
Contents lists available at ScienceDirect
Information Systems

Information Systems 47 (2015) 258–277
0306-43
http://d

n Corr
E-m

f.m.mag
w.m.p.v
journal homepage: www.elsevier.com/locate/infosys
An alignment-based framework to check the conformance of
declarative process models and to preprocess event-log data

Massimiliano de Leoni a,n, Fabrizio M. Maggi b, Wil M.P. van der Aalst a

a Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
b Institute of Computer Science, University of Tartu, Estonia
a r t i c l e i n f o

Available online 17 January 2014

Keywords:
Process mining
Declare
LTL
Conformance checking
Event-log preprocessing
79/$ - see front matter & 2013 Elsevier Ltd.
x.doi.org/10.1016/j.is.2013.12.005

esponding author.
ail addresses: m.d.leoni@tue.nl (M. de Leoni)
gi@ut.ee (F.M. Maggi),
.d.aalst@tue.nl (W.M.P. van der Aalst).
a b s t r a c t

Process mining can be seen as the “missing link” between data mining and business
process management. The lion0s share of process mining research has been devoted to the
discovery of procedural process models from event logs. However, often there are
predefined constraints that (partially) describe the normative or expected process, e.g.,
“activity A should be followed by B” or “activities A and B should never be both executed”.
A collection of such constraints is called a declarative process model. Although it is possible
to discover such models based on event data, this paper focuses on aligning event logs and
predefined declarative process models. Discrepancies between log and model are
mediated such that observed log traces are related to paths in the model. The resulting
alignments provide sophisticated diagnostics that pinpoint where deviations occur and how
severe they are. Moreover, selected parts of the declarative process model can be used to
clean and repair the event log before applying other process mining techniques. Our
alignment-based approach for preprocessing and conformance checking using declarative
process models has been implemented in ProM and has been evaluated using both
synthetic logs and real-life logs from a Dutch hospital.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional Workflow Management (WFM) and Business
Process Management (BPM) systems are based on the idea
that processes can be described by procedural languages
where the completion of one task may enable the execution
of other tasks, i.e., procedural models are used to “drive”
operational processes. While such a high degree of support
and guidance is certainly an advantage when processes are
repeatedly executed in the same way, in dynamic and less
structured settings (e.g., healthcare) these systems are often
considered to be too restrictive. Users need to react to
exceptional situations and execute the process in the most
All rights reserved.

,

appropriate manner. It is difficult, if not impossible, to
encode this human flexibility and decision making in proce-
dural models.

Declarative process models acknowledge this and aim at
providing freedom without unnecessarily restricting users
in their actions. Procedural process models take an
“inside-to-outside” approach, i.e., all execution alterna-
tives need to be explicitly specified and new alternatives
need to be incorporated in the model. Declarative models
use an “outside-to-inside” approach: anything is possible
unless explicitly forbidden. Hence, a declarative process
model can be viewed as a set of constraints rather than as
a procedure.

WFM and BPM systems tend to force people to work in
a particular way. When using a declarative WFM and BPM
system, more freedom can be offered. However, in most
dynamic and less structured settings no system is enfor-
cing users to work in a particular way. This may result in

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.12.005
http://dx.doi.org/10.1016/j.is.2013.12.005
http://dx.doi.org/10.1016/j.is.2013.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.005&domain=pdf
mailto:m.d.leoni@tue.nl
mailto:f.m.maggi@ut.ee
mailto:w.m.p.v.d.aalst@tue.nl
http://dx.doi.org/10.1016/j.is.2013.12.005

1 For compactness, in the following we will use the LTL acronym to
denote LTL for finite traces.

2 Declare web site – http://www.win.tue.nl/declare/.

M. de Leoni et al. / Information Systems 47 (2015) 258–277 259
undesirable deviations and inefficiencies. Sometimes there
may be good reasons to do things differently. Consider the
“breaking the glass” functionality in many systems as a
means to deal with exceptions, e.g., using the emergency
breaks in case of an accident, unauthorized access to
private patient data in case of an emergency and bypassing
an administrative check to help an important customer.

Even though process models are typically not enforced,
many events are recorded by today0s information systems.
As information systems are becoming more and more
intertwined with the operational processes they support,
“torrents of event data” become available. Therefore, it is
interesting to compare observed behavior with modeled
behavior.

This paper proposes the implementation of a framework
for the analysis of the execution of declarative processes. It is
based on the principle of creating an alignment of an event
log and a process model. Each trace in the event log is related
to a possible path in the process model. Ideally, every event
in the log trace corresponds to the execution of an activity in
the model. However, it may be the case that the log trace
does not fit completely. Therefore, there may be “moves” in
the event log that are not followed by “moves” in the model
or vice versa.

The alignment concept has successfully been used in the
context of procedural models (e.g., [1–3]); here, we adapt it
for declarative models. Similarly to what has been proposed
for procedural models, in our approach, events in the log are
mapped to executions of activities in the process model. A
cost/weight is assigned to every potential deviation. We use
the An algorithm [4] to find, for each trace in the event log,
an optimal alignment, i.e., an alignment that minimizes the
cost of the deviations. The application of the An algorithm is
more challenging for declarative models than for procedural
models. This is due to the fact that, since in a declarative
model everything is allowed unless constrained otherwise,
the set of admissible behaviors is generally far larger than
the set of behaviors allowed by procedural models. This
implies that the search space to find an optimal alignment of
a log and a declarative model is much larger. Therefore, for
this type of models, it is essential to avoid exploring search-
space portions that certainly lead to non-optimal solutions.

The log-model alignment can be the main input of a
wide range of techniques for the analysis of declarative
processes. On this concern, Section 3 shows the three main
use cases that are considered in this paper. The first use case
is concerned with cleaning the event logs by removing log
traces that should not be used for further analysis (e.g.,
incomplete traces). The second use case is about checking
the conformance of the event logs against a given declara-
tive model, which can be regarded and measured from
diverse dimensions, highlighting where deviations occur.
The third and last use case concerns repairing event logs to
make sure that the essential constraints are satisfied before
further analysis. These use cases are supported by function-
alities that are available in ProM, a generic open-source
framework for implementing process mining tools in a
standard environment [5].

In this paper, we use Declare as an example of declarative
language. Section 2 introduces the basic aspects of the
Declare language along with the working example that is
used throughout the paper, while Section 4 introduces some
background knowledge. Section 5 describes the notion of
log–model alignment and some diagnostics that can be
computed using alignments. Section 6 describes the appli-
cation of the An algorithm to find an optimal alignment.
Here, we also introduce an optimization of the algorithm to
prune large irrelevant portions of the search space that
certainly lead to non-optimal solutions. Section 7 discusses
the second use case in detail, i.e., how the alignments can be
used to check the conformance of an event log with respect
to a Declare model. Section 8 focuses on the first and third
use case, i.e., how event logs can be cleaned and repaired.
Section 9 reports an evaluation of the different techniques,
which is based on synthetic and real-life logs. Section 10
discusses related work, whereas Section 11 concludes the
paper and highlights potential future work.

2. Declare and basic notation

Declare is a declarative language with an intuitive gra-
phical representation to describe constraints and activities
[6–8]. Its formal semantics is based on Linear Temporal Logic
(LTL) for finite traces [9] where each constraint is defined
through an LTL formula.1 The Declare toolset includes a
graphical designer, a workflow engine, a worklist handler
and various analysis tools [10].2 A detailed description of
Declare is out of the scope of this paper. The most relevant
Declare features are introduced here through an illustrative
example. Interested readers are referred to [11] for a detailed
coverage of the Declare language.

Example 1. A travel agency has enacted a process to
handle health-related insurance claims. The process to
handle these claims is illustrated in Fig. 1. The model
includes eight activities (depicted as rectangles, e.g., Con-
tact Hospital) and six constraints (shown as connectors
between activities). Depending on the claimed amount, a
claim can be classified as high or low. For low claims, tasks
Low Insurance Check and Low Medical History need to be
executed. The co-existence constraint indicates that these
activities are always executed together (in any order). If a
claim is classified as low, no activities referring to high
claims can be executed and vice versa. The not co-existence
constraint indicates that Low Insurance Check and High
Insurance Check can never coexist in the same process
instance. Moreover, in case of high claims, the medical
history check (High Medical History) can only be executed
together with the insurance check (High Insurance Check),
even though they can be executed in any order. Never-
theless, it is possible to execute High Insurance Check with-
out executing High Medical History. All this is enforced by
the responded existence constraint. For every claim, it is
also possible to contact the doctor/hospital for verification.
However, in case of high claims, this cannot be done before
the insurance check. This is defined by the not succession
constraint: Contact Hospital cannot be followed in the
same process instance by High Insurance Check. A

http://www.win.tue.nl/declare/

Fig. 1. Declare model used as working example. It consists of six constraints and eight activities.

M. de Leoni et al. / Information Systems 47 (2015) 258–277260
questionnaire may be created and eventually sent to the
applicant (modeled by the response constraint); only after
the questionnaire is sent, the applicant can possibly decide
whether to fill it out or not (precedence constraint).

The response constraint in Fig. 1 can be formally
represented using LTL as □ (Create Questionnaire -◊ Send
Questionnaire). This means that “whenever activity Create
Questionnaire is executed, eventually activity Send Ques-
tionnaire is executed”. In the following, we refer to a
Declare model D¼ ðA;ΠÞ, where A is a set of activities and
Π is a set of Declare constraints defined over activities in A.

We conclude this section by introducing the basic nota-
tion that is used throughout the paper. A multiset M¼ ðY ;ΛÞ
consists of a set Y and a function Λ : Y-N that associates
each element aAY with its multiplicity ΛðaÞ, i.e., the number
of its occurrences in the multiset. aAY if and only if aAM.
We indicate the number of elements in the multiset with
jMj : jMj ¼∑yAYΛðyÞ. Let X be a set; jXj denotes the number
of elements in X. We indicate the set of all finite sequences
over X with Xn and the set of all multi-sets over X with BðXÞ.
Moreover, we use angle brackets to denote sequences sAXn,
i.e., s¼ 〈s1;…; sn〉. Given two arbitrary sequences x and y, jxj
denotes the length of x and x � y denotes the sequence
obtained by concatenating y to x. Moreover, prefixðxÞ denotes
the set of all prefixes of x, i.e., a sequence zAprefixðxÞ if there
exists a sequence w such that z � w¼ x. From the definition
above, for any sequence x, both x and the empty sequence 〈〉

always belongs to prefixðxÞ.

3. A framework based on log–model alignment for the
analysis of declarative processes

This paper proposes a framework for the analysis of
declarative processes that is based on three use cases. All
three use cases are supported by new functionalities added
to ProM. The application of the use cases heavily relies on the
computation of log–model alignments, which is also part of
this paper.3 The starting point is a raw event log Lraw and a
so-called whole model Dwhole ¼ ðAwhole;ΠwholeÞ.

A first use case is based on the definition of a core model
Dcore ¼ ðAcore;ΠcoreÞ, where ΠcoreDΠwhole and AcoreDAwhole.
This model is used to clean the event log, i.e., if the optimal
alignment of a log trace reveals a violation of any con-
straint in Πcore, the trace is simply discarded. For example,
3 ProM, including the new functionalities described in this paper, can
be downloaded from www.processmining.org.
if the not co-existence constraint in Fig. 1 is in Πcore, then all
log traces containing both Low Insurance Check and High
Insurance Check are removed from the log. The core model
Dcore ¼ ðAcore;ΠcoreÞ can be used to filter out traces that are
obviously incomplete or deviating too much from the
expected behavior to be used for further analysis. Indeed,
without the log cleaning, the results of some analysis can
be far misleading.

The cleaned event log Lclean and the whole model
Dwhole ¼ ðAwhole;ΠwholeÞ can be used to diagnose deviations.
In particular, the analyst may use the new functionalities
added to ProM to inspect the optimal alignment for each
log trace and to interpret the deviations. In our toolset, we
also provide the process analyst with a summary that gives
a helicopter view of the conformance of the model with
respect to the entire log. In particular, we aggregate the
information associated with the optimal alignments and
visualize the deviations on the process model. In fact, we
generate a “map” thus highlighting on the Declare model in
which constraints are more often violated during the
execution and in which activities are mostly involved in
the violations.

We also introduce a repair model Drepair ¼ ðArepair ;ΠrepairÞ
such that ΠcoreDΠrepairDΠwhole and AcoreDArepairDAwhole.
The cleaned event log Lclean and the repair model
Drepair ¼ ðArepair ;ΠrepairÞ can be used to adjust the event
log to prepare it for further analysis. Depending on the
computed optimal alignment, some events may be dis-
carded whereas other events may be artificially created
and inserted in Lclean. Most process mining techniques for
performance analysis [12] and operational support (e.g.,
predictions and recommendations) only function properly if
the event log indeed “fits” the model used for analysis. These
process mining techniques often assume a perfect fitness
and need to ignore deviating log traces.

However, in real-life scenarios a large fraction of cases
may not fit perfectly (especially if the corresponding log
traces are relatively long). Generally, it is not acceptable to
discard large amounts of event data. Moreover, deviating
log traces may have different characteristics (e.g., longer
flow times). Hence, leaving them out may lead to mislead-
ing results. Therefore, the log is repaired before analysis:
Lrepair contains repaired traces satisfying all constraints in
Πrepair and do not contain deviations for the activities in
Arepair . Note that, unlike when cleaning an event log, in this
case no traces are removed from the log.

When repairing the event log, the original behavior is
modified, i.e., non-fitting traces are “squeezed” into the

www.processmining.org

M. de Leoni et al. / Information Systems 47 (2015) 258–277 261
repair model Drepair ¼ ðArepair ;ΠrepairÞ. This should be taken
into consideration when analyzing Lrepair using other
process mining techniques.

Note that, given a whole model, a clean and repair
model can be usually defined in collaboration with process
experts. Indeed, process experts have the proper expertise
to determine which characteristics a log trace needs to
have not to be discarded, i.e., which activities and con-
straints need to be part of the core model. For example, if
all events in a certain time frame are extracted from a
database and, then, grouped in traces based on the process
instance identifier, some traces may be incomplete. In
these traces, for example, the first or the last event can
be missing since they occurred outside the considered
time frame. Certainly, these traces should be discarded as
they would affect the correctness of the outcomes of
various process-mining techniques. Regarding the repair
model, process experts can identify the constraints that
should not be violated. The violations of these constraints
are not as severe as the violations of the constraints
cleaned
event log

repaired
event log

raw
event log

clean

diagnose

repair

align log and core
model and remove
deviating traces

align log and repair
model to correct
deviating traces

a
m
m

traces violating core
constraints are removed
from the event log

event data extracted from
some information system

Fig. 2. Overview showing the three main use cases considered in this paper: (i) c
analysis, (ii) diagnosing event logs to check conformance, show deviations and me
essential constraints are satisfied before further analysis.
belonging to the core model. Hence, the violating log
traces are still worth to be considered for further analysis
but they need to be “adjusted”.

All three use cases described in Fig. 2 heavily rely on
the computation of alignments. The main contribution of
this paper is, then, a new approach for efficient computing
alignments of logs and declarative process models.
4. Checking declare constraints

To identify potential deviations of a log from a refer-
ence Declare model, we need to map each event in the log
to an activity in the model. Each process instance in a log
follows a trace (a sequence) of events and different
instances may follow the same trace. Therefore, an event
log can be seen as a multi-set of traces, i.e., LABðAn

L Þ,
where AL is the set of activities in the log. Since Declare is
an “open” language, it allows for the execution of any
activity which is not in the model. Therefore, the set of
various
process mining

techniques

whole model
repair model

core model

diagnostic information on
conformance and deviations

lign log and whole
odel to show and
easure deviations

the so-called repair constraints
are used to modify the event log
to ensure compliance with
respect to these constraints
before further analysis

all constraints describing
desirable or expected
behavior; these are used

for diagnosis

leaning event logs to remove log traces that should not be used for further
asure compliance scores and (iii) repairing event logs to make sure that the

M. de Leoni et al. / Information Systems 47 (2015) 258–277262
activities in the log may include all activities in the model
and more, i.e., ADAL.

For conformance checking, we do not need to distinguish
the activities in the set AL\A as they do not appear in the
model. This allows us to reduce the space of the allowed
behaviors. Note that we cannot completely abstract from the
activities in AL\A because some constraints use LTL0s next
operator (e.g., the chain response and chain precedence
constraints). Therefore, we map all events referring to
activities in AL\A to ✓. Then, the log LABðAn

L Þ is converted
into L0ABðΣnÞ with Σ ¼ AL [f✓g. Function χ : AL-Σ is
used to map each activity in AL to Σ. 8aAA; χðaÞ ¼ a and
8aA ðAL\AÞ, χðaÞ ¼✓, i.e., every event in a log trace referring
to an activity that is also defined in the model is mapped to
the activity itself, whereas the other events are mapped to ✓.

Example 1 (cont.). The set of activities of the Declare
model in Fig. 1 is

A¼ 〈Low Insurance Check; Low Medical History;
High Insurance Check; High Medical History;
Contact Hospital; Create Questionnaire;
Send Questionnaire; Receive Questionnaire Response〉

Let us assume to have a log that contains the following
trace:

sL ¼ 〈Register; Low Insurance Check;Create Questionnaire;

Prepare Notification Content;Create Questionnaire;
Send Notification by e�mail;
Send Notification by Post;Archive〉

Using the mapping function χ, sL can be transformed into

sL 0 ¼ 〈✓; Low Insurance Check;Create Questionnaire;✓;
Create Questionnaire;✓;✓;✓〉

Note that Register, Send Notification by e-mail, Send
Notification by Post, Archive are mapped to ✓.

In the remainder, when aligning Declare models and
event logs, we only consider event logs after mapping
unconstrained activities to ✓, i.e., LABðΣnÞ. To check
whether a log trace sLAL is compliant with a Declare con-
straint πAΠ, we use the technique described in [13] and
translate the LTL formula corresponding to π into a finite
state automaton that accepts all traces that do not violate
π.

Definition 1 (Constraint automaton). Let D¼ ðA;ΠÞ be a
Declare model, πAΠ and Σ ¼ A [f✓g. The constraint auto-
maton Aπ ¼ ðΣ;Ψπ ;ψ0π ; δπ ; FπÞ is the finite state automaton
that accepts exactly those traces sAΣn satisfying π, where:
�
 Σ ¼ A [f✓g is the input alphabet;

�
 Ψπ is a finite, non-empty set of states;

�
 ψ0πAΨπ is an initial state;

�
 δπ : Ψπ � Σ-Ψπ is the state-transition function;

�
 FπDΨπ is the set of final states.
Fig. 3. Constraint automata for two Declare constraints in Fig. 1.
(a) Constraint automaton for the co-existence constraint. (b) Constraint
automaton for the precedence constraint.
In the remainder, given a state-transition function δ and a
sequence of symbols s¼ 〈s1;…; sn〉, δnðψ0;sÞ denotes the
recursive application of the state-transition function over s
starting from state ψ0, i.e., δnðψ0; sÞ ¼ ψn where, for all
0o irn, ψi is recursively defined as ψ i ¼ δðψ i�1; siÞ.

A constraint automaton Aπ is associated with every
constraint πAΠ. For each constraint automaton, we use a
general convention according to which δπ is allowed to be
a partial function, i.e., δπðψ ; sÞ does not have to be defined
for every combination of ψAΨπ and sAΣ. If a constraint
automaton is in a state ψ, the next symbol is s and δπðψ ; sÞ is
not defined, then the sequence is not accepted. A sequence
sAΣn is accepted by a constraint automaton Aπ , if δnπðψ0; sÞ
AFπ , i.e., after reading the sequence s, the automaton Aπ is
in a final state.

These automata can be used to check the conformance
of a log trace with respect to each constraint in D.

Example 1 (cont.). For the co-existence constraint and the
precedence constraint in Fig. 1, we obtain the automata
depicted in Fig. 3(a) and (b). In both cases, state 0 is the
initial state and final states are indicated using a double
outline. A transition is labeled with the set of the activities
triggering it (we use the initial letters to denote an activity,
e.g., we use LIC to indicate Low Insurance Check). This
indicates that we can follow the transition for any event
included in the set (e.g., we can execute event High
Insurance Check from state 0 of the precedence automaton
and remain in the same state).

The process behavior set PDDΣn of a Declare model
D¼ ðA;ΠÞ is the set of traces that are accepted by all
automata Aπ with πAΠ, i.e., all process executions that
comply with the model D. We call these traces model
traces.

Note that the cardinality of the process behavior set is
infinite in most of the cases. For example, consider the

Fig. 4. Some examples of alignments of sL and the model in Fig. 1. Apart
from γ0, they are all complete alignments.

M. de Leoni et al. / Information Systems 47 (2015) 258–277 263
Declare model that only contains the precedence constraint
in Fig. 3(b) and the activities shown in Fig. 2. The process
behavior set of this model contains the traces accepted by
the automaton in Fig. 3(b), i.e., the traces of the form
ðΣ\fRQR; SQgÞn SQ ðΣÞn. This set has an infinite number of
traces.

5. Alignment of event logs and Declare models

To check the conformance of an event log L with
respect to a Declare model D, we adopt an approach where
we search for an alignment of the log and the model. An
alignment relates moves in log and moves in model as
explained in the following definition. Here, we explicitly
indicate no move with ≫. We indicate set Σ [f≫gwith Σ≫,
where Σ denotes the input alphabet of each constraint
automaton in D.

Definition 2 (Alignment and complete alignment). A pair
ðs0; s″ÞAðΣ≫ � Σ≫Þ\fð≫;≫Þg is
�
 a move in log if s0AΣ and s″¼≫;

�
 a move in model if s0 ¼≫ and s″AΣ;

�
 a move in both if s0AΣ, s″AΣ and s0 ¼ s″.
Let ΣA ¼ ðΣ≫ � Σ≫Þ\fð≫;≫Þg be the set of the legal moves.
The alignment of two traces s0; s″AΣn is a sequence
γ ¼ 〈ðs01; s″1Þ;…; ðs0n; s″nÞ〉AΣn

A such that 〈s01;…; s0n〉 is s0 and
〈s″1;…; s″n〉 is s″ (ignoring ≫).
In particular, if s0 ¼ sLAL and s″APD, we refer to the

alignment γ as a complete alignment of sL and D.

Given sLAL and sMAPD, let us suppose to have an
alignment γ ¼ 〈ðs01; s″1Þ;…; ðs0n; s″nÞ〉AΣn

A such that s0L ¼
〈s01;…; s0n〉AprefixðsLÞ and s0M ¼ 〈s″1;…; s″n〉AprefixðsLÞ,
ignoring ≫. We indicate s0L with γ#L and s0M with γ#M .

