParisPU8' 'drillingFA8' 2.55 'wheelT45' 4

'grindingDR7' 1.08 'engineFM11' 1

897654 'assembleRT6' 1.29 2

3 'LyonPU9' 'paintHG9' 4.93

'polishIR7' 0.08

4 'MadridDC'

Table 5.4: A value of type goods

5.5.2 The supply system

The �rst building block we are going to describe is the supply system. The supply

system is used to represent one or more suppliers taking care of the input of raw

material and components into the logistic chain. Note that a supply system (partly)

de�nes the scope of the logistic chain we want to consider (i.e. the system boundary),

because in our library a supply system is the `source' of materials. The header of

the supply system is shown below:

sys supply[in request:request,

out response:response, outgoods:goods,

val location:location,

expectedhandlingtime:real,

acceptrule:(prod->((real><real)><conditions)),

averagesupplydelay:(real><(prod->(real><real))),

variancesupplydelay:real,

fun supplydelay[mu:real,sigma:real,r:real]:real

]

The system has one input pin (request) to accept requests for material. There

are two output pins: one to respond (response) and one to deliver the goods

(outgoods). Note that we use the term `pin' to refer to an input or output channel

(place) of the system. The value parameters are used to specify the (unique) loca-

tion of the supply system, the average expected order lead time, some acceptance

rules and the supply delay. The average supply delay is a �xed value per delivery,

and for each product a �xed delay and a variable delay per item, as speci�ed by

averagesupplydelay. The variance of the distribution of the supply delay is given

by variancesupplydelay. The distribution of the supply delay is speci�ed by a
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function parameter supplydelay. The arguments of this function are the average

and variance (calculated using the value parameters) and a random number. This

way it is possible to specify any kind of distribution. A request for goods is accepted

if the requested material is available in the period speci�ed by the timewindow �eld

in the request. The value parameter acceptrule speci�es for each product, the

period length, the maximum quantity available in each period and the supply con-

ditions.

outgoodsoutgoods
oo

responseresponse
oo

requestrequest
ii

goodssourcegoodssource

supplycontrolsupplycontrol

aoaoolol

dcdc

acceptordersacceptorders

Figure 5.28: The supply system

If we zoom in, we see that a supply system consists of three subsystems, see �g-

ure 5.28.

The goodssource system takes care of the actual production (or a substitute) and

the delivery of the materials requested. The header of this system is given below:

sys goodssource[in dc:delivercommand,

out outgoods:goods,

val averagesupplydelay:(real><(prod->(real><real))),

variancesupplydelay:real,
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fun supplydelay[mu:real,sigma:real,r:real]:real

]

Note that the delay distribution of a delivery is speci�ed by the value and function

parameters that have been discussed for the supply system.

The subsystem acceptorders handles the requests for materials:

sys acceptorders[in ol:orderlimit, request:request,

out response:response, ao:acceptedorder,

val location:location,

expectedhandlingtime:real

]

A request has an identi�cation, a route, a list of material, a time window, a condi-

tion and a commit �eld. If the commit �eld is `false', then the request is an inquiry

without any obligations. However, if the commit �eld is `true', then the request will

be satis�ed if possible and the requesting party is obliged to accept the correspond-

ing material (or service). In both cases a response will follow having the same kind

of attributes. If the commit �eld of the response is `true', then the material will be

delivered, in all likelihood within the timewindow, given the conditions requested.

Note that such a response is only possible if the commit �eld in the request was `true'

and there are suÆcient resources to satisfy the request. To estimate the orderlead-

time, the acceptorders system uses the value parameter expectedhandlingtime.

The input pin ol of type orderlimit speci�es the ordervolume that can be accepted

for each period satisfying some minimal conditions.

The physical elementary system (PES) goodssource and the information handling

elementary system (IES) acceptorders are both controlled by the control system

(CS) supplycontrol:

sys supplycontrol[in ao:acceptedorder,

out ol:orderlimit, dc:delivercommand,

val acceptrule:(prod->((real><real)><conditions))

]

The value parameter acceptrule speci�es for each product the conditions (for ex-

ample the quality or price of the product) and the maximum quantity that can

be delivered in each period (the other �eld of type real is used to denote the

length of the time interval). This value parameter is used to produce tokens of type

orderlimit to inform the acceptorders system about the maximal quantity that
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can be supplied.

5.5.3 The demand system

The demand for end-products is generated by a demand system. This system is a

building block used to represent a class of customers. In a way the demand system is

the complement of the supply system. This component de�nes the other end of the

logistic chain we want to consider, because it is a `sink' absorbing �nished products.

The header of the demand system is shown below:

sys demand[in response:response, ingoods:goods,

out request:request,

val location:location,

suppliertable:(prod->((location->num)><conditions)),

expectedorderleadtime:real,

demand:(prod->((real><real)><(real><real))),

requestedleadtime:real,

fun interarrivaltime[mu:real,sigma:real,r:real,t:real]:real,

orderquantity[mu:real,sigma:real,r:real,t:real]:real

]

There is one output pin to order goods (request), and two input pins, one to

receive goods (ingoods) and one to be informed about the requests (response).

The location of the demand system is speci�ed by the location parameter. The

parameter suppliertable is used to determine where to order a speci�c prod-

uct. The demand process is speci�ed by the value parameter demand and the

function parameters interarrivaltime and orderquantity. For each product

demand speci�es the average and variance of the interarrival time (the time be-

tween two successive requests for the product) and the average and variance of

the orderquantity. These �gures are used to calculate actual interarrival time and

orderquantity using the functions interarrivaltime and orderquantity respec-

tively. Both may depend on a random number (r) and the current time (t). This

way it is possible to model stochastic distributions and seasonal trends. The param-

eter expectedorderleadtime is the expected time it takes to deliver a requested

product. The parameter requestedleadtime is the maximal time between the mo-

ment the demand exists and the moment a demand is satis�ed. Figure 5.29 shows

the internal structure of the demand system.

