
Generic Workflow Models: How to Handle Dynamic Change and Capture
Management Information?

W.M.P. van der Aalst†

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
wsinwa@win.tue.nl

† Part of this work was done at AIFB (University of Karlsruhe, Germany) and LSDIS (Univeristy of Georgia, USA) during
a sabbatical leave.

Abstract
Traditionally, workflow management systems are used to
support static processes, i.e., processes which do not
change frequently. This has limited the scope of workflow
management. Moreover, the networked economy of the
new millennium requires workflow management systems
which are able to deal with dynamically changing
workflow processes. This paper addresses two notorious
problems related to adaptive workflow: (1) providing
management information at the right aggregation level,
and (2) supporting dynamic change, i.e., migrating cases
from an old to a new workflow. These two problems are
tackled by using generic process models. A generic
process model describes a family of variants of the same
workflow process. It is a first step in the direction of truly
flexible workflow management systems and provides a
handle to solve the two problems mentioned.

1. Introduction
The new millennium is characterized by an increasing

number of business processes subject to continuous
change. Organizations are challenged to bring ideas and
concepts to products and services in an ever-increasing
pace. Companies distributed by space, time and
capabilities come together to deliver products and
solutions for which there is any need in the global
marketplace. The trends for virtual corporations and e-
commerce, and increasing global networking of economies
are real and will accelerate. As a result, more and more
workflow processes are subject to continuous change. At
the moment, there are many workflow products
commercially available and many organizations are
introducing workflow technology to support their business
processes. A critical challenge for workflow management
systems is their ability to respond effectively to changes
[4,7,10,11,12,15,18,26,28,32]. Changes may range from

ad-hoc modifications of the process for a single customer
to a complete restructuring for the workflow process to
improve efficiency. Today’s workflow management
systems are ill suited to dealing with change. They
typically support a more or less idealized version of the
preferred process. However, the real run-time process is
often much more variable than the process specified at
design-time. The only way to handle changes is to go
behind the system’s back. If users are forced to bypass the
workflow management system quite frequently, the system
is more a liability than an asset. Therefore, we take up the
challenge to find techniques to add flexibility without
loosing the support provided by today’s systems.

Typically, there are two types of changes [4]: (1) ad-
hoc changes and (2) evolutionary changes. Ad-hoc
changes are handled on a case-by-case basis. In order to
provide customer specific solutions or to handle rare
events, the process is adapted for a single case or a limited
group of cases. Evolutionary change is often the result of
reengineering efforts. The process is changed to improve
responsiveness to the customer or to improve the
efficiency (do more with less). The trend is towards an
increasingly dynamic situation where both ad-hoc and
evolutionary changes are needed to improve customer
service and reduce costs.

For the past five years the author has been active as a
consultant for Bakkenist Management Consultants in the
area of workflow management. In this period Bakkenist
has supported numerous workflow projects for large
financial institutions and the Dutch government (see
http://www.bakkenist.nl). Based on practical experiences
while selecting, testing, and configuring various workflow
management systems, the author was confronted with the
problem of change.

This paper presents an approach to tackle the problem
of change. This approach is inspired by the techniques
used in product configuration [30]. As factories have to
manufacture more and more customer specific products,

the trend is to have a very high number of variants for one
product. Products, like a car or a computer, can have
millions of variants (e.g., combinations of color, engine,
transmission, and options). Also product specifications and
their components evolve at an increasing pace. Product
configuration deals with these problems and has been a
lively area of research for the last decade. Moreover, some
solutions have already been implemented in today’s
enterprise resource planning systems such as SAP and
Baan. To deal with changes the traditional Bill-Of-
Material (BOM) is extended with product families. A
product family corresponds to a range of product types and
allows for the modeling of generic product structures. The
term generic BOM [14,17,30,31] is used when generic
product structures are described by means of an extension
to the traditional BOM. In this paper, we extend traditional
process modeling techniques in a similar manner. We
adopt the notion of process families to construct generic
workflow process models.

A

B

C

D

s1

s5

s4

s3

s2

A

B C

D

p1

p6

p3

p4

p2

p5

OK

?

A : prepare shipment
B : send goods
C : send bill
D : record shipment

Figure 1: The dynamic change problem.

A generic workflow process model is a process model
which can be configured to accommodate flexibility and
enables both ad-hoc and evolutionary changes. Using
generic workflow process models, the workflow
management system can support the design and enactment
(i.e., execution) of processes subject to change. Moreover,
the generic process model introduced in this paper, allows
for the navigation through two dimensions: (1) the vertical
dimension (is-part-of/contains) and (2) the horizontal
dimension (generalizes/specializes). Although the second
dimension is absent in today’s workflow management

systems, it is of the utmost importance for the reusability
and adaptability of workflow processes.

The addition of the horizontal dimension allows for the
design and enactment of many variants of a workflow
process. However, it is not sufficient to support the design
and enactment. There are two additional issues that need to
be dealt with: (1) management information [32,33], and
(2) dynamic change [7,11,12]. In spite of the existence of
many variants of one process, the manager is interested in
information at an aggregate level, i.e., management
information which abstracts from small variations. The
term dynamic change refers to the problem of handling old
cases in a new process, e.g., how to transfer cases to a
new, i.e., improved, version of the process.

Figure 1 illustrates the dynamic change problem1. The
left-hand-side process executes the tasks prepare
shipment, send goods, send bill, and record shipment in
sequential order. In the right-hand-side process the sending
of the goods and the sending of the bill can be executed in
parallel, i.e., there is no ordering relation between the tasks
send goods and send bill. In the remainder we will use
identifiers A, B, C, and D to denote the four tasks. If the
sequential workflow process (left) is changed into the
workflow process where tasks B and C can be executed in
parallel (right) there are no problems, i.e., it is always
possible to transfer a case from the left to the right. The
sequential process starts in the state with one token in s1
and has five possible states. Each of these states
corresponds to a state in the parallel process. For example,
the state with a token in s3 is mapped onto the state with a
token in p3 and p4. In both cases, tasks A and B have been
executed and C and D still need to be executed. Now
consider the situation where the parallel process is

