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Abstract 
Traditionally, workflow management systems are used to 
support static processes, i.e., processes which do not 
change frequently. This has limited the scope of workflow 
management. Moreover, the networked economy of the 
new millennium requires workflow management systems 
which are able to deal with dynamically changing 
workflow processes. This paper addresses two notorious 
problems related to adaptive workflow: (1) providing 
management information at the right aggregation level, 
and (2) supporting dynamic change, i.e., migrating cases 
from an old to a new workflow. These two problems are 
tackled by using generic process models. A generic 
process model describes a family of variants of the same 
workflow process. It is a first step in the direction of truly 
flexible workflow management systems and provides a 
handle to solve the two problems mentioned. 
  

1. Introduction 
The new millennium is characterized by an increasing 

number of business processes subject to continuous 
change. Organizations are challenged to bring ideas and 
concepts to products and services in an ever-increasing 
pace. Companies distributed by space, time and 
capabilities come together to deliver products and 
solutions for which there is any need in the global 
marketplace. The trends for virtual corporations and e-
commerce, and increasing global networking of economies 
are real and will accelerate. As a result, more and more 
workflow processes are subject to continuous change. At 
the moment, there are many workflow products 
commercially available and many organizations are 
introducing workflow technology to support their business 
processes. A critical challenge for workflow management 
systems is their ability to respond effectively to changes 
[4,7,10,11,12,15,18,26,28,32]. Changes may range from 

ad-hoc modifications of the process for a single customer 
to a complete restructuring for the workflow process to 
improve efficiency. Today’s workflow management 
systems are ill suited to dealing with change. They 
typically support a more or less idealized version of the 
preferred process. However, the real run-time process is 
often much more variable than the process specified at 
design-time. The only way to handle changes is to go 
behind the system’s back. If users are forced to bypass the 
workflow management system quite frequently, the system 
is more a liability than an asset. Therefore, we take up the 
challenge to find techniques to add flexibility without 
loosing the support provided by today’s systems. 

Typically, there are two types of changes [4]: (1) ad-
hoc changes and (2) evolutionary changes. Ad-hoc 
changes are handled on a case-by-case basis. In order to 
provide customer specific solutions or to handle rare 
events, the process is adapted for a single case or a limited 
group of cases. Evolutionary change is often the result of 
reengineering efforts. The process is changed to improve 
responsiveness to the customer or to improve the 
efficiency (do more with less). The trend is towards an 
increasingly dynamic situation where both ad-hoc and 
evolutionary changes are needed to improve customer 
service and reduce costs. 

For the past five years the author has been active as a 
consultant for Bakkenist Management Consultants in the 
area of workflow management. In this period Bakkenist 
has supported numerous workflow projects for large 
financial institutions and the Dutch government (see 
http://www.bakkenist.nl). Based on practical experiences 
while selecting, testing, and configuring various workflow 
management systems, the author was confronted with the 
problem of change. 

This paper presents an approach to tackle the problem 
of change. This approach is inspired by the techniques 
used in product configuration [30]. As factories have to 
manufacture more and more customer specific products, 



the trend is to have a very high number of variants for one 
product. Products, like a car or a computer, can have 
millions of variants (e.g., combinations of color, engine, 
transmission, and options). Also product specifications and 
their components evolve at an increasing pace. Product 
configuration deals with these problems and has been a 
lively area of research for the last decade. Moreover, some 
solutions have already been implemented in today’s 
enterprise resource planning systems such as SAP and 
Baan. To deal with changes the traditional Bill-Of-
Material (BOM) is extended with product families. A 
product family corresponds to a range of product types and 
allows for the modeling of generic product structures. The 
term generic BOM [14,17,30,31] is used when generic 
product structures are described by means of an extension 
to the traditional BOM. In this paper, we extend traditional 
process modeling techniques in a similar manner. We 
adopt the notion of process families to construct generic 
workflow process models. 
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Figure 1: The dynamic change problem. 

A generic workflow process model is a process model 
which can be configured to accommodate flexibility and 
enables both ad-hoc and evolutionary changes. Using 
generic workflow process models, the workflow 
management system can support the design and enactment 
(i.e., execution) of processes subject to change. Moreover, 
the generic process model introduced in this paper, allows 
for the navigation through two dimensions: (1) the vertical 
dimension (is-part-of/contains) and (2) the horizontal 
dimension (generalizes/specializes). Although the second 
dimension is absent in today’s workflow management 

systems, it is of the utmost importance for the reusability 
and adaptability of workflow processes. 

The addition of the horizontal dimension allows for the 
design and enactment of many variants of a workflow 
process. However, it is not sufficient to support the design 
and enactment. There are two additional issues that need to 
be dealt with: (1) management information [32,33], and 
(2) dynamic change [7,11,12]. In spite of the existence of 
many variants of one process, the manager is interested in 
information at an aggregate level, i.e., management 
information which abstracts from small variations. The 
term dynamic change refers to the problem of handling old 
cases in a new process, e.g., how to transfer cases to a 
new, i.e., improved, version of the process.  

