
Inheritance of Workflows
An approachto tackling problemsrelatedto change

W.M.P. vanderAalst1� 3� � andT. Basten2� 3
1 Dept.of TechnologyManagement,EindhovenUniversityof Technology, TheNetherlands

w.m.p.v.d.aalst@tm.tue.nl
2 Dept.of ElectricalEngineering,EindhovenUniversityof Technology, TheNetherlands

a.a.basten@tue.nl
3 Dept.of ComputingScience,EindhovenUniversityof Technology, TheNetherlands

Abstract

Inheritanceis oneof thekey issuesof object-orientation.Theinheritancemechanismallows for
the definition of a subclasswhich inheritsthe featuresof a specificsuperclass.Whenadapting
a workflow processdefinition to specificneeds(ad-hocchange)or changingthestructureof the
workflow processasa resultof reengineeringefforts (evolutionarychange),inheritanceconcepts
areusefulto checkwhetherthe new workflow processinheritssomedesirablepropertiesof the
old workflow process.Today’s workflow managementsystemshave problemsdealingwith both
ad-hocchangesandevolutionarychanges.As aresult,aworkflow managementsystemis notused
to supportdynamicallychangingworkflow processesor theworkflow processesaresupportedin
a rigid manner, i.e., changesarenot allowed or handledoutsideof the workflow management
system.In this paper, we proposeinheritance-preservingtransformationrulesfor workflow pro-
cessesandshow thattheserulescanbeusedto avoid problemssuchasthe“dynamic-changebug.”
Thedynamic-changebug refersto errorsintroducedby migratinga case(i.e.,a processinstance)
from anold processdefinitionto a new one.A transferfrom anold processto a new processcan
leadto duplicationof work, skippingof tasks,deadlocks,andlivelocks.Restrictingchangeto the
inheritance-preservingtransformationrulesguaranteestransferswithout any of theseproblems.
Moreover, thetransformationrulescanalsobeusedto extractaggregatemanagementinformation
in casemorethanoneversionof aworkflow processcannotbeavoided.

Key words: Workflow management,Petri nets, inheritance,adaptive workflow, dynamicchange,
managementinformation

Contents
1 Intr oduction 2

2 Preliminaries 6
2.1 Notationsfor bags. 6
2.2 LabeledPlace/Transitionnets. 7
2.3 Branchingbisimilarity . 10
2.4 WF-nets . 12
2.5 Soundness. 14

3 Inheritance 16
3.1 Inheritancerelations. 17
3.2 Inheritance-preservingtransformationrules . 22
�
Partof thiswork wasdonewhile theauthorwasatsabbaticalleaveat theLargeScaleDistributedInformationSystems

(LSDIS) laboratoryof theUniversityof Georgia.

1

4 Inheritance in the workflow-managementdomain 28
4.1 Ad-hocchange . 29
4.2 Evolutionarychange . 29
4.3 Workflow templates. 30
4.4 E-commerce. 31

5 Dynamic change 32
5.1 Valid transferrules . 33
5.2 Transferof casesfrom superclassto subclass . 34
5.3 Transferof casesfrom subclassto superclass . 39
5.4 Relatedwork on dynamicchange. 45
5.5 Combininganapproachbasedon inheritancewith changeregions 46

6 Managementinformation 47
6.1 Management-informationnets . 48
6.2 Maximal commondivisorsandminimalcommonmultiplesof workflow processdefinitions. . 51
6.3 Inheritance-preservingtransformationrulesandmanagementinformation 56
6.4 Managementinformationin theworkflow-managementdomain. 58

7 Tool support 59
7.1 Verifying soundness. 59
7.2 Supportinginheritance . 61
7.3 Supportingdynamicchange . 63
7.4 Providing aggregatemanagementinformation . 64

8 Conclusion 64

References 65

1 Intr oduction

Workflow-managementtechnologyaimsat theautomatedsupportandcoordinationof businesspro-
cessesto reducecostsandflow times,andto increasequalityof serviceandproductivity [31, 43, 44].
A critical challengefor workflow managementsystemsis theirability to respondeffectively to process
changes[42, 63]. Changesmayrangefrom ad-hocmodificationsof theprocessfor asinglecustomer
to acompleterestructuringof theworkflow processto improveefficiency [5]. Today’sworkflow man-
agementsystemsareill suitedto dealingwith change.They typically supportamoreor lessidealized
versionof thepreferredprocess.However, therealrun-timeprocessis oftenmuchmorevariablethan
the processspecifiedat design-time.The only way to handlechangesis to go behindthe system’s
back. If usersareforcedto bypasstheworkflow managementsystemquite frequently, thesystemis
morea liability thananasset.

Adaptive workflow aimsat providing processsupportsimilar to contemporaryworkflow systems,
but in sucha way that theworkflow systemis ableto dealwith processchanges.Recentpapersand
workshopsshow thattheproblemsrelatedto workflow changearedifficult to solve[3, 5, 8, 10, 20, 26,
27, 36, 37, 42, 52,54, 60, 63]. Therefore,wetakeupthechallengeto find techniquesto addflexibility
without loosingthesupportprovidedby today’s systems.

Typically, therearetwo typesof processchanges:(1) ad-hocchangesand(2) evolutionarychanges.
Ad-hocchangesarehandledon a case-by-casebasisandaffect only onecase(i.e., processinstance)
or a selectedgroupof cases.Thechangeis theresultof anerror, a rareevent,or specialdemandsof
thecustomer. Exceptionsoftenresultin ad-hocchanges.A typicalexampleof anad-hocchangeis the
needto skip a taskin caseof anemergency. A workflow processdefinitionresultingfrom anad-hoc
changeis calleda variant of theworkflow process.Ad-hocchangetypically leadsto many variants
of a givenworkflow processrunningin parallel. Evolutionarychangeis of a structuralnature:From

2

acertainmomentin time, theworkflow changesfor all new casesto arrive at thesystem.Thechange
is the resultof a new businessstrategy, reengineeringefforts, or a permanentalterationof external
conditions(e.g., a changeof law). Evolutionary changeis typically initiated by the management
to improve efficiency or responsivenessor is forcedby legislatureor changingmarket demands.A
workflow processdefinitionresultingfrom anevolutionarychangeis calledaversionof theworkflow
process.New casesarehandledaccordingto themostrecentversionof aprocess.Existingcases(i.e.,
work-in-progress)mayalsobe influencedby anevolutionarychange.Sometimesit is acceptableto
handlerunningcasestheold way. However, in many situations,casesneedto betransferredfrom the
old versionto thenew version.

Both ad-hocandevolutionarychangeinevitably leadto oneof the following two situations:Ei-
thertherearemultiple variantsand/orversionswhich areactive at thesametime or casesneedto be
migratedfrom onevariant/versionto another. Today’s workflow managementsystemshave problems
dealingwith bothsituations.Weusethetermdynamic-changeproblem(cf. [26]) to referto theanoma-
lies causedby transferringcasesfrom one processto another. The term management-information
problemis usedto refer to theproblemof providing an aggregateoverview of thework-in-progress
in caseof multiple versionsand/orvariants.The trendis towardsan increasinglydynamicsituation
wherebothad-hocandevolutionarychangesareneededto improvecustomerserviceandreducecosts
continuously. Therefore,theseproblemsarerelevantfor thenext generationof workflow management
systems.