The system goodssink accepts goods for the demand system and reports every

delivery to the demand system via the output pin rs:

sys goodssink[in ingoods:goods,

out rs:receivesignal,

val location:location



220 CHAPTER 5. MODELLING LOGISTIC SYSTEMS

requestrequest
oo

ingoodsingoods
ii

responseresponse
ii

demandcontroldemandcontrol

goodssinkgoodssink

rsrs

rcrc

procurementprocurement

Figure 5.29: The demand system

]

The demandcontrol system generates the demand for products using the param-

eters demand, interarrivaltime and orderquantity. This results in a `replen-

ishment command'. The timewindow associated with the demand starts at the

generated demand time and ends some time later, as de�ned by the parameter

requestedleadtime.

sys demandcontrol[in rs:receivesignal,

out rc:replenishcommand,

val location:location,

demand:(prod->((real><real)><(real><real))),

requestedleadtime:real,

fun interarrivaltime[mu:real,sigma:real,

r:real,t:real]:real,

orderquantity[mu:real,sigma:real,

r:real,t:real]:real

]
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The procurement system has one output pin to order goods (request) and two

input pins: one to receive information about a request (response) and one to accept

replenishment commands (rc).

sys procurement[in rc:replenishcommand, response:response,

out request:request,

val location:location,

suppliertable:(prod->((location->num)><conditions)),

expectedorderleadtime:real

]

A replenishment command is a table specifying the demand for each product in

a certain period. The procurement system tries to order these products using a

strategy de�ned by the value parameter suppliertable. This table speci�es for

each product the minimal conditions (for example price or quality) the product

has to satisfy and a preference list of suppliers (location->num). Note that in

this context a supplier is a location able to deliver some products, for example a

production unit, a distribution center or a supplier in a narrower sense (the supply

component). The procurement system tries to order a product at the location with

the highest preference. If there are several locations with the same preference, then

an inquiry is done to �nd the best supplier (the commit �eld is `false'). Otherwise,

the inquiry is skipped and an order is sent to the supplier (the commit �eld is `true').

If this �rst attempt does not give a supplier able to deliver the goods within the

time window under the speci�ed conditions, then the suppliers with the second best

preference are consulted, etc. The value parameter expectedorderleadtime is used

to time the requests.

5.5.4 The production unit

The pu system takes care of the transformation of products. One can think of a

machine or a production unit. The header of the pu system is:

sys pu[in incommand:aggprodcommand, requestin:request,

responsein:response, ingoods:goods,

out outstatus:aggprodsignal, responseout:response,

requestout:request, outgoods:goods,

val bom:billofmaterial,

reporttime:real,

location:location,

suppliertable:(prod->((location->num)><conditions)),

expectedorderleadtime:real,

expectedhandlingtime:real,

initmeans:$means,

fun producefunction[demand:(prod><timewindow)->real,
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maxprodlevel:(prod><timewindow)->real,

inprocessinv:material,

freemeans:$means,

busymeans:(means->(real><material)),

bom:billofmaterial,

time:real

]:($realtimecommand><$replenishcommand)

]

The input pin ingoods and the output pin outgoods represent the ow of goods

between the production unit and its environment. If a production unit is unable

to produce some material (for example raw materials), it tries to order these using

the requestout and responsein pins. The actual demand for products is handled

using the requestin and responseout pins. The pins incommand and outstatus

are used to interact with some higher authority at the level of aggregated produc-

tion plans. The time between two reports to this higher authority is speci�ed by

the value parameter reporttime. It is obvious that a production unit has a loca-

tion (location), a list of suppliers (suppliertable) and a bill of material (bom).

Furthermore, a production unit has a number a resources (initmeans). For the pu

system we assume that the number of resources is constant, it is easy to extend this

to a variable number of resources. The internal structure of the pu system is shown

in �gure 5.30.

One of the subsystems is the following physical elementary system:

sys transformer[in pc:realtimeprodcommand, ingoods:goods,

dc:delivercommand,

out ps:realtimeprodsignal, outgoods:goods,

val location:location,

initmeans:$means

]

This system receives commands of the type:

type realtimeprodcommand from material >< means >< task >< material;

Such a command speci�es a transformation process transforming some material into

some other material by executing a task using some means. The transformer

system also accepts goods arriving via the input pin ingoods. Finished goods leave

the system via outgoods. The release of �nished products is initiated by a `deliver

command' via the input pin dc. If a task has been executed, this is reported via the

output pin ps.

The realtimecontroller system controls the procurement, acceptorders and the
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Figure 5.30: The production unit

transformer system:

sys realtimecontroller[in incommand:aggprodcommand,

ps:realtimeprodsignal,

oa:acceptedorder,

out outstatus:aggprodsignal,

pc:realtimeprodcommand,

rc:replenishcommand, ol:orderlimit,

dc:delivercommand

val bom:billofmaterial,

reporttime:real,

fun producefunction[

demand:(prod><timewindow)->real,

maxprodlevel:(prod><timewindow)->real,

inprocessinv:material,

freemeans:$means,

busymeans:(means->(real><material)),

bom:billofmaterial,

time:real

]:($realtimecommand ><

$replenishcommand)

]
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billofmaterial

prod material task

prod real operation capacity

'�nishedcarMB2' 'carMB2' 1. 'paintCS3' 0.2345

'carMB2' 'wheelF3' 4. 'assemble' 7.6435

'chassisG1' 1.

'bikeFX3' 'wheelH2' 2. 'assemble' 5.3645

'chassisP1' 1.

Table 5.5: A value of type billofmaterial

The controller receives commands via the input pin incommand of type:

type aggprodcommand from prod -> ((timewindow -> real) >< conditions);

This command speci�es the maximum production levels for each period. The value

parameter reporttime speci�es the time between two successive reports. The be-

haviour of the realtimecontroller system is mainly speci�ed by the function

parameter producefunction. The demand parameter of this function represents

the actual demand for each period, maxprodlevel gives the (maximum) produc-

tion levels set by some higher authority, inprocessinv is the inprocess inventory,

freemeans are the means ready to perform a task. The parameter busymeans rep-

resents the means that are performing a task, their expected termination time and

the expected yield (material). The parameter bom speci�es all production steps

and is of type:

type billofmaterial from prod -> (material >< task);

Table 5.5 shows an example of such parameter.

If a product is not in the domain of the mapping, then it has to be ordered, i.e. the

realtimecontroller system sends a `replenishment command' to the procurement

system. Note that the producefunction returns zero or more commands for both

the transformer system and the procurement system. Using this function parame-

ter it is possible to implement many production control methods (for example MRP).

The realtimecontroller also controls the acceptorders system, it speci�es the

maximum ordervolume that can be accepted for each period.

The building block pu distinguishes between aggregate production planning and de-

tailed (real-time) production control. Inside the production unit jobs are scheduled

for a speci�c machine (means), the outside world is not aware of the existence of
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machines. The same holds for the intermediate products needed to produce an end-

product, for example sub-assemblies. The products controlled by the outside world

are the so-called goods ow controlled items (see Bertrand et al. [18]). Typical prod-

ucts to be controlled outside the pu system (i.e. via incommand and outstatus) are

the MPS-items.