1 In this paper, we use Petri nets to illustrate the main
concepts. A Petri net is a network composed of squares
and circles. The squares are called transitions and
correspond to tasks that need to be executed. The circles
are used to represent the state of a workflow and are called
places. The arrows between places and transitions are used
to specify causal relations. A place p is called an input
place of a transition t iff there exists a directed arc from p
to t. Place p is called an output place of transition t iff
there exists a directed arc from t to p. At any time a place
contains zero of more tokens, drawn as black dots. The
state of the net, often referred to as marking, is the
distribution of tokens over places. The number of tokens
may change during the execution of the net. Transitions
are the active components in a Petri net: they change the
state of the net according to the following firing rule: (1) A
transition t is said to be enabled iff each input place p of t
contains at least one token. (2) An enabled transition may
fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each
output place p of t.

changed into the sequential one, i.e., a case is moved from
the right-hand-side process to the left-hand-side process.
For most of the states of the right-hand-side process this is
no problem, e.g., a token in p1 is moved to s1, a token in
p3 and a token p4 are mapped onto one token in s3, and a
token in p4 and a token p5 are mapped onto one token in
s4. However, the state with a token in both p2 and p5 (A
and C have been executed) causes problems because there
is no corresponding state in the sequential process (it is not
possible to execute C before B). The example in Figure 1
shows that it is not straightforward to migrate old cases to
the new process after a change.

A

B

C

D

s1

s5

s4

s3

s2

A

B C

D

p1

p6

p3

p4

p2

p5

3 4

1

3

2

1

2 4

5 3

7

A

B C

D

m1

m6

m3

m4

m2

m5

7

3 8

10 5

8

+ =

Figure 2: Aggregated management information.

Another problem of change is that it typically leads to
multiple variants of the same process. For evolutionary
change the number of variants is limited. Ad-hoc change
may lead to the situation where the number of variants
may be of the same order of magnitude as the number of
cases. To manage a workflow process with different
variants it is desirable to have an aggregated view of the
work in progress. Note that in a manufacturing process the
manager can get a good impression of the work in progress
by walking through the factory. For a workflow process
handling digitized information this is not possible.
Therefore, it is of the utmost importance to supply the
manager with tools to obtain a condensed but accurate
view of the workflow processes. Figure 2 shows a
workflow processes with two variants: a sequential one
(left) and a parallel one (middle). The numbers indicate the
number of cases in a specific state, e.g., in the sequential
process there are 3 cases in-between task B and task C, and
in the parallel process there are 2 cases in-between A and
B. Since the manager requires an aggregated view rather
than a view for every variant of the workflow process, the
cases need to be mapped onto a generalized version of the
different processes. Therefore we need to find the ‘greatest
common divisor’ or the ‘least common multiple’ for the

two processes shown. Since all the states of the sequential
process are presented in the parallel process, we choose
the parallel process to present the management
information. Figure 2 shows the aggregated view of the
two workflow processes (right). For all places in the right-
hand-side process except m3, it is quite straightforward to
verify that the numbers are correct. The number of tokens
in place m3 corresponds to the number of cases in-between
A and C. In the sequential process there are 1+3=4 cases
in-between A and C. In the parallel process there are also 4
cases in-between A and C, which brings the total to 8. For
this small example it may seem trivial to obtain this
information. However, in general there are many variants
and the processes may have up to 100 tasks and it is far
from trivial to present aggregated information to the
manager.

These two issues (dynamic change and management
information) cause a lot of problems which need to be
solved. We think that it is possible to tackle these
problems by using the notion of a minimal representative
of a generic process. By mapping states on this minimal
representative it may be possible to generate adequate
management information. Moreover, linking states of the
members of a process family to the states of a minimal
representative seems to be useful for the automated
support of dynamic change.

This paper extends the results presented in [2] by
addressing the problems illustrated by Figure 1 and Figure
2. The remainder is organized as follows. First we classify
the types of changes that we would like to support. Then
we introduce an approach to specify generic process
models using two types of diagrams: routing diagrams and
inheritance diagrams. It is shown that this approach
facilitates dealing with all kinds of changes. Finally, we
show that the notion of a minimal representative of a
generic process can be used to tackle the problems
involving dynamic change and management information.

2. Adaptive workflow
Workflows are typically case-based, i.e., every piece

of work is executed for a specific case. Examples of cases
are a mortgage, an insurance claim, a tax declaration, an
order, or a request for information. Cases are often
generated by an external customer. However, it is also
possible that a case is generated by another department
within the same organization (internal customer). The goal
of workflow management is to handle cases as efficient
and effective as possible. A workflow process is designed
to handle similar cases. Cases are handled by executing
tasks in a specific order. The routing definition specifies
which tasks need to be executed and in what order.
Alternative terms for routing definition are: ‘procedure’,
‘flow diagram’ and ‘workflow process definition’. In the
routing definition, routing elements are used to describe
sequential, conditional, parallel and iterative routing thus

specifying the appropriate route of a case (WfMC [24,34]).
Many cases can be handled by following the same
workflow process definition. As a result, the same task has
to be executed for many cases. A task which needs to be
executed for a specific case is called a work item. An
example of a work item is: execute task ‘send refund form
to customer’ for case ‘complaint sent by customer Baker’.
Most work items are executed by a resource. A resource is
either a machine (e.g., a printer or a fax) or a person
(participant, worker, or employee). In office environments,
i.e., the domain where workflow management systems are
typically used, the resources are mainly human. However,
because workflow management is not restricted to offices,
we prefer the term resource. Resources are allowed to deal
with specific work items. To facilitate the allocation of
work items to resources, resources are grouped into
classes. A resource class is a group of resources with
similar characteristics. There may be many resources in
the same class and a resource may be a member of
multiple resource classes. If a resource class is based on
the capabilities (i.e., functional requirements) of its
members, it is called a role. If the classification is based
on the structure of the organization, such a resource class
is called an organizational unit (e.g., team, branch or
department). A work item which is being executed by a
specific resource is called an activity. If we take a
photograph of a workflow, we see cases, work items and
activities. Work items link cases and tasks. Activities link
cases, tasks, and resources. See [1,10,12,19,24,27,34] for
more information about workflow concepts and the
modeling of workflow processes.

Adaptive workflow is an area of research which
examines concepts, techniques, and tools to support
change. It is widely recognized that workflow
management systems should provide flexibility
[7,10,11,12,15,18,28,32]. However, as indicated in the
introduction, today’s workflow management systems have
problems dealing with change. New technology, new laws,
and new market requirements lead to modifications of the
workflow process definitions at hand. Last minute changes
on a case-by-case basis lead to all kinds of exceptions. The
inability to deal with various changes limits the application
of today’s workflow management systems. The limitations
of today’s workflow management systems and current
approaches with respect to flexibility raise a number of
interesting questions. In fact, several workshops have been
organized to discuss the problems related to workflow
change [6,22,35]. In this paper we restrict ourselves to
changes with respect to the routing of cases, i.e., the
control flow. We abstract from organizational changes,
i.e., we do not consider adaptations of the resource
classification and the mapping of work items onto
resources. We also abstract from the contents of tasks.

The restriction to consider only the routing definition
allows us to classify changes as follows [4]:

Ad-hoc change: Changes occurring on an individual
basis, i.e., only a single case (or a limited set of cases)
is affected. The change is the result of an error, a rare
event, or special demands of the customer. Exceptions
often result in ad-hoc changes. A typical example of
ad-hoc change is skipping a task in case of an
emergency. This kind of change is often initiated by
some external factor. A typical dilemma related to ad-
hoc change is the problem to decide what kinds of
changes are allowed and the fact that it is impossible
to foresee all possible changes. For ad-hoc change we
distinguish between the moment of change:

Entry time: The routing definition is frozen the
moment the processing of the case starts, i.e., no
changes are allowed during the processing.
On-the-fly: Changes are allowed at any moment,
i.e., the process may change while the case is
being handled. Ad-hoc on-the-fly changes allow
for self-modifying routing definitions.

Evolutionary change: Changes of a structural nature,
i.e., from a certain moment in time, the process
changes for all new cases to arrive at the system. The
change is the result of a new business strategy,
reengineering efforts, or a permanent alteration of
external conditions (e.g., a change of law).
Evolutionary change is initiated by the management to
improve efficiency or responsiveness, or is forced by
legislature or changing market demands. Evolutionary
change always affects new cases but it may also
influence old cases. We identify three ways to deal
with existing cases:

Restart: All existing cases are aborted and
restarted. At any time, all cases use the same
routing definition. For most workflow
applications, it is not acceptable to restart cases
because it is not possible to rollback work or it is
too expensive to flush cases.
Proceed: Each case refers to a specific version of
the workflow process. Newer versions do not
affect old cases. Most workflow management
systems support such a versioning mechanism. A
drawback of this approach is that old cases cannot
benefit from an improved routing definition.
Transfer: Existing cases are transferred to the
new process, i.e., they can directly benefit from
evolutionary changes. The term dynamic change
is used to refer to the problem of transferring
cases to a consistent state in the new process.

Both for ad-hoc and evolutionary change, we

distinguish three ways in which the routing of cases along
tasks can be changed:

Extend: Adding new tasks which (1) are executed in
parallel, (2) offer new alternatives, or (3) are executed
in-between existing tasks.

Replace: A task is replaced by another task or a
subprocess (i.e., refinement), or a complete region is
replaced by another region.
Re-order: Changing the order in which tasks are
executed without adding new tasks, e.g., swapping
tasks or making a process more or less parallel.

This concludes our classification of adaptive workflow.

Note that the term exception handling does not appear in
the classification. An exception is the occurrence of some
unexpected or abnormal event. In most cases, exceptions
are undesirable because they generate additional
complications and work. If a workflow management
system provides an exception handler, it is possible to
specify the actions to be performed in order to respond to
certain exceptions. However, often the humans
participating in the process are the “real” exception
handlers, because it is not possible to pre-specify all
possible exceptions. Note that an exception is not a
change. Exceptions only trigger changes. Exceptions
generated by external actors (e.g., a customer reporting an
emergency) typically lead to ad-hoc changes. Exceptions
generated by internal actors (e.g., the breakdown of an
information system) typically lead to the blocking of parts
of the workflow or to (temporary) evolutionary changes.

The classification just given reveals that there are
many types of changes causing different types of
problems. Typically, changes lead to many variants of the
same process. Therefore, a lot of routing definitions need
to be stored and supported by the workflow enactment
service. To keep track of these definitions and to avoid
redundancy they should be stored in a structured way.
Having many variants emphasizes the fact that it is
important to support automatic verification: given a set of
criteria, all changes should be checked before the routing
definition is put into production. Moreover, it is important
to be able to provide the manager with aggregated
information and support dynamic change. To solve some
of these problems, we propose an approach which allows
for the formulation of generic process models.

3. Generic process models
A generic process model is specified by a set of routing

diagrams and inheritance diagrams. Before these two
diagram types are presented, we introduce the basic
concepts and the relations between these concepts.

3.1. Concepts
Cases are the objects which need to be handled by the

workflow (management system). Examples of cases are
tax declarations, complaints, job applications, credit card
payments, and insurance claims. A task is an atomic piece
of work. A task is concrete, i.e., it can be specified, but is
not specific for a single case. In principle, a task can be

executed for any case. A non-atomic concrete process is
similar to a task but it is not atomic. A non-atomic
concrete process is specified by a routing diagram and
corresponds to a case type rather than a specific case. A
concrete process is either a task or a non-atomic concrete
process, i.e., it is pre-specified piece of work which can be
executed for many cases (if needed). A generic process is
not specified, i.e., it is not concrete but refers to a family
of processes. Since it is not concrete, it makes no sense to
distinguish between atomic and non-atomic generic
processes. In fact, one generic process may refer to both
concrete tasks and non-atomic concrete processes at the
same time. A process node is either a concrete process or a
generic process. A routing diagram contains process
nodes, i.e., a non-atomic concrete process is specified in
terms of both concrete and generic processes. A process
node appears in zero of more routing diagrams. In each
routing diagram, process nodes are connected by routing
elements specifying the order in which the process nodes
need to be executed. A process node refers to zero or more
generic processes. If a process node X refers to a generic
process Y, then X belongs to the process family described
by Y and we say that X is a child of Y. A concrete process
can be the child of a generic process, a generic process can
be the child of another generic process, but a generic
process cannot be the child of a concrete process. Note
that a process node can be the child of many generic
processes. Each case refers to precisely one non-atomic
concrete process. Since the routing diagram describing a
non-atomic concrete process may contain generic
processes, it is necessary to instantiate generic processes
by concrete processes for specific cases, i.e., for a specific
case, generic processes in the routing diagram are replaced
by concrete processes.

1..*

1

process
node

routing
element

concrete
process

generic
process

tasknon-atomic
concrete process

case instantiation

1..*

*

* *

**

*

*
11

1

1

1

*

{disjoint,
complete}

{disjoint,
complete}

{key}

is_child_of

min_rep_of

inst_ofinst_by

is_instance_of

has

contains

connects

Figure 3: Class diagram describing the relationships

between the main concepts used in this paper.

Figure 3 shows a class diagram, using the UML
notation, relating the essential concepts used in this paper.
The diagram shows that non-atomic concrete processes
and tasks are specializations of concrete processes, i.e.,

both the class non-atomic concrete process and the class
task are subclasses of the class concrete process. The two
subclasses are mutually disjoint and complete. The class
process node is a generalization of the class concrete
process and the class generic process. The association
is_child_of relates process nodes and generic processes. If
the association relates a process node X and generic
process Y, then X belongs to the process family of Y.
Since process nodes can be in the process family of
generic processes and a generic process can have many
children (but at least one), the cardinality constraints are as
indicated in the class diagram. A generic process has at
least one child because it has a so-called minimal
representative as indicated by the association min_rep_of.
The minimal representative of a generic process is a
concrete process which captures the essential
characteristics of a process family. The minimal
representative is needed to enable dynamic change and to
generate aggregate management information. The class
routing element links process nodes to non-atomic
concrete processes. A non-atomic concrete process
consists of process nodes (i.e., tasks, non-atomic concrete
processes, and generic processes) which can be executed
in a predefined way. Typical routing elements are the
AND-split, AND-join, OR-split, and OR-join [34]. These
elements can be used to enable sequential, parallel,
conditional, alternative, and iterative routing. In the class
diagram, we did not refine the class routing element
because the approach presented in this paper is
independent of the process modeling technique used. The
association contains specifies the relation between routing
elements and non-atomic concrete processes. Note that a
routing element is contained in precisely one non-atomic
concrete process. The association connects specifies which
process nodes are connected by each routing element.
Note that the associations contains and connects can be
used to derive in which non-atomic concrete processes a
process node is used. The class case refers to the objects
that are handled at run-time using a non-atomic concrete
process description. The association is_instance_of relates
each case to precisely one non-atomic concrete process. It
is not possible to execute non-atomic concrete processes
containing process nodes which are generic. Before or
during the handling of a case, generic processes need to be
instantiated by concrete processes. The class instantiation
is used to bind generic processes to concrete processes for
specific cases. Every instantiation corresponds to one case,
one generic process, and one concrete process. Note that
per case it is not allowed to have multiple instantiations for
the same generic process.

There are many constraints not represented in the class
diagram. Constraints that are important for the remainder
are:
1. The relation given by the association is_child_of is

acyclic.

2. The relation derived from the composition of
association contains and association connects is
acyclic.

3. The relation derived from the composition of the
associations contains, connects and is_child_of is
acyclic, e.g., a non-concrete process X is not allowed
to contain a generic process Y if X is a child of Y.

4. The minimal representative of a generic process is
also a child, i.e., the relation specified by the
association min_rep_of is contained in the relation
specified by is_child_of.

5. A generic process can only be instantiated by a
concrete process if the concrete process is (indirectly)
a child of the generic process.

6. For a case it is only possible to instantiate generic
processes which are actually contained in the
corresponding non-atomic concrete process.

The class diagram shown in Figure 3 contains three

types of information:
1. Routing information: The process description of each

non-atomic concrete process. It specifies which tasks,
non-atomic concrete processes, and generic processes
are used and in what order they are executed. The
classes routing element, process node, and non-atomic
concrete process and the associations contains and
connects are involved.

2. Inheritance information: The relation between a
generic process and its children. It specifies possible
instantiations of generic processes by concrete
processes, and concerns the classes generic process,
process node, and concrete process and the
associations is_child_of and min_rep_of.

3. Dynamic information: Information about the
execution of cases and instantiations of generic
processes by concrete processes. It involves the
classes case and instantiation and the associations
is_instance_of, has, inst_by, and inst_of.

Today’s workflow management systems do not support

the definition of generic processes, i.e., it is only possible
to specify concrete processes. In the remainder of this
section we focus on the modeling of generic processes
using a combination of routing and inheritance diagrams.

3.2. Routing diagrams
A routing diagram specifies for a non-atomic concrete

process the routing of cases along process nodes. Any
workflow management system allows for the modeling of
such diagrams. Examples of diagramming techniques are
Petri-nets (COSA, INCOME, BaaN/DEM, Leu), Event-
driven Process Chains (SAP/Workflow), Business Process
Maps (ActionWorkflow), Staffware Procedures
(Staffware), etc. None of these diagramming techniques
supports generic processes. However, each of these

diagramming techniques can be extended with generic
processes. A routing diagram specifies the contents of a
non-atomic concrete process and consists of four types of
elements:
1. Tasks: A task is represented by a square and

corresponds to a Petri-net transition.
2. Non-atomic concrete processes: A non-atomic

concrete process is represented by a double square
and corresponds to a link to another Petri-net (i.e., a
subnet).

3. Generic processes: A generic process is represented
by a square containing a diamond and corresponds to
a link which can be instantiated by a workflow node.

4. Routing elements: Routing elements are added to
specify which workflow nodes need to be executed
and in what order. Since we use Petri nets, routing
elements correspond to places and transitions which
are added for routing reasons only.

Since any of the workflow management system

available has some kind of diagramming technique, we
simply use Petri-net like diagrams and formulations. In
fact, we extend Petri-net-like routing diagrams [1,12] with
generic processes. Since most of the readers are familiar
with similar diagramming techniques, we do not go into
details. The only relevant aspect is the addition of generic
processes in the routing diagrams.

3.3. Inheritance diagrams
In contrast to routing diagrams, today’s products do not

allow for inheritance diagrams to specify the process
family corresponding to a generic process. The lack of
such a concept in today’s workflow management systems
has many similarities with the absence of product variants
in the early MRP/ERP-systems. These systems where
based on the traditional Bill-Of-Material (BOM) and
where burdened by the growing number of product types.
Therefore, the BOM was extended with constructs
allowing for the specification of variants [14,17,30,31].
Variants of a product type form a product family of similar
but slightly different components or end-products.
Consider for example a car of type X. Such a car may have
16 possible colors, 5 possible engines, and 10 options
which are either present or not, thus yielding
16*5*210=81920 variants. Instead of defining 81920
different BOM’s, one generic BOM is defined. Inspired by
the various ways to define generic BOM’s, we extend
process models with inheritance diagrams allowing for the
specification of process families.

Figure 4 shows an inheritance diagram. The root of an
inheritance diagram is a generic process called the parent.
All other process nodes in the diagram are called the
children and are connected to this parent. There are three
types of children: tasks, non-atomic concrete processes,
and generic processes. Each non-atomic concrete process

in the inheritance diagram refers to a routing diagram
describing the internal routing structure. Each generic
child process in an inheritance diagram refers to another
inheritance diagram specifying the process family which
corresponds to this generic process. Note that the total
number of inheritance diagrams equals the total number of
generic processes. Every generic process has a child called
the minimal representative of this task. This child is
connected to the parent with a solid arrow. All the other
arrows in an inheritance diagram are dashed. The minimal
representative has all the attributes which are mandatory
for the process family. One can think of this minimal
representative as the default choice, as a simplified
management version, or as some template object. The
actual interpretation of the minimal representative depends
on its use. The minimal representative can be considered
to be the superclass in an object-oriented sense [3,8]. All
other children in the inheritance diagram should be
subclasses of this superclass. For execution, generic
processes are instantiated by concrete processes using the
relations specified in the inheritance diagram. However, in
many cases it is not allowed to instantiate a parent by an
arbitrary child. Therefore, it is possible to specify
constraints as indicated in Figure 4. These constraints may
depend on two types of parameters: (1) case variables and
(2) configuration parameters. The case variables are
attributes of the case which may change during the
execution of the process (cf. [1]). Configuration
parameters are used to specify that certain combinations of
instantiations are not allowed. These parameters can be
dealt with in a way very similar to the parameter concept
in [30] for the generic BOM. Note that the use of
inheritance diagrams is also advocated by other
researchers such as Malone et al. [25]. However, these
researchers do not tackle the problems related to change,
i.e., dynamic change and management information.

tasks non-atomic
concrete processes

generic
processes

children

parent
minimal
representative

constraint
C

Figure 4: Symbols used in an inheritance diagram.

4. Dynamic change
The problem of dynamic change was introduced using

Figure 1. If a sequential process is changed to a parallel
one, there are no problems. However, if the degree of
parallelism is reduced, there are states in the old process

which do not correspond to states in the new process. The
state with a token in both p2 and p5 (right-hand side of
Figure 1) cannot be mapped onto a state in the sequential
process (left-hand side). Putting a token in s1, s2, or s3
will result in the double execution of task C. Putting a
token in s3, s4, or s5 will result in the skipping of (at least)
task B. The problem identified does not only apply to the
situation where the degree of parallelism is changed. For
example swapping tasks or removing parts may lead to
similar problems. This is the reason most workflow
management systems do not allow dynamic change, i.e., if
a workflow process is changed, then all existing cases are
handled the old way and the new process only applies to
new cases. Every case has a pointer to a version of the
workflow and each version is maintained as long as there
are cases pointing to it. For some applications this solution
will do. However, if the flow time of a case is long, it may
be unacceptable to process running cases the old way.
Consider for example the change of a 4-year curriculum at
a university to a 5 year one. It is too expensive to offer
both curricula for a long time. Sooner or later, cases (i.e.,
students) need to be transferred. Other examples are
mortgages and insurances with a typical flow time of
decades. Maintaining old versions of a process is often too
expensive and may cause managerial problems. It is also
possible that there are regulations (e.g., new laws)
enforcing a dynamic change.

There are many similarities between dynamic change
and schema evolution in the database domain. As the
requirements of database applications change over time,
the definition of the schema, i.e., the structure of the data
elements stored in the database, is changed. Schema
evolution has been an active field of research in the last
decade (mainly in the field of object-oriented databases,
cf. [9]) and has resulted in techniques and tools that
partially support the transformation of data from one
database schema to another. Although dynamic change
and schema evolution are similar, there are some
additional complications in case of dynamic change. First,
as was shown in the example, it is not always possible to
transfer. Second, it is not acceptable to shut down the
system, transfer all cases, and restart using the new
procedure. Cases should be migrated while the system is
running. Finally, dynamic change may introduce
deadlocks and livelocks. The solutions provided by
today’s object-oriented databases do not deal with these
complications. Therefore, we need new concepts and
techniques.

Several researchers have worked on problems related
to dynamic change. Ellis, Keddara and Rozenberg [11]
propose a technique based on so-called “change regions”,
i.e., all parts of the workflow process that cause problems
have two versions: the old one and the new one. This way,
there is one version which covers the old and the new
situation and changes affect cases as soon as possible.

Parts of the workflow (i.e., change regions) become
inactive after a while because all old cases have been
handled. This approach has the drawback that the process
definition can become very complex. However, a more
serious drawback is the fact that the change regions are
identified manually and there is little support for the
transfer of cases. In [12] the authors improve their
approach by introducing jumpers. A jumper moves a case
from the old workflow to the new workflow and if for a
state no jumper is available, the jump is postponed. Again,
the authors do not give a concrete technique for the
transfer of cases, i.e., jumpers are added manually.
Agostini and De Michelis [6] propose a technique for the
automatic transfer of cases from the old process to the new
process and also give criteria for determining whether a
jump is possible. Unfortunately, the approach only works
for a restricted class of workflows (e.g., iteration can only
be handled by ad-hoc jumps at runtime). Casati, Ceri and
Pernici [10] tackle the problem of dynamic change via a
set of transformation rules and partition the state space
into a part that is aborted, a part that is transferred, a part
that is handled the old way, and parts which are handled
by hybrid process definitions (comparable to the approach
using change regions). Reichert and Dadam[26] use a
similar approach without addressing for example the
problem identified in Figure 1. Voorhoeve and Van der
Aalst [32,33] also propose a fixed set of transformation
rules to support dynamic change. However, the drawback
of using transformation rules is that only local changes are
considered and the rules provided so far are far from being
complete. Moreover, valuable information is lost during
the application of a series of transformation rules.

Independent of the approach used, the following two
issues constitute a policy for dynamic change: (1) When to
jump from the old process to the new process definition?
and (2) Which state to jump to? A good policy for the
example shown in Figure 1 is the following. The right-
hand process will jump in every state except the state with
a token in p2 and p5. State p1 is mapped onto s1, p2+p3
onto s2, p3+p4 onto s3, p4+p5 onto s4, and p6 onto s5.
(Note that a shorthand notation is used to denote states.)

In a generic process model, the dynamic change
problem boils down to migrating instances between
different members of the same process family. Note that
the concept of generic processes helps to limit the scope of
a change. In a way it is a predefined “change region”. If a
part is changed which does not correspond to a generic
process, then a generic process is introduced. The essence
of a change always refers to transferring (parts of) cases
between children of a generic process. Although the
concept of generic processes gives a handle to tackle the
problem, it does not really solve it. In fact, if a process
family has many members, say n, there are n(n-1) potential
transfers. To limit the problem, we propose to exploit the
role of the minimal representative. Any transfer between

two members of the same process family is executed via
the minimal representative, i.e., first the instance is
mapped from the old child onto the minimal
representative, and then it is mapped onto the new child.
Note that this results in 2(n-1) possible transfers. If a new
variant is added, only the transformation from the new
variant to the minimal representative and vice versa need
to be added and no knowledge of the other variants is
needed. A solution with direct jumps would require
knowledge of all other variants. One might argue that only
a few of the potential transfers are relevant. However, to
truly support reusability all possible transfers should be
defined. Clearly there are also drawbacks associated with
the indirect transfer via the minimal representative. First of
all, if the minimal representative contains little
information, a lot of knowledge is lost during the transfer.
It is clear that a transfer between two children with a state
space of thousands of states via a minimal representative
with only a dozen states is not likely to be a success
(because of the loss of information). Secondly, additional
problems are introduced the moment a new minimal
representative is introduced. Therefore, it is vital to
carefully define the minimal representative.

gen1

spe1

man1
S1 S0

genn-1

spen-1

mann-1
Sn-1

gen2 spe2

man2

S2

…
child 1

child 2

minimal
representative

(child 0)

child n-1

Figure 5: The relation between the state spaces of the

minimal representative and its fellow children.

Figure 5 illustrates the use of the minimal
representative. Each child (including the minimal
representative) has a state space. S0 is the state space of the
minimal representative (child 0). Child i has state space Si.
The partial function geni ∈ Si →/ S0 maps selected states of
child i onto the minimal representative. The function is
partial because from some states it is desirable to postpone
the jump, i.e., state space Si is partitioned into Si

J =
dom(geni), the set of “jump states”, and Si

W = Si \ Si
J , the

set of “wait states”. There is a similar function to map
states of the minimal representative onto the states of a
specific child: spei ∈ S0 →/ Si. This function is also partial
and partitions the states of S0 into jump states (S0

J,i =
dom(spei)) and wait states (S0

W,i = S0 \ Si
J,i) relative to child

i. A transfer from one child (i) to another child (j) typically
involves a generalization step (i.e., geni) and a
specialization step (i.e., spej). The functions of type mani
∈ Si → S0 shown in Figure 5 will be used to generate
management information and should be ignored for the
moment.

Suppose a case needs to be transferred from child i to
child j and the state of the case is s ∈ Si. If s ∈ Si

W, no
transfer is possible. If s ∈ Si

J and geni(s)∈ S0
J,j, then there

is no reason to postpone the jump to the new process. The
new state in the process corresponding to child j is
spej(geni(s)). If s ∈ Si

J and geni(s)∈ S0
W,j, there are two

policies possible: (1) the transfer is postponed (non-eager),
or (2) the case is migrated to the minimal representative
and is transferred the moment it reaches a state in S0

J,j
(eager). If the change affects several parts of the workflow
process definition and multiple generic processes are
involved, there is a similar choice. Either the transfer is
postponed until all parts are ready (non-eager) or the
transfer is executed on a part-by-part basis (eager). At this
moment, the policy to execute the transfer on a part-by-
part basis but postponing parts which cannot go directly to
the new corresponding child seems to be the most
attractive policy. However, more empirical data is needed
to substantiate this.

geni

spei

Si S0

geni

A

B

C

D

Z-structure 1

geni

spei

Si S0

spei

A

B

C

D

Z-structure 2

Figure 6: Two Z-structures that are not allowed.

Not every set of generalization (geni) and
specialization (spei) functions is allowed. Constructs
which have a so-called “Z-structure” are not allowed. A
“Z-structure” is the situation where two distinct states are
mapped onto two other distinct states in one direction
(e.g., generalization) but in the reverse direction (e.g.,
specialization) one of the states is mapped onto the other
one. Figure 6 shows the two possible Z-structures. In the
first Z-structure there are two states A and B which are
mapped onto respectively C and D by the generalization
function (geni). However, the specialization function (spei)
maps C onto B instead of A. This structure is not allowed
because by simply moving a case up (2x) and down, the
state in both processes has changed (in the left-hand
process it moved from A to B and in the right-hand process
it moved from C to D). Note that it is not possible to
strengthen the requirement and demand that for any state
s: spei(geni(s)) = s, because multiple states in the child

process i can be mapped onto one state in the minimal
representative. In the second Z-structure shown in Figure
6, the roles of the generalization (geni) and specialization
(spei) functions have been swapped and similar arguments
apply. The absence of these Z-structures is the minimal
requirement any dynamic change should satisfy. There are
generally additional requirements that need to be satisfied.
Suppose that the right-hand-side process in Figure 1 is the
minimal representative and the left-hand-side process is
the child 1. Assume that gen1 is defined as follows: s1 is
mapped onto p6, s2 is mapped onto p1, s3 is mapped onto
p6, s4 is mapped onto p1, and s5 is mapped onto p6.
Moreover, spe1 is defined as follows: p1 is mapped onto
s2, and p6 is mapped onto s1 (the other states are wait
states). Clearly, this does not make any sense.
Nevertheless, it does not contain any Z-structures.
Stronger notions are context dependent and are difficult to
define for any process modeling technique. (Recall that the
concepts in this paper are modeling technique
independent.) Therefore, we refrain from more advanced
constraints that should be satisfied by the set of
generalization (geni) and specialization (spei) functions.