In this paper, we usePetri netsto illustrateprocess-relatedconcepts. In fact, we mainly usea
restrictedclassof Petrinets,namelytheclassof so-calledWF-nets[1, 2]. In a WF-net,thereis one
sourceplaceandonesink placeandall othernodesareon a pathfrom sourceto sink. Readersnot
familiar with Petrinetsandworkflow modelingarereferredto Section2.

prepare shipment

i

p4

o

record shipment

o

i

sendgoods

prepare shipment

sendbill

record shipment

sendgoods

sendbill

N0 N1

s1

s2

s3

p1 p2

p3

Figure1.1: Thedynamic-changebug.

Figure1.1 shows two workflow processdefinitionsillustrating the dynamic-changeproblem. If the
sequentialworkflow process(left) is changedinto theworkflow processwheretaskssendgoodsand
sendbill canbeexecutedin parallel(right), therearenoproblems,i.e., it is alwayspossibleto transfer
acasefrom theleft to theright. Thesequentialprocesshasfivepossiblestatesandeachof thesestates

3

correspondsto a statein the parallelprocess.For example,the statewith a token in s2 is mapped
ontothestatewith a tokenin p2 and p3. In bothcases,tasksprepare shipmentandsendgoodshave
beenexecutedandsendbill andrecord shipmentstill needto beexecuted.Now considerthesituation
wherethe parallel processis changedinto the sequentialone, which meansthat casesneedto be
moved from the right-hand-sideprocessto the left-hand-sideprocess.For mostof the statesof the
right-hand-sideprocess,this is noproblem,e.g.,astatewith atokenin p1 andatokenin p2 is mapped
onto onetoken in s1, anda statewith a token in p2 anda token in p3 is mappedonto onetoken in
s2. However, thestatewith a tokenin both p1 and p4 (i.e.,prepare shipmentandsendbill have been
executed)causesproblemsbecausethereis no correspondingstatein thesequentialprocess(whereit
is notpossibleto executesendbill beforesendgoods). Theexamplein Figure1.1shows thatit is not
straightforwardto migrateold casesto thenew processaftera change.

Theproblemillustratedin Figure1.1is aresultof reducingthedegreeof parallelismby makingthe
processsequential.Similarproblemsoccurwhentheorderingof tasksis changed,e.g.,two sequential
tasksareswapped.Extendingtheworkflow with new tasks,removing parts,or aggregatinga group
of tasksinto a singletaskmayresultin similar problems.Whenchanginga workflow on-the-fly, i.e.,
runningcasesaretransferredto thenew processdefinition,thedynamic-changebug is likely to occur.
Therefore,theproblemis very relevant for workflow managementsystemstruly supportingadaptive
workflow. Today’sworkflow managementsystemsarenotableto handlethisproblem.Thesesystems
typically usea versioningmechanism, i.e.,every changeleadsto a new versionandcasesreferto the
appropriateversion.If a casestartsusingaversionof theprocess,it will continueto usethisversion.
Theversioningmechanismmaybesuitablein somesituations.An administrative processwith ashort
flow time is agoodcandidatefor a versioningmechanism.However, therearemany situationswhere
sucha mechanismis not appropriate.If a casehasa long flow time, thenit is often not acceptable
to handleexisting casesthe old way. Considerfor examplea processfor handlingmortgageloans.
Mortgagestypically have a durationof 20 to 30 years.If themortgageprocesschangesseveraltimes
per year, this could lead to dozensof different versionsrunning in parallel. To reducecostsand
to keepthe processesmanageable,the numberof active versions(i.e., versionsstill usedby cases)
shouldbekept to a minimum. Also for processeswith a shorterflow time, it maybeundesirableto
have many versionsrunningsimultaneously. In fact, theremay be legal reasons(i.e., startingfrom
1-1-2000a new stepin the processis mandatory)forcing the transferof casesto the new process.
Unfortunately, problemssuchasthe oneillustratedby Figure1.1 make a direct transferhazardous.
Note that thedynamic-changeproblemis relevant for bothad-hocchangeandevolutionarychange.
However, theproblemis mostprominentfor evolutionarychangewherepotentiallymany casesneed
to betransferred.

Anotherproblemrelatedto changeis theproblemthatit mayleadto multipleactiveversions/variants
of thesameprocesswhichmakesit difficult to provideaggregatemanagementinformation. Consider
againFigure1.1.Assumethatthetwo workflow processdefinitionsareversionsof thesameworkflow
process.At somepoint in time, the left-handprocessmay containsix runningcases,two in state
s1, threein states2, andone in states3, whereasthe right-handprocessmay containfour running
cases,two in the statewith tokensin p1 and p2 andtwo in the statewith tokensin p1 and p4. To
provide aggregatemanagementinformation, thesenumbersmust be combinedin sucha way that
the resultprovidesa meaningfulrepresentationof theamountof work-in-progress.In the example,
the solutionis not very difficult becauseeachstatein the left-handprocessdefinition of Figure1.1
hasa correspondingstatein the right-handprocessdefinition. As a result,aggregatemanagement
informationcanbecollectedby projectingthestatesof all casesontotheright-handprocessdefinition.
Doingsoyieldsthat,for fourof thetotalof tencases,taskssendgoods, sendbill , andrecord shipment

4

still needto beexecuted;for two cases,sendgoodsandrecord shipmentstill needto beperformed;
threecasesarein astatethatsendbill andrecord shipmentstill needto bedone,whereasfor onecase
only taskrecord shipmentstill needsto beperformed.It is possibleto summarizethis informationby
countingthenumberof tokensresultingin eachplaceof theright-handprocessdefinitionof Figure1.1
whenprojectingthetencasesonto this processdefinition: Placesi ando do not containany tokens,
place p1 containssix tokens,place p2 containsseven tokens,place p3 containsfour tokens,and,
finally, p4 containsthreetokens.Althoughthis exampleis not very complicated,in general,it is not
straightforward to obtainaggregatemanagementinformationwhenthe differentprocessdefinitions
aremorecomplex or their numberis larger.

Themanagement-informationproblemexplainedaboveoccursif multipleversionsand/orvariants
of theworkflow processcannotbe avoided. For evolutionarychange,thenumberof versionsis of-
ten limited. In fact, if all casesaretransferred,thenthereis just oneactive version(i.e., all running
casesusethesameversion). However, in somesituations,it is not possiblenor desirableto transfer
casesto themostrecentprocess.Therecanbelegal,managerial,or practicalreasonsthatpreventthe
transferof cases.In sucha situation,therearemultiple active versionsof thesameprocess.Ad-hoc
changemayleadto thesituationwherethenumberof variantsmaybeof thesameorderof magnitude
asthe numberof cases.The variantsarecustomizedto accommodatespecificneeds.To managea
workflow processwith differentversions/variants,it is desirableto have an aggregatedview of the
work-in-progress.Note that in a manufacturingprocessthe managercanget a goodimpressionof
thework-in-progressby walking throughthe factory. For a workflow processhandlingdigitized in-
formation,this is not possible.Therefore,it is of theutmostimportanceto supplythemanagerwith
tools to obtaina condensedbut accurateview of theworkflow processes.Although the problemof
extractingaggregatemanagementinformationis relevant for bothad-hocandevolutionarychange,it
is mostprominentfor ad-hocchange.