5.5.5 The stock point

In this section we describe a number of building blocks to model inventories. We

start with the sp system, where sp stands for stock point. Examples of stock points

are a regional warehouse, a distribution centre or a storage area containing supplies

and raw materials. The main characteristic of our stock point is that it has a more

or less autonomous behaviour. The header of the sp system is:

sys sp[in incommand:replenishmentstrategy, responsein:response,

ingoods:goods, requestin:request,

out outstatus:inventorylevels, requestout:request,

outgoods:goods, responseout:response,

val reporttime:real,

location:location,

suppliertable:(prod->((location->num)><conditions)),

expectedorderleadtime:real,

expectedhandlingtime:real,

fun replenish[s:replenishmentstrategy,physicalstock:material,

demand:((prod><timewindow)->real),

ordered:((prod><timewindow)->real)

]:replenishcommand,

orderlimit[s:replenishmentstrategy,physicalstock:material,

demand:((prod><timewindow)->real),

ordered:((prod><timewindow)->real)

]:orderlimit,

handleintime[x:material]:real,

handleouttime[x:material]:real

]

There are four input pins and four output pins. The pins ingoods and outgoods

represent the ow of goods in and out of the stock point. If some external party

needs some products, it sends a request to the stock point via the channel connected

to requestin. The stock point responds via responseout. The main objective of a

stock point is to keep inventories of certain products, if the inventory level of a prod-

uct falls below a certain level or we want to anticipate on future developments, then

a replenishment is needed. To order the products necessary for such a replenishment,

we have the pins requestout and responsein. The replenishment strategy can be

altered by some `higher' authority via the incommand and outstatus pins. The
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meaning of the value and function parameters will be discussed when we describe

the subsystems of sp shown in �gure 5.31.
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requestoutrequestout
oo

outstatusoutstatus
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requestinrequestin
ii

ingoodsingoods
ii

responseinresponsein
ii

incommandincommand
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ovovolol
rsrsrcrc

gg
distributedistributereplenishreplenish

stockcontrolstockcontrol

Figure 5.31: The stock point

The system stockcontrol controls the other two logistic subsystems replenish

and distribute:

sys stockcontrol[in incommand:replenishmentstrategy,

rs:replenishsignal,

ov:ordervolume,

out outstatus:inventorylevels,

rc:replenishcommand,

ol:orderlimit,

val reporttime:real,

fun replenish[s:replenishmentstrategy,

physicalstock:material,

demand:((prod><timewindow)->real),

ordered:((prod><timewindow)->real)

]:replenishcommand,

orderlimit[s:replenishmentstrategy,

physicalstock:material,

demand:((prod><timewindow)->real),

ordered:((prod><timewindow)->real)
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]:orderlimit

];

This system has an interface with some higher authority which tells the system

to change its replenishment strategy. This strategy is de�ned for each product,

see table 5.3. A strategy has a name and a number of parameters. Based on

this strategy and the function parameter replenish the system issues replenish-

ment commands via output pin rc. The parameters of the function replenish

are the strategy (s), the current stock (physicalstock), the backorders and ex-

pected demand (demand) and the products already ordered (ordered). The input

pin rs keeps the stockcontrol system informed about the (physical) replenish-

ments. The output pin ol of type orderlimit is used to pass the upper bounds

for the quantity of distributed goods in each period to the distribute system.

Note that these maximum order quantities are calculated using the function param-

eter orderlimit. The parameters of this function are identical to the parameters

of the replenish function. The input pin ov keeps the stockcontrol system in-

formed about the physical stock (material) and the actual demand for products

((prod><timewindow)->real). From time to time the system reports the phys-

ical stock level, the demand level and the amount of ordered products using the

output pin outstatus. The time between two successive reports is set using the

reporttime parameter.

The system replenish takes care of the ordering of goods to replenish the stock:

sys replenish[in incommand:replenishcommand, response:response,

ingoods:goods,

out outsignal:replenishsignal, request:request,

outgoods:goods,

val reporttime:real,

location:location,

suppliertable:(prod->((location->num)><conditions)),

expectedorderleadtime:real

]

The meaning of the input and output pins follows directly from �gure 5.31. The

replenish system accepts all goods addressed to the location parameter and sends

them to the channel connected to outgoods. Periodically, the total quantity of

accepted goods is reported. The time between two successive reports is speci�ed

by the value parameter reporttime. The value parameters suppliertable and

expectedorderleadtime are used to order the products.

The system distribute accepts orders, stores products and distributes them:
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sys distribute[in incommand:orderlimit, request:request,

ingoods:goods,

out outstatus:ordervolume, response:response,

outgoods:goods,

val location:location,

reporttime:real,

expectedhandlingtime:real,

fun handleintime[x:material]:real,

handleouttime[x:material]:real

]

The meaning of the pins is straightforward given �gure 5.31. The distribute

system reports the current inventory level and the accepted orders from time to time

(as speci�ed by reporttime) via the output pin outstatus. The value parameter

expectedhandlingtime is used to determine whether it is possible to deliver within

the requested time window. An upper bound for the number of products that can

be supplied in each period is given via the input pin incommand. The two function

parameters represent the time it takes to store and the time to pick some material.

outgoodsoutgoods
oo

requestrequest
oo

outsignaloutsignal
oo

ingoodsingoods
ii

responseresponse
ii

incommandincommand
ii

rsrs
rcrc

acceptgoodsacceptgoods

procurementprocurement

replenishcontrolreplenishcontrol

Figure 5.32: The replenish subsystem

Now it is time to take a closer look at the logistic subsystems replenish and
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distribute. Figure 5.32 shows the internal structure of the replenish system.

It contains three subsystems: replenishcontrol, procurement and acceptgoods.

The replenishcontrol system passes the replenishment commands to the procu-

rement system and reports the total amount of received goods for each period.

sys replenishcontrol[in incommand:replenishcommand, rs:receivesignal,

out outsignal:replenishsignal, rc:replenishcommand,

val reporttime:real

]

The value parameter reporttime is used to specify the time between two successive

reports via outsignal. Every receipt of goods is reported by the acceptgoods

system via the pin rs. The header of the acceptgoods system is:

sys acceptgoods[in ingoods:goods,

out rs:receivesignal, outgoods:goods,

val location:location

]

Note that the procurement system is also subsystem of demand and pu.

The internal structure of the distribute system is shown in �gure 5.33. The

subsystem acceptorders handles the incoming requests for goods and reports all

accepted orders to the distributioncontrol system. Note that acceptorders was

also used in the supply and pu system. The control system distributioncontrol

passes the maximum order quantity for each period to the acceptorders system.

It also controls the stockholding system by issuing commands via the output pin

dc of type delivercommand.

sys distributioncontrol[in incommand:orderlimit, ss:stocklevel,

ao:acceptedorder,

out outstatus:ordervolume, dc:delivercommand,

ol:orderlimit,

val reporttime:real,

expectedhandlingtime:real

]

The parameter reporttime represents the time between two successive reports is-

sued via the output pin outstatus. The parameter expectedhandlingtime is used

to time the deliver commands to the stockholding system. The stockholding sys-

tem sends updates of the actual stock level to the distributioncontrol system.
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Figure 5.33: The distribute subsystem

The header of the stockholding system is:

sys stockholding[in dc:delivercommand, ingoods:goods,

out ss:stocklevel, outgoods:goods,

val location:location,

fun handleintime[x:material]:real,

handleouttime[x:material]:real

]

This system represents the physical warehousing process. The main activities are:

accept goods, store goods and orderpicking. The time to store some material is given

by the function parameter handleintime. The time it takes to fetch something is

given by handleouttime.

5.5.6 The transport system

Finally, we discuss the building blocks associated with transport. In many cases it

is suÆcient to model transport by a `delay'. For example, add the transport time to

the handleouttime in the sp system. If we want to model transport in more detail,

we can use the transport system. A typical example that can be modelled using
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this system is a transporter with a number of trucks. The header of the transport

system is:

sys transport[in incommand:transportstrategy, response:response,

ingoods:goods,

out outstatus:transportperformance, request:request,

outgoods:goods,

val location:location,

productcharacteristics:(prod->(operation><capacity)),

transtable:((location><location)->(real><real)),

initmeans:(means->location),

fun routescheduling[

s:transportstrategy,work:$acceptedtransorder,

free:(means->location),

busy:(means->(real><location)),

productcharacteristics:

(prod->(operation><capacity)),

transtable:((location><location)->(real><real))

]:($routecommand><availabletranscap),

transtime[mu:real,sigma:real,r:real,t:real]:real

]

The input pin ingoods is used to collect goods for transport. The output pin

outgoods is used to deliver the goods at the desired location. To accomplish this

task, the system uses a set of transportation means (e.g. trucks). The transport

system is triggered by requests for transport that arrive via the input pin request.

The system replies to tell whether it is possible to execute the request (response).

There is also an interface to interact with some higher level of control: the pins

incommand and outstatus. A transport system has an address to send the requests

to (location), and some initial distribution of means (initmeans). Every product

has a number of characteristics speci�ed by productcharacteristics. This pa-

rameter tells what kind of transport is needed (operation) and how many units of

capacity it requires (capacity). Some units of capacity are: a cubic meter (space),

kilogramme (weight) or pallets. The transtable parameter speci�es the average

and variance in the time needed to transport something from one location to the

other. The time for loading or unloading is included. The function parameter

transtime is used to calculate the actual transportation time. Note that this time

is also based on a random variable (r) and the current time (t). The function pa-

rameter routescheduling is used to specify the control which may depend on the

transport strategy set out by some higher authority. If we zoom in, we see three

subsystems as shown in �gure 5.34.

The system transcontrol schedules the transport activities and informs the sys-
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Figure 5.34: The transport system

tem accepttransorders about the (remaining) available transport capacity in each

period. The header of the transcontrol system is:

sys transcontrol[in incommand:transportstrategy,

ato:acceptedtransorder,

rs:routesignal,

out outstatus:transportperformance,

atc:availabletranscap,

rc:routecommand,

val location:location,

productcharacteristics:

(prod->(operation><capacity)),

transtable:((location><location)->(real><real)),

fun routescheduling[

s:transportstrategy,work:$acceptedtransorder,

free:(means->location),

busy:(means->(real><location)),

productcharacteristics:(prod->(operation><capacity)),

transtable:((location><location)->(real><real))

]:($routecommand><

availabletranscap)
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]

This system communicates about the aggregate control of the transport system with

some higher authority using the pins incommand and outstatus. The pins atc and

ato are used to interact with the accepttransorders system. The output pin atc

is of type availabletranscap (see table 5.3), which speci�es the remaining capacity

for each operation and the conditions (for example price). In this context the term

`operation' refers to the speci�c kind of transport required. For example, liquid

petrol gas and prefabricated chalets need di�erent types of trucks. But it is possible

for a truck to support di�erent kinds of transport, see the de�nition of means. If a

transport is accepted, then this is reported to the transcontrol system.

The pins rc and rs are used to communicate with the routing system. The type of

rc is:

type routecommand from (num -> (location >< $goods >< $goods)) ><

means;

Such a command speci�es a list of locations (represented by a mapping) and the

transport means involved. For each location the goods to collect and the goods

to deliver are given. If a route is completed, then the routing system signals the

location of the means (rs). The schedules for routing (routecommand) and the re-

maining transport capacity (availabletranscap) are calculated using the function

parameter routescheduling. The parameters of this function are the strategy (s),

the remaining set of accepted orders (work), the free and busy transport means

(free and busy), the characteristics of every product (productcharacteristics)

and the average and variance of the transporttime (transtable). Note that for all

busy means the expected completion time and location of the corresponding route

are given.

The accepttransorders system behaves similar to the acceptorders system. An

order is accepted if there is suÆcient capacity and the requested conditions are

satis�able.

sys accepttransorders[in atc:availabletranscap, response:response,

out ato:acceptedtransorder, request:request,

val location:location,

productcharacteristics:

(prod->(operation><capacity))

]

The routing system takes care of the physical transport of goods. The actual trans-

porttime is calculated on the basis of the parameters transtable and transtime.
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sys routing[in ingoods:goods, rc:routecommand,

out outgoods:goods, rs:routesignal,

val location:location,

initmeans:(means->location),

transtable:((location><location)->(real><real)),

fun transtime[mu:real,sigma:real,r:real,t:real]:real

]

The routing system accepts only those goods appearing in some `route command'.

Note that is is not possible to connect systems such as pu, supply or sp directly

to the transport system. Therefore our library contains the forwarder system.