In Section 2, we identified three ways to deal with
existing cases: (a) restart, (b) proceed, and (c) transfer.
Thus far, we primarily discussed the problems resulting
from the latter policy (i.e., dynamic change). However, the
approach presented in this section also works for the other
two policies. For the restart policy (a), all states of the old
process i are mapped onto the initial state of the minimal
representative (i.e., SI

J = Si and for all s ∈ Si: geni(s) = sinit
where sinit is the initial state) and the initial state of the
minimal representative is mapped onto the initial state of
the new process j (i.e., spej(sinit) = s’init where s’init is the
initial state of child j). For the proceed policy (b), all states
are wait states, i.e., Si

J =∅. Clearly, the approach
presented is quite general and can be extended in many
ways. For example, it is possible to deal with hierarchical
structures in an efficient way since change is limited to the
generic parts of the process. It is also possible to allow for
changes of the minimal representative. Simply add a
generalization function from the old minimal
representative to the new one and a specialization function
from the new minimal representative to the old one. By
taking the appropriate function compositions, it is possible
to remove or skip the old minimal representative.

5. Management information
Changes typically lead to multiple variants of the same

process. For evolutionary change the number of variants is
limited. In fact, if all cases are transferred directly after a
change, there is just one active variant. However, if the
proceed policy is used or transfers are delayed, there are
multiple active variants. If the average flow time of cases
is long and changes occur frequent, there can be dozens of

variants. Ad-hoc change may result in even more variants.
In fact, it is possible to end up in the situation where the
number of variants is of the same order of magnitude as
the number of cases. To manage a workflow process with
different variants it is desirable to have an aggregated view
of the work in progress. Therefore, as indicated in Section
1, it is of the utmost importance to supply the manager
with tools to obtain a condensed but accurate view of the
workflow processes. In Figure 2, it was pointed out that
we need some kind of ‘greatest common divisor’ (gcd) or
‘least common multiple’ (lcm) for the children in a
product family. At the moment, only intuitive notions exist
for the gcd and lcm. However, we can use the same
approach as we used to tackle the dynamic change
problem and use the minimal representative as the
aggregated view.

A

B

C

D

m1

m5

m4

m3

m2

A

B C

D

p1

p6

p3

p4

p2

p5

74

3

5

5

8

2 4

5 3

7

+ =

A

B

C

D

s1

s5

s4

s3

s2

3

1

3

2

1

Figure 7: Aggregated management information
mapped onto a sequential minimal representative.

To use the minimal representative as the aggregated
view, we need to map all states from all children of the
process family onto the state space of the minimal
representative. The generalization functions (geni) provide
such a mapping for the jump states but not for the wait
states. Therefore, we introduce a new function for each
child i (except the minimal representative): mani. The
functions of type mani ∈ Si → S0 are total and should
satisfy the following requirement: for all s ∈ Si

J we have
mani(s) = geni(s), i.e., the mapping used for dynamic
change and the mapping used for management purposes
should agree on the jump states. Again, the solution is
surprisingly simple. However, the applicability heavily
depends on the quality of the minimal representative and
the functions of type mani. Figure 7 shows an alternative

to the approach used in Figure 2. In this case, the
sequential process is taken as the minimal representative.
The mapping of tokens from the left-hand-side process is
clear (the state with a token in s1 is mapped onto the state
with a token in m1, etc.).

In fact, the left-hand-side process and the right-hand-
side process are identical and the places are named
different for presentation reasons only. Mapping states
from the process in the middle is more involved. For the
jump states the following mapping seems to be reasonable:
p1 is mapped onto m1, p2+p3 is mapped onto m2, p3+p4
is mapped onto m3, p4+p5 is mapped onto m4, and p6 is
mapped onto m5. In the previous section, state p2+p5 was
classified as a wait state because there is no intuitively
corresponding state in the sequential process. Mapping
p2+p5 onto m2 will lead to management information
which is too pessimistic: C is already executed but this
information is lost in the aggregated view. Mapping
p2+p5 onto m4 will lead to management information
which is too optimistic: B is not executed yet but this
information is lost in the aggregated view. Mapping
p2+p5 onto m3 combines the disadvantages of the
previous two choices: it indicates that B has been executed
and C not, while in reality it is the other way around. This
example shows that quality of the management
information heavily depends on the minimal
representative. The numbers indicated in Figure 7 are
based on the assumption that cases are executed in a first-
in-first-out order. This assumption combined with the
numbers indicated for the parallel process implies that
there are no cases in the state p2+p5. In this particular
situation, the aggregated view does not depend upon the
choice with respect to p2+p5. In general, a badly chosen
minimal representative will lead to misleading
management information.

6. Conclusion
This paper tackled two notorious problems related to

adaptive workflow using generic process models. The
approach is inspired by the work on product configuration
(generic bills-of-material). The generic process model
extends the classical workflow models, primarily based on
routing diagrams, with inheritance diagrams. This allows
for the specification of process families composed of
variants. It also provides the designer with two navigation
dimensions: (1) the is-part-of/contains dimension (routing
diagrams) and (2) the generalizes/specializes dimension
(inheritance diagrams), and stimulates reuse. Based on this
model the problems related to (1) providing management
information at the right aggregation level and (2)
supporting dynamic change (i.e., migrating cases from an
old to a new workflow) have been addressed. As it turns
out, the generic process model with a minimal
representative for each process family gives a handle to
deal with these problems. Although the diagrams shown in

this paper use a Petri-net-like notation, the concepts and
ideas are independent of the process modeling technique
chosen. Therefore, it is, in principle, possible to add the
notions presented in this paper to most of the workflow
management systems available today. However, the
generality of the approach also indicates that many
problems are still open. For example, how to construct a
good a minimal representative and the corresponding
specialization (spei), generalization (geni) and
management functions (mani)? To answer these questions,
we need to select a process modeling technique to reason
about the dynamic properties of processes. Future research
aims at answering these questions in a Petri-net-based
setting using recent results on inheritance of dynamic
behavior [3,5,7]. In [3,5,7] transformation rules are given
that preserve certain inheritance relations. If such relations
exist between the minimal representative and its fellow
children, i.e., every child is a subclass of the minimal
representative, then it should be possible to truly solve the
problems discussed in this paper.