To tackle the dynamic-changeproblemand the management-informationproblem,we proposean
approachbasedon the inheritance-preserving transformationrules introducedin [15, 14, 4, 16]. In-
heritanceis one of the key conceptsof object-orientation.Classesand objectsin object-oriented
designcorrespondto workflow processdefinitionsandcasesin a workflow managementcontext. In
object-orienteddesign,inheritanceis typically restrictedto thestaticaspects(e.g.,dataandmethods)
of anobjectclass.For workflow management,thedynamicbehavior of casesis of primeimportance.
Theinheritance-preserving transformationrulesusedin this paperfocuson workflow processdefini-
tionsin aPetri-net-basedsetting.Thefour inheritancerelationspresentedin thispaperusebranching
bisimilarity (to compareprocesses)in combinationwith the notionsof encapsulationandabstrac-
tion. Encapsulationcorrespondsto blockingtasks,whereasabstractioncorrespondsto hiding tasks.1

Restrictingprocesschangesto theinheritance-preserving transformationrulespresentedin thispaper
makesa direct transferpossiblein any statewhile avoiding problemssuchasthe oneillustratedby
Figure1.1. Notethat theinheritancerulescanonly beusedto avoid thedynamic-changebug, i.e., it
is a preventive treatmentof theproblem.If changessuchastheoneshown in Figure1.1areallowed,
theonly cureis to postponethetransferin caseof problems.As a result,in suchacase,theremaybe
severalactiveversionsof thesameworkflow process.Theremaybeotherreasonsfor having multiple
active versions,e.g.,by law, casesareforcedto behandledtheold way. In caseof ad-hocworkflow,
therearealsomultiple active versionsof thesameprocess(calledvariants).Thepresenceof multi-
ple active versionsand/orvariantsof thesameprocesscanobscurethestatusof thewholeworkflow.

1The notionsof encapsulationandabstractionin this paperare inspiredby process-algebraic concepts(see[12]). In
processalgebra,theterms“encapsulation”and“abstraction”haveadifferentmeaningthanthesametermsin object-oriented
design.

5

Fortunately, the inheritance-preserving transformationrulescanalsobe usedto constructaggregate
managementinformation.Theinheritancenotionsallow for thedefinitionof conceptssuchasaMax-
imal/GreatestCommonDivisor (MCD/GCD)andMinimal/LeastCommonMultiple (MCM/LCM) of
asetof variants/versions.Theseconceptscanbeusedto createacondensedoverview of thework-in-
progress.Clearly, thedynamic-changeproblemandthemanagement-informationproblemarerelated.
By solving thedynamic-changeproblem(i.e., instantlymigratingall casesto a singleversionof the
process),thereis no needto constructaggregatemanagementinformationbecausethereis just one
active version. However, ad-hocchangesinevitably leadto multiple variantsand,as illustratedby
Figure1.1,multiple active versionsof aworkflow processaresometimesunavoidable.

The remainderof this paperis organizedasfollows. In Section2, we introducethe basicconcepts
andthe techniqueswe aregoing to use. The approachpresentedin this paperis basedon a special
subclassof Petrinets(WF-nets)anda notionof correctnessnamedsoundness[1, 2]. Section3 intro-
ducesthe inheritancenotionsandthe inheritance-preserving transformationrulesusedin this paper.
In Section4, theuseof inheritancein a workflow-managementcontext is discussed.Section5 tack-
lestheproblemsrelatedto dynamicchangeusingtheinheritance-preserving transformationrules. In
Section6, it is shown thattheresultscanalsobeusedto createaggregatemanagementinformation.In
Section7,weconsidertheuseof toolsto supportthenotionspresentedin thispaper. Finally, Section8
summarizestheresults.

2 Preliminaries

This sectionintroducesthetechniquesusedin theremainder. Standarddefinitionsfor bagsandPetri
netsaregiven.Moreover, moreadvancedconceptssuchasbranchingbisimilarity, workflow nets,and
soundnessarepresented.Thesepreliminariesarerequiredto definethe inheritanceconceptsin an
unambiguousway.

2.1 Notations for bags

In this paper, bagsaredefinedasfinite multi-setsof elementsfrom somealphabetA. A bagover
alphabetA canbeconsideredasa function from A to thenaturalnumbersIN suchthatonly a finite
numberof elementsfrom A is assigneda non-zerofunctionvalue. For somebagX over alphabetA
anda � A, X

�
a� denotesthenumberof occurrencesof a in X, oftencalledthecardinalityof a in X.

Thesetof all bagsover A is denoted� � A� . For theexplicit enumerationof abag,anotationsimilar to
thenotationfor setsis used,but usingsquarebracketsinsteadof curly bracketsandusingsuperscripts
to denotethecardinalityof theelements.For example,[a2 � b � c3] denotesthebagwith two elements
a, oneb, andthreeelementsc; the bag[a2 � P

�
a�] containstwo elementsa for every a suchthat

P
�
a� holds,whereP is somepredicateon symbolsof thealphabetunderconsideration.To denote

individual elementsof abag,thesamesymbol“ � ” is usedasfor sets:For any bagX overalphabetA
andelementa � A, a � X if andonly if X

�
a�	� 0. Thesumof two bagsX andY, denotedX
 Y, is

definedas[an � a � A � n � X
�
a�
 Y

�
a�]. Thedifferenceof X andY, denotedX � Y, is defined

as[an � a � A � n � �
X
�
a��� Y

�
a��� max0]. Thebindingof sumanddifferenceis left-associative.

Therestrictionof X to somedomainD � A, denotedX � � D, is definedas[aX � a � � a � D]. Restriction
bindsstrongerthansumanddifference.The notion of subbagsis definedasexpected:Bag X is a
subbagof Y, denotedX � Y, if andonly if, for all a � A, X

�
a��� Y

�
a� . Note thatany finite setof

elementsfrom A alsodenotesa uniquebagover A, namelythefunctionyielding 1 for every element
in thesetand0 otherwise.Therefore,finite setscanalsobeusedasbags.If X is a bagover A andY

6

is a finite subsetof A, thenX � Y, X
 Y, Y � X, andY
 X yield bagsover A. Moreover, X � Y
andY � X aredefinedin a straightforwardmanner.

2.2 LabeledPlace/Transition nets

In this section,we definea variantof the classicPetri-netmodel,namelylabeledPlace/Transition
nets.For a moreelaborateintroductionto Petrinets,thereaderis referredto [24, 46, 53]. Let U be
someuniverseof identifiers;let L besomesetof actionlabels.