This system receives goods for transportation and forwards them to some transport

system. The header of the forwarder system is:

sys forwarder[in ingoods:goods, response:response,

out outgoods:goods, request:request

val location:location,

transporterstable:(location->num)><conditions)

]

A detailed discussion of the internal structure of this system is beyond the scope

of this chapter. The pins ingoods and outgoods represent the physical ow of

products. The transporterstable is used to select the best transporter. The

forwarder system tries to place a transport order at the location (transporter) with

the highest preference. If there are several locations with the same preference, an

inquiry is done to �nd the best transporter (the commit �eld is `false'). Otherwise,

the inquiry is omitted and a transport order is sent this transporter (the commit

�eld is `true'). If this �rst attempt does not give a transporter able to deliver the

goods within the time window under the speci�ed conditions, then the transporters

with the second best preference are consulted, etc. The pins request and response

are used to communicate with these transporters.

This concludes our description of the logistic library. We realize that this description

is far from complete, but it gives the reader an impression of the modelling capabil-

ities of such a library. Note that we did not describe the building blocks controlling

a part of the logistic chain in an integral way (i.e. global control). We did not do

this is because we think that the structure of such a control varies from case to case.

Therefore, it is diÆcult to supply useful building blocks for this purpose. Moreover,

the control decisions made at this level are often strategic. Strategic decision making

is hard to model in a generic way.
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5.6 Some guidelines

In the previous section we did not discuss a procedure for developing a model (or

speci�cation) in terms of the logistic components. However, to support the use of

the logistic library, we also have to supply a method (see �gure 5.27). The existence

of such a method is of crucial importance. Without such a method, the components

may be misused, thus yielding an erroneous or unnecessary complicated model (or

speci�cation).

The method we propose is made up of a number of guidelines which are partially

based on the concepts developed in section 5.4. This is a direct consequence of the

fact that these concepts have been used to develop the library.

Our method identi�es a number of consecutive steps, when developing a model of a

complex logistic system:

step 1 State the problem informally.

step 2 Identify the logistic parties involved.

step 3 De�ne the system boundary of the logistic system under consideration.

step 4 Decompose the system:

step 4a If the system can be modelled by one of the components in the library,

then replace the system by the corresponding component and proceed

with step 5.

step 4b If the logistic system is (1) a physical elementary system, (2) an

information elementary system or (3) a control system, then describe the

task and interactions of this system informally and proceed with step 5.

step 4c Decompose the system into (1) a set of relatively independent logistic

components, or (2) a set of logistic components controlled by a control

system. For each of the subsystems proceed with step 4a.

step 5 Step 4 resulted in a hierarchical model composed of components and (un-

de�ned) physical elementary systems, information elementary systems and

control systems. Install each component by instantiating the parameters with

actual entities. Create a suitable system de�nition for each physical elemen-

tary system, information elementary system or control system which is not

available in the library.

The development of a model has to start with the question: `Why do we want to

model the logistic system?'. To answer this question, we have to state the problem

properly. Based on this informal problem statement we identify the logistic parties

involved, e.g. suppliers, consumers, transporters, etc. Given the relevant parties
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involved, we determine the system boundary, i.e. the scope, of the logistic system

under consideration.

Then we decompose the logistic system into subsystems, until each subsystem is a

physical elementary system, an information elementary system, a control system or

resembles a component.

For complex logistic systems, the decomposition hierarchy should be several layers

deep. This to avoid a shallow hierarchy with systems composed of many subsys-

tems. Note that step 4 represents an iterative process which balances between two

objectives: (1) try to use as many existing components as possible and (2) the de-

composition (hierarchy) has to as `natural' as possible. If the library contains a lot

of components, then it is diÆcult to �nd the appropriate component (or to deter-

mine that there is no appropriate component available). To support this task, it is

necessary to develop tools for this purpose (e.g. a repository) and to educate the

users of the library.

Although step 4c may raise the presumption that we advocate a `pure' top down

approach, it is also a bottom up approach, since we try to use existing components.

In a `80/20'-situation, 20 percent of the subsystems are physical elementary systems,

information elementary systems and control systems, that have to be de�ned because

no suitable component is available. For the construction of these system de�nitions

we provide the following guidelines:

• abstract from irrelevant details

• decompose complex system de�nitions into suitable subsystems

• minimize the interfaces between subsystems

• parameterize the relevant characteristics

• use existing type de�nitions if possible (it increases the likelihood of a system

being reusable)

• try to �nd a unifying system de�nition, when two or more systems, di�er in

terms of only a few aspects (this to avoid duplication)

If these guidelines and the �ve steps are followed closely, then the modelling process

yields, in all likelihood, a satisfactory formal speci�cation of the logistic system

under consideration. In most cases, the main purpose of modelling is to prepare

the system for analysis. There are several ways to analyse a system speci�ed with

ExSpect, see chapter 3.

Simulation is one of the most powerful analysis techniques to analyse a complex

system. This brings us to the question: `When is simulation useful?'. Many authors

provide guidelines for answering this question (Shannon [112]). A possible reason

for the application of simulation is the fact that analytical methods are unavailable

or diÆcult to apply. An important advantage of simulation is that it helps the
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experimenter to understand and to gain a feel for the problem. For a more extensive

description of the simulation process the reader is referred to Shannon [112] and

Bratley et al. [25].
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system
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Assuming that simulation is likely to be used to analyse the logistic problem, we

distinguish four phases in the modelling process. These phases are shown in �g-

ure 5.35.

In phase I we identify the logistic problem and `visualize' the related logistic sys-

tem. With `visualize' we mean determining the system boundaries and a graphical

description in terms of relevant components (building blocks). We also add an infor-

mal description of every component and the ows between these components. This

visualizing process is an aid to thought and supports the communication between

the modeller and the other people involved. Note that phase I corresponds to the

modelling steps 1, 2, 3 and 4.

In phase II we have to decide whether we want to use the Petri net approach

(ExSpect) or some other modelling or analysis technique. If the problem can be

reduced to a simple model and solved analytically, there may be no need for simula-

tion or the Petri net approach. Examples of models allowing for analytical solutions

are queueing models and linear programming models. In all other cases we specify

the logistic system in ExSpect. With speci�cation we mean an unambiguous de-

scription of the model in terms of the ExSpect language. Note that this corresponds

to modelling step 5. The speci�cation process starts with the graphical description

created in phase I. If possible, we use prede�ned building blocks from a logistic

library. This saves a lot of e�ort.

In phase III we analyse the speci�cation (of the logistic system) created in phase

II. There are several ways to analyse such a Petri net based speci�cation. Simula-

tion is probably the most exible way to analyse this speci�cation. To simulate the

system, we often have to specify a number of measuring systems and add them to

the speci�cation of the object system. A measuring system serves the purpose of

presenting some results generated by the object system. Sometimes these measure-

ments are incorporated in the logistic building blocks. Based on the information

required, we also prepare the input data used by the simulation. Then we verify

the model. This means that we check whether the speci�cation operates in the way

we think it does, that is, is the speci�cation free of bugs and consistent with the

informal model of phase I. Then the model is validated. Validation is the process

that checks whether the speci�cation is a suÆcient close approximation of reality,

for the intended application. If both tests succeed, we proceed with the actual ex-

perimentation. Otherwise, we go back to the speci�cation process. Experimentation

results in output data, that have to be interpreted. Based on this interpretation we

adjust the parameters in the speci�cation until we have obtained the desired results.

Instead of simulation, we can also use a number of Petri net based analysis tech-

niques, such as P and T-invariants and the ITCPN analysis techniques described in

chapter 3.

In phase IV the speci�cation and the results obtained are documented.
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Although we identify four phases, in practice these phases will overlap and some

iteration will be necessary (compare this with the well-known \Waterfall model"

of software engineering [22]). For example, during the modelling phase we may

start by modelling and simulating a simple system (to gain insight in the logistic

problem situation). Then, via a number of iterations, the model is made more

realistic. Because of the existence of the logistic library the number of iterations

will be rather small. Although some iteration in the development of the speci�cation

is inevitable, we think it is useful to identify the phases shown in �gure 5.35.

The ExSpect tool supports all phases. In phase I we can use the design interface of

ExSpect to create a graphical description. In phase II we `inherit' this description

and use the design interface to create a complete speci�cation. In this phase we

also use the type checker to check the speci�cation for correctness, consistency and

completeness. In phase III we also use the interpreter and the runtime interface

to simulate the speci�cation. ExSpect also supports alternative analysis techniques:

IAT allows for IT(C)PN analysis and the calculation of P and T invariants. Phase IV

is supported by the possibility to add comments to the speci�cation, the possibility

to use graphical descriptions generated by the design interface and some export

facilities to export data generated by the runtime interface.

Note that the phases I, II and III rely heavily upon the availability of a logistic

library (see �gure 5.35).

5.7 An example

To illustrate the use of the logistic library, we give an example of a logistic system

modelled in terms of the building blocks described in the previous section. This

case deals with a logistic system stretching out over the logistic chain from supplier

to consumer. To keep the case description manageable and easy to comprehend, we

use a �ctitious example. Furthermore, our treatment of this example is intentionally

abstract, e.g. we use symbolic names for products (A,B, ..) and locations (S1, S2,

PU , ..). Nevertheless, we think this example illustrates the approach presented in

this chapter.

5.7.1 The present situation

The structure of the logistic system is shown in �gure 5.36. The company under

consideration comprises two distribution centres (SP1 and SP2) and one manufac-

turing site (PU).

The two distribution centres hold inventory to supply a number of retailers. Every

retailer is assigned to only one of the two distribution centres. These assignments

are based on geographical motives.

The set of retailers assigned to distribution centre SP1 is denoted by C1, the set

of retailers assigned to distribution centre SP2 is denoted by C2. The inventory
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Figure 5.36: A logistic system

assortments of the distribution centres, i.e. the kind of products accumulated, are

slightly di�erent. This is caused by regional variations of demand.

The inventory of SP1 consists of products manufactured by PU and products pur-

chased from supplier S1. Distribution centre SP2 acquires products from PU and

supplier S2.

Manufacturing site PU produces the products which are not supplied by the two

suppliers S1 and S2. To produce these products, PU acquires products from both

suppliers. In the present situation, PU produces to order.

Given this informal description of the logistic chain, we will characterize the indi-

vidual subsystems in terms of the logistic building blocks outlined in section 5.5.

The demand process

The set of retailers assigned to SP1 is represented by a supply building block.

These retailers are allowed to order once a day. In this example there are only four

kinds of products ordered by these retailers: A, B, I and J . The number of items

ordered uctuates. In this case, the required quantity of each product is given a

normal distribution, with the parameters speci�ed in table 5.6.

The retailers assigned to SP2 are also represented by a supply building block.

Instead of once a day, these retailers are allowed to order twice a day. A description

of the demand generated by these retailers is given in table 5.7.
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product average variance

A 100 40

B 200 80

I 50 20

J 60 24

Table 5.6: The quantity ordered by the retailers represented by C1 (daily = 24

hours)

product average variance

A 75 30

C 50 20

D 100 40

I 35 14

K 40 16

Table 5.7: The quantity ordered by the retailers represented by C2 (twice a day =

12 hours)

The distribution centres

The main function of the distribution centres is to maintain inventories for the

purpose of bringing the products near the customers and coordinating supply and

demand. The distribution centres are represented by two sp systems.

Both stock points use a replenishment strategy where the inventory levels are checked

twice a week. If the stock is below a certain level, a replenishment order is issued,

the ordered quantity depends on the current stock. As a matter of fact, the ordered

quantity is the di�erence between a prede�ned maximum level and the current op-

erating stock. The corresponding values are given in table 5.8 and table 5.9. For

example, if the current stock of product K in SP2 is 230 units, then 170 (= 400−230)
units of product K are ordered (230 < 240).

product minimum maximum

level level

A 300 500

B 600 1000

I 150 250

J 180 300

Table 5.8: The minimum and maximum inventory levels of distribution centre SP1
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product minimum maximum

level level

A 450 750

C 300 500

D 600 1200

I 210 350

K 240 400

Table 5.9: The minimum and maximum inventory levels of distribution centre SP2
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Figure 5.37: The bill of material of end-products I, J and K

Products I, J and K are acquired from the manufacturing site PU . The other

products are purchased from the local supplier, i.e. SP1 obtains products A and B
from S1 and SP2 obtains products A, C and D from S2.

The production process

Manufacturing site PU is represented by a pu component. The PU produces the

end-products I, J and K from raw materials E , F , G and H. Figure 5.37 shows the

three bills of material. Note that there are two intermediate products X and Y .

The transformations speci�ed in �gure 5.37, are performed by three capacity re-

sources: 9901, 9902 and 9903. Capacity resource 9901 assembles two items E and

one item F into one end-product I. Resource 9902 assembles E and X into J ,

and H and Y into K. The subassemblies are performed by resource 9903. In the

present situation, the production unit uses a `MRP-like' production planning driven

by actual demand, i.e. given the bill of material and the actual demand, the PU

`explodes' the requirements into a production and purchase schedule. This is spec-

i�ed by the function parameter producefunction. The required raw materials are

purchased from suppliers S1 and S2. S1 supplies E and F , S2 supplies G and H.