7. References
1 W.M.P. van der Aalst. The Application of Petri Nets
to Workflow Management. The Journal of Circuits,
Systems and Computers, 8(1):21-66, 1998.
2 W.M.P. van der Aalst. Flexible Workflow
Management Systems: An Approach Based on Generic
Process Models. To appear in the proceedings of
DEXA’99, Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1999.
3 W.M.P. van der Aalst and T. Basten. Life-cycle
Inheritance: A Petri-net-based approach. In P. Azema and
G. Balbo, editors, Application and Theory of Petri Nets
1997, volume 1248 of Lecture Notes in Computer Science,
pages 62-81. Springer-Verlag, Berlin, 1997.
4 W.M.P. van der Aalst, T. Basten, H.W.M. Verbeek,
P.A.C. Verkoulen and M. Voorhoeve. Adaptive
Workflow: On the interplay between flexibility and
support. 1998. In J. Filipe and J. Cordeiro, editors,
Proceedings of the first International Conference on
Enterprise Information Systems, pages 353-360, 1999.
5 W.M.P. van der Aalst and T. Basten. Inheritance of
Workflows: An Approach to Tackling Problems Related to
Change. Technical report. Eindhoven University of
Technology, Eindhoven, 1999.
6 W.M.P. van der Aalst, G. De Michelis, and C.A. Ellis,
editors. Workflow Management: Net-based Concepts,
Models, Techniques and Tools (WFM'98). UNINOVA,
Lisbon, June 1998.
7 A. Agostini and G. De Michelis. Simple Workflow
Models. In [6], pages 146-164.

8 T. Basten. In Terms of Nets: System Design with Petri
Nets and Process Algebra. PhD Thesis. Eindhoven
University of Technology, Department of Computing
Science, Eindhoven, the Netherlands, 1998.
9 E. Bertino, E. Ferrari, and V. Atluri. Object-Oriented
Database Systems: Concepts and Architecture. Addison-
Wesley, 1993.
10 F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow
Evolution. Data and Knowledge Engineering, 24(3):211-
238, 1998.
11 C. Ellis, K. Keddara, and G. Rozenberg. Dynamic
change within workflow systems. In N. Comstock and C.
Ellis, editors, Conf. on Organizational Computing
Systems, pages 10 - 21. ACM SIGOIS, ACM, Aug 1995.
Milpitas, CA.
12 C.A. Ellis, K. Keddara, and J. Wainer. Modeling
Workflow Dynamic Changes Using Timed Hybrid Flow
Nets. In [6], pages 109-128
13 C.A. Ellis and G.J. Nutt. Modelling and Enactment of
Workflow Systems. In M. Ajmone Marsan, editor,
Application and Theory of Petri Nets 1993, volume 691 of
Lecture Notes in Computer Science, pages 1-16. Springer-
Verlag, Berlin, 1993.
14 F. Erens, A. MacKay, and R. Sulonen. Product
modelling using multiple levels of abstraction - instances
as types. Computers in Industry, 24(1):17-28, 1994.
15 Y. Han and A. Sheth. On Adaptive Workflow
Modeling. In Proceedings of the 4th International
Conference on Information Systems Analysis and
Synthesis, pages 108-116, Orlando, Florida, July 1998.
16 K. Hayes and K. Lavery. Workflow management
software: the business opportunity. Technical report,
Ovum Ltd, London, 1991.
17 H.M.H. Hegge. Intelligent Product Family
Descriptions for Business Applications. PhD thesis,
Eindhoven University of Technology, Eindhoven, 1995.
18 P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and
M. Teschke. A comprehensive approach to flexibility in
workflow management systems. Technical report TR-16-
1998-6, University of Erlangen-Nuremberg, Erlangen,
1998.
19 S. Jablonski and C. Bussler. Workflow Management:
Modeling Concepts, Architecture, and Implementation
International Thomson Computer Press, 1996.
20 E. Kindler. Database Theory - Petri Net Theory -
Workflow Theory. Informatikberichte 102, Humboldt-
Universität zu Berlin, Berlin, 1998.
21 A.H.M. ter Hofstede, M.E. Orlowska, and J.
Rajapakse. Verification Problems in Conceptual Workflow
Specifications. Data and Knowledge Engineering,
24(3):239-256, 1998.

22 M. Klein, C. Dellarocas, and A. Bernstein, editors.
Proceedings of the CSCW-98 Workshop Towards Adaptive
Workflow Systems, Seattle, Nov. 1998.
23 T.M. Koulopoulos. The Workflow Imperative. Van
Nostrand Reinhold, New York, 1995.
24 P. Lawrence, editor. Workflow Handbook 1997,
Workflow Management Coalition. John Wiley and Sons,
New York, 1997.
25 T. Malone, W. Crowston, J. Lee, B. Pentland, and et.
al. Tools for inventing organizations: Toward a handbook
for organizational processes. Management Science, 1998
(to appear).
26 M. Reichert and P. Dadam. ADEPTflex: Supporting
dynamic changes of workflow without loosing control.
Journal of Intelligent Information Systems, 10(2):93-129,
1998.
27 T. Schäl. Workflow Management for Process
Organisations, volume 1096 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1996.
28 A. Sheth. From Contemporary Workflow Process
Automation to Dynamic Work Activity Coordination and
Collaboration. Siggroup Bulletin, 18(3):17-20, 1997.
29 R. Valette. Analysis of Petri Nets by Stepwise
Refinements. Journal of Computer and System Sciences,
18:35-46, 1979.
30 E.A. van Veen and J.C. Wortmann. Generative bill of
matarial processing systems. Production Planning and
Control, 3(3):314-326, 1992.
31 E.A. van Veen and J.C. Wortmann. New
developments in generative bom processing systems.
Production Planning and Control, 3(3):327-335, 1992.
32 M. Voorhoeve and W.M.P. van der Aalst.
Conservative Adaptation of Workflow. In [35], pages 1-
15.
33 M. Voorhoeve and W.M.P. van der Aalst. Ad-hoc
Workflow: Problems and Solutions. In R. Wagner, editor,
Proceedings of the 8th DEXA Conference on Database
and Expert Systems Applications, pages 36-41, Toulouse,
France, Sept 1997.
34 WFMC. Workflow Management Coalition
Terminology and Glossary (WFMC-TC-1011). Technical
report, Workflow Management Coalition, Brussels, 1996.
35 M. Wolf and U. Reimer, editors. Proceedings of the
International Conference on Practical Aspects of
Knowledge Management (PAKM'96), Workshop on
Adaptive Workflow, Basel, Switzerland, Oct 1996.

	Introduction
	Adaptive workflow
	Generic process models
	Concepts
	Routing diagrams
	Inheritance diagrams

	Dynamic change
	Management information
	Conclusion
	7. References