An alignment of the event log L and the model D is a
multi-set AABðΣn

AÞ of alignments such that, for each log
trace sL, there exists an alignment γAA of sL and D. The
definition of A as a multi-set is motivated by the fact that
an event log may contain the same log trace sL multiple
times and, hence, the same alignment can be associated
with all its occurrences.

Example 1 (cont.). Given the log trace sL ¼ 〈✓; LIC;CQ ;

✓;CQ ;✓;✓;✓〉, there are many possible complete align-
ments of sL and the model in Fig. 1. For example, the
alignments γ1;…; γ4 in Fig. 4 are examples of complete
alignments. Conversely, alignment γ0 is not a complete
alignment since γ#M is not in the process behavior set of
the model. Indeed, the co-existence constraint is violated,
because Low Insurance Check occurs in γ#M but Low
Medical History does not. Moreover, two occurrences of
Create Questionnaire are not followed by any occurrence
of Send Questionnaire, as the response constraint would
prescribe.

In order to quantify the severity of a deviation, we
introduce a cost function on the legal moves κ : ΣA-Rþ

0 .
One can use a standard cost function with unit costs for
moves in log or in model. However, the costs may also
depend on the specific characteristics of the process, e.g., it
may be more costly to skip an insurance check for high
claims than for low claims. Therefore, in some cases, a
different cost function κ needs to be defined. The cost of an
alignment γ is defined as the sum of the costs of the
individual moves in the alignment, KðγÞ ¼∑ðs0 ;s″ÞAγκðs0; s″Þ.

Given a log trace sLAL, our goal is to find a complete
alignment of sL and a model trace sMAPD that minimizes
the cost with respect to all s0MAPD. This complete align-
ment is referred to as an optimal alignment.

Definition 3 (Optimal alignment). Let sLAL be a log trace
and D a Declare model. Let ΓðsL ;DÞ be a set of the complete
alignments of sL and D. A complete alignment γAΓðsL ;DÞ
is an optimal alignment of sL and D if and only if
8γ0AΓðsL ;DÞ: Kðγ0ÞZKðγÞ.

Example 1 (cont.). In our example, we can suppose that
deviations for activity Send Questionnaire are less severe
than those referring to the other activities, since this activity
is automatically performed by a system. Moreover, moves
associated with ✓ can be weighted less than any other, since
they refer to activities that are not in the model. Therefore, a
reasonable cost function on legal moves can be defined as
follows:

κða0; a″Þ ¼

0 if a0 ¼ a″
1 if a0 ¼✓4a″¼≫
1 if a0 ¼≫4 a″¼✓

2 if a0 ¼ Send Questionnaire4a″¼≫
2 if a0 ¼≫4 a″¼ Send Questionnaire
4 if a0aSend Questionnaire4a″¼≫
4 if a0 ¼≫4 a″aSend Questionnaire

1 otherwise

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Using this cost function, alignments γ1, γ2, γ3 and γ4 have
the following costs: Kðγ1Þ ¼ 6, Kðγ2Þ ¼ 12, Kðγ3Þ ¼ 6 and
Kðγ4Þ ¼ 12. Then, γ1 and γ3 are better complete alignments;
in fact, they are optimal alignments, as well.

In Section 6, we discuss a technique to create an optimal
alignment with respect to a custom cost function κ. The
approach is based on the An algorithm that is intended to
find the path with the lowest overall cost between two nodes
in a direct graph with costs associated with nodes.

In our alignment-based technique, activities are pro-
moted as first-class citizens, whereas the literature pro-
poses approaches that focus on constraint violations. In

M. de Leoni et al. / Information Systems 47 (2015) 258–277264
several scenarios, companies may be interested in know-
ing which actual executions or missing executions of
activities have triggered the deviations. Section 5.1 dis-
cusses how the application of existing techniques would
tend to overestimate the number of activities whose
execution deviates from the prescribed behavior.

The provision of a set of alignments does not allow
process analysts to gain a quick insight into the most
common deviations. Therefore, we also provide a sum-
mary to determine which activities are mostly involved in
deviations and which constraints are more often violated.
On this concern, we provide a metrics to measure the
degree of conformance of single activities and constraints in
a Declare model with respect to a log.

In order to measure the degree of conformance, we first
need to compute which constraints each move in model or
in log contributes to solve, i.e., why a certain move in
model/log is needed. Section 5.2 illustrates how to identify
which moves are needed to solve constraint deviations
and Section 5.3 details how to measure the degree of
conformance.

5.1. Promoting activities as first-class citizens: why existing
techniques tend to overestimate the activities involved in
deviations?

There is a body of techniques that check (running)
process instances based on some temporal logic, including
LTL (e.g., [14–16]). These approaches classify process
instances as deviating or not and diagnose the constraints
that cause deviations. Unfortunately, these approaches
tend to overestimate the activities whose execution devi-
ates from the prescribed behavior. Therefore, when aggre-
gated diagnostics are shown to the user, activities tend to
be considered as involved in a large number of deviations
when executed, far more than the real number of devia-
tions. This due to the fact that different constraints and
activities may interact in various ways. That motivates why
optimal alignments are necessary.

Consider, for example, the Declare model in Fig. 5 and
trace s¼ 〈a;b; c〉. According to the model, the not-coexist-
ence constraints prescribe that activities a and b cannot
occur in the same trace, like so activities c and b. Existing
techniques would diagnose that, indeed, the two con-
straints are violated during the execution of s. Therefore,
they would derive that the executions of the three activ-
ities are deviating from the prescribed behavior. None-
theless, our technique would return the following optimal
alignment:
Fig. 5
the n
overe
. An ex
umber
stimate
L:

a
b
 c
M:

a≫
 c.
ample to illustrate the limitation of existing techniques:
of activities that are involved in deviated executions is
d.
This shows that, in fact, only the execution of activity b is
deviating. Therefore, generally speaking, if an optimal
alignment is not built, e.g., through the technique pro-
posed in this paper, the diagnosis will report several
deviations which, actually, are not so.

5.2. Why a log or model move is needed?

Let γ ¼ 〈ðaL1; aM1 Þ;…; ðaLn; aMn Þ〉 be an optimal alignment of
sL and D¼ ðA;ΠÞ. Let Aπ be the constraint automaton for a
constraint πAΠ. Each move ðaLi ; aMi ÞAγ in log or in model
of an alignment (i.e., such that either aLi ¼≫ or aMi ¼≫), is
introduced to contribute to solve violation(s) of constraint
(s) in the Declare model. For diagnosis purpose, it
is important to identify the violation(s) that moves con-
tribute to solve (every move in log or in model always
solves one violation, at least). For this purpose, a trace si is
constructed by removing every≫ occurrence from the trace
〈aM1 ;…; aMi�1; a

L
i ; a

M
iþ1;…; aMn 〉. Then, for each constraint πAΠ,

we check whether si is accepted by Aπ . If it is
not accepted, ðaLi ; aMi Þ has been introduced to solve a
violation in π.

Example 1 (cont.). Let us consider again the optimal
alignment γ1 (see Fig. 4). It contains two moves in log or
in model: ðLIC;≫Þ and ð≫; SQ Þ. For ðLIC;≫Þ, we build
the trace s1 ¼ 〈✓; LIC;CQ ;✓;CQ ;✓;✓;✓〉. This sequence is
accepted by all the constraint automata in the Declare model,
besides the constraint automaton for the co-existence con-
straint (see Fig. 3(a)). Similarly, for ð≫; SQ Þ, s5 ¼ 〈✓;CQ ;✓;

CQ ;✓;✓;✓〉 is accepted by all the constraint automata, besides
the constraint automaton for the precedence constraint
(shown in Fig. 3(b)). Therefore, ðLIC;≫Þ has been introduced
to solve a violation in the co-existence constraint and ð≫; SQ Þ
has been introduced to solve a violation in the precedence
constraint.

5.3. Degree of conformance

In order to quantify the degree of conformance, we
introduce metrics MMγðaÞ, MLγðaÞ and MBγðaÞ. For aAΣ, we
denote with MMγðaÞ the number of moves in the model
involving a, with MLγðaÞ being the number of moves in log
involving a and with MBγðaÞ the number of moves in both
model and log involving a.

For reliability, we average over all optimal alignments.
Let Γ ¼ ðfγ1;…; γng;ΛÞ be a multi-set of optimal alignments
of a log L and a model D. The degree of conformance of an
activity aAΣ with respect to Γ is defined as follows:

DConfΓ að Þ ¼ 1� 1
n
� ∑
γAΓ

Λ γð Þ MMγðaÞþMLγðaÞ
MMγðaÞþMLγðaÞþMBγðaÞ

:

DConfΓðaÞ ¼ 1, if the moves that involve a are only moves
in both (i.e., there are no deviations related to a).
DConfΓðaÞ decreases when the fraction of moves in model
or in log involving a increases. DConfΓðaÞ ¼ 0, if all moves
that involve a are only moves in the log or moves in the
model.

In the remainder, given an alignment γ and a constraint
π, we denote with MCγðπÞ the metric representing the
number of moves in the model and in the log in γ that

M. de Leoni et al. / Information Systems 47 (2015) 258–277 265
contributes to solve a violation of π. The moves that
contribute to solve a violation of a constraint are computed
according to the technique described in Section 5.2. The
degree of conformance of a constraint πAΠ with respect to
Γ is defined as follows:

DConfΓ πð Þ ¼ 1� 1
n
� ∑
γAΓ

Λ γð ÞMCγðπÞ
jγj :

DConfΓðπÞ ¼ 1, if π is never violated. DConfΓðπÞ gets closer
to 0 when the fraction of moves in the model or in the log
needed to solve violations of π increases.

6. The An algorithm for computing log–model alignments

Let us suppose to have a graph V with costs associated
with arcs. The An algorithm, initially proposed in [4], is a
pathfinding search in V. It starts at a given source node
v0AV and explores adjacent nodes until one node of a
given target set VTrg � V is reached, aiming at finding the
path with the overall lowest cost.

Every node vAV is also associated with a cost, which is
determined by an evaluation function f ðvÞ ¼ gðvÞþhðvÞ, where
�
 g : V-Rþ
0 is a function that returns the smallest path

cost from v0 to v;

�
 h : V-Rþ

0 is a heuristic function that estimates the
smallest path cost from v to any target node v0AVTrg .

Function h is said to be admissible, if it never overestimates
the smallest path cost to reach any target node: for each
node vAV and for each target node v0AVTrg reachable
from v, hðvÞrgðv0Þ. Technical results in [4] show that if h is
admissible, An finds a path that is guaranteed to have the
overall lowest cost.

The An algorithm keeps a priority queue of nodes to be
visited: nodes with lower costs are assigned higher prior-
ity, thus guaranteeing that these are going to be visited
earlier. The algorithm works iteratively: at each step, the
node v with lowest cost is taken from the priority queue. If
v belongs to the target set, the algorithm ends returning v.
Otherwise, v is expanded: every successor v0 of v is added
to the priority queue with cost f ðv0Þ.

We use An to find any of the optimal alignments of a log
trace sLAΣn and a Declare model D¼ ðA;ΠÞ. In order to be
able to apply An, an opportune search space V needs to be
defined.

The search space for finding an optimal alignment
between sL and D is a directed graph (V,E) where
�
 V contains prefixes of some complete alignment of sL
and D: V ¼ fγAΣn

A : γ#LAprefixðsLÞ and (sMAPD;
γ#MAprefixðsMÞg;
�
 E contains all edges ðγ0; γ″ÞAV � V , where γ″ is
obtained concatenating a legal move to γ0:
E¼ fðγ0; γ″ÞAV � V : (ðs0; s″ÞAΣA s:t: γ″¼ γ0 � ðs0; s″Þ.
The set of target nodes Vtrg � V contains all complete
alignments of sL and D.

It is easy to see that, if the directions on the edges are
ignored, the path from a certain γ0AV to a certain γ″AV
never contains the same node twice and, therefore, the
search space is a directed tree. The root of the tree is the
empty alignment γ0 ¼ 〈〉, which is the source node to start
the application of the An algorithm from. Since a different
alignment is also associated with every node and vice versa,
later on, we use the alignment to refer to the associated node.

Let us consider a custom cost function κ and denote
with κmin the smallest value greater than 0 in the codo-
main of κ, i.e., κmin ¼ min

ðs0 ;s″ÞAΣn

A:κðs0 ;s″Þ≫0
κðs0; s″Þ.

We define the cost of a path from the initial node to
γAV as

gðγÞ ¼ κmin � jγ#LjþKðγÞ;
This definition of gðγÞ guarantees that the optimal solution
computed by the An algorithm is an optimal alignment.

Theorem 1. Let (V,E) be the search space of the An algorithm
to find an optimal alignment between a log trace sL and a
Declare model D. Let VTrgDV be the set of the target nodes of
the search space, i.e., the set of all complete alignments of sL
and D. If γOAVTrg is an optimal alignment, then, for each
γAVTrg , gðγÞZgðγOÞ.

Proof. Let us consider any complete alignment γ0AVTrg\fγOg.
Let us suppose by contradiction that gðγ0ÞogðγOÞ. It holds that
gðγ0Þ ¼ κmin � jγ0#LjþKðγ0Þ and gðγOÞ ¼ κmin � jγO#LjþKðγOÞ.
Since γ0 and γO are complete alignments, γ0#L ¼ γO#L ¼ sL.
Therefore, κmin � jγ0#LjþKðγ0Þoκmin � jγO#LjþKðγOÞ, i.e., Kðγ0Þ
oKðγOÞ. Therefore, it is not true that γO is an optimal
alignment. □

The application of the An algorithm to find optimal
alignments employs the following heuristics:

hðγÞ ¼ κmin � ðjsLj�jγ#LjÞ
As the next theorem shows, this heuristics is admissible
and, hence, guarantees the optimality of the solution
computed by the An algorithm.

Theorem 2. Let (V,E) be the search space of the An algorithm
to find an optimal alignment between a log trace sL and a
Declare model D. Let VTrgDV be the set of the target nodes of
the search space. The heuristic hðγÞ ¼ κmin � ðjsLj�jγ#LjÞ is
admissible, i.e., for each γ0AVTrg such that γAprefixðγ0Þ,
hðγÞrgðγ0Þ.

Proof. Let γAV be an alignment. If γAVTrg , jsLj ¼ jγ#Lj and,
hence, hðγÞ ¼ 0rgðγÞ is trivially true. If γ=2VTrg , let us take
any γ0AVTrg such that γAprefixðγ0Þ. Let us assume gðγ0ÞohðγÞ
by contradiction. Therefore, gðγ0Þ ¼ κmin � jsLjþKðγ0ÞohðγÞ
¼ κmin � ðjsLj�jγ#LjÞ. This implies that Kðγ0Þo�κmin � jγ#Lj
o0, which is not possible. Hence, gðγ0ÞohðγÞ cannot be true
since Kð�Þ can never be negative (it is a sum of non-negative
costs). □

The set of any Declare process behavior is infinite and,
hence, the set of complete alignments for a given log trace is
also infinite, like so the search space. In principle, the same
may also hold for procedural models (e.g., in the presence of
cycles). Nonetheless, Declare models allow for more flexibility
and, hence, a prefix of a model trace can be extended with a
very large number of activities, if compared with procedural

M. de Leoni et al. / Information Systems 47 (2015) 258–277266
models. This implies that every search-space node has a very
large number of successors, far more than for computing the
alignment of a trace and a procedural model.

Therefore, it is important to prune the search-space
tree so as not to visit nodes that are equivalent to nodes
which have already been visited. We say that two align-
ments (i.e., search-space nodes) are equivalent, if they can
be extended with the same moves. Space limitations
prevent us from giving further details on the technique
we have devised for search-space pruning. We refer
interested readers to [17] for further information on it.
7. Conformance checking using alignments

There are four basic quality dimensions for checking
the conformance of event logs with respect to process
models: (a) fitness, (b) precision, (c) generalization and (d)
simplicity [18]. A model with good fitness allows for most of
the behavior seen in the event log. A model has a perfect
fitness if all traces in the log can be replayed by the model
from the beginning to the end.

A model is precise if it does not allow for “too much”
behavior. A model that is not precise is “underfitting”, i.e.,
it is too generic.

A model that does not generalize is “overfitting”. An
overfitting model is too specific, i.e., it explains a particular
sample log but it is unlikely that another sample log of the
same process can be explained well by the same model.

The fourth quality dimension, simplicity, is related to
Occam0s Razor which states that “one should not increase,
beyond what is necessary, the number of entities required
to explain anything”. Following this principle, we look for
the “simplest process model” that can explain what is
observed in the event log. In this paper, we do not take the
simplicity dimension into account and we characterize the
other three dimensions.

Although these quality dimensions were originally
devised for procedural models, they are also important in
the declarative case. It is also worth highlighting that the
precision and generalization dimensions of conformance
do not hinder the nature of declarative models. Also for
declarative models, a process analyst can be interested to
verify whether the model is too precise, i.e., the model0s
constraints limit too much the allowed process behavior,
or, conversely, the model is too general, i.e., it has too few
constraints and, hence, too much behavior is allowed. The
following example discusses the importance of precision
and generalization for declarative models.
Fig. 6. Three alternative Declare models derived from the same event log. Mode
conformance, whereas (b) is not a precise Declare model because it contains no
does not generalize sufficiently: the number of constraints and their type disall
Example 2. Let us suppose to have the Declare model Da in
Fig. 6(a). By executing this model, we can generate an event
log ~L with the following 5 traces: 〈a; b; c; d〉, 〈a; b; a; b; c; d〉,
〈a; b; c; c; d〉, 〈c; c; a; b; d〉, 〈c; a; b; d〉. Using the Declare miner
[19] with certain settings, we can generate the models Db

and Dc in Fig. 6(b) and (c) from ~L. These models have a
perfect fitness with respect to ~L. Nonetheless,Db contains no
constraints and its precision is lower than the precision
of Da. Conversely, the generalization of Dc is lower than
the generalization of Da, since an additional constraint is
attached to D, which prescribes D to be executed exactly
once. Moreover, the response constraint between A and B in
Da becomes a chain response in Dc. This means that A must
be immediately followed by B. However, the reason why Dc

contains these constraints is related to the fact that, only by
coincidence, in all traces of ~L, A is always immediately
followed by B and D always occurs only once.

Clearly, the model Da of Example 2 is the “ideal model”
that the Declare miner should discover. Unfortunately, this
model is not known since only the behaviors recorded in the
event logs are observed: unfortunately, the event log with 5
traces is not complete, i.e., it does not contain examples of all
possible behavior. As a consequence, it is highly probable
that any discovered model will score low for some quality
dimensions of conformance (e.g., Db and Dc have low
precision and generalization respectively). However, one
wants to have an estimation of how much a mined model
moves away from the ideal one. This motivates why the four
dimensions of conformance are important. It is out of scope
of this paper to have a thorough discussion about the
comparison between the ideal model and the mined models
with respect to the conformance dimensions. For further
details about this, we refer the reader to [20].

7.1. The fitness dimension: are the observed behaviors
allowed by the model?

When focusing on the fitness dimension of conformance,
we are interested in quantifying the fitness score of a log trace
sL with respect to a Declare model D. Therefore, we introduce
a fitness function FitnessðsL;DÞ, which returns a value
between 0 and 1. FitnessðsL;DÞ ¼ 1 if there is an (optimal)
alignment between sL and D with cost 0, i.e., sL is perfectly
compliant with D. Conversely, FitnessðsL;DÞ ¼ 0 denotes a
very poor fitness.

Cost function Kð�Þ, introduced in Section 5, is a good
candidate but it cannot be used as it is, since the score
needs to be a number between 0 and 1. The normalization
l (a) adequately balances the precision and generalization dimensions of
constraints and, hence, too much behavior is allowed. Finally, model (c)
ow a lot of behavior that is potentially admissible.

M. de Leoni et al. / Information Systems 47 (2015) 258–277 267
between 0 and 1 can be done in several ways. In our
approach, we divide the cost of the optimal alignment by
the maximal alignment cost. Typically, the greatest cost of
an alignment of a log trace sL ¼ 〈aL1;…; aLn〉 and a model
trace sM ¼ 〈aM1 ;…; aMm 〉APD is obtained for the reference
alignment, i.e., the alignment in which there are only
moves in the model and moves in the log:

Definition 4 (Fitness). Let D¼ ðA;ΠÞ be a Declare model
and sL be a log trace. Let γAΣn

A be an optimal alignment of
sL and D. Let sMγ#M be the aligned model trace. Let
γrefðsL ;sM ÞAΣn

A be the reference alignment of sL and D. The
fitness score of sL with respect to D is defined as follows:

Fitness sL;Dð Þ ¼ 1� KðγsL Þ
KðγrefðsL ;sM ÞÞ

:

Therefore, FitnessðsL;DÞ ¼ 1, if in the alignment there
are only moves in both, i.e., there are no deviations.
FitnessðsL;DÞ ¼ 0, if the optimal alignment only contains
moves in the log or in the model. Note that the above-
defined fitness always scores between 0 and 1. Indeed, if
γOAΣn

A is an optimal alignment, any other alignment,
including γrefðsL ;sM Þ, must have the same or a higher cost.

Example 1 (cont.). The optimal alignment γ1 is associated
with a cost 3, whereas the cost of the relative reference align-
ment is 32. Therefore, FitnessðsL;DÞ ¼ 1�3=32¼ 0:90625.

7.2. Precision: does the model allow for too much behavior?

In [21], a technique is proposed to compute the preci-
sion of procedural model. Here, this technique is adapted
and extended to deal with declarative models. The tech-
nique proposed relies on the construction of the so-called
alignment automaton.

Definition 5 (Alignment automaton). Let L and D¼ ðA;ΠÞ
be an event log and a Declare model respectively. Let
Γ ¼ ðfγ1;…; γng;ΛΓÞABðΣn

AÞ be the multi-set of optimal
alignments of L and D. Let P be the multi-set ðfs1;
…; sng;ΛPÞABðA [✓Þ of “aligned” model trace, i.e., for
each 1r irn, si ¼ γi#M and ΛPðsiÞ ¼ ΛΓðγiÞ.
The alignment automaton is a finite state automaton

ðΣ; S; s0; δ; FÞ, where
�
 Σ ¼ A [f✓g is the alphabet of the automaton;

�
 SAΣn is the set of all prefixes of sequences in P, i.e.,

S¼ fs : (s0AP; sAprefixðs0Þg;

�
 s0 is the initial state, which is the empty sequence;

�
 δ : S� Σ-S is a function such that, if δ � 〈s〉AS, δðs; sÞ is

defined and equal to δ � 〈s〉;

�

Fig. 7. The alignment automaton for traces in Example 2.
FDS is the set of final states. A prefix sAS belongs to F
if there exists sAΣ for which δðs; sÞ is defined.

Moreover, each alignment automaton is associated with
a function Υ : S-N. For each sAS, Υ ðsÞ returns the
number of sequences in multi-set P that have s as prefix:
Υ ðsÞ ¼∑sP AP:sAprefixðsP ÞΛPðsPÞ.

Once the alignment automaton is built, the precision
can be scored as follows.

Definition 6 (Precision). Let ðΣ; S; s0; δ; FÞ be the alignment
automaton for a Declare model D and an event log L. For
each activity sequence sAS, let avDðsÞ be the set of all
activities that are enabled for execution: avDðsÞ ¼ fsAΣ :

s� 〈s〉APDg. Let exLðsÞDavDðsÞ be the set of all activities
that have been executed after executing s, exLðsÞ ¼ fsAΣ :

δðs; sÞ is definedg. The precision score of D with respect to
L is defined as follows:

Precision D;Lð Þ ¼ ∑sAS\F ðΛPðsÞ � jexLðsÞjÞ
∑sAS\F ðΛPðsÞ � javDðsÞjÞ

:

The precision is always a value between 0 and 1. If all
behavior allowed by the model D is actually observed in the
event log L, then PrecisionðD;LÞ ¼ 1. In general, a precision
of x=100 identifies a situation in which x% of possible
behaviors are observed. Therefore, a model that allows for
too much behavior has a precision score close to 0.

Example 2 (cont.). Fig. 7 shows the alignment automaton
for the four traces in ~L. Since all log traces are perfectly
fitting, P ¼ ~L. Let us consider two states of the alignment
automaton: ~s1 ¼ 〈〉 and ~s2 ¼ 〈a; b〉. According to the align-
ment automaton, as first activity (i.e., after the empty
sequence ~s1), activities a and c have been performed, i.e.,
jex ~L ð ~s1 Þj ¼ 2. Activities a and c have also been performed
after sequence ~s2 , i.e., jex ~L ð ~s1 Þj ¼ 2. Let us consider the
three Declare models Da, Db and Dc in Fig. 6. After ~s1 ,
models Da and Dc allow for activities a, b, c as well as any
other activity not in the model, i.e., ✓. In addition, model
Db also allows for d. It follows that javDa ðs1Þj ¼ 4, javDb

ðs1Þj ¼ 5 and javDc ðs1Þj ¼ 4. Similarly, javDa ðs2Þj ¼ 4, javDb

ðs2Þj ¼ 5 and javDc ðs2Þj ¼ 4. To measure the precision of
each DAfDa;Db;Dcg, jex ~L ðsÞj and javDðsÞj need to be
computed for each state s of the alignment automaton.
For this example, we have the following scores: Precision
ðDa; ~LÞC0:19, PrecisionðDb; ~LÞC0:17 and Precision
ðDc; ~LÞC0:21. As expected, models Db and Dc are the least
and the most precise respectively. We will show that,
however, the generalization of Dc is low. The precision
score is relatively low for all the three models in Fig. 6.

M. de Leoni et al. / Information Systems 47 (2015) 258–277268
Precision of a model is defined with respect to a given
event log. If the event log is sufficiently large (e.g., spanning
over a period of multiple years), due to the strong law of
large numbers, the event log is likely being complete. Clearly,
log completeness is related to precision: if the event log is
complete, all possible behavior is observed and, hence, the
precision score is reliable.

The precision score of many Declare models can be
relatively low, since Declare models allow for high flex-
ibility. However, the absolute score of precision of a model
is only partly interesting. In many situations, one is
interested to compare multiple models (e.g., the models
mined from a given event log) to choose the one with the
highest precision.
7.3. Generalization: does the model allow for too little
behavior?

It is difficult to reason about generalization because it
refers to unseen behavior. Our approach is based on
probability estimators, similar to what has been proposed
in [1] for procedural models.

We again exploit the alignment automaton ðΣ; S; s0; δ; FÞ.
Let D¼ ðA;ΠÞ be a Declare model. For each πAΠ, let Aπ be
the constraint automaton for π. Let AD ¼ ðΣ;ΨD;ψ0D; δD; FDÞ
be the so-called global automaton obtained through the
cartesian (intersection) of every automaton Aπ with πAΠ.

The set of non-final states X ¼ S\F can be partitioned
in equivalent classes using an equivalence relation � D
such that, for each s0; s″AX, s0 � Ds″ iff δnDðψ0D; s

0Þ
¼ δnDðψ0D; s″Þ.4 In the remainder, the set of all equivalence
classes in X is denoted as follows: X=� D ¼ fX1;…;Xng.

Equivalence class XiAX=� D comprises all sequences
that reach a certain state of the global automaton. Let
ωDðXiÞ be the number of times that state is reached:
ωDðXiÞ ¼∑s0 AXiΥ ðs0Þ.

Let ΔDðXiÞ be the set of activities performed when being
in that state: ΔDðXiÞ ¼ fsAΣ : (s0A ½s	D; δðs0; sÞ is defined g.

For any XiAX=� D, if jΔDðXiÞjCωDðXiÞ, the execution
supposedly proceeds with an activity different from that
already observed. Therefore, it is likely that a new event
refers to a new unseen activity. Conversely, if jΔDðXiÞj
≫ωDðXiÞ, the execution can be reasonably assumed to
proceed with an activity that has already been seen.
Definition 7 (Generalization). Let ðΣ; S; s0; δ; FÞ be the
alignment automaton for a Declare model D and an event
log L. Let X=� D the set of all equivalence classes of
X ¼ S\F. Let pnewðn;mÞ be an estimator of the probability
of observing a new activity in the ðmþ1Þ-th observation,
when n different activities are observed in the first m
4 The concept of global automaton is only introduced to simplify the
discussion. Concretely, the equivalence classes can be easily computed by
using an equivalence notion where two sequences/states of the align-
ment automaton are equivalent iff all constraint automata are in the
same state.
observations [1]:

pnew n;mð Þ ¼
nðnþ1Þ
mðm�1Þ if mZnþ2

1 otherwise

8<
:

The generalization of D with respect to L is defined as
follows:

Generalization D;Lð Þ ¼ 1� 1
jX= � D j ∑

Xi AX= � D
pnew ΔD Xið Þ ;ωD Xið Þ

�� Þ:
���

Estimator pnewðn;mÞ is the transition probability to observe a
new activity, under the assumption that its distribution is
multinomial. Generalization can be defined as the probability
that the next trace, not yet observed, can be replayed by the
process model.

Example 2 (cont.). Let ðΣ; S; s0; δ; FÞ be the alignment
automaton in Fig. 7 and let be X ¼ S\F . For Declare model
Db, there exist no constraint automata. As a consequence,
X=� Db ¼ fXg with ωDb ðXÞ ¼ 16 and jΔDb ðXÞj ¼ 4. Therefore,
GeneralizationðDb; ~LÞ ¼ 1�pnewð16;4Þ ¼ 0:95.
Consider ~s3 ¼ 〈a;b〉AS, ~s4 ¼ 〈a;b; a; b〉AS. For the Declare

model Dc, after performing ~s4 , (i) the chain-response
constraint automaton is back to the initial state, (ii) the
automaton of the precedence constraint between b and c is
in the same state as after performing ~s3 and (iii)the
automata for the other two constraints have not moved.
Consequently, one of the partitions of X is X0 ¼ f ~s3 ; ~s4 g. In
this case, ~s3 is a prefix of three traces and ~s4 is a prefix of
one trace; hence, ωDb ðX0Þ ¼ 4. Moreover, after performing
~s3 and ~s4 , executions of activities a; c are observed; hence,
jΔDb ðX0Þj ¼ 2. Therefore, when the global automaton is the
state as after performing ~s3 and ~s4 , the probability of
observing an activity different from what observed is
pnewð3;2Þ ¼ 1. The computation of this probability needs
to be repeated for any other partition of X in order to score
the generalization of Dc: GeneralizationðDc; ~LÞ ¼ 0:316.
Space limitations prevent us from discussing the com-
putation of the generalization score of Da, which is
GeneralizationðDa; ~LÞ ¼ 0:45. As it could be expected,
the generalization score of Db is higher than of Da, which,
in turn, has a higher score than Dc.

If an event log contains relatively few traces, the
generalization will score low, since the next log trace is
likely to be different from those already seen and, prob-
ably, it cannot be replayed by the model. Conversely, if the
event log is complete and many traces appear multiple
times, the generalization will be high: even if a log trace
has not been observed yet, the model will be able to
replay it.

7.4. Complexity analysis for the computation of fitness,
precision and generalization

After computing the optimal alignment for each trace
in the event log, the scores of fitness, precision and
generalization can be computed in polynomial time with
respect to the number and length of the log traces.

M. de Leoni et al. / Information Systems 47 (2015) 258–277 269
Let n be the number of traces of an event log L and m
be the order of magnitude of the number of events in
each trace.

Without additional information, we assume that each
event has the same probability of being involved in a move
in both or in log. Moreover, we assume that, for each move in
the log (or model), one move in the model (or log, respec-
tively) is also necessary. Therefore, the number of moves in
each alignment γ has the order of magnitude ofm and like so
the length of every “aligned” model trace γ#M .

To compute the fitness score, each alignment needs to
be entirely iterated once. Therefore, the complexity for
computing the fitness of all traces in L is Oðm � nÞ. For
constructing the alignment automaton ðΣ; S; s0; δÞ, every
“aligned” model trace, whose length has the order of
magnitude of m, needs to be iterated once. Hence, the
complexity for constructing the automaton is Oðm � nÞ. The
number jSj of states of the alignment automaton is also
Oðm � nÞ. While iterating over the “aligned” model traces,
the set of equivalence classes can be constructed on the fly,
like so exLðsÞ, avDðsÞ can be computed for each sAS.
Therefore, The precision and generalization scores can be
computed in Oðm � nÞ.

8. Usage of the optimal alignments to clean and repair
event logs

This section discusses the first and third use case of the
framework described in Section 3, i.e., how to clean and
repair event logs. Let L¼ ðL;ΛÞ be an event log and let
Dwhole ¼ ðAwhole;ΠwholeÞ be a Declare (whole) model. For
each trace sAL, let γs be an optimal alignment of s and
a core model Dcore ¼ ðAcore;ΠcoreÞ such that ΠcoreDΠwhole.

A cleaned log Lclean of L with respect to Dcore is an event
log ðLc;ΛcÞ, where Lc only contains the log traces sAL such
that γs contains no move in the log or the model for any
activity aAAcore as well as s does not violate any constraint
πAΠcore. The cleaned event log Lclean only contains the log
traces that are worthwhile to be considered for further
analysis.

As mentioned in Section 3, many analysis techniques
require that the event log perfectly fits a process model
and, hence, results lose (part of) their significance if there
are deviations. Therefore, non-fitting event logs need
adjustments to remove deviations. The resulting log is
called repaired event log.

Let L¼ ðfs1;…; sng;ΛÞABðAn

L Þ be a (cleaned) log. Let
Drepair ¼ ðArepair ;ΠrepairÞ be a repair model. Let γsi be an
optimal alignment of si and Drepair .

A repaired log Lrepair of L with respect to Drepair is an
event log Lrepair ¼ ðfsR1;…; sRng;ΛRÞABððAL [✓ÞnÞ where, for
1r irn, sRi ¼ γsi#M and ΛRðsRi Þ ¼ ΛðsiÞ.

When an event is created because of a move in the
model, there are two aspects to consider. Moves in model
might be associated with ✓. As a result, an event ✓ could
be inserted. Events ✓ do not affect many diagnostics when
using the repaired log as input. Nonetheless, if log traces
can only be repaired by adding ✓ events, i.e., events
referring to activities not belonging to the model, that
should be an alert of the fact that possibly the model is not
designed well.
For the sake of simplicity, each event has been abstracted
as the activity name only, and an event trace is a sequence of
activity names. Of course, in reality, each event is also
associated with a timestamp indicating the time when the
event occurred. When inserting an event, this event needs
to be associated with a timestamp, as well. The timestamp is
necessary when one wants to execute some performance
analysis. The inserted event is associated with a timestamp
which is the average between the timestamps of the events
that precede and follow it.

Example 1 (cont.). Let us suppose that Dcore ¼ ðAcore;ΠcoreÞ
where Acore ¼ fCQg and set Πcore contains all constraints in
Fig. 1 apart from the response and the not-succession
constraint. Furthermore, let us suppose that Drepair is the
entire Declare model in Fig. 1, i.e., traces are repaired with
respect to all the constraints in the model in Fig. 1. Trace sL
is repaired as follows:

sRL ¼ 〈Register;Create Questionnaire;
Prepare Notification Content;Create Questionnaire;
Send Questionnaire; Send Notification by e�mail;
Send Notification by Post;Archive〉

which is part of the repaired event log Lrepair .

9. Implementation and evaluation

In order to evaluate the three use cases described in
Section 3, we have implemented a series of plug-ins of
ProM, a generic open-source framework for implementing
process mining functionalities [5]:

Declare Replayer It takes a Declare model and an event log
as input and, using the algorithm described in
Section 6, finds a multi-set of optimal alignments,
i.e., one alignment for each trace in the event log.
This plug-in is also in charge of computing the score
of the different dimensions of conformance (fitness,
precision and generalization).

Declare Diagnoser It takes as input the multi-set of
optimal alignments and projects them on the
model. Activities and constraints are colored
according to their degree of conformance (see
Section 5.3).

Log Cleaner It takes a (core) Declare model and an event
log and returns an event log in which traces in
the original log violating at least one constraint
in the model are discarded. Internally, it invokes
the Declare Replayer plug-in to find the multi-set
of optimal alignments.

Log Repairer It takes a (repair) Declare model and, using the
algorithm in Section 8, adjusts the log traces by
removing and inserting events, thus producing a
perfectly fitting event log. Internally, it invokes the
Declare Replayer plug-in to find the multi-set of
optimal alignments.

To assess the viability of the proposed techniques, we
performed validations along two main directions. Firstly, the
scalability was evaluated with Declare models and event

y = 0,0504x + 1,4468

y = 0,1054x + 2,3265

y = 0,1572x + 3,4193

1

3

5

7

9

11

13

15

17

0 15 30 45 60 75 90

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
s.

)

Probability for each Constraint to Be Violated

250
500
750

Fig. 8. Average execution time for different combinations of log sizes and
probabilities of violation. Each combination has been run 5 times with a
variance which is never higher than 0.04 s.

Table 1
Comparison of the execution time of the Declare Replayer when all
optimizations are enabled with respect to the cases when they are
selectively turned off. The results refer to a synthetic log from Example
1 with 250 traces and a probability of violation of 90%.

Employed Visited Tree Execution
Technique Nodes Size Time

Optimized An 67 218 6 s
Without pruning 373 3310 36 s
Without heuristics 324,119 3,402,799 ca. 12 h

y = 35,253ln(x) -112,05

9

19

29

39

49

59

30 50 70 90 110 130 150

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
s.

)

Number of Constraints

Fig. 9. Results of the experiments conducted with different Declare mo-
dels with 28 activities and different numbers of constraints. The variance
is negligible as it is never more than 0.07 s.

M. de Leoni et al. / Information Systems 47 (2015) 258–277270
logs of increasing sizes (one real-life and some synthetic
event logs were used) and with increasing numbers of
deviations. Secondly, we aimed at validating the usefulness
of the approach and the effectiveness of the results
obtained. In particular, we applied all of the three use cases
described in Section 3 on a real case study from a Dutch
hospital. Section 9.2 discusses the validation, highlighting
the possible benefits for potential stakeholders.

9.1. Performance evaluation

The scalability of the proposed techniques has been
evaluated through two sets of experiments. In a first set of
experiments, one single Declare model was used and
synthetic event logs were generated with different sizes
and including different numbers of deviations. In a second
set, the size of the Declare model was varied. Models
were generated with different numbers of constraints
and number of activities.

For the first set of experiments, several synthetic logs
has been generated by modeling the process described in
Example 1 in CPN Tools5 and by simulating the model.
Specifically, we generated event logs of different sizes (i.e.,
containing from 250 up to 750 traces) and with different
probabilities of violating a certain constraint within a log
trace (i.e., from 0% up to 90%). In other words, a probability
of violation of x% means that the probability that a certain
constraint is violated in a trace is x=100. Note that multiple
constraints can be violated at the same time in a log trace:
for instance, if the probability of violating a constraint is p,
the probability of violating two constraints is p2.

In Fig. 8, the results are shown. For each combination of
log size (250, 500 or 750 traces) and probability of
violation, the execution time is averaged over 5 runs. A
trend line is also shown to highlight that the execution
time grows linearly with increasing probability of viola-
tions in the event logs.

Also, with respect to a single probability of violation, the
execution time is linear in the number of traces of the event
log. It was expected that the alignment of a trace of the
event log and the Declare model is computed without
considering the other traces of the event log. Therefore,
if the number of log traces is multiplied by n, the execution
time would be n times greater.

In order to compare the optimized approach with the
situations in which no pruning is made and also no
heuristics is used, an event log was used with 250 traces
and a degree of non-fitness of 90%. Table 1 shows the
results of this comparison. If we do not prune the search-
space, the Declare Replayer has to visit 457% of extra nodes
and, consequently, the execution time increases by 500%.
Table 1 also shows the reduction in terms of time and
number of nodes to visit when using the heuristics described
in Section 6. When no heuristics is used, the An algorithm
coincides with Dijkstra.

In a second set of experiments, a single event log was
used with Declare models of different sizes. At the begin-
ning, a Declare model was generated through the Declare
5 http://cpntools.org
Miner plug-in in ProM [19]. The input was a real-life event
log concerned with a process enacted in a Dutch hospital
(see Section 9.2 for more details). The event log contained
289 log traces, 10,215 events and 152 activities and the
mined Declare model consisted of 157 constraints and 28
activities (the least frequent activities were abstracted out).
In order to obtain models with fewer constraints, a percen-
tage of constraints was randomly removed while ensuring
each activity to be connected to one constraint, at least.
To conduct the experiments, these models were checked
for conformance against the event log. Fig. 9 shows the
execution time when varying the number of constraints. For

http://cpntools.org

y = 1,0184x2 -11,073x + 25,9811,073x + 25,98

0

50

100

150

200

250

5 10 15 20

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
s.

)

Number of Activities

Fig. 10. Results of the experiments conducted including a balanced
number of constraints of type precedence, responded existence and
response and different numbers of activities. The execution time trend
is polynomial when the number of activities is equal to or bigger than
10; the execution time is very small and almost constant for smaller
numbers.

6 See http://www.uroweb.org/guidelines/online-guidelines/. It is
worth saying that this model is none of the models used for the
scalability evaluation in the previous section.

M. de Leoni et al. / Information Systems 47 (2015) 258–277 271
reliability, given a number of constraints, different models
were considered with that number of constraints. The trend
line illustrates that the execution time increases with the
logarithm of the number of constraints.

Later, the experiments aimed to evaluating how the
execution time is affected when varying the number of
activities in models including different types of con-
straints. Different Declare models were generated with
different numbers of activities (5, 10, 15 and 20) with
nearly two constraints per activity. The types of constraints
were precedence, responded existence and response. The
models were generated so as to balance the number of
constraints of these three types (i.e., the models contain
the same number of constraints of the three types) and,
also, to have similar fitness scores (around 0.85). The
experimental results are shown in Fig. 10. The trend line
illustrates that the execution time increases polynomially
with the number of activities; for models with less than 10
activities, the execution time is very small and almost
constant.

9.2. Validation using a case study

In the previous section, the approach feasibility has
been validated. This section goes beyond and aims at
assessing its relevance and usefulness in a real scenario.
For this purpose, the same event log relative to a Dutch
hospital has been used. The event log concerns the treatment
of bladder cancer. Bladder cancer is a complex disease and
each patient must be treated in a different way, depending
on the patient0s characteristics (e.g., age, gender), the histol-
ogy, grade and depth of invasion. Based on these parameters,
there are several possible tests and treatments the doctors
can decide to apply to patients affected by bladder cancer.
Due to the high flexibility of the therapy, the use of a
declarative process model is highly indicated.

Fig. 11 shows a Declare model that has been drawn by
hand in compliance to the guidelines published by the
European association of Urology for treatment of bladder
cancer.6 According to the log–model alignment frame-
work, we have identified the core and repair model. The
core model is the union of two parts delimited by the solid
green line, whereas the repair model is delimited by the
red dotted line. The repair model comprises the con-
straints that, according to the medical guidelines, must
be always respected for a correct treatment of the cancer.

The core model contains two constraints: the init con-
straint associated with First patient visit, according
to which this activity has to be the first of every process
execution, as well as the 0‥1 constraint associated with Dbc
Registration, which states that this activity cannot be executed
more than once in a process instance. Every log trace that
violates these constraints should be discarded as certainly
incomplete: the activities for the hospital registration and the
first visit are not logged. In real scenarios, it is not infrequent
that there are logging problems and that a number of activity
executions are not stored in the event logs. These traces
should certainly be left out since they are biased and would
negatively affect the efficacy of process mining techniques.

This is also shown in this event log: out of the 289 log
traces, only 68 traces were kept after log cleaning. The
cleaned log and the whole Declare model were used as
input for the Declare Replayer.

Fig. 12 illustrates the output produced by the Declare
Replayer plug-in. Each sequence of triangles refers to an
alignment of a trace with respect to the model. Each triangle
is a different legal move; the color of the move depends on
its type: moves in the log, moves in the model or moves in
both are colored in yellow, purple and green respectively.
Each sequence is also associated with a number that
identifies the fitness score of the specific trace.

When clicking the Detail button associated with each
trace, the alignment is shown at the bottom (e.g., the
screenshot shows the details when selecting the trace
numbered 1000181554). Each rectangle represents a dif-
ferent move and is annotated with the activity involved in
the move. The color of the rectangle is again associated
with the type of move, using the color scheme mentioned
before. When passing with the mouse over any rectangle,
the Declare Replayer shows which constraint violations
that move contributes to solve (see Section 5.3).

In the screenshot in Fig. 12, it is shown the 17th move is
in the log for activity Transurethral Resection. When pas-
sing over the corresponding rectangle with the mouse, the
Declare Replayer lists the constraints that the move con-
tributes to solve. Two precedence constraints are solved by
the move in the log: every occurrence of Transurethral
Resection should be preceded by Cysto-urethescopy and
Preoperative Screening. Since occurrences of these two
activities were not present in the trace before Transurethral
Resection, the latter cannot be executed, which motivates
the move in the log.

Immediately above the enumeration of the traces with
their optimal alignments, the graphical user interface
shows the average fitness score with respect to all event

http://www.uroweb.org/guidelines/online-guidelines/

Fig. 11. The core, repair and whole models to describe the case study from a Dutch hospital. The core constraints are those in the two areas delimited by
the solid green line, whereas the repair constraints are those included in the area delimited by the red dotted line. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 12. A screenshot showing the trace-model alignments as visualized in the Declare Replayer plug-in of ProM. The average fitness is also shown with
respect to all optimal alignments, along with the values of precision and generalization of the model. (For interpretation of the references to colors in this
figure caption, the reader is referred to the web version of this paper.)

M. de Leoni et al. / Information Systems 47 (2015) 258–277272
traces as well as the score of the precision and general-
ization dimensions of conformance.

Fig. 13 shows a screenshot of the Declare Diagnoser
plug-in where moves in the log and in the model are
projected on the Declare model. The figure refers to the
same set of alignments as in Fig. 12, i.e., using the clean
event log and the whole model as input. Each activity is
associated with a number that represents the degree of
conformance (see Section 5.3). Each constraint is asso-
ciated with two numbers, the first representing the degree
of conformance and the second the percentage of process
instances in which a certain constraint is violated. More-
over, the degree of conformance is also reflected in the
colors of activities to make the visualization more effective.
Green and red nodes and arcs indicate a degree 1 or 0 of
conformance respectively. Intermediate shades between

Fig. 13. A screenshot showing the output of the Declare Diagnoser plug-in, which gives a helicopter view of the activities and constraints that are mostly
involved in deviations. Red color is associated with activities which are often involved in moves in the log or model as well as with constraints that are
violated more frequently. Green color indicates the opposite situations, with intermediate shades indicating intermediate situations. White color is given to
activities that have never occurred in the event log. (For interpretation of the references to colors in this figure caption, the reader is referred to the web
version of this paper.)

M. de Leoni et al. / Information Systems 47 (2015) 258–277 273
green and red reflect values in-between these two extremes.
White color is associated with activities that do not occur in
the log traces.

In our case study, the clean log only contains traces that
do not violate the core constraints; therefore, the degree of
conformance of the core constraints is equal to 1. The
presence of white-colored activities is motivated by the
fact that some activities are so infrequent that they do
not occur in the event log resulting from the cleaning
phase. The figure also brings out the red color for
activity CT Thorax: its degree of conformance is equal
to 0. This means that it is always associated with moves
in the log or in the model, never with moves in both. This
means that the activity is never executed correctly. Either it
is performed when it should not be or is not performed
when it should be.

When selecting an activity, on the left-hand side of the
screen, a summary is provided with the number of moves in
which the activity is involved; in the figure, activity Cysto-
urethescopy is selected, which is involved in two moves in
the log, one move in the model and 27 moves in both. It is
worth noting that the outcome of Declare Diagnoser is also very
insightful for repairing the Declare model. The model can be
repaired by removing the constraints for which the degree of
conformance is below a certain threshold.

In order to meaningfully apply additional process mining
techniques off the shelf, the event log has to entirely comply
with the model. Therefore, we need to apply the use case (iii)
in Fig. 2 and repair the event log using the repair model
delimited by the red dotted line in Fig. 11.

Fig. 14 shows the results of using the repaired event log
as input for some process mining techniques implemented
as plug-ins of ProM. Fig. 14(a) refers to the prediction
technique described in [12]. The underlying model is a
transition system. Nodes correspond to the states which
some process instances went through. Respectively, ingoing
and outgoing arcs of a state identify the activities that led to
that state and that were performed when being in that state.
Without repairing and cleaning the event log, the transition
system is much more chaotic. Indeed, the number of states
would blow up since it should incorporate those states that
refer to non-conforming behavior. Obviously, those states
should not be part of the transition system and, hence, the
predictions for those states are meaningless and also affect
the predictions for the other states. The predictions are also
more inaccurate due to the fact that the technique is based
on replaying the log traces and shows issues when replaying
non-conforming traces.

Fig. 14(b) depicts a social network that describes the
hand over of work between resources (see [22]): each oval
identifies a different resource and the horizontal and vertical
diameters grow with the amount of work that is delegated
or received respectively. If we compare this hand over social
network with the same obtained from the event log before
repairing, the ovals0 size tends to reduce with respect to
both the horizontal and vertical diameters. In general, this is
normal, since, in the repaired log, some events are removed
and, hence, there is less work that is handed over. None-
theless, the comparison shows that the length of the
diameters is mostly reduced for only some ovals, whereas
the diameters stay unchanged for others. This means that
always the same resources are used to misbehave.

Fig. 14(c) illustrates a bar diagram obtained by the
throughput analyzer in ProM (see [18]). Each bar is asso-
ciated with a different process instance. The y-axis indi-
cates the execution time of each process instance in hours.
Apart from few outliers, it is clear that the entire treatment
of a bladder cancer is usually concluded within 1000 h. If
we use the event log before repairing, the resulting bar
diagram does not differ significantly. Conversely, if we do

Fig. 14. The application of diverse process mining techniques using the repaired or cleaned event log of the case study stemming from a Dutch hospital.
The figures refer to screenshots of the graphical user interfaces of the respective plug-in implementations in ProM. (a) Execution time prediction: each oval
is a state which some process execution has gone through. Each arc indicates the activity that causes the state change. Each state is also annotated with the
predicted execution time to complete a process instance, when the execution is in that state. (b) Social network: each oval represents a different resource
and the arcs highlight the hand over of work between resources. (c) Execution time analysis: each bar is a different process instance. The y-axis indicates
the execution time of the each process instance and is measured in hours.

M. de Leoni et al. / Information Systems 47 (2015) 258–277274
not clean the event logs, the bar diagrams show 15% more
outliers characterized by very long execution time. This
suggests that the traces with logging problems are also
characterized by long execution time. Possibly, this is
caused by errors in the logging system.

10. Related work

Over the last decade process mining evolved into an
active research field relating data analysis (data mining,
machine learning, etc.) and process analysis. See [18] for
an introduction to process mining. We refer to the
recently released Process Mining Manifesto [23] for the
main challenges in process mining. The focus of this
paper is on the analysis of the execution of Declare
models; therefore we do not elaborate on process dis-
covery techniques.

Conformance checking is highly relevant for auditing [24]
and risk analysis [25]. However, the literature on auditing
and risk analysis [24,25] does not suggest concrete techni-
ques to systematically compare observed behavior and
modeled behavior. Fortunately, a variety of conformance
checking techniques has been developed in the context of
process mining.

Cook and Wolf [26] were among the first to quantify
the relationship between an event log and a process
model. They compare event streams generated from the
model with event steams generated from the event log.

M. de Leoni et al. / Information Systems 47 (2015) 258–277 275
Several authors proposing process discovery algorithms
also provide a quality metric (often related to fitness). For
example, in [27] the authors define a fitness function for
searching for the optimal model using a genetic approach.
In [28] a “process mining evaluation framework” for
benchmarking process discovery algorithms is proposed.

The first comprehensive approach to conformance ana-
lysis was proposed in [29] by Rozinat and van der Aalst. Two
different types of metrics are proposed: (a) fitness metrics, i.
e., the extent to which the log traces can be associated with
valid execution paths specified by the process model and (b)
appropriateness metrics, i.e., the degree of accuracy in which
the process model describes the observed behavior, com-
bined with the degree of clarity in which it is represented.
Fitness in [29] is measured by “replaying the event log” and
counting the number of missing and remaining tokens. This
typically results in rather high fitness values as also pointed
out in [2,30]. In [29], four appropriateness metrics are
defined. Simple behavioral appropriateness looks at the
average number of enabled transitions. If most transitions
are continuously enabled, the model is likely to lack preci-
sion (i.e., underfitting). Advanced behavioral appropriateness
compares the “footprint” of the log (follows and precedes
relationships) to the “footprint” of the model. Simple struc-
tural appropriateness and advanced structural appropriateness
quantify the complexity of the model.

One of the drawbacks of the approach in [29] and most
other approaches that “play the token game” is that fitness is
typically overestimated. When a model and log do not fit well
together, replay will overload the process model with super-
fluous tokens. As a result, the model will allow for too much
behavior. In fact, most conformance techniques give up after
the first non-fitting event or simply “guess” the corresponding
path in the model. Therefore, Adriansyah et al. formulated
conformance checking problems as an optimization problem
[2]. This is the approach we also use in this paper. Besides the
four appropriateness notions in [29], Muñoz-Gama and Car-
mona quantified additional precision notions [31,32].

It is difficult to use classical quality notions such as
precision and recall for process mining. The main reason is
that event logs only contain positive examples, i.e., one can
see what “did happen” but not what “could not happen”.
Therefore, some authors suggest inserting artificially gener-
ated “negative events” [33,34]. Goedertier et al. proposed
such events for both process discovery and conformance
checking [33]. Weerdt et al. defined a so-called F-measure
based on artificially generated negative events [34]. The
authors of the latter paper also conducted a comparative
analysis of several conformance metrics [30]. However, their
study did not consider the more advanced alignment-based
approaches discussed in this paper.

In [35], a completeness metric and a soundness metric
are defined. These metrics compare the model traces with
the log traces. This approach suffers from several drawbacks.
First of all, only complete traces are compared. Second, it is
assumed that the model0s behavior can be enumerated.
Finally, it is assumed that the log contains all possible traces.

There are also efficient algorithms to perform sequence
alignments (e.g., the algorithms of Needleman–Wunsch and
Smith–Waterman). Similarly, in process mining, Jagadeesh
Chandra Bose and van der Aalst [36] have proposed
techniques to efficiently align pairs of log traces. Unfortu-
nately, they cannot be applied to find an alignment between
a log trace and a process model. In our setting, we do not
know a priori the model trace to align with the log trace;
conversely, the model trace needs to be chosen, thus
minimizing the severity of the deviations.

This paper extends [17] along the following directions:
1.
 It proposes a framework for analysis of Declare models
that is based on three use cases which are supported by
ProM and are based on log–model alignment. In these
use cases, conformance is evaluated through three
dimensions: fitness, precision and generalization. Paper
[17] was only concerned with computing fitness for
diagnostics purposes, which is one single aspect of one
of the three use cases.
2.
 The performance evaluation of the approach has been
strengthened. We provide a detailed analysis of how
the approach scales with models of increasing sizes,
proving that it is applicable to realistic scenarios.
3.
 The approach has also been used to evaluate a real-life
process enacted in a Dutch hospital. We have applied all
three use cases defined in the analysis framework. This
has allowed us to put in evidence which kind of stake-
holders in process-aware information systems would
benefit from the approach presented in this paper.
4.
 The implementation in ProM is more efficient and outper-
forms the one presented in [17]. Comparing Fig. 8 with
Fig. 3 in [17], the improvements are evident: the execution
is almost 90% faster with respect to the old implementation.
Of course, the new experiments and those reported in [17]
were carried out using the same computer. Also, the same
algorithmwas used. The reason of this drastic improvement
is only related to the implementation. Specifically, in the
implementation reported in [17], the list of already visited
search-space nodes/alignments γ with their cost gðγÞ was
kept in a linked list without indexing. Therefore, the cost of
checking whether an equivalent alignment was already
visited was O(n) where n is the length of the list. For the
new implementation, the linked list was replaced by a hash
table with nodes/alignments as key and cost as value.
Therefore, the cost to search for equivalent alignments has
decreased from O(n) to Oð1Þ. Moreover, the implementation
reported in [17] stored the priority queue for the An

algorithm in a list sorted by cost, with insertion cost O(m)
and removal cost Oð1Þ where m is the length of the list. In
the new implementation, a self-balancing binary search tree
is used and insertion and removal operations take Oðlog mÞ
time. Since the number of insertions are far more than the
removals, search trees perform better than sorted lists.

11. Conclusion

This paper presents a novel log preprocessing and confor-
mance checking approach tailored towards declarative models.
Most conformance checking techniques defined for procedural
models (e.g., Petri nets) are not directly applicable to declarative
models since they are based on playing the “token game”while
counting missing and remaining tokens. Moreover, these

M. de Leoni et al. / Information Systems 47 (2015) 258–277276
techniques tend to provide poor diagnostics, e.g., just reporting
the fraction of fitting cases. We adapted alignment-based
approaches to be able to deal with the large search spaces
induced by the inherent flexibility of declarative models.

As shown in this paper, alignments provide a very powerful
tool when relating observed behavior with modeled behavior.
We described three possible applications of our alignment-
based approach: (i) cleaning event logs to remove traces that
should not be used for further analysis, (ii) diagnosing event logs
to check conformance, show deviations and measure compli-
ance scores and (iii) repairing event logs to make sure that the
essential constraints are satisfied before further analysis.

The presented approach has been implemented in ProM.
Our implementation provides novel diagnostics, at the trace
level, showing why events need to be inserted/removed in a
trace and at the model level, coloring constraints and activities
in the model based on their degree of conformance. As future
work, we plan to extend our approach in order to incorporate
other perspectives (data, resources, risks, costs, etc.) in our
analysis. For example, alignments can also be used to diagnose
problems such as activities that are executed too late or by the
wrong person.

References

[1] W.M.P. van der Aalst, A. Adriansyah, B.F. van Dongen, Replaying
history on process models for conformance checking and perfor-
mance analysis, Wiley Interdiscip. Rev.: Data Mining Knowl. Discov.
2 (2) (2012) 182–192.

[2] A. Adriansyah, B. van Dongen, W. van der Aalst, Conformance
checking using cost-based fitness analysis, in: IEEE International
Enterprise Distributed Object Computing Conference (EDOC 011),
IEEE Computer Society, 2011, pp. 55–64.

[3] M. de Leoni, W.M.P. van der Aalst, B.F. van Dongen, Data- and
resource-aware conformance checking of business processes, in:
15th International Conference on Business Information Systems,
Lecture Notes in Business Information Processing, vol. 117, Springer
Verlag, 2012, pp. 48–59.

[4] R. Dechter, J. Pearl, Generalized best-first search strategies and the
optimality of An, J. ACM (JACM) 32 (1985) 505–536.

[5] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, W.M.P. van der
Aalst, XES, XESame, and ProM 6, in: Proceedings of Information
Systems Evolution (CAiSE Forum 2010), Lecture Notes in Business
Information Processing, vol. 72, 2011, pp. 60–75.

[6] F.M. Maggi, A.J. Mooij, W.M.P. van der Aalst, Analyzing vessel
behavior using process mining, in: Situation Awareness with Sys-
tems of Systems, Springer, New York, 2013, pp. 133–148.

[7] S. Zugal, J. Pinggera, B. Weber, The impact of testcases on the
maintainability of declarative process models, in: Enterprise,
Business-Process and Information Systems Modeling (BMMDS/
EMMSAD 2011), Lecture Notes in Business Information Processing,
vol. 81, 2011, pp. 163–177.

[8] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, H.A. Reijers,
Imperative versus declarative process modeling languages: an
empirical investigation, in: Proceedings of Business Process Manage-
ment Workshops 2010, Lecture Notes in Business Information
Processing, vol. 99, 2011, pp. 383–394.

[9] D. Giannakopoulou, K. Havelund, Automata-based verification of
temporal properties on running programs, in: Proceedings of the
16th IEEE International Conference on Automated Software Engi-
neering (ASE’01), IEEE Computer Society Press, Providence, 2001,
pp. 412–416.

[10] M. Westergaard, F.M. Maggi, Declare: a tool suite for declarative
workflow modeling and enactment, in: Proceedings of the Demo
Track of the 9th Conference on Business Process Management 2011,
CEUR Workshop Proceedings, vol. 820, CEUR-WS.org, 2011.

[11] W.M.P. van der Aalst, M. Pesic, H. Schonenberg, Declarative work-
flows: balancing between flexibility and support, Comput. Sci.—Res.
Dev. 23 (2) (2009) 99–113.

[12] W.M.P. van der Aalst, M. Schonenberg, M. Song, Time prediction
based on process mining, Inf. Syst. 36 (2) (2011) 450–475.
[13] M. Westergaard, Better algorithms for analyzing and enacting declara-
tive workflow languages using LTL, in: Proceedings of the 9th Business
Process Management Conference (BPM011), Lecture Notes in Computer
Science, vol. 6896, Springer, Berlin, 2011, pp. 83–98.

[14] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and
TLTL, ACM Trans. Softw. Eng. Methodol. 20 (4) (2011).

[15] A. Awad, G. Decker, M. Weske, Efficient compliance checking using
BPMN-Q and temporal logic, in: Proceedings of the 6th International
Conference on Business Process Management, Lecture Notes in
Computer Science, vol. 5240, Springer, Berlin, 2008, pp. 326–341.

[16] F.M. Maggi, M. Montali, M. Westergaard, W.M.P. van der Aalst, Monitor-
ing business constraints with linear temporal logic: an approach
based on colored automata, in: Proceedings of the 9th International
Conference on Business Process Management (BPM011), Lecture Notes
in Computer Science, vol. 6896, Springer-Verlag, 2011, pp. 132–147.

[17] M. de Leoni, F. Maggi, W.M.P. van der Aalst, Aligning event logs and
declarative process models for conformance checking, in: Proceedings
of the 10th International Conference on Business Process Manage-
ment, Lecture Notes in Computer Science, vol. 7481, Springer, Berlin,
Heidelberg, 2012, pp. 82–97.

[18] W.M.P. van der Aalst, Process Mining—Discovery, Conformance and
Enhancement of Business Processes, Springer, Berlin, 2011.

[19] F.M. Maggi, R.P.J.C. Bose, W.M.P. van der Aalst, Efficient discovery of
understandable declarative process models from event logs, in:
Proceedings of the 24th International Conference on Advanced
Information Systems Engineering (CAISE 2012), Lecture Notes in
Computer Science, vol. 7328, 2012, pp. 270–285.

[20] W.M. van der Aalst, Mediating between modeled and observed
behavior: the quest for the “right” process, in: Proceedings of the
IEEE International Conference on Research Challenges in Informa-
tion Science (RCIS 2013), IEEE Computing Society, Paris, 2013,
pp. 31–43.

[21] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. van Dongen, W. van der
Aalst, Alignment based precision checking, in: Proceedings of Business
Process Management Workshops 2012, Lecture Notes in Business Infor-
mation Processing, vol. 132, Springer Verlag, Berlin, 2013, pp. 137–149.

[22] M. Song, W.M.P. van der Aalst, Towards comprehensive support for
organizational mining, Decis. Support Syst. 46 (1) (2008) 300–317.

[23] W.M.P. van der Aalst et al., Process mining manifesto, in: Proceed-
ings of Business Process Management Workshops 2011, Lecture
Notes in Business Information Processing, vol. 99, Springer Verlag,
2012, pp. 169–194.

[24] M. Vasarhelyi, M. Alles, A. Kogan, Principles of analytic monitoring for
continuous assurance, J. Emerg. Technol. Account. 1 (1) (2004) 1–21.

[25] J. Hulstijn, J. Gordijn, Risk analysis for inter-organizational controls,
in: Proceedings of the 12th International Conference on Enterprise
Information Systems (ICEIS 2010), SciTePress, 2010, pp. 314–320.

[26] J. Cook, A. Wolf, Software process validation: quantitatively measur-
ing the correspondence of a process to a model, ACM Trans. Softw.
Eng. Methodol. 8 (2) (1999) 147–176.

[27] A. Medeiros, A. Weijters, W.M.P. van der Aalst, Genetic process
mining: an experimental evaluation, Data Min. Knowl. Discov. 14 (2)
(2007) 245–304.

[28] A. Rozinat, A. Medeiros, C. Günther, A. Weijters, W.M.P. van der Aalst,
The need for a process mining evaluation framework in research and
practice, in: Proceedings of Business Process Management Work-
shops 2007, Lecture Notes in Computer Science, vol. 4928, Springer-
Verlag, Berlin, 2008, pp. 84–89.

[29] A. Rozinat, W.M.P. van der Aalst, Conformance checking of processes
based on monitoring real behavior, Inf. Syst. 33 (1) (2008) 64–95.

[30] J. Weerdt, M. De Backer, J. Vanthienen, B. Baesens, A critical
evaluation of model–log metrics in process discovery, in: Proceed-
ings of Business Process Management Workshop 2010, Lecture
Notes in Business Information Processing, vol. 66, Springer-Verlag,
Berlin, 2011, pp. 158–169.

[31] J. Muñoz-Gama, J. Carmona, A fresh look at precision in process
conformance, in: Proceedings of the 8th International Conference on
Business Process Management (BPM010), Lecture Notes in Computer
Science, Springer-Verlag, 2010, pp. 211–226.

[32] J. Muñoz-Gama, J. Carmona, Enhancing precision in process con-
formance: stability, confidence and severity, in: Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining
(CIDM 2011), IEEE, 2011, pp. 184–191.

[33] S. Goedertier, D. Martens, J. Vanthienen, B. Baesens, Robust process
discovery with artificial negative events, J. Mach. Learn. Res. 10
(2009) 1305–1340.

[34] J. Weerdt, M. De Backer, J. Vanthienen, B. Baesens, A robust
F-measure for evaluating discovered process models, in: Proceedings

http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref1
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref1
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref1
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref1
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref4
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref4
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref4
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref4
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref11
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref11
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref11
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref12
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref12
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref18
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref18
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref22
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref22
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref24
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref24
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref26
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref26
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref26
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref27
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref27
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref27
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref29
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref29
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref33
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref33
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref33

M. de Leoni et al. / Information Systems 47 (2015) 258–277 277
of the IEEE Symposium on Computational Intelligence and Data
Mining (CIDM 2011), IEEE, Paris, France, 2011, pp. 148–155.

[35] G. Greco, A. Guzzo, L. Pontieri, D. Sacca, Discovering expressive
process models by clustering log traces, IEEE Trans. Knowl. Data Eng.
18 (8) (2006) 1010–1027.
[36] R.P. Jagadeesh Chandra Bose, W.M.P. van der Aalst, Process diag-
nostics using trace alignment: opportunities, issues, and challenges,
Inf. Syst. 37 (2) (2012) 117–141.

http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref35
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref35
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref35
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref36
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref36
http://refhub.elsevier.com/S0306-4379(13)00170-1/sbref36

	An alignment-based framework to check the conformance of declarative process models and to preprocess event-log data
	Introduction
	Declare and basic notation
	A framework based on log–model alignment for the analysis of declarative processes
	Checking declare constraints
	Alignment of event logs and Declare models
	Promoting activities as first-class citizens: why existing techniques tend to overestimate the activities involved in...
	Why a log or model move is needed?
	Degree of conformance

	The Amidast algorithm for computing log–model alignments
	Conformance checking using alignments
	The fitness dimension: are the observed behaviors allowed by the model?
	Precision: does the model allow for too much behavior?
	Generalization: does the model allow for too little behavior?
	Complexity analysis for the computation of fitness, precision and generalization

	Usage of the optimal alignments to clean and repair event logs
	Implementation and evaluation
	Performance evaluation
	Validation using a case study

	Related work
	Conclusion
	References