However, if supplier S1 is unable to supply product E within the given time window,

then the PU sends a request to supplier S2.
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Figure 5.38: The logistic system in terms of the building blocks

The supply process

There are two suppliers S1 and S2, each represented by a supply system. S1

supplies A, B, E and F , S1 supplies A, C, D, E , G and H. The maximum quantity

and the time it takes to supply these products are given by a number of parameters.

Figure 5.38 shows the logistic system in terms of the logistic building blocks. A

close observation shows that this �gure resembles �gure 5.36. We added the glo-

balcontrol system to initialize the strategies used by the pu and sp systems. We

did not model the transport between the locations explicitly. In this example, we

assume that these transportation activities can be characterized by a stochastic

delay distribution. These transport delays are added to the internal handling time

of the building blocks. This completes our brief description of the present situation.

The description of the logistic system, just given, contains not nearly enough infor-

mation to specify the parameters of the components. For example, to install the sp

system, we have to supply a precise description of the replenishment strategy, the

maximum order quantities, the time required to store and retrieve products from

the warehouse, a detailed list of suppliers, etc. We have speci�ed all of these pa-

rameters, this takes a few hours provided that the required data is available. Once

this has been done, we can analyse the system.
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Figure 5.39: A screendump of a simulation
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If we use simulation to analyse the system shown in �gure 5.38, then several reports

are presented. This is due to the fact that the logistic building blocks calculate sev-

eral performance measures, e.g. order lead times, (average) stock levels, occupation

rates, etc. Figure 5.39 shows a running simulation.
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Figure 5.40: A logistic system with an alternative distribution structure

5.7.2 Alternatives

Given a speci�cation of the present situation, it is easy to experiment with di�erent

alternatives, for example, another replenishment strategy or production based on

forecasts instead of actual demand. It is also possible to analyse an alternative

distribution structure. In �gure 5.40, we show a situation with only one distribution

centre.

5.8 Conclusion

We have developed a systematic approach to the modelling of logistic systems. This

approach is based on our `systems view' of logistics, described in section 5.4.

This view on logistics starts from the principle that any logistic system is composed

of only three kinds of elementary systems: physical elementary systems, information

elementary systems and control systems. Moreover, we identify typical relationships

between these systems, i.e. we supply a taxonomy of the ows inside a logistic

system.
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Based on this `systems view', we have developed a logistic library. The components

in this library are highly generic and allow for the modelling of many logistic systems

in a very `natural' manner.

Our approach uses a framework based on a timed coloured Petri net model. There-

fore, we investigated which role the theory, tools and methods described in the

previous chapters can play in logistics. It turns out that timed coloured Petri nets

are appropriate for the modelling of discrete logistic processes, because these nets

allow for a graphical representation which is close to our intuition. Moreover, Petri

nets have a �rm mathematical foundation and allow for all sorts of analysis.

Although some elements of our framework are rather immature (e.g. the logistic

library), experience shows that our approach is quite useful for the modelling and

analysis of complex logistic systems.
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Chapter 6

Conclusions and further research

The framework described in this monograph has been developed to solve problems

related to the design and analysis of complex discrete dynamic systems. Although

the emphasis is on logistics, most of the techniques and concepts described in the

chapters 2, 3 and 4, also apply to other application domains, e.g. exible manufac-

turing systems, distributed information systems and real-time systems.

The framework we propose is based on Petri nets and consists of:

• a timed coloured Petri net model

• a number of analysis methods

• a software package to create, modify and analyse timed coloured Petri nets

• a systems view of logistics

• a library of prede�ned logistic components

The systems we are interested in are often physically distributed and composed of

many interacting components. Consider for example a typical logistic system made

up of production units, stock points and transportation devices. Such a system is

characterized by a continual exchange of goods, means and information.

Petri nets are appropriate for the modelling of these distributed systems, since they

allow for the representation of parallelism and synchronization. However, Petri nets

describing real systems tend to be complex and extremely large. Sometimes, it is

even impossible to model the state space or the temporal behaviour of a system.

To solve these problems we have developed the interval timed coloured Petri net

(ITCPN) model described in chapter 2.

This model uses a new timing mechanism where time is associated with tokens and

transitions determine a delay speci�ed by an interval. The formal semantics of the

ITCPN model have been de�ned by means of transition systems. The fact that time

is in tokens results in transparent semantics and a compact state representation.

Specifying each delay by an interval rather than a deterministic value or stochastic

variable is promising, since it is possible to model uncertainty without having to

bother about the delay distribution.

249
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From the analysis point of view, the ITCPN model is also interesting, since interval

timing allows for new analysis methods. In this monograph three analysis methods

have been described.

The ATCFN method distinguishes itself by its simplicity. Although the ATCFN

method has a number of serious drawbacks, it can be used in the �eld of project

engineering.

The PNRT method can be used to analyse a larger, but still limited, set of ITCPNs

(marked graphs satisfying some additional constraints). Many systems have been

modelled using this type of nets. Typical application areas are exible manufacturing

and repetitive production scheduling. The PNRT method is reasonably eÆcient and

answers questions about the arrival time of tokens (i.e. EAT n(s; p) and LAT n(s; p)).

The MTSRT method is much more powerful, since it can be applied to arbitrary

nets and answers a large variety of questions. This method constructs a reduced

reachability graph. In such a graph a node corresponds to a set of (similar) states,

instead of a single state. Although the MTSRT method performs a number of

signi�cant reductions, this graph may become too large to analyse. This is the

reason we proposed two approaches to deal with this problem (see section 3.5).

Another problem is the fact that the answers produced by the MTSRT method are

not always as `tight' as possible, because of dependencies between tokens. This is

not a real handicap, since the results obtained by the MTSRT method are always

valid and experimentation shows that, in general, these results are also meaningful.

The practical use of the ITCPN model and the three analysis methods depends to a

large extent upon the availability of adequate computer tools. We use the software

package ExSpect to create, modify and analyse our models. The design interface

of ExSpect allows for the construction of models in a graphical manner. ExSpect

supports three kinds of analysis: simulation, `structural analysis' (invariants) and

`interval analysis' (MTSRT, PNRT, ATCFN). The availability of multiple kinds of

analysis is a major advantage over other software packages.

We showed that the ITCPN model and the support o�ered by ExSpect are quite

suitable for the modelling and analysis of logistic systems. However, the modelling

of complex logistic systems is still a complicated task. This is the reason we pre-

sented a `systems view of logistics', which is an attempt to structure the logistic

domain. Based on a taxonomy of the ows in a logistic system, we have developed

a systematic approach to the modelling of large and complex logistic systems. In-

sight into the interaction structure of a logistic system is vital for the e�ectiveness

of the modelling process, because it supports the decomposition of the system into

subsystems which are easier to understand. Our approach is intentionally abstract

and starts from an idealized perception of the logistic domain.

Based on this systems view of logistics we have developed a small logistic library.

During the development of this library we experienced the fact that a systems view
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of logistics facilitates the identi�cation and creation of powerful building blocks.

Although this library is rather immature, it shows that it is possible to attain a

`80/20'-situation, i.e. a situation where 80 percent of the components needed are

already available in a logistic library and take up only 20 percent of your time.

But the 20 percent you have to create yourself take up 80 percent of your time.

This implies that such a library increases the eÆciency of the modelling process.

Furthermore, the result of the modelling process is more succinct, more manageable

and well-structured.

The framework presented in this monograph ranges from a method to model logistic

systems to sophisticated, Petri net based, analysis methods. Some elements of this

framework are quite mature whereas others raise new questions. These questions

point out directions for continued research.

A direction of further research is the development of analysis methods based on

interval timing. In this monograph we discussed three analysis methods (ATCFN,

MTSRT and PNRT). It is quite possible that a number of existing methods for the

analysis of (deterministic) timed Petri nets may be extended to our ITCPN model.

Consider for example our SSPAT method presented in [2], which is a generalization

of the analysis method described by Ramamoorthy and Ho in [107].

It is also possible to modify the MTSRT method such that the reduced reachabil-

ity graph becomes smaller while sacri�cing the tightness of the calculated bounds.

For example, it is possible to aggregate `similar' nodes in the reduced reachability

graph into one `super-node'. This super-node represents at least all the states repre-

sented by the `old' nodes. Note that there is a trade-o� between the computational

eÆciency and the strictness of the calculated results.

Another direction for further research is the addition of other types of analysis,

e.g. Markovian analysis, queueing networks, perturbation analysis, etc. It is also

possible to add other Petri net based analysis techniques, e.g. techniques to detect

siphons and traps. Note that the ExSpect speci�cation (or the ITCPN) is used as a

`blueprint' of the system under consideration. This blueprint can be observed from

many angles and allows for various kinds of analysis. This is very convenient, since

it prevents us from having to remodel the system every time we want to use an

alternative analysis method.

Another item for further research is the development of a comprehensive reference

model of logistics, based on our systems view of logistics described in chapter 5.

This reference model should be validated by domain experts, i.e. logisticians as well

as experts in operations research, control theory and industrial engineering. Such

a reference model would give a fresh insight into the control of logistic systems.

Furthermore, it would support the design of new logistic systems.

This reference model should be used to develop a new and extensive library of logistic
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building blocks. Without doubt, this library would increase the productivity of the

modelling process. Furthermore, such a library would facilitate the di�usion of the

logistic knowledge stored in the building blocks by domain experts.
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Samenvatting

Het in dit proefschrift beschreven onderzoek richt zich op het modelleren en ana-

lyseren van complexe dynamische systemen. Dit onderzoek heeft, onder andere,

geresulteerd in een aantal concepten en technieken, welke algemeen bruikbaar zijn

in situaties waar de voortgang bepaald wordt door discrete gebeurtenissen. Ondanks

het feit dat een belangrijk deel van de resultaten algemeen toepasbaar is, ligt in dit

proefschrift de nadruk vooral op toepassingen in de logistiek.

De beschreven aanpak is gebaseerd op een Petri net model, uitgebreid met `tijd' en

`kleur'. Dit Petri net model is uitermate geschikt voor het modelleren van logistieke

systemen. Immers, met dit model is het mogelijk de logistieke stromen (goederen,

middelen en informatie) op een natuurlijke en eenvormige wijze te beschrijven. Ook

is het mogelijk om het gedistribueerde aspect van een logistiek systeem op een

inzichtelijke wijze te representeren.

Het doel van het in dit proefschrift beschreven onderzoek valt uiteen in twee de-

len. Enerzijds moet het proefschrift gereedschappen leveren ter ondersteuning van

het modelleren van discrete dynamische systemen, in het bijzonder logistieke syste-

men. Anderzijds is het de bedoeling een bijdrage leveren aan de ontwikkeling van

bruikbare methoden voor de analyse van Petri nets.

In hoofdstuk 2 wordt het Interval Timed Coloured Petri Net (ITCPN) model ge��n-

troduceerd. Dit model dient als uitgangspunt voor de rest van het proefschrift. Het

ITCPN-model wijkt af van reeds bestaande Petri net modellen doordat tokens een

tijdstempel dragen en doordat tijdsduren beschreven worden door middel van een

interval, d.w.z. een onder- en bovengrens. In dit hoofdstuk formuleren we ook de

vragen die we graag beantwoord willen zien.

Hoofdstuk 3 richt zich op de analyse van Petri nets uitgebreid met `tijd' en `kleur'. Er

worden drie methoden behandeld waarmee ITCPN's geanalyseerd kunnen worden.

E�en van deze methoden, de MTSRT methode, kan gebruikt worden voor de ana-

lyse van een willekeurig ITCPN, terwijl de andere twee methoden alleen toegepast

kunnen worden op een beperkte, doch zinvolle, klasse ITCPN's.

Ter ondersteuning van het werken met ITCPN's is er ook software ontwikkeld. Deze
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software maakt deel uit van het pakket ExSpect dat binnen de vakgroep Informatica

van de Technische Universiteit Eindhoven is ontwikkeld. ExSpect maakt gebruik van

een speci�catietaal welke gebaseerd is op een Petri net model dat veel overeenkom-

sten vertoont met het in hoofdstuk 2 ge��ntroduceerde ITCPN-model. In hoofdstuk 4

behandelen we enkele aspecten van deze taal en beschrijven we de onderliggende

software. Met name besteden we aandacht aan het ontwerp- en analyse-gereedschap

van ExSpect, welke voor een belangrijk deel door de auteur van dit proefschrift

ontwikkeld zijn.

In hoofdstuk 5 beschrijven we hoe we een logistiek systeem op een gestructureerde

wijze kunnen modelleren. Dit doen we door een systematische indeling te geven van

de logistieke stromen en processen. Deze indeling is als uitgangspunt gebruikt voor

de ontwikkeling van een bibliotheek bestaande uit logistieke componenten. Deze

componenten zijn in ExSpect gespeci�ceerde (sub)systemen. Op deze wijze is het

mogelijk om in korte tijd een re�eel logistiek systeem op een inzichtelijke wijze te

modelleren. In zekere zin vormt dit hoofdstuk een eerste aanzet voor een `referentie-

model' voor de logistiek.
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