Definition 2.1. (Labeled P/T-net) An L-labeledPlace/Transitionnet,or simply labeledP/T-net,is a
tuple

�
P � T � F ��� � where:

1. P � U is afinite setof places,

2. T � U is afinite setof transitionssuchthat P � T ��� ,

3. F � � P � T ��� � T � P � is asetof directedarcs,calledtheflowrelation, and

4. � : T � L is a labelingfunction.

In thePetri-netliterature,theclassof Petrinetsintroducedin Definition 2.1 is sometimesreferredto
astheclassof (labeled)ordinaryP/T-netsto distinguishit from theclassof Petrinetsthatallowsmore
thanonearcbetweenaplaceanda transition.

Let
�
P � T � F ��� � bealabeledP/T-net.Elementsof P � T arereferredto asnodes. A nodex � P � T

is calledaninputnodeof anothernodey � P � T if andonly if thereexistsadirectedarcfrom x to y;
thatis, if andonly if xFy. Nodex is calledanoutputnodeof y if andonly if thereexistsadirectedarc
from y to x. If x is a placein P, it is calledaninput placeor anoutputplace;if it is a transition,it is
calledaninputor anoutputtransition.Thesetof all inputnodesof somenodex is calledthepresetof
x; its setof outputnodesis calledthepostset. Two auxiliary functions � :

�
P � T �!� " � P � T �

aredefinedthat assignto eachnodeits presetandpostset,respectively. For any nodex � P � T ,
 x �$# y � yFx % andx &�$# y � xFy% . Note that the presetandpostsetfunctionsdependon the
context, i.e., the P/T-net the function appliesto. If a nodeis usedin several nets,it is not always
clearto whichP/T-netthepreset/postsetfunctionsrefer. Therefore,weaugmentthepresetandpostset
notationwith thenameof thenetwhenever confusionis possible:N' x is thepresetof nodex in net N
andx N' is thepostsetof nodex in netN.

A labeledP/T-netasdefinedabove is astaticstructure.Figure2.2shows thegraphicalrepresenta-
tion of aP/T-net.Placesarerepresentedby circles;transitionsarerepresentedby rectangles.Attached
to eachplaceis its identifier. Attachedto eachtransitionis its label. Transitionlabelingis neededfor
two reasons.First, a P/T-netmodelinga workflow processmaycontainseveral transitionsreferring
to a singletask(identifiedby thelabel) in theworkflow process.Second,we usetransitionlabelsas
a mechanismto abstractfrom tasks.For thesake of simplicity, we assumethat transitionlabelsare
identicalto transitionidentifiersunlessexplicitly statedotherwise.

LabeledP/T-netshave a dynamicbehavior. The behavior of a net is determinedby its structure
andits state. To expressthestateof a net, its placesmaycontaintokens. In labeledP/T-nets,tokens
arenothingmorethansimplemarkers(seeFigure2.2). Thedistribution of tokensover theplacesis
oftencalledthemarkingof thenet.

Definition 2.3.(Mark ed, labeledP/T-net) A marked, L-labeledP/T-netis a pair
�
N � s� , whereN ��

P � T � F ��� � is anL-labeledP/T-netandwheres is abagover P denotingthemarkingof thenet.The
setof all marked,L-labeledP/T-netsis denoted(.

7

i

registered

ready

sendletter

classifycomplaint

cust contacted

classified
contactdepartment

file dossier

register

pendingcomplaint
contactcustomer

take action

contactcust

o

Figure2.2: A labeledP/T-net.

The dynamicbehavior of marked, labeledP/T-netsis definedby a so-calledfiring rule, which is
simplya transitionrelationdefiningthechangein thestateof amarkednetwhenexecutinganaction.
To definethefiring rule, it is necessaryto formalizewhenanetis allowedto executeacertainaction.

Definition 2.4. (Transition enabling) Let
�
N � s� be a marked, labeledP/T-net in (, where N ��

P � T � F ��� � . A transitiont � T is enabled, denoted
�
N � s� [t) , if andonly if eachof its inputplacesp

containsa token.Thatis,
�
N � s� [t)+*, t � s.

Whena transitiont of a labeledP/T-net is enabled,the net canfire this transition. Upon firing, t
removesa token from eachof its input placesandaddsa token to eachof its outputplaces. This
meansthatuponfiring t , themarkednet

�
N � s� changesinto anothermarkednet

�
N � s �- t
 t .� .

Definition 2.5. (Firing rule) Thefiring rule [) �/(0� L �1(is thesmallestrelationsatisfying
for any

�
N � s� in (, with N � �

P � T � F ��� � , andany t � T ,�
N � s� [t)�2 �

N � s� [� � t ��) � N � s �1 t
 t .� .
The labeledP/T-netshown in Figure2.2 is usedto illustratethefiring rule. Thenetmodelsthepro-
cessingof complaintsby thecomplaintsdeskof afictitiousCompany X. Thecomplaintsdeskhandles
complaintsof customersaboutthe productsproducedby Company X. Eachcomplaintis registered
beforeit is classified.Dependingon theclassificationof thecomplaint,a letteris sentto thecustomer
or an inquiry is started.The inquiry startswith a consultationof thedepartmentinvolved, followed
by a discussionwith the customer. Basedon this inquiry, the necessaryactionsaretaken. Finally,
thedossieris filed. Figure2.2 shows theprocessdefinitionwhich is usedto configuretheworkflow
managementsystemusedby theemployeesof thecomplaintsdesk.Themarkingshown in Figure2.2
is [i], i.e., the statewith one token in placei . Transitionregister is the only transitionenabledin
this marking. Firing register resultsin thestate[pendingcomplaint, registered], i.e., two tokensare

8

produced. Then,classifycomplaintwill fire followed by eithersendletter or contactdepartment,
contactcustomer, andtake action. Finally, file dossierwill fire. Notethatfile dossierconsumestwo
tokensandproducesonetoken.

Thefiring ruledeterminesthesetof so-calledreachablemarkingsof amarkedP/T-net.A marking
s is reachablefrom theinitial markings0 of amarkednet

�
N � s0 � if andonly if thereexistsasequence

of enabledtransitionswhoseexecutionleadsfrom s0 to s. Thispaperusesthefollowing notationsfor
sequences.Let A besomealphabetof identifiers.A sequenceof lengthn, for somenaturalnumber
n � IN, over alphabetA is a function 3 : # 0 �.454546� n � 1%�� A. Thesequenceof lengthzerois called
theemptysequenceandwritten 7 . For thesake of readability, asequenceof positive lengthis usually
written by juxtaposingthefunctionvalues:For example,a sequence3/�8# � 0 � a� � � 1 � a� � � 2 � b�9% , for
a � b � A, is writtenaab. Thesetof all sequencesof arbitrarylengthoveralphabetA is written A: .
Definition 2.6. (Firing sequence)Let

�
N � s0 � with N � �

P � T � F ��� � be a marked, labeledP/T-net
in (. A sequence3 � T : is calleda firing sequenceof

�
N � s0 � if andonly if, for somenatural

numbern � IN, thereexist markingss1
�.454546� sn

� � � P � and transitionst1 �.454545� tn � T suchthat
3;� t1 45454 tn and,for all i with 0 � i < n,

�
N � si � [ti = 1) andsi = 1 � si �& ti = 1
 ti = 1 . (Note that

n � 0 impliesthat 3-��7 andthat 7 is afiring sequenceof
�
N � s0 � .) Sequence3 is saidto beenabled

in markings0, denoted
�
N � s0 � [3�) . Firing thesequence3 resultsin theuniquemarkingsn, denoted�

N � s0 � [3>) � N � sn � .
The marked, labeledP/T-net

�
N � [i] � shown in Figure2.2 hasmany enabledfiring sequences.For

example,firing sequenceregister classifycomplaintcontactdepartmentis enabled.Executingthis
sequenceresultsin marking[pendingcomplaint, contactcust].

As mentioned,a markingof a labeledP/T-netis reachableif andonly if thereis a firing sequence
leadingfrom theinitial markingto thatmarking.

Definition 2.7. (Reachablemarkings) Thesetof reachablemarkingsof a marked, labeledP/T-net�
N � s� � (with N � �

P � T � F ��� � , denoted[N � s) , is definedastheset # s? � � � P � � �A@ 3 : 3 � T : :�
N � s� [3>) � N � s?B����% .

Considerfor examplethemarked, labeledP/T-net
�
N � [i] � shown in Figure2.2. Therearetwo firing

sequencesleadingto marking [o]. Therefore,[o] is reachable.In total, thereareseven markings
reachablefrom [i].

For the purposeof analyzingprocessesdefinedby P/T-nets,many propertieshave beendefined
andstudied.Somepropertiesreferto thenetstructure,while othersreferto thedynamicbehavior of a
markedP/T-net. Thefollowing two definitionsreferto structuralproperties.Thefirst definitionuses
thestandardnotationsfor theinverseof a relationR (RC 1) andthereflexive andtransitive closureof
R (R:).
Definition 2.8.(Connectedness)A labeledP/T-net N � �

P � T � F ��� � is weaklyconnected, or simply
connected, if andonly if, for every two nodesx and y in P � T , x

�
F � F C 1 ��: y. Net N is strongly

connectedif andonly if, for every two nodesx andy in P � T , xF : y.

In theremainderof this paper, we assumeall netsto beweaklyconnected.Moreover, we assumeall
netsto have at leasttwo nodes.Netswithout placesor transitionsdonotmake any sense.

Anotherstructuralpropertyis theso-calledfree-choiceproperty.

Definition 2.9. (Free-choiceP/T-net) A free-choiceP/T-net is a (labeled)P/T-net
�
P � T � F ��� � asin

Definition2.1suchthat,for all transitionst � u � T , either t �D u ��� or t �� u.

9

Free-choiceP/T-netsarecharacterizedby the fact that two transitionssharingan input placealways
shareall their input places.From a pragmaticpoint of view, the classof free-choiceP/T-netsis of
particularinterest;many workflow managementsystemsusea diagrammingtechniquewhich corre-
spondsto free-choicenets.Theclassof free-choiceP/T-netscombinesareasonableexpressive power
with stronganalysistechniques.Consequently, free-choiceP/T-netshave beenextensively studiedin
theliterature.Themostimportantresultson free-choiceP/T-netshave beenbroughttogetherin [24].

An exampleof apropertywhich refersto thedynamicsof amarkedP/Tnetis boundedness.

Definition 2.10.(Boundedness)A marked,labeledP/T-net
�
N � s� � (is boundedif andonly if the

setof reachablemarkings[N � s) is finite.

In aboundednet,thenumberof tokensin any placeis bounded.If themaximumnumberof tokensin
eachplaceis one,thenthenetis safe.

Definition 2.11.(Safeness)A marked, labeledP/T-net
�
N � s� � (with N � �

P � T � F ��� � is safeif
andonly if, for any reachablemarkings? � [N � s) andany placep � P, s? � p�	� 1.

Notethatsafenessimpliesboundedness.
A transitionis deadif andonly if thereis no reachablemarkingenablingthattransition.

Definition 2.12.(Deadtransition) Let
�
N � s� bea marked,labeledP/T-netin (. A transitiont � T

is deadin
�
N � s� if andonly if thereis no reachablemarkings? � [N � s) suchthat

�
N � s?E� [t) .

A propertystrongerthantheabsenceof deadtransitionsis liveness.A P/T-net is live if andonly if,
nomatterwhatmarkinghasbeenreached,it is alwayspossibleto enableanarbitrary transitionof the
netby firing anumberof othertransitions.

Definition 2.13.(Li veness)A marked, labeledP/T-net
�
N � s� � (with N � �

P � T � F �F� � is live if
andonly if, for everyreachablemarkings? � [N � s) andtransitiont � T , thereis areachablemarking
s? ? � [N � s?B) suchthat

�
N � s? ?B� [t) .

2.3 Branching bisimilarity

To formalizethe inheritanceconceptsmentionedin the introduction,we needto formalizea notion
of equivalence.LabeledP/T-netsareequippedwith anequivalencerelationthat specifieswhentwo
differentmarked,labeledP/T-netshave thesame(observable)behavior. By choosingdifferentequiv-
alencerelationsdifferentsemanticsareobtained.For moreinformationon thedifferentsemanticsfor
concurrentsystemsthereaderis referredto [32, 50]. In thispaper, weusebranchingbisimilarity [34]
asthestandardequivalencerelationonmarked,labeledP/T-netsin (.

Thenotionof asilentaction is pivotal to thedefinitionof branchingbisimilarity. Silentactionsare
actions(i.e.,transitionfirings)thatcannotbeobserved.Silentactionsaredenotedwith thelabel G , i.e.,
only transitionsin a P/T-netwith a labeldifferentfrom G areobservable.Notethatwe assumethat G
is anelementof L. The G -labeledtransitionsareusedto distinguishbetweenexternal,or observable,
andinternal,or silent,behavior, A singlelabel is sufficient, sinceall internalactionsareequalin the
sensethatthey donothave any visibleeffects.

As explainedin thenext subsection,in thecontext of workflow management,we want to distin-
guishsuccessfulterminationfrom deadlock. A terminationpredicatedefinesin whatstatesamarked
P/T-netcanterminatesuccessfully. If a marked, labeledP/T-netis in a statewhereit cannotperform

10

any actionsor terminatesuccessfully, thenit is saidto bein a deadlock. Assumethat HI�&(is some
arbitraryterminationpredicate.

To definebranchingbisimilarity, two auxiliarydefinitionsareneeded:(1) arelationexpressingthat
a marked, labeledP/T-netcanevolve into anothermarked, labeledP/T-netby executinga sequence
of zeroor more G actions;(2) a predicateexpressingthata marked, labeledP/T-netcanterminateby
performingzeroor more G actions.

Definition 2.14.Therelation JK2 �&(L�M(is definedasthesmallestrelationsatisfying,for any
p � p? � p? ? � (, p JK2 p and

�
p JK2 p?6� p? [GN) p? ?O�I2 p JK2 p? ? .

Definition 2.15.The predicateP �Q(is definedasthe smallestsetof marked, labeledP/T-nets
satisfying,for any p � p? � (, H p 2RP p and

� P p � p? [GN) p�I2 P p? .
Let, for any two marked,labeledP/T-netsp � p? � (andaction S � L, p [

� SK�T) p? beanabbreviation
of thepredicate

� SD��GU� p � p?V�XW p[SK) p? . Thus,p[
� GN�Y) p? meansthatzeroG actionsareperformed,

whenthefirst disjunctof thepredicateis satisfied,or thatone G actionis performed,whenthesecond
disjunctis satisfied.For any observableactiona � L Z[#9GN% , thefirst disjunctof thepredicatecannever
besatisfied.Hence,p [

�
a�9) p? is simplyequalto p [a) p? , meaningthatasinglea actionis performed.

Definition 2.16. (Branching bisimilarity) A binary relation \ �](�^(is called a branching
bisimulationif andonly if, for any p � p? � q � q ? � (and S � L,

1. p\ q � p [SK) p?_2�`@
q ? � q ? ? : q ? � q ? ? � (: q JK2 q ? ? � q ? ? [� Sa�9) q ? � p\ q ? ? � p? \ q ? � �

2. p\ q � q [SK) q ?b2�`@
p? � p? ? : p? � p? ? � (: p Ja2 p? ? � p? ? [� SK��) p? � p? ? \ q � p? \ q ? � � and

3. p\ q 2 � H p 2,P q �^H q 2,P p� .
Two marked, labeledP/T-netsarecalledbranching bisimilar, denotedp c b q, if andonly if there
existsa branchingbisimulation\ suchthat p\ q.

d

d

e
p

pf

p

pf

q

q fgfih q f

q

q fgf

q f

Figure2.17:Theessenceof abranchingbisimulation.

Figure2.17shows theessenceof abranchingbisimulation.Thefiring rule is depictedby arrows. The
dashedlinesrepresenta branchingbisimulation.A marked, labeledP/T-netmustbeableto simulate
any actionof an equivalentmarked net after performingany numberof silent actions,except for a
silentactionwhich it mayor maynot simulate.Thethird propertyin Definition 2.16guaranteesthat
relatedmarkednetsalwayshave thesameterminationoptions.

Branchingbisimilarity is an equivalencerelation on (, i.e., c b is reflexive, symmetric,and
transitive.

11

Property 2.18.Branchingbisimilarity, c b , is anequivalencerelation.

Proof. See[14] for a detailedproof. j

Branchingbisimilarity wasfirst introducedin [33]. Thedefinitiongivenin this subsectionis slightly
differentfrom theoriginaldefinition. In fact,it is thedefinitionof semi-branchingbisimilarity, which
wasfirst definedin [62]. It canbe shown that the two notionsareequivalent in the sensethat they
definethe sameequivalencerelation on marked, labeledP/T-nets[34, 13]. The reasonfor using
thealternative definition is that it is moreconciseandmoreintuitive thantheoriginal definition. A
comparisonof thetwo definitionscanbefoundin [13].

2.4 WF-nets

Theuseof Petrinetsfor workflow modelinghasbeensuggestedby many authors(e.g.,[8, 9, 28,40,
47]) andseveralworkflow managementsystemsusePetrinetsasadesignlanguage,e.g.,COSA[56],
INCOME [51], andBaanWorkflow [11]. In fact, mostcommercialworkflow managementsystems
usea modelinglanguagewhich correspondsto a subsetof Petri nets(typically free-choiceP/T-nets
[2]).

Beforewe presenttheclassof netswe usein the remainderof this paper, we introducethebasic
conceptsandterminologyusedin the workflow-managementdomain. Thesearethe conceptssup-
portedby today’s workflow managementsystemsandalsorecognizedby standardizationbodiessuch
astheWorkflow ManagementCoalition[44].

Workflows arecase-based, i.e., every pieceof work is executedfor a specificcase. Examplesof
casesarea mortgage,an insuranceclaim, a complaint,a tax declaration,an order, or a requestfor
information. Casesareoften generatedby an externalcustomer. However, it is alsopossiblethat a
caseis generatedby anotherdepartmentwithin thesameorganization(internalcustomer).Thegoal
of workflow managementis to handlecasesasefficiently andeffectively aspossible. A workflow
processis designedto handlesimilar cases.Casesarehandledby executingtasksin a specificorder.
Theworkflowprocessdefinitionspecifieswhichtasksneedto beexecutedfor acaseandin whatorder
(i.e., the life cycle of onecasein isolation). Alternative termsfor a workflow processdefinitionare:
“procedure,” “flow diagram,” and“routing definition.” Sincetasksareexecutedin a specificorder, it
is usefulto identify conditionswhich correspondto causaldependenciesbetweentasks.A condition
holdsor doesnothold(trueor false).Eachtaskhaspre-andpostconditions:Thepreconditionsshould
hold beforethetaskis executedandthepostconditionsshouldhold afterexecutionof thetask.Many
casescanbehandledby following thesameworkflow processdefinition. As a result,thesametask
hasto beexecutedfor many cases.A taskwhich needsto beexecutedfor a specificcaseis calleda
work item. An exampleof awork itemis theorderto executetask“sendrefundform to customer”for
case“complaintsentby customerBaker.” Most work itemsareexecutedby a resource. A resourceis
eitheramachine(e.g.,a printeror a fax) or aperson(participant,worker, employee).In mostoffices,
theresourcesaremainlyhuman.However, becauseworkflow managementis not restrictedto offices,
we prefer the term resource.Resourcesareallowed to dealwith specificwork items. To facilitate
the allocationof work itemsto resources,resourcesaregroupedinto classes.A resource classis a
groupof resourceswith similar characteristics.Theremaybemany resourcesin thesameclassanda
resourcemaybeamemberof multiple resourceclasses.If a resourceclassis basedonthecapabilities
(i.e., functionalrequirements)of its members,it is calleda role. If theclassificationis basedon the
structureof theorganization,sucharesourceclassis calledanorganizationalunit (e.g.,team,branch,
or department).A work item which is beingexecutedby a specificresourceis calledanactivity. If

12

we take aphotographof thestateof aworkflow, we seecases,work items,andactivities. Work items
link casesandtasks.Activities link cases,tasks,andresources.

In this paper, we abstractfrom the resourcesandfocuson the processaspect. In fact, we only
considerthe life cycleof onecasein isolation. Casesonly interactwith eachothervia competition
for resources.The problemsintroducedin Section1 arenot relatedto the allocationof resources
to tasksor the interactionbetweencases.Therefore,given the topic of this paper, it is reasonable
to abstractfrom resourcesandto considerjust onecaseat a time. We alsoabstractfrom workflow
attributes. A workflow attribute is a specificpieceof informationusedfor theroutingof a case.One
canthink of a workflow attribute asa control variableor a logistic parameter. A workflow attribute
may be the ageof a customer, the departmentresponsible,or the registrationdate,and is usedto
make routing decisions. We abstractfrom theseworkflow attributesfor the following reasons.In
reality, the routingdecisions(i.e., OR-splits)arebasedon workflow attributeswhosevaluesdepend
on applicationdataand/orthe behavior of the personsandapplicationsinvolved. Sinceworkflow
attributesaretypically setby externalentities(i.e., resources,applications,or electronicmessages),
they cannotbemodeledaccurately. Therefore,weconsidereachchoiceto beanon-deterministicone.
We alsoabstractfrom workflow attributesbecauseit allows us to useP/T-netsratherthanhigh-level
Petrinets.Fromananalysispointof view, theclassof P/T-netsis preferablebecauseof theavailability
of efficient algorithmsandpowerful analysistools.

In theprocessdimension,it is specifiedwhichtasksneedto beexecutedandin whatorder. Model-
ing aworkflow processdefinitionin termsof aP/T-netis ratherstraightforward: Tasksaremodeledby
transitions, conditionsaremodeledby places, andcasesaremodeledby tokens. Considerfor example
Figure2.2. TheP/T-netshown specifiestheprocessingof complaints;eachcasecorrespondsto one
complaint.Thereareseventasks.Eachtaskis modeledby a transition.Placei modelsthecondition
that a new casehasbeencreated.The token in placei refersto a newly createdcasefor which no
taskshave beenexecutedyet.

A marked, labeledP/T-netwhich modelsa workflow processdefinition is calleda WorkFlow net
(WF-net). A WF-netsatisfiestwo requirements.First, a WF-nethasoneplacei without any input
transitionsandoneplaceo withoutoutputtransitions.A tokenin i correspondsto acasewhichneeds
to be handled;a token in o correspondsto a casewhich hasbeencompleted.Second,in a WF-net
thereareno danglingtasks(transitions)and/orconditions(places).Every taskandconditionshould
contribute to theprocessingof cases.Therefore,every nodeof a WF-netshouldbelocatedon a path
from placei to placeo. The latter requirementcorrespondsto stronglyconnectednessif placeo is
connectedto i via anadditionaltransition kt .
Definition 2.19.(WF-net) Let N � �

P � T � F ��� � bean L-labeledP/T-netand kt � U a freshidentifier
not in P � T . Net N is aworkflownet (WF-net)if andonly if thefollowing conditionsaresatisfied:

1. casecreation: P containsaninputplacei � U suchthat i ��� ,

2. casecompletion: P containsanoutputplaceo � U suchthato ���� , and

3. connectedness: kN � �
P � T �D# kt % � F �D# � o � kt � � � kt � i ��% ��� �l# � kt � GN��%9� is stronglyconnected.

For any WF-net N, theextendednet kN usedto formulatetheconnectednessconstraintis calledthe
short-circuitednet. Thelabelof thenew transitionin theshort-circuitednet is not important.For the
sake of convenience,thelabelis setto G .

TheP/T-netshown in Figure2.2 is a WF-netsatisfyingtherequirementsgivenin Definition 2.19.
Thereaderis referredto [2] for moreinformationon modelingworkflow processdefinitionsin terms
of WF-nets.

13

The input placei correspondsto the initial stateandthe outputplaceo correspondsto the final
state,i.e., a casestartsin marking [i] and completesin marking [o]. In the previous subsection,
we introducedbranchingbisimilarity which distinguishessuccessfulterminationand deadlock. A
workflow canonly terminatesuccessfullyin marking[o]. Therefore,for WF-nets,the termination
predicateis definedasfollows.

Definition 2.20.Theclassof marked,labeledP/T-nets(is equippedwith thefollowing termination
predicate:Hm��# � N � [o] � � N is aWF-net% .
Note that the fact that a WF-netcontainsthe outputplaceo doesnot necessarilymeanthat, in the
initial marking,it hastheoptionto terminatesuccessfully. In thenext subsection,we addressamong
otherthingssuccessfulterminationof workflow processes.

2.5 Soundness

As mentioned,a workflow processdefinition specifiesthe life cycle of onecasein isolation. This
meansthatweareinterestedin thebehavior of WF-netsthathave initially asingletokenin thespecial
placei . Therequirementsgivenin Definition 2.19(WF-net)only referto thestructureof theP/T-net
modelingaworkflow processdefinition.Despitethesestructuralrequirements,thebehavior of aWF-
netcancontainproblemssuchasdeadlocks,livelocks,danglingreferencesuponcompletionof acase,
andtasksthat cannever be executed.Considerfor exampletheWF-netshown in Figure2.21. The
WF-net describesthe procedurefor handlingcomplaints. It is an extensionof the WF-net shown
in Figure 2.2. However, while extending this WF-net an error hasbeenintroduced. If the task
sendletter is executed,a deadlockoccurs;thesystemgetsstuckin themarking[pendingcomplaint,
inform man]. The sourceof this problemis placeerror. This placeis depictedin bold andnamed
errorto highlight thecruxof theproblem.Anotherproblemoccursif ignore complaintis executed;a
tokengetsstuckin placeerror andthecasecompletes(i.e.,atokenis put in placeo) withoutremoving
thistoken.Thetokenin error canbeseenasadanglingreferenceto thealreadycompletedcase.Since
mostworkflow managementsystemshave no garbagecollection,sucha completionis undesirable.
Moreover, aftercompletingacase,it shouldbeguaranteedthatno tasksareexecutedfor thiscase.To
avoid these,andother, problemswe formulateadditionalrequirements.

Definition 2.22.(Soundness)A WF-netN is saidto besoundif andonly if thefollowing conditions
aresatisfied:

1. safeness:
�
N � [i] � is safe,

2. propercompletion: for any reachablemarkings � [N � [i]) , o � s impliess � [o],

3. absenceof deadlock: for any reachablemarkings � [N � [i]) , [o] � [N � s) , and

4. absenceof deadtasks:
�
N � [i] � containsno deadtransitions.

Soundnessis the minimal requirementany workflow processdefinition shouldsatisfy. The first re-
quirementin Definition2.22statesthatasoundWF-netis safe.This is a reasonableassumptionsince
placesin aWF-netcorrespondtoconditionswhichareeithertrue(markedby atoken)or false(empty).
Thesecondrequirementstatesthat themomenta token is put in place[o] all theotherplacesshould
beempty, which correspondsto thecompletionof a casewithout danglingreferences.The third re-
quirementstatesthat startingfrom the initial marking[i] it is alwayspossibleto reachthe marking
with onetokenin placeo, whichmeansthatit is alwaysfeasibleto completeacasesuccessfully. The

14

i

registered

cust contacted

contactdepartment

file dossier

contactcustomer

take action

contactmanagement

contactcust

contactman

mancontacted

ignore complaint
inform management

ready

inform man

sendletter

classified

classifycomplaint
register

inform customer

pendingcomplaint

o

error

Figure2.21:A WF-netthatis not sound.

last requirement,which statesthat thereareno deadtransitions,correspondsto the requirementthat
for eachtaskthereis anexecutionof theworkflow in which thetaskis performed.

Thenotionof soundnessusedin this paperis slightly strongerthanthenotionof soundnessused
in previouspublications,i.e., thefirst requirementis not presentin [1, 2]. Thesafenessrequirement
hasbeenaddedto stressthefactthatplacescorrespondto conditionswhicheitherhold (onetoken)or
do not hold (no tokens). In addition,the requirementallows for thesimplificationof the inheritance
rulespivotal to thispaper.

The WF-netshown in Figure2.2 is sound. This caneasilybe verified by inspectingthe seven
reachablestates. The WF-net shown in Figure 2.21 is not soundbecausethe secondrequirement
(propercompletion: marking [o � error] is reachable),the third requirement(absenceof deadlock:
deadlockin marking[pendingcomplaint� inform man]), andthefourth requirement(absenceof dead
tasks:inform managementwill never fire) of Definition2.22(Soundness)arenotguaranteed.

Thenotionof soundnesscoincideswith livenessandsafenessof theshort-circuitednet.

Theorem 2.23.(Characterization of soundness)A WF-netN is soundif andonly if
� kN � [i] � is live

andsafe.

Proof. The proof is similar to the proof of Theorem11 in [1]. The only differenceis that in this
papera strongernotionof soundnessis used,which impliessafenessratherthanboundednessof the
short-circuitednet. j
ThistheoremshowsthatstandardPetri-net-basedanalysistechniquescanbeusedto verify soundness.
Considerfor exampletheWF-netshown in Figure2.2. We canuseoneof themany standardPetri-
net-basedanalysistools (cf. [21]) to verify that the short-circuitednet is live andsafe. The exact
complexity of decidingwhethera WF-netis soundis not known thoughit is very likely – andin the
worst case– PSPACE-complete(see[29]). A very straightforward approachto decidingsoundness
is the constructionof a coverability graph(see,for example,[53]) of the short-circuitednet in its

15

initial marking. This approachrequires,in theworst case,non-primitive recursive space.However,
mostworkflow managementsystemsusea modelinglanguagewhichcorrespondsto free-choiceP/T-
nets([2]). For free-choiceWF-nets,soundnesscanbe decidedin polynomial time ([1]). Practical
experiencewith workflow managementsystemsthatallow for thedesignof non-free-choiceWF-nets
(e.g.,COSA)shows thateventhemorecomplex workflows have lessthan100.000statesandcanbe
checkedusingtoolsthatarebasedonthecoverability-graphalgorithmsuchasWoflan[59]. Woflanis
briefly describedin Section7; for moreinformation,theinterestedreaderis referredto [58, 59].

Definition 2.24. (Workflow processdefinition) A workflowprocessdefinition is a soundWF-net.
Thesetof all workflow processdefinitionsis denotedn .

Class n is theclassof labeledP/T-netsthat is interestingin the context of workflow management.
Membersof this classarecalledworkflowprocessdefinitionsandareguaranteedto be correctwith
respectto thecriteriamentionedin Definitions2.19(WF-net)and2.22(Soundness).Note that, for-
mally, a workflow processdefinition is definedasa P/T netwithoutan initial marking. However, in
theremainder, we typically considermarkingsreachablefrom theinitial marking[i]. Therefore,if no
initial markingis givenexplicitly, the initial markingof a workflow processdefinition is assumedto
be[i].

In thispaper, branchingbisimilarity is usedasabehavioral equivalencerelation.Therefore,in the
remainder, we assumethatbranchingbisimilarity is thestandardequivalencerelationfor comparing
workflow processdefinitions.

Definition 2.25.(Behavioral equivalenceof workflow processdefinitions) For any two workflow
processdefinitionsN0 andN1 in n , N0

c� N1 if andonly if
�
N0
� [i] �Kc b

�
N1
� [i] � .

3 Inheritance

Inheritanceis oneof the cornerstonesof object-orientedprogrammingandobject-orienteddesign.
Thebasicideaof inheritanceis to provide mechanismswhich allow for constructingsubclassesthat
inherit certainpropertiesof agivensuperclass. In ourcase,aclasscorrespondsto aworkflowprocess
definition(i.e., a soundWF-net; seeDefinition 2.24)andobjects(i.e., instancesof theclass)corre-
spondto cases. In mostobject-orienteddesignmethods,aclassis characterizedby a setof attributes
anda setof methods. Attributesareusedto describepropertiesof anobject. Methodsspecifyoper-
ationson objects(e.g.,create,destroy, andchangeattribute). Note thatattributesandmethodsonly
describethestaticaspectsof anobject.Thedynamicbehavior of anobjectis eitherhiddeninsidethe
methodsor modeledexplicitly. (In UML [19], thebehavior of anobjectis modeledin termsof astate
machine.)Althoughthedynamicbehavior of objectsis anintrinsicpartof theclassdescription(either
explicit or implicit), inheritanceof dynamicbehavior is not well-understood.(See[15] for anelabo-
ratediscussionon this topic andpointersto relatedwork.) Sinceevery object-orientedprogramming
languagesupportsinheritancewith respectto thestaticstructureof a class(i.e., theinterfaceconsist-
ing of attributesandmethods),this is remarkable.Sinceworkflow managementaimsat supporting
businessprocesses,resultsoninheritanceof staticaspectsarenotveryusefulin thiscontext. However,
we canusethework presentedin [15, 14, 4, 16] whereinheritanceof dynamicbehavior is dealtwith
in a comprehensive manner. Otherapproacheseitherfocuson very specificinheritancerelationsor
abstractfrom thecausalrelationsbetweentasks/methods.Considerfor examplethework by Malone
et al. [45] whereinheritanceis definedfor tasksandprocesses.They alsoprovide tool supportfor
navigatingthrougha spaceof processesusingspecializationandgeneralizationlinks. Unfortunately,

16

thecontrolor routingstructureis not taken into account,i.e., causalrelationsbetweentasksarenot
considered.Someof the workflow managementsystemsavailableclaim to be object-orientedand
thusprovide somesupportfor inheritance.For example,the workflow managementsystemInCon-
cert [39] allows for building workflow classhierarchies.Unfortunately, inheritanceis restrictedto
attributesandthestructureof a processis not taken into account.Many workflow managementsys-
temshave beenimplementedusingobject-orientedprogramminglanguages.However, thesesystems
do notoffer object-orientedmechanismssuchasinheritanceto theworkflow designeror thedesigner
hasto programcodeto benefitfrom theobject-orientedfeaturesprovidedby thehostlanguage.Nev-
ertheless,wethink thatinheritanceis averyusefulconceptfor workflow management.Therefore,we
advocatetheuseof theinheritancenotionspresentedin [15, 14, 4, 16] andillustratetheusefulnessby
tacklingtheproblemsrelatedto change.

3.1 Inheritance relations

In this subsection,we definefour inