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Abstract. Process mining techniques enable the analysis of processes
using event data. For structured processes without too many variations,
it is possible to show a relative simple model and project performance
and conformance information on it. However, if there are multiple classes
of cases exhibiting markedly different behaviors, then the overall pro-
cess will be too complex to interpret. Moreover, it will be impossible to
see differences in performance and conformance for the different process
variants. The different process variations should be analysed separately
and compared to each other from different perspectives to obtain mean-
ingful insights about the different behaviors embedded in the process.
This paper formalizes the notion of process cubes where the event data
is presented and organized using different dimensions. Each cell in the
cube corresponds to a set of events which can be used as an input by
any process mining technique. This notion is related to the well-known
OLAP (Online Analytical Processing) data cubes, adapting the OLAP
paradigm to event data through multidimensional process mining. This
adaptation is far from trivial given the nature of event data which can-
not be easily summarized or aggregated, conflicting with classical OLAP
assumptions. For example, multidimensional process mining can be used
to analyze the different versions of a sales processes, where each version
can be defined according to different dimensions such as location or time,
and then the different results can be compared. This new way of looking
at processes may provide valuable insights for process optimization.

Keywords: Process Cube, Process Mining, OLAP, Comparative Pro-
cess Mining

1 Introduction

Process Mining can be seen as the missing link between model-based process
analysis (e.g., simulation and verification) and data-oriented analysis techniques
such as machine learning and data mining [1]. It seeks the “confrontation” be-
tween real event data and process models (automatically discovered or hand-
made). Classical process mining techniques focus on analysing a process as a
whole, but in this paper we focus on isolating different process behaviors (ver-
sions) and present them in a way that facilitates their comparison by approaching
process mining in a multidimensional perspective.
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Multidimensional process mining has been approached recently by some au-
thors. The event cube approach described in [2] presents an exploratory view on
the applications of OLAP operations using events. The process cube approach
is introduced by the second author in [3] with an initial prototype implementa-
tion [4]. The process cube notion was proven useful in case studies [5, 6]. These
approaches have established a conceptual framework for process cubes, however,
they still present some conceptual limitations. One of the limitations of [3] is
related to concurrency issues (e.g. derived properties are created on the event
base which may be used with many process cube structures, which would force all
the dimensions that correspond to a specific property to have exactly the same
meaning and value set. This is an undesired behavior when for example, calcu-
lating in different process cube structures a dimension customer type according
to different criteria). Other limitations are the structure within dimensions (e.g.
there is no composition of attributes and no hierarchies of aggregation, therefore
no roll-up and drill-down directions) and the (lack of) granularity-level defini-
tions (used for defining the cube cells distribution and filter the events in each
cell). In this paper we provide an improved formalization of the process cube
conceptual framework.

The idea is related to the well-known OLAP multidimensional paradigm
[7]. OLAP techniques organize the data under multiple combinations of dimen-
sions and typically numerical measures, and accessing the data through different
OLAP operations such as slicing, dicing, rolling up and drilling down. Lots of re-
search have been conducted to deal with OLAP technical issues such as the mate-
rialization process. An extensive overview of such approaches can be found in [8].
The application of OLAP on non-numerical data is increasingly being explored.
Temporal series, graphs and complex event sequences are possible applications
[9–11]. However, there are two significant differences between OLAP and Pro-
cess Cubes: Summarizability and Representation. The first refers to the classic
OLAP cubes assumption on the summarizability of facts. This allows for pre-
computations of the different multidimensional perspectives of the cube, which
provides real-time (On-Line) analysis capabilities. Some authors have studied
summarizability issues in OLAP [15, 16] and attempt to solve it by introducing
rules and constraints to the data model. In Process Cubes, summarizability is
not guaranteed because of the process-oriented nature of the event data used. In
Process Mining, each event is related to one or more traces, and the relevance of
an event as data is given mostly by its relations with other events within those
traces. One cannot simply merge or split Process Cube cells as summarizable
OLAP cells because events are ordered, and any slight change in that ordering
may change the whole representation of the cell where that event is being con-
tained. The second refers to classical OLAP relying on the aggregation of facts
for reducing a set of values into a single value that can be represented in many
ways. On the other hand, Process Cubes have to deal with a much more com-
plex representation of data. Process Cube cells are associated to process models
and not just event data, and both are directly related. Observed and modeled
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behavior can be compared, process models can be discovered from events, and
events can be used to replay behavior into otherwise static process models.

The remainder is organized as follows. In Sec 2. we define the process cube
notion as a means for viewing event data from different perspectives. Sec 3.
presents our implementation of process cubes. In Sec 4. we discuss the experi-
ments and benefits that can be achieved through our approach. Finally Sec 5.
concludes the paper by discussing some challenges and future work.

2 Process Cubes

In this section we will formalize the notion of a process cube, defining all of its
inner components. A process cube is formed by a structure that describes the
“shape” of the cube (distribution of cells) and by the real data that will be used
as a basis to “fill” those cells.

2.1 Event Base

Normally, event logs serve as the starting point for process mining. these logs
are created having a particular process and a set of questions in mind. An event
log can be viewed as a multiset of traces. Each trace describes the life-cycle of
a particular case (i.e., a process instance) in terms of the activities executed.
Often event logs store additional information about events. For example, many
process mining techniques use extra information such as the resource (i.e., person
or machine) executing or initiating the activity, the timestamp of the event, or
data elements recorded with the event.

An event collection is a set of events that have certain properties, but no
defined cases and activities. Table 1 shows a small fragment of some larger event
collection. Each event has a unique id and several properties. For example, event
0001 is an instance of action A that occurred on December 28th of 2014 at 6:30
am, was executed by John, and costed 100 euros. An event collection can be
transformed into an event log by selecting event properties (or attributes) as
case id and activity id. For example, in Table 1, sales order could be the case id
and action could be the activity id of an event log containing all events of the
event collection.

Table 1. A fragment of an event collection: each row corresponds to an event.

event id sales order timestamp action resource cost

0001 1 28-12-2014:06.30 A John 100
0002 1 28-12-2014:07.15 B Anna
0003 1 28-12-2014:08.45 C John
0004 2 28-12-2014:12.20 A Peter 150
0005 1 28-12-2014:20.28 D Mike
0006 2 28-12-2014:23.30 C Anna
. . . . . . . . . . . . . . . . . .
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For process cubes we consider an event base, i.e., a large collection of events
not tailored towards a particular process or predefined set of questions. An event
base can be seen as an all-encompassing event log or the union of a collection of
related event logs. The events in the event base are used to populate the cells in
the cube. Throughout the paper we assume the following universes.

Definition 1 (Universes) UV is the universe of all attribute values (e.g.,
strings, numbers, etc..). US = P(UV ) is the universe of value sets. UA is the
universe of all attribute names (e.g., year, action, etc...).

Note that v ∈ UV is a single value (e.g., v = 5 ), V ∈ US is a set of values
(e.g., V = {Europe, America}), a ∈ UA is a single attribute name (e.g., age).

Definition 2 (Event Base) An event base EB = (E,P, π) defines a set of
events E, a set of event properties P , and a function π ∈ P → (E 6→ UV ). For
any property p ∈ P , π(p) (denoted πp) is a partial function mapping events into
values. If πp(e) = v, then event e ∈ E has a property p ∈ P and the value of this
property is v ∈ UV . If e 6∈ dom(πp), then event e does not have a property p and
we write πp(e) = ⊥ to indicate this.

An event base is created from an event collection like the one presented
in Table 1. If we transform this table into an EB, then the set of events E
consist of all different elements of the event id column of Table 1. In this case,
E = {0001,0002,0003,0004,0005,0006,...}. The set of properties P is the set of
column headers of Table 1, with the exception of event id. In this case, P =
{sales order, timestamp, action, resource, cost}. The function π retrieves the
value of each row (event) and column (property) combination (cell) in Table 1.
For example, the value of the property action for the event 0001 is given by
πaction(0001) = A. In the case that this value is empty in the table, we will use
⊥ to denote it in the EB (e.g., πcost(0002) = ⊥).

Note that an event identifier (event id) e ∈ E does not have a meaning, but
it is unique for each event.

2.2 Process Cube Structure

Independent of the event base EB we define the structure of the process cube.
A Process Cube Structure (PCS) is fully characterized by the set of dimensions
defined for it, each dimension having its own hierarchy.

Before defining the concepts of hierarchy and dimension, we need to define
some basic graph properties.

Definition 3 (Directed Acyclic Graph) A directed acyclic graph (DAG) is
a pair G = (N,E) where N is a set of nodes and E ⊆ N × N a set of edges
connecting these nodes, where:
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– n1, n2 ∈ N,n1 6= n2 : e1 = (n1, n2) ∈ E is a directed edge that starts in n1
and ends in n2,

– A walk W ∈ E∗ with a length of |W | ≥ 1 is an ordered list of directed edges
W = (e1, ..., ek) with ej ∈ E : ej = (nj , nj+1) ⇒ ej+1 = (nj+1, nj+2), 1 ≤
j < k ∈ N, and

– ∀n ∈ N : there is no walk W ∈ E∗ that starts and ends in n.

Note that there cannot be any directed cycles of any length in a DAG. For
example, part (1) in Fig 1 shows a DAG with nodes: {City,Country,etc...}.

Definition 4 (Dimension) A dimension is a pair d = ((A,H), valueset) where
the hierarchy (A,H) is a DAG with nodes A ⊆ UA (attributes) and a set of
directed edges H ⊆ A × A, and valueset ∈ A → US is a function defining the
possible set of values for each attribute.

The attributes in A are unique. The set of directed edges H defines the
navigation directions for exploring the dimension. An edge (a1, a2) ∈ H means
that attribute a1 can be rolled up to attribute a2 (defined in Sec 2.5). A dimension
should describe events from a single perspective through any combination of
its attributes (e.g., attributes city and country can describe a Location) where
attributes describe the perspective from higher or lower levels of detail (e.g., city
describes a Location in a more fine-grained level than country). However, this is
not strict and users can define dimensions as they want.

An attribute a ∈ A has a valueset(a) that is the set of possible values and
typically only a subset of those values are present in a concrete instance of
the process cube. For example, valueset(age) = {1, 2, ..., 120} for age ∈ A.
Another example: valueset(cost) = N allows for infinitely many possible values.
We introduce the notation Ad to refer to the set of attributes A of the dimension
d, and UD as the universe of all possible dimensions. Fig 1. shows some examples
of dimensions, each containing a DAG and a valueset function.

Definition 5 (Process Cube Structure) A process cube structure is a set of
dimensions PCS ⊆ UD, where for any two dimensions d1, d2 ∈ PCS, d1 6= d2 :
Ad1
∩Ad2

= ∅.

All dimensions in a process cube structure are independent from each other,
this means that they do not have any attributes in common, so all attributes
are unique, however, their value sets might have common values. We introduce
the notation Apcs to refer to the union of all sets of attributes

⋃
d∈PCS Ad.

2.3 Compatibility

A process cube structure PCS and an event base EB are independent elements,
where the PCS is the structure and the EB is the content of the cube. To make
sure that we can use them together, we need to relate them through a mapping
function and then check whether they are compatible.



6 A. Bolt, W.M.P. van der Aalst

City

Province

Country

State

Continent

Sales
Zone

Salesh
Region Dimension:hLocation

AttributehdaB ValuesetdaB
SaleshRegion {NorthhEuropeYhEasthAsiaYhSouthhAmericaYhetcM}

SaleshZone {IberianhPenunsulaYhSouthhGermanyYhetcM}

{IberianhPenunsulaYhSouthhGermanyYhetcM}Continent

Province

State

Country

City

{NetherlandsYhChileYhSpainYhetcM}

{NoordhBrabantYhAndaluciaYhSiberiaYhetcM}

{CaliforniaYhNewhYorkYhetcM}

{EindhovenYhAmsterdamYhSantiagoYhMadridYhetcM}

JobhPosition

OfficeDepartment

Dimension:hOrganigram

AttributehdaB ValuesetdaB
Office {BostonYhLondonYhEindhovenYhetcM}

Department {MarketingYhOperationsYhNationalhSalesYhInternationalhSalesYhetcM}

{SoftwarehEngineerYhSaleshExecutiveYhetcM}JobhPosition

dxB d1B

Fig. 1. Example of two dimensions (Location, Organigram), both conformed by a di-
rected acyclic graph (1) and a valueset function (2).

Definition 6 (Mapper) A mapper is a triplet M = (PCS,EB,R) where PCS
is a process cube structure, EB = (E,P, π) is an event base and R is a function:
R ∈ Apcs → (P(P ) × (E 9 UV )). For an attribute a ∈ Apcs, R(a) = (P ′, ga)
where P ′ = {p1, ..., pn} ∈ P(P ) is a set of properties and ga is a calculation
function mapping events into values used to calculate the value of a, so that
for any event e ∈ E with ∀p ∈ P ′ : e ∈ dom(πp), the value of attribute a
for the event e is given by ga(e) = f(πp1

(e), ..., πpn
(e)) = v ∈ UV . If for any

p ∈ P ′ : e 6∈ dom(πp) then event e does not have the property p and the value of
the attribute a cannot be calculated, so we write ga(e) =⊥ to indicate this.

Note that each attribute is related to one set of properties which is used to cal-
culate the value of the attribute for any event through a specific calculation func-
tion. For example, an attribute day type = {weekend,weekday} can be calculated
using the event properties {day,month,year} according to some specific calendar
rules. Another example is an attribute age which can be calculated from proper-
ties {birthday,timestamp} by the function: gage(e) = πtimestamp(e)−πbirthday(e).

A set of properties can be used by more than one attributes producing differ-
ent results if the calculation function is different. For example, in sales one could
use the set of properties {purchase amount, purchase num} to classify customers
into an attribute customer type = {Gold, Silver} (i.e., if purchase amount > 50
and purchase num >10, then customer type = Silver) and at the same time to
detect fraud into an attribute fraud risk = {High,Low} (i.e., if purchase amount
> 100000 and purchase num = 1, then fraud risk = High).

Given a mapperM = (PCS,EB,R) we say that PCS and EB are compatible
through R, making all views of PCS also compatible with the EB.
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2.4 Process Cube View

Once a proces cube structure is defined, it does not change. While applying
typical OLAP operations such as slice, dice, roll up and drill down (defined in
Sec 2.5) we only change the way we are visualizing the cube and its content. A
process cube view defines the visible part of the process cube structure.

Definition 7 (Process Cube View) Let PCS be a process cube structure. A
process cube view is a triplet PCV = (Dvis, sel, gran) such that:

– Dvis ⊆ PCS are the visible dimensions,
– sel ∈ Apcs → US is a function selecting a part of the value set of the attributes

of each dimension, such that for any a ∈ Apcs : sel(a) ⊆ valueset(a), and
– gran ∈ Dvis → UA is a function defining the granularity for each one of the

visible dimensions.

The sel function selects sets of values per attribute (including attributes in
not visible dimensions). For example, in the dimension Organigram in Fig 1, one
could select the job position Sales Executive, but many departments could have
that same job position, so we could also select the department National Sales to
only see the Sales Executives that work in National Sales. On the other hand,
if this selection is done incorrectly, it might lead to empty results. For example
in the dimension Location in Fig 1. one could select the city Eindhoven and the
country Spain and this would produce empty results since no event can have
both values. In our approach we made this as flexible as possible, so it is up to
the user to check if the selection is done properly.

For each visible dimension, the gran function defines one of its attributes
as the granularity. This will be used to define the cell set of the cube where
each value of the granularity attribute corresponds to a cell. For example, in the
dimension Organigram in Fig 1, one could define the Job Title as granularity.

Many different process cube views can be obtained form the same process
cube structure. For example, Fig. 2. shows two process cube views obtained from
the same process cube structure.

Definition 8 (Cell Set) Let PCS be a process cube structure and PCV =
(Dvis, sel, gran) be a view over PCS with Dvis = {d1, ..., dn}. The cell set of
PCV is defined as CSpcv = AVd1 × ...×AVdn , where for any di ∈ Dvis : AVdi =
gran(di)× sel(gran(di)) is a set of attribute-value sets.

Although the term cube suggests a three dimensional object a process cube
can have any number of visible dimensions.

A cell set CS is the set of visible cells of the process cube view. For example,
for a process cube view with visible dimensions Location and Time with their
granularity set to: gran(Location) = {City} and gran(Time) = {Y ear} and
the selected values of those attributes were: sel(City) = {Eindhoven, Amster-
dam} and sel(Year) = {2013,2014}, the cube would have the following 4 cells:
{(City, Eindhoven), (Year, 2013 )}, {(City, Eindhoven), (Year, 2014 )}, {(City,
Amsterdam), (Year, 2013 )}, and {(City, Amsterdam), (Year, 2014 )}.
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Process Cube Structure (PCS)

Process Cube Views (PCV)

Fig. 2. Example of two PCVs created from the same PCS, both selecting some dimen-
sions, selecting a part of the valuesets, and selecting attributes as granularity for the
selected dimensions.

2.5 Process Cube Operations

Next we consider the classical OLAP operations in the context of our process
cubes.

The slice operation produces a new cube by allowing the analyst to filter
(pick) specific values for attributes within one of the dimensions, while removing
that dimension from the visible part of the cube.

The dice operation produces a subcube by allowing the analyst to filter (pick)
specific values for one of the dimensions. No dimensions are removed in this case,
but only the selected values are considered. Fig 3. illustrates the notions of slicing
and dicing. For both operations, the same filtering was applied. In the case of
the slice operation, the Location dimension is no longer visible, but in dice one
could still use that dimension for further operations (i.e., drilling down to City)
keeping the same dimensions visible.

Fig. 3. Slice and Dice operations



Multidimensional Process Mining 9

The roll up and drill down operations do not remove any dimensions or filter
any values, but only change the level of granularity of a specific dimension. Fig 4.
shows the concept of drilling down and rolling up. These operations are intended
to show the same data with more or less detail (granularity). However, this is
not guaranteed as it depends on the dimension definition.

Fig. 4. Roll up and Drill down operations

Definition 9 (Slice) Let PCS be a process cube structure and let PCV =
(Dvis, sel, gran) be a view of PCS. We define slice for a dimension d ∈ Dvis :
d = ((A,H), valueset) and a filtering function fil ∈ Ad → US where for any
a ∈ Ad : fil(a) ⊆ valueset(a), as: sliced,fil(PCV ) = (D′vis, sel

′, gran), where:

– D′vis = Dvis \ {d} is the new set of visible dimensions, and

– sel′ ∈ Apcs → US is the new selection function, where:

– for any a ∈ Ad : sel′(a) = fil(a), and

– for any a ∈ Apcs \Ad : sel′(a) = sel(a).

The slice operation produces a new process cube view. Note that d is no
longer a visible dimension: d 6∈ D′vis but it will be used for filtering events.
The new sel′ function will still be valid as a value set selection function when
filtering. Also, note that the gran function remains unaffected. For example, for
sales data one could slice the cube for a dimension Location for City Eindhoven,
the Location dimension is removed from the cube and only sales of the stores in
Eindhoven are considered. One could also do more complex slicing. For example,
for a dimension time, one could slice that dimension and select years 2013 and
2014 and months January and February, then the time dimension is removed
from the cube and only sales in January or February of years 2013 or 2014 are
considered.

Definition 10 (Dice) Let PCS be a process cube structure and let PCV =
(Dvis, sel, gran) be a view of PCS. We define dice for a dimension d ∈ Dvis :
d = ((A,H), valueset) and a filtering function fil ∈ Ad → US where for any
a ∈ Ad : fil(a) ⊆ valueset(a), as: sliced,fil(PCV ) = (Dvis, sel

′, gran), where:
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– sel′ ∈ Apcs → US is the new selection function, where:
– for any a ∈ Ad : sel′(a) = fil(a), and
– for any a ∈ Apcs \Ad : sel′(a) = sel(a).

The dice operation is very similar to the slice operation defined previously,
where the only difference is that in dice the dimension is not removed from Dvis.

Definition 11 (Change Granularity) Let PCS be a process cube structure
and PCV = (Dvis, sel, gran) a view of PCS. We define chgr for a dimension
d ∈ Dvis : d = ((A,H), valueset) and an attribute a ∈ Ad as: chgrd,a(PCV ) =
(Dvis, sel, gran

′), where gran′(d) = a, and for any d′ ∈ Dvis \ {d} : gran′(d′) =
gran(d′).

This operation produces a new process cube view and allows us to set any
attribute of the dimension d as the new granularity for that dimension, leaving
any other dimension untouched. However, typical OLAP cubes allow the user to
“navigate” through the cube using roll up and drill down operations, changing
the granularity in a guided way through the hierarchy of the dimension. Note
that Dvis and sel always remain unaffected when changing granularity. Now we
define the roll up and drill down operation using the previously defined chgr
function.

Definition 12 (Roll up and Drill Down) Let PCS be a process cube struc-
ture, PCV = (Dvis, sel, gran) a view of PCS with a dimension d ∈ Dvis : d =
((A,H), valueset). We can roll up the dimension d if ∃a ∈ Ad : (gran(d), a) ∈
H. The result is a more coarse-grained cube: rollupd,a(PCV ) = chgrd,a(PCV ).
We can drill down the dimension d if ∃a ∈ Ad : (a, gran(d)) ∈ H. The result is
a more fine-grained cube: drilldownd,a(PCV ) = chgrd,a(PCV ).

If there is more than one attribute a that the dimension could be rolled up
or drilled down to, then any of those attributes can be a valid target, but we
can pick only one each time. For example, for a dimension Location described
in Fig 1, we could roll up the dimension from City to Province, State or Sales
Zone.

2.6 Materialized Process Cube View

Once we selected a part of the cube structure, and there is a cell set defined
as the visible part of the cube, now we have to add content to those cells. In
other words, we have to add events to these cells so they can be used by process
mining algorithms.

Definition 13 (Materialized Process Cube View) Let M = (PCS,EB,R)
be a mapper with PCS being a process cube structure, EB = (E,P, π) being an
event base, and let PCV = (Dvis, sel, gran) be a view over PCS with a cell
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set CSpcv. The materialized process cube view for PCV and EB is defined as
a function MPCVpcv,eb ∈ CSpcv → P(E) that relates sets of events to cells
c ∈ CSpcv : MPCVpcv,eb(c) = {e ∈ E|(1) ∧ (2)}, where:

(1) ∀d ∈ Dvis, R(gran(d)) = (P ′, ggran(d)) : (gran(d), ggran(d)(e)) ∈ c
(2) ∀a ∈ Apcs, R(a) = (P ′, ga) : ga(e) ∈ sel(a)

The first condition (1) relates an event to a cell if the event property values
are related to the (attribute,value) pairs that define that cell. For example, for
a cell c = {(year,2012 ),(city,Eindhoven)} one could relate all events that have
both attribute values to that cell.

The second condition (2) is to check if the events related to each cell are not
filtered out by any other attribute of any dimension of the process cube structure.
Note that this condition becomes specially useful when slicing dimensions.

Fig 5 shows an example of a materialized process cube view. Each of the
selected dimensions conform the cell distribution of the cube, and the events in
the event base are mapped to these cells.

Fig. 5. Example of a materialized process cube view (MPCV) for an event base (EB)
and a process cube view (PCV). The cells of MPCV contain events.

Normally events are related to specific activities or facts that happen in a
process, and they are grouped in cases. In order to transform the set of events of
a cell into an event log, we must define a case id to identify cases and an activity
id to identify activities. The case id and activity id must be selected from the
available attributes (case id, activity id ∈ Apcs) where an attribute can be di-
rectly related to an event property without transformations. Given a set of events
E′ ⊆ E, we can compute a multiset of traces L ∈ (valueset(activity id))∗ →
valueset(case id) where each trace σ ∈ L corresponds to a case. For example,
in Table 1 if we select sales order as the case id, all events with sales order =
1 belong to case 1, which can be presented as 〈A,B,C,D〉. Similarly, case 2
can be presented as 〈A,C〉. Most control-flow discovery techniques [12–14] use
such a simple representation as input. However, the composition of traces can be
done using more attributes of events, such as timestamp, resource or any other
attribute set A′ ⊆ Apcs.
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3 Implementation

This approach has been implemented as a stand-alone java application (avail-
able in http://www.win.tue.nl/~abolt) named Process Mining Cube (PMC)
(shown in Fig 6) that has 2 groups of functionalities: log splitting and results
generation. The first consists of creating sublogs (cells) from a large event col-
lection using the operations defined in Sec 2.5, allowing the user to interactively
explore the data and isolate the desired behavior of an event collection. The
second consists of converting each materialized cell into a process mining re-
sult, obtaining a collection of results visualized as a 2-D grid, facilitating the
comparison between cells. For transforming each materialized cell into a process
mining result we use existing components and plugins from the ProM framework
[17] (www.processmining.org) which provides hundreds of plug-ins providing a
wide range of analysis techniques.

Fig. 6. Process Mining Cube (PMC): Implementation of this approach

The plugins and components used to analyze the cube cells in PMC v1.0 are
described in Table 2. This plugin list is extendable. We expect to include more
and more plugins for the following versions of PMC.

4 Experiments

In order to compare the performance of our implementation (PMC ) with the
current state of the art (ProCube) which was introduced in [4] (also cited in
[3]), we designed an experiment using a real life set of events: the WABO1 event
log. This log is publicly available in [18] and it is a real-life log that contains
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Table 2. Plugins available

Plugin Name Plugin Description

Alpha Miner Miner used to build a Petri net from an event log. Fast, but
results are not always reliable

Log Visualizer Visualization that allow us to get a basic understanding of the
event log that we are processing

Inductive Miner Miner that can provide a Petri net or a Process tree as output.
Good when dealing with infrequent behavior and large event
logs, ensures soundness

Dotted Chart Visualization that represents the temporal distribution of events

Fast Miner Miner based on a directly-follows matrix, with a time limit for
generating it. The output is a directly-follows graph (Not a ProM
plugin)

38944 events related to the process of handling environmental permit requests of
a Dutch municipality from October 2010 to January 2014. Each event contains
more than 20 data properties. From this property set, only two of them were
used as dimensions: Resource and (case) termName, which produces a 2D cube.
Both dimensions were drilled down to its finest-grained level, so every different
combination of values from these dimensions creates a different cell.

For both approaches, we compared the loading time (e.g. time required to
import the events) and creation time (e.g. time required to create and materi-
alize all cells and visualize them with the Log Visualizer plugin of ProM[17])
using 9 subsets of this log with different number of events. The more events we
include in the subset, the larger the value set of a property gets (until the sample
is big enough to contain all original values) and more cells are obtained. The
experiment results for the 9 subsets are presented in Table 3.

Table 3. Performance benchmark for different-sized subsets of a log

Subset num. Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 Sub. 9

Number of events 1000 5000 10000 15000 20000 25000 30000 35000 38944
Number of cells 48 104 176 187 187 216 216 234 252

ProCube
Load (sec) 2.0 3.0 5.0 8.0 9.0 9.0 9.0 13.0 13.0

Create (sec) 25.8 106.5 715.3 868.7 1053.2 1220.0 1399.3 1522.5 2279.3

PMC
Load (sec) 0.6 0.9 1.2 1.4 1.6 1.9 2.0 2.1 2.5

Create (sec) 2.9 6.1 10.1 15.6 21.8 29.5 35.1 41.3 49.6

PMC Load Speedup 3.3 3.3 4.1 5.7 5.6 4.7 4.5 6.1 5.2
PMC Create Speedup 8.8 17.4 70.8 55.6 48.3 41.3 39.8 36.8 45.9

These results show that PMC out-performs the current state of the art in ev-
ery measured perspective. All Loading and Creation (Create) times are measured
in seconds. Notice that the Speedup of PMC over ProCube is quite considerable,
as the average Creation Speedup is 40.5 (40 times faster). Also notice that when
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using the full event log (Sub. 9), PMC provides an acceptable response time
by creating 252 different process analysis results in less than a minute, some-
thing that would take many hours, even days to accomplish if done by hand.
This performance improvement makes PMC an attractive tool for the academic
community and business analysts.

All the above experiments were performed in a laptop PC with an Intel
i7-4600U 2.1GHz CPU with 8Gb RAM and Sata III SSD in Windows 7 (x64).

5 Conclusions

As process mining techniques are maturing and more event data becomes avail-
able, we no longer want to restrict analysis to a single all-in-one process. We
would like to analyse and compare different variants (behaviors) of the process
from different perspectives. Organizations are interested in comparative process
mining to see how processes can be improved by understanding differences be-
tween groups of cases, departments, etc. We propose to use process cubes as a
way to organize event data in a multi-dimensional data structure tailored towards
process mining. In this paper, we extended the formalization of process cubes
proposed in [3] and provided a working implementation with an adequate per-
formance needed to conduct analysis using large event sets. The new framework
gives end users the opportunity to analyze, explore and compare processes inter-
actively on the basis of a multidimensional view on event data. We implemented
the ideas proposed in this paper in our PMC tool, and we encourage the process
mining community to use it. There is a huge interest in tools supporting process
cubes and the practical relevance is obvious. However, some of the challenges
discussed in [3] still remain unsolved (i.e. comparison of cells and concept drift).
We aim to address these challenges using the foundations provided in this paper.
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