Figure 1 illustrates the dynamic change problem1. The 
left-hand-side process executes the tasks prepare 
shipment, send goods, send bill, and record shipment in 
sequential order. In the right-hand-side process the sending 
of the goods and the sending of the bill can be executed in 
parallel, i.e., there is no ordering relation between the tasks 
send goods and send bill. In the remainder we will use 
identifiers A, B, C, and D to denote the four tasks. If the 
sequential workflow process (left) is changed into the 
workflow process where tasks B and C can be executed in 
parallel (right) there are no problems, i.e., it is always 
possible to transfer a case from the left to the right. The 
sequential process starts in the state with one token in s1 
and has five possible states. Each of these states 
corresponds to a state in the parallel process. For example, 
the state with a token in s3 is mapped onto the state with a 
token in p3 and p4. In both cases, tasks A and B have been 
executed and C and D still need to be executed. Now 
consider the situation where the parallel process is 

                                                           
1 In this paper, we use Petri nets to illustrate the main 
concepts. A Petri net is a network composed of squares 
and circles. The squares are called transitions and 
correspond to tasks that need to be executed. The circles 
are used to represent the state of a workflow and are called 
places. The arrows between places and transitions are used 
to specify causal relations. A place p is called an input 
place of a transition t iff there exists a directed arc from p 
to t. Place p is called an output place of transition t iff 
there exists a directed arc from t to p. At any time a place 
contains zero of more tokens, drawn as black dots. The 
state of the net, often referred to as marking, is the 
distribution of tokens over places. The number of tokens 
may change during the execution of the net. Transitions 
are the active components in a Petri net: they change the 
state of the net according to the following firing rule: (1) A 
transition t is said to be enabled iff each input place p of t 
contains at least one token. (2) An enabled transition may 
fire. If transition t fires, then t consumes one token from 
each input place p of t and produces one token for each 
output place p of t. 



changed into the sequential one, i.e., a case is moved from 
the right-hand-side process to the left-hand-side process. 
For most of the states of the right-hand-side process this is 
no problem, e.g., a token in p1 is moved to s1, a token in 
p3 and a token p4 are mapped onto one token in s3, and a 
token in p4 and a token p5 are mapped onto one token in 
s4. However, the state with a token in both p2 and p5 (A 
and C have been executed) causes problems because there 
is no corresponding state in the sequential process (it is not 
possible to execute C before B). The example in Figure 1 
shows that it is not straightforward to migrate old cases to 
the new process after a change. 
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Figure 2: Aggregated management information. 

Another problem of change is that it typically leads to 
multiple variants of the same process. For evolutionary 
change the number of variants is limited. Ad-hoc change 
may lead to the situation where the number of variants 
may be of the same order of magnitude as the number of 
cases. To manage a workflow process with different 
variants it is desirable to have an aggregated view of the 
work in progress. Note that in a manufacturing process the 
manager can get a good impression of the work in progress 
by walking through the factory. For a workflow process 
handling digitized information this is not possible. 
Therefore, it is of the utmost importance to supply the 
manager with tools to obtain a condensed but accurate 
view of the workflow processes. Figure 2 shows a 
workflow processes with two variants: a sequential one 
(left) and a parallel one (middle). The numbers indicate the 
number of cases in a specific state, e.g., in the sequential 
process there are 3 cases in-between task B and task C, and 
in the parallel process there are 2 cases in-between A and 
B. Since the manager requires an aggregated view rather 
than a view for every variant of the workflow process, the 
cases need to be mapped onto a generalized version of the 
different processes. Therefore we need to find the ‘greatest 
common divisor’ or the ‘least common multiple’ for the 

two processes shown. Since all the states of the sequential 
process are presented in the parallel process, we choose 
the parallel process to present the management 
information. Figure 2 shows the aggregated view of the 
two workflow processes (right). For all places in the right-
hand-side process except m3, it is quite straightforward to 
verify that the numbers are correct. The number of tokens 
in place m3 corresponds to the number of cases in-between 
A and C. In the sequential process there are 1+3=4 cases 
in-between A and C. In the parallel process there are also 4 
cases in-between A and C, which brings the total to 8. For 
this small example it may seem trivial to obtain this 
information. However, in general there are many variants 
and the processes may have up to 100 tasks and it is far 
from trivial to present aggregated information to the 
manager. 

These two issues (dynamic change and management 
information) cause a lot of problems which need to be 
solved. We think that it is possible to tackle these 
problems by using the notion of a minimal representative 
of a generic process. By mapping states on this minimal 
representative it may be possible to generate adequate 
management information. Moreover, linking states of the 
members of a process family to the states of a minimal 
representative seems to be useful for the automated 
support of dynamic change.  

This paper extends the results presented in [2] by 
addressing the problems illustrated by Figure 1 and Figure 
2. The remainder is organized as follows. First we classify 
the types of changes that we would like to support. Then 
we introduce an approach to specify generic process 
models using two types of diagrams: routing diagrams and 
inheritance diagrams. It is shown that this approach 
facilitates dealing with all kinds of changes. Finally, we 
show that the notion of a minimal representative of a 
generic process can be used to tackle the problems 
involving dynamic change and management information. 

2. Adaptive workflow 
Workflows are typically case-based, i.e., every piece 

of work is executed for a specific case. Examples of cases 
are a mortgage, an insurance claim, a tax declaration, an 
order, or a request for information. Cases are often 
generated by an external customer. However, it is also 
possible that a case is generated by another department 
within the same organization (internal customer). The goal 
of workflow management is to handle cases as efficient 
and effective as possible. A workflow process is designed 
to handle similar cases. Cases are handled by executing 
tasks in a specific order. The routing definition specifies 
which tasks need to be executed and in what order. 
Alternative terms for routing definition are: ‘procedure’, 
‘flow diagram’ and ‘workflow process definition’. In the 
routing definition, routing elements are used to describe 
sequential, conditional, parallel and iterative routing thus 



specifying the appropriate route of a case (WfMC [24,34]). 
Many cases can be handled by following the same 
workflow process definition. As a result, the same task has 
to be executed for many cases. A task which needs to be 
executed for a specific case is called a work item. An 
example of a work item is: execute task ‘send refund form 
to customer’ for case ‘complaint sent by customer Baker’. 
Most work items are executed by a resource. A resource is 
either a machine (e.g., a printer or a fax) or a person 
(participant, worker, or employee). In office environments, 
i.e., the domain where workflow management systems are 
typically used, the resources are mainly human. However, 
because workflow management is not restricted to offices, 
we prefer the term resource. Resources are allowed to deal 
with specific work items. To facilitate the allocation of 
work items to resources, resources are grouped into 
classes. A resource class is a group of resources with 
similar characteristics. There may be many resources in 
the same class and a resource may be a member of 
multiple resource classes. If a resource class is based on 
the capabilities (i.e., functional requirements) of its 
members, it is called a role. If the classification is based 
on the structure of the organization, such a resource class 
is called an organizational unit (e.g., team, branch or 
department). A work item which is being executed by a 
specific resource is called an activity. If we take a 
photograph of a workflow, we see cases, work items and 
activities. Work items link cases and tasks. Activities link 
cases, tasks, and resources. See [1,10,12,19,24,27,34] for 
more information about workflow concepts and the 
modeling of workflow processes. 

Adaptive workflow is an area of research which 
examines concepts, techniques, and tools to support 
change. It is widely recognized that workflow 
management systems should provide flexibility 
[7,10,11,12,15,18,28,32]. However, as indicated in the 
introduction, today’s workflow management systems have 
problems dealing with change. New technology, new laws, 
and new market requirements lead to modifications of the 
workflow process definitions at hand. Last minute changes 
on a case-by-case basis lead to all kinds of exceptions. The 
inability to deal with various changes limits the application 
of today’s workflow management systems. The limitations 
of today’s workflow management systems and current 
approaches with respect to flexibility raise a number of 
interesting questions. In fact, several workshops have been 
organized to discuss the problems related to workflow 
change [6,22,35]. In this paper we restrict ourselves to 
changes with respect to the routing of cases, i.e., the 
control flow. We abstract from organizational changes, 
i.e., we do not consider adaptations of the resource 
classification and the mapping of work items onto 
resources. We also abstract from the contents of tasks. 

The restriction to consider only the routing definition 
allows us to classify changes as follows [4]: 

Ad-hoc change: Changes occurring on an individual 
basis, i.e., only a single case (or a limited set of cases) 
is affected. The change is the result of an error, a rare 
event, or special demands of the customer. Exceptions 
often result in ad-hoc changes. A typical example of 
ad-hoc change is skipping a task in case of an 
emergency. This kind of change is often initiated by 
some external factor. A typical dilemma related to ad-
hoc change is the problem to decide what kinds of 
changes are allowed and the fact that it is impossible 
to foresee all possible changes. For ad-hoc change we 
distinguish between the moment of change: 

Entry time: The routing definition is frozen the 
moment the processing of the case starts, i.e., no 
changes are allowed during the processing. 
On-the-fly: Changes are allowed at any moment, 
i.e., the process may change while the case is 
being handled. Ad-hoc on-the-fly changes allow 
for self-modifying routing definitions. 

Evolutionary change: Changes of a structural nature, 
i.e., from a certain moment in time, the process 
changes for all new cases to arrive at the system. The 
change is the result of a new business strategy, 
reengineering efforts, or a permanent alteration of 
external conditions (e.g., a change of law). 
Evolutionary change is initiated by the management to 
improve efficiency or responsiveness, or is forced by 
legislature or changing market demands. Evolutionary 
change always affects new cases but it may also 
influence old cases. We identify three ways to deal 
with existing cases: 

Restart: All existing cases are aborted and 
restarted. At any time, all cases use the same 
routing definition. For most workflow 
applications, it is not acceptable to restart cases 
because it is not possible to rollback work or it is 
too expensive to flush cases. 
Proceed: Each case refers to a specific version of 
the workflow process. Newer versions do not 
affect old cases. Most workflow management 
systems support such a versioning mechanism. A 
drawback of this approach is that old cases cannot 
benefit from an improved routing definition. 
Transfer: Existing cases are transferred to the 
new process, i.e., they can directly benefit from 
evolutionary changes. The term dynamic change 
is used to refer to the problem of transferring 
cases to a consistent state in the new process.  

 
Both for ad-hoc and evolutionary change, we 

distinguish three ways in which the routing of cases along 
tasks can be changed: 

Extend: Adding new tasks which (1) are executed in 
parallel, (2) offer new alternatives, or (3) are executed 
in-between existing tasks.  



Replace: A task is replaced by another task or a 
subprocess (i.e., refinement), or a complete region is 
replaced by another region.  
Re-order: Changing the order in which tasks are 
executed without adding new tasks, e.g., swapping 
tasks or making a process more or less parallel. 

 
This concludes our classification of adaptive workflow. 

Note that the term exception handling does not appear in 
the classification. An exception is the occurrence of some 
unexpected or abnormal event. In most cases, exceptions 
are undesirable because they generate additional 
complications and work. If a workflow management 
system provides an exception handler, it is possible to 
specify the actions to be performed in order to respond to 
certain exceptions. However, often the humans 
participating in the process are the “real” exception 
handlers, because it is not possible to pre-specify all 
possible exceptions. Note that an exception is not a 
change. Exceptions only trigger changes. Exceptions 
generated by external actors (e.g., a customer reporting an 
emergency) typically lead to ad-hoc changes. Exceptions 
generated by internal actors (e.g., the breakdown of an 
information system) typically lead to the blocking of parts 
of the workflow or to (temporary) evolutionary changes. 

The classification just given reveals that there are 
many types of changes causing different types of 
problems. Typically, changes lead to many variants of the 
same process. Therefore, a lot of routing definitions need 
to be stored and supported by the workflow enactment 
service. To keep track of these definitions and to avoid 
redundancy they should be stored in a structured way. 
Having many variants emphasizes the fact that it is 
important to support automatic verification: given a set of 
criteria, all changes should be checked before the routing 
definition is put into production. Moreover, it is important 
to be able to provide the manager with aggregated 
information and support dynamic change. To solve some 
of these problems, we propose an approach which allows 
for the formulation of generic process models. 

3. Generic process models 
A generic process model is specified by a set of routing 

diagrams and inheritance diagrams. Before these two 
diagram types are presented, we introduce the basic 
concepts and the relations between these concepts. 

3.1. Concepts 
Cases are the objects which need to be handled by the 

workflow (management system). Examples of cases are 
tax declarations, complaints, job applications, credit card 
payments, and insurance claims. A task is an atomic piece 
of work. A task is concrete, i.e., it can be specified, but is 
not specific for a single case. In principle, a task can be 

executed for any case. A non-atomic concrete process is 
similar to a task but it is not atomic. A non-atomic 
concrete process is specified by a routing diagram and 
corresponds to a case type rather than a specific case. A 
concrete process is either a task or a non-atomic concrete 
process, i.e., it is pre-specified piece of work which can be 
executed for many cases (if needed). A generic process is 
not specified, i.e., it is not concrete but refers to a family 
of processes. Since it is not concrete, it makes no sense to 
distinguish between atomic and non-atomic generic 
processes. In fact, one generic process may refer to both 
concrete tasks and non-atomic concrete processes at the 
same time. A process node is either a concrete process or a 
generic process. A routing diagram contains process 
nodes, i.e., a non-atomic concrete process is specified in 
terms of both concrete and generic processes. A process 
node appears in zero of more routing diagrams. In each 
routing diagram, process nodes are connected by routing 
elements specifying the order in which the process nodes 
need to be executed. A process node refers to zero or more 
generic processes. If a process node X refers to a generic 
process Y, then X belongs to the process family described 
by Y and we say that X is a child of Y. A concrete process 
can be the child of a generic process, a generic process can 
be the child of another generic process, but a generic 
process cannot be the child of a concrete process. Note 
that a process node can be the child of many generic 
processes. Each case refers to precisely one non-atomic 
concrete process. Since the routing diagram describing a 
non-atomic concrete process may contain generic 
processes, it is necessary to instantiate generic processes 
by concrete processes for specific cases, i.e., for a specific 
case, generic processes in the routing diagram are replaced 
by concrete processes. 
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Figure 3: Class diagram describing the relationships 

between the main concepts used in this paper. 

Figure 3 shows a class diagram, using the UML 
notation, relating the essential concepts used in this paper. 
The diagram shows that non-atomic concrete processes 
and tasks are specializations of concrete processes, i.e., 



both the class non-atomic concrete process and the class 
task are subclasses of the class concrete process. The two 
subclasses are mutually disjoint and complete. The class 
process node is a generalization of the class concrete 
process and the class generic process. The association 
is_child_of relates process nodes and generic processes. If 
the association relates a process node X and generic 
process Y, then X belongs to the process family of Y. 
Since process nodes can be in the process family of 
generic processes and a generic process can have many 
children (but at least one), the cardinality constraints are as 
indicated in the class diagram. A generic process has at 
least one child because it has a so-called minimal 
representative as indicated by the association min_rep_of. 
The minimal representative of a generic process is a 
concrete process which captures the essential 
characteristics of a process family. The minimal 
representative is needed to enable dynamic change and to 
generate aggregate management information. The class 
routing element links process nodes to non-atomic 
concrete processes. A non-atomic concrete process 
consists of process nodes (i.e., tasks, non-atomic concrete 
processes, and generic processes) which can be executed 
in a predefined way. Typical routing elements are the 
AND-split, AND-join, OR-split, and OR-join [34]. These 
elements can be used to enable sequential, parallel, 
conditional, alternative, and iterative routing. In the class 
diagram, we did not refine the class routing element 
because the approach presented in this paper is 
independent of the process modeling technique used. The 
association contains specifies the relation between routing 
elements and non-atomic concrete processes. Note that a 
routing element is contained in precisely one non-atomic 
concrete process. The association connects specifies which 
process nodes are connected by each routing element. 
Note that the associations contains and connects can be 
used to derive in which non-atomic concrete processes a 
process node is used. The class case refers to the objects 
that are handled at run-time using a non-atomic concrete 
process description. The association is_instance_of relates 
each case to precisely one non-atomic concrete process. It 
is not possible to execute non-atomic concrete processes 
containing process nodes which are generic. Before or 
during the handling of a case, generic processes need to be 
instantiated by concrete processes. The class instantiation 
is used to bind generic processes to concrete processes for 
specific cases. Every instantiation corresponds to one case, 
one generic process, and one concrete process. Note that 
per case it is not allowed to have multiple instantiations for 
the same generic process. 

There are many constraints not represented in the class 
diagram. Constraints that are important for the remainder 
are: 
1. The relation given by the association is_child_of is 

acyclic. 

2. The relation derived from the composition of 
association contains and association connects is 
acyclic. 

3. The relation derived from the composition of the 
associations contains, connects and is_child_of is 
acyclic, e.g., a non-concrete process X is not allowed 
to contain a generic process Y if X is a child of Y. 

4. The minimal representative of a generic process is 
also a child, i.e., the relation specified by the 
association min_rep_of is contained in the relation 
specified by is_child_of. 

5. A generic process can only be instantiated by a 
concrete process if the concrete process is (indirectly) 
a child of the generic process. 

6. For a case it is only possible to instantiate generic 
processes which are actually contained in the 
corresponding non-atomic concrete process. 

 
The class diagram shown in Figure 3 contains three 

types of information: 
1. Routing information: The process description of each 

non-atomic concrete process. It specifies which tasks, 
non-atomic concrete processes, and generic processes 
are used and in what order they are executed. The 
classes routing element, process node, and non-atomic 
concrete process and the associations contains and 
connects are involved. 

2. Inheritance information: The relation between a 
generic process and its children. It specifies possible 
instantiations of generic processes by concrete 
processes, and concerns the classes generic process, 
process node, and concrete process and the 
associations is_child_of and min_rep_of. 

3. Dynamic information: Information about the 
execution of cases and instantiations of generic 
processes by concrete processes. It involves the 
classes case and instantiation and the associations 
is_instance_of, has, inst_by, and inst_of. 

 
Today’s workflow management systems do not support 

the definition of generic processes, i.e., it is only possible 
to specify concrete processes. In the remainder of this 
section we focus on the modeling of generic processes 
using a combination of routing and inheritance diagrams. 

3.2. Routing diagrams 
A routing diagram specifies for a non-atomic concrete 

process the routing of cases along process nodes. Any 
workflow management system allows for the modeling of 
such diagrams. Examples of diagramming techniques are 
Petri-nets (COSA, INCOME, BaaN/DEM, Leu), Event-
driven Process Chains (SAP/Workflow), Business Process 
Maps (ActionWorkflow), Staffware Procedures 
(Staffware), etc. None of these diagramming techniques 
supports generic processes. However, each of these 



diagramming techniques can be extended with generic 
processes. A routing diagram specifies the contents of a 
non-atomic concrete process and consists of four types of 
elements: 
1. Tasks: A task is represented by a square and 

corresponds to a Petri-net transition. 
2. Non-atomic concrete processes: A non-atomic 

concrete process is represented by a double square 
and corresponds to a link to another Petri-net (i.e., a 
subnet). 

3. Generic processes: A generic process is represented 
by a square containing a diamond and corresponds to 
a link which can be instantiated by a workflow node.  

4. Routing elements: Routing elements are added to 
specify which workflow nodes need to be executed 
and in what order. Since we use Petri nets, routing 
elements correspond to places and transitions which 
are added for routing reasons only. 

  
Since any of the workflow management system 

available has some kind of diagramming technique, we 
simply use Petri-net like diagrams and formulations. In 
fact, we extend Petri-net-like routing diagrams [1,12] with 
generic processes. Since most of the readers are familiar 
with similar diagramming techniques, we do not go into 
details. The only relevant aspect is the addition of generic 
processes in the routing diagrams. 

3.3. Inheritance diagrams 
In contrast to routing diagrams, today’s products do not 

allow for inheritance diagrams to specify the process 
family corresponding to a generic process. The lack of 
such a concept in today’s workflow management systems 
has many similarities with the absence of product variants 
in the early MRP/ERP-systems. These systems where 
based on the traditional Bill-Of-Material (BOM) and 
where burdened by the growing number of product types. 
Therefore, the BOM was extended with constructs 
allowing for the specification of variants [14,17,30,31]. 
Variants of a product type form a product family of similar 
but slightly different components or end-products. 
Consider for example a car of type X. Such a car may have 
16 possible colors, 5 possible engines, and 10 options 
which are either present or not, thus yielding 
16*5*210=81920 variants. Instead of defining 81920 
different BOM’s, one generic BOM is defined. Inspired by 
the various ways to define generic BOM’s, we extend 
process models with inheritance diagrams allowing for the 
specification of process families. 

Figure 4 shows an inheritance diagram. The root of an 
inheritance diagram is a generic process called the parent. 
All other process nodes in the diagram are called the 
children and are connected to this parent. There are three 
types of children: tasks, non-atomic concrete processes, 
and generic processes. Each non-atomic concrete process 

in the inheritance diagram refers to a routing diagram 
describing the internal routing structure. Each generic 
child process in an inheritance diagram refers to another 
inheritance diagram specifying the process family which 
corresponds to this generic process. Note that the total 
number of inheritance diagrams equals the total number of 
generic processes. Every generic process has a child called 
the minimal representative of this task. This child is 
connected to the parent with a solid arrow. All the other 
arrows in an inheritance diagram are dashed. The minimal 
representative has all the attributes which are mandatory 
for the process family. One can think of this minimal 
representative as the default choice, as a simplified 
management version, or as some template object. The 
actual interpretation of the minimal representative depends 
on its use. The minimal representative can be considered 
to be the superclass in an object-oriented sense [3,8]. All 
other children in the inheritance diagram should be 
subclasses of this superclass. For execution, generic 
processes are instantiated by concrete processes using the 
relations specified in the inheritance diagram. However, in 
many cases it is not allowed to instantiate a parent by an 
arbitrary child. Therefore, it is possible to specify 
constraints as indicated in Figure 4. These constraints may 
depend on two types of parameters: (1) case variables and 
(2) configuration parameters. The case variables are 
attributes of the case which may change during the 
execution of the process (cf. [1]). Configuration 
parameters are used to specify that certain combinations of 
instantiations are not allowed. These parameters can be 
dealt with in a way very similar to the parameter concept 
in [30] for the generic BOM. Note that the use of 
inheritance diagrams is also advocated by other 
researchers such as Malone et al. [25]. However, these 
researchers do not tackle the problems related to change, 
i.e., dynamic change and management information. 

tasks non-atomic
concrete processes

generic
processes

children

parent
minimal
representative

constraint
C

 
Figure 4: Symbols used in an inheritance diagram. 

4. Dynamic change 
The problem of dynamic change was introduced using 

Figure 1. If a sequential process is changed to a parallel 
one, there are no problems. However, if the degree of 
parallelism is reduced, there are states in the old process 



which do not correspond to states in the new process. The 
state with a token in both p2 and p5 (right-hand side of 
Figure 1) cannot be mapped onto a state in the sequential 
process (left-hand side). Putting a token in s1, s2, or s3 
will result in the double execution of task C. Putting a 
token in s3, s4, or s5 will result in the skipping of (at least) 
task B. The problem identified does not only apply to the 
situation where the degree of parallelism is changed. For 
example swapping tasks or removing parts may lead to 
similar problems. This is the reason most workflow 
management systems do not allow dynamic change, i.e., if 
a workflow process is changed, then all existing cases are 
handled the old way and the new process only applies to 
new cases. Every case has a pointer to a version of the 
workflow and each version is maintained as long as there 
are cases pointing to it. For some applications this solution 
will do. However, if the flow time of a case is long, it may 
be unacceptable to process running cases the old way. 
Consider for example the change of a 4-year curriculum at 
a university to a 5 year one. It is too expensive to offer 
both curricula for a long time. Sooner or later, cases (i.e., 
students) need to be transferred. Other examples are 
mortgages and insurances with a typical flow time of 
decades. Maintaining old versions of a process is often too 
expensive and may cause managerial problems. It is also 
possible that there are regulations (e.g., new laws) 
enforcing a dynamic change. 

There are many similarities between dynamic change 
and schema evolution in the database domain. As the 
requirements of database applications change over time, 
the definition of the schema, i.e., the structure of the data 
elements stored in the database, is changed. Schema 
evolution has been an active field of research in the last 
decade (mainly in the field of object-oriented databases, 
cf. [9]) and has resulted in techniques and tools that 
partially support the transformation of data from one 
database schema to another. Although dynamic change 
and schema evolution are similar, there are some 
additional complications in case of dynamic change. First, 
as was shown in the example, it is not always possible to 
transfer. Second, it is not acceptable to shut down the 
system, transfer all cases, and restart using the new 
procedure. Cases should be migrated while the system is 
running. Finally, dynamic change may introduce 
deadlocks and livelocks. The solutions provided by 
today’s object-oriented databases do not deal with these 
complications. Therefore, we need new concepts and 
techniques. 

Several researchers have worked on problems related 
to dynamic change. Ellis, Keddara and Rozenberg [11] 
propose a technique based on so-called “change regions”, 
i.e., all parts of the workflow process that cause problems 
have two versions: the old one and the new one. This way, 
there is one version which covers the old and the new 
situation and changes affect cases as soon as possible. 

Parts of the workflow (i.e., change regions) become 
inactive after a while because all old cases have been 
handled. This approach has the drawback that the process 
definition can become very complex. However, a more 
serious drawback is the fact that the change regions are 
identified manually and there is little support for the 
transfer of cases. In [12] the authors improve their 
approach by introducing jumpers. A jumper moves a case 
from the old workflow to the new workflow and if for a 
state no jumper is available, the jump is postponed. Again, 
the authors do not give a concrete technique for the 
transfer of cases, i.e., jumpers are added manually. 
Agostini and De Michelis [6] propose a technique for the 
automatic transfer of cases from the old process to the new 
process and also give criteria for determining whether a 
jump is possible. Unfortunately, the approach only works 
for a restricted class of workflows (e.g., iteration can only 
be handled by ad-hoc jumps at runtime). Casati, Ceri and 
Pernici [10] tackle the problem of dynamic change via a 
set of transformation rules and partition the state space 
into a part that is aborted, a part that is transferred, a part 
that is handled the old way, and parts which are handled 
by hybrid process definitions (comparable to the approach 
using change regions). Reichert and Dadam[26] use a 
similar approach without addressing for example the 
problem identified in Figure 1. Voorhoeve and Van der 
Aalst [32,33] also propose a fixed set of transformation 
rules to support dynamic change. However, the drawback 
of using transformation rules is that only local changes are 
considered and the rules provided so far are far from being 
complete. Moreover, valuable information is lost during 
the application of a series of transformation rules. 

Independent of the approach used, the following two 
issues constitute a policy for dynamic change: (1) When to 
jump from the old process to the new process definition? 
and (2) Which state to jump to? A good policy for the 
example shown in Figure 1 is the following. The right-
hand process will jump in every state except the state with 
a token in p2 and p5. State p1 is mapped onto s1, p2+p3 
onto s2, p3+p4 onto s3, p4+p5 onto s4, and p6 onto s5. 
(Note that a shorthand notation is used to denote states.) 

In a generic process model, the dynamic change 
problem boils down to migrating instances between 
different members of the same process family. Note that 
the concept of generic processes helps to limit the scope of 
a change. In a way it is a predefined “change region”. If a 
part is changed which does not correspond to a generic 
process, then a generic process is introduced. The essence 
of a change always refers to transferring (parts of) cases 
between children of a generic process. Although the 
concept of generic processes gives a handle to tackle the 
problem, it does not really solve it. In fact, if a process 
family has many members, say n, there are n(n-1) potential 
transfers. To limit the problem, we propose to exploit the 
role of the minimal representative. Any transfer between 



two members of the same process family is executed via 
the minimal representative, i.e., first the instance is 
mapped from the old child onto the minimal 
representative, and then it is mapped onto the new child. 
Note that this results in 2(n-1) possible transfers. If a new 
variant is added, only the transformation from the new 
variant to the minimal representative and vice versa need 
to be added and no knowledge of the other variants is 
needed. A solution with direct jumps would require 
knowledge of all other variants. One might argue that only 
a few of the potential transfers are relevant. However, to 
truly support reusability all possible transfers should be 
defined. Clearly there are also drawbacks associated with 
the indirect transfer via the minimal representative. First of 
all, if the minimal representative contains little 
information, a lot of knowledge is lost during the transfer. 
It is clear that a transfer between two children with a state 
space of thousands of states via a minimal representative 
with only a dozen states is not likely to be a success 
(because of the loss of information). Secondly, additional 
problems are introduced the moment a new minimal 
representative is introduced. Therefore, it is vital to 
carefully define the minimal representative. 
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Figure 5: The relation between the state spaces of the 

minimal representative and its fellow children. 

Figure 5 illustrates the use of the minimal 
representative. Each child (including the minimal 
representative) has a state space. S0 is the state space of the 
minimal representative (child 0). Child i has state space Si. 
The partial function geni ∈ Si →/   S0 maps selected states of 
child i onto the minimal representative. The function is 
partial because from some states it is desirable to postpone 
the jump, i.e., state space Si is partitioned into Si

J = 
dom(geni), the set of “jump states”, and Si

W = Si \ Si
J , the 

set of “wait states”. There is a similar function to map 
states of the minimal representative onto the states of a 
specific child: spei ∈ S0 →/   Si. This function is also partial 
and partitions the states of S0 into jump states ( S0

J,i = 
dom(spei)) and wait states (S0

W,i = S0 \ Si
J,i) relative to child 

i. A transfer from one child (i) to another child (j) typically 
involves a generalization step (i.e., geni) and a 
specialization step (i.e., spej). The functions of type mani 
∈ Si →   S0 shown in Figure 5 will be used to generate 
management information and should be ignored for the 
moment. 

Suppose a case needs to be transferred from child i to 
child j and the state of the case is s ∈ Si. If s ∈ Si

W, no 
transfer is possible. If s ∈ Si

J and geni(s)∈ S0
J,j, then there 

is no reason to postpone the jump to the new process. The 
new state in the process corresponding to child j is 
spej(geni( s)). If s ∈ Si

J and geni(s)∈ S0
W,j, there are two 

policies possible: (1) the transfer is postponed (non-eager), 
or (2) the case is migrated to the minimal representative 
and is transferred the moment it reaches a state in S0

J,j 
(eager). If the change affects several parts of the workflow 
process definition and multiple generic processes are 
involved, there is a similar choice. Either the transfer is 
postponed until all parts are ready (non-eager) or the 
transfer is executed on a part-by-part basis (eager). At this 
moment, the policy to execute the transfer on a part-by-
part basis but postponing parts which cannot go directly to 
the new corresponding child seems to be the most 
attractive policy. However, more empirical data is needed 
to substantiate this.  
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Figure 6: Two Z-structures that are not allowed. 

Not every set of generalization (geni) and 
specialization (spei) functions is allowed. Constructs 
which have a so-called “Z-structure” are not allowed. A 
“Z-structure” is the situation where two distinct states are 
mapped onto two other distinct states in one direction 
(e.g., generalization) but in the reverse direction (e.g., 
specialization) one of the states is mapped onto the other 
one. Figure 6 shows the two possible Z-structures. In the 
first Z-structure there are two states A and B which are 
mapped onto respectively C and D by the generalization 
function (geni). However, the specialization function (spei) 
maps C onto B instead of A. This structure is not allowed 
because by simply moving a case up (2x) and down, the 
state in both processes has changed (in the left-hand 
process it moved from A to B and in the right-hand process 
it moved from C to D). Note that it is not possible to 
strengthen the requirement and demand that for any state 
s: spei(geni( s)) = s, because multiple states in the child 



process i can be mapped onto one state in the minimal 
representative. In the second Z-structure shown in Figure 
6, the roles of the generalization (geni) and specialization 
(spei) functions have been swapped and similar arguments 
apply. The absence of these Z-structures is the minimal 
requirement any dynamic change should satisfy. There are 
generally additional requirements that need to be satisfied. 
Suppose that the right-hand-side process in Figure 1 is the 
minimal representative and the left-hand-side process is 
the child 1. Assume that gen1 is defined as follows: s1 is 
mapped onto p6, s2 is mapped onto p1, s3 is mapped onto 
p6, s4 is mapped onto p1, and s5 is mapped onto p6. 
Moreover, spe1 is defined as follows: p1 is mapped onto 
s2, and p6 is mapped onto s1 (the other states are wait 
states). Clearly, this does not make any sense. 
Nevertheless, it does not contain any Z-structures. 
Stronger notions are context dependent and are difficult to 
define for any process modeling technique. (Recall that the 
concepts in this paper are modeling technique 
independent.) Therefore, we refrain from more advanced 
constraints that should be satisfied by the set of 
generalization (geni) and specialization (spei) functions. 

In Section 2, we identified three ways to deal with 
existing cases: (a) restart, (b) proceed, and (c) transfer. 
Thus far, we primarily discussed the problems resulting 
from the latter policy (i.e., dynamic change). However, the 
approach presented in this section also works for the other 
two policies. For the restart policy (a), all states of the old 
process i are mapped onto the initial state of the minimal 
representative (i.e., SI

J = Si and for all s ∈ Si: geni(s) = sinit 
where sinit is the initial state) and the initial state of the 
minimal representative is mapped onto the initial state of 
the new process j (i.e., spej(sinit) = s’init where s’init is the 
initial state of child j). For the proceed policy (b), all states 
are wait states, i.e., Si

J =∅. Clearly, the approach 
presented is quite general and can be extended in many 
ways. For example, it is possible to deal with hierarchical 
structures in an efficient way since change is limited to the 
generic parts of the process. It is also possible to allow for 
changes of the minimal representative. Simply add a 
generalization function from the old minimal 
representative to the new one and a specialization function 
from the new minimal representative to the old one. By 
taking the appropriate function compositions, it is possible 
to remove or skip the old minimal representative. 

5. Management information 
Changes typically lead to multiple variants of the same 

process. For evolutionary change the number of variants is 
limited. In fact, if all cases are transferred directly after a 
change, there is just one active variant. However, if the 
proceed policy is used or transfers are delayed, there are 
multiple active variants. If the average flow time of cases 
is long and changes occur frequent, there can be dozens of 

variants. Ad-hoc change may result in even more variants. 
In fact, it is possible to end up in the situation where the 
number of variants is of the same order of magnitude as 
the number of cases. To manage a workflow process with 
different variants it is desirable to have an aggregated view 
of the work in progress. Therefore, as indicated in Section 
1, it is of the utmost importance to supply the manager 
with tools to obtain a condensed but accurate view of the 
workflow processes. In Figure 2, it was pointed out that 
we need some kind of ‘greatest common divisor’ (gcd) or 
‘least common multiple’ (lcm) for the children in a 
product family. At the moment, only intuitive notions exist 
for the gcd and lcm. However, we can use the same 
approach as we used to tackle the dynamic change 
problem and use the minimal representative as the 
aggregated view. 
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Figure 7: Aggregated management information 
mapped onto a sequential minimal representative. 

To use the minimal representative as the aggregated 
view, we need to map all states from all children of the 
process family onto the state space of the minimal 
representative. The generalization functions (geni) provide 
such a mapping for the jump states but not for the wait 
states. Therefore, we introduce a new function for each 
child i (except the minimal representative): mani. The 
functions of type mani ∈ Si →   S0 are total and should 
satisfy the following requirement: for all s ∈ Si

J we have 
mani(s) = geni(s), i.e., the mapping used for dynamic 
change and the mapping used for management purposes 
should agree on the jump states. Again, the solution is 
surprisingly simple. However, the applicability heavily 
depends on the quality of the minimal representative and 
the functions of type mani. Figure 7 shows an alternative 



to the approach used in Figure 2. In this case, the 
sequential process is taken as the minimal representative. 
The mapping of tokens from the left-hand-side process is 
clear (the state with a token in s1 is mapped onto the state 
with a token in m1, etc.). 

In fact, the left-hand-side process and the right-hand-
side process are identical and the places are named 
different for presentation reasons only. Mapping states 
from the process in the middle is more involved. For the 
jump states the following mapping seems to be reasonable: 
p1 is mapped onto m1, p2+p3 is mapped onto m2, p3+p4 
is mapped onto m3, p4+p5 is mapped onto m4, and p6 is 
mapped onto m5. In the previous section, state p2+p5 was 
classified as a wait state because there is no intuitively 
corresponding state in the sequential process. Mapping 
p2+p5 onto m2 will lead to management information 
which is too pessimistic: C is already executed but this 
information is lost in the aggregated view. Mapping 
p2+p5 onto m4 will lead to management information 
which is too optimistic: B is not executed yet but this 
information is lost in the aggregated view. Mapping 
p2+p5 onto m3 combines the disadvantages of the 
previous two choices: it indicates that B has been executed 
and C not, while in reality it is the other way around. This 
example shows that quality of the management 
information heavily depends on the minimal 
representative. The numbers indicated in Figure 7 are 
based on the assumption that cases are executed in a first-
in-first-out order. This assumption combined with the 
numbers indicated for the parallel process implies that 
there are no cases in the state p2+p5. In this particular 
situation, the aggregated view does not depend upon the 
choice with respect to p2+p5. In general, a badly chosen 
minimal representative will lead to misleading 
management information. 

6. Conclusion 
This paper tackled two notorious problems related to 

adaptive workflow using generic process models. The 
approach is inspired by the work on product configuration 
(generic bills-of-material). The generic process model 
extends the classical workflow models, primarily based on 
routing diagrams, with inheritance diagrams. This allows 
for the specification of process families composed of 
variants. It also provides the designer with two navigation 
dimensions: (1) the is-part-of/contains dimension (routing 
diagrams) and (2) the generalizes/specializes dimension 
(inheritance diagrams), and stimulates reuse. Based on this 
model the problems related to (1) providing management 
information at the right aggregation level and (2) 
supporting dynamic change (i.e., migrating cases from an 
old to a new workflow) have been addressed. As it turns 
out, the generic process model with a minimal 
representative for each process family gives a handle to 
deal with these problems. Although the diagrams shown in 

this paper use a Petri-net-like notation, the concepts and 
ideas are independent of the process modeling technique 
chosen. Therefore, it is, in principle, possible to add the 
notions presented in this paper to most of the workflow 
management systems available today. However, the 
generality of the approach also indicates that many 
problems are still open. For example, how to construct a 
good a minimal representative and the corresponding 
specialization (spei), generalization (geni) and 
management functions (mani)? To answer these questions, 
we need to select a process modeling technique to reason 
about the dynamic properties of processes. Future research 
aims at answering these questions in a Petri-net-based 
setting using recent results on inheritance of dynamic 
behavior [3,5,7]. In [3,5,7] transformation rules are given 
that preserve certain inheritance relations. If such relations 
exist between the minimal representative and its fellow 
children, i.e., every child is a subclass of the minimal 
representative, then it should be possible to truly solve the 
problems discussed in this paper. 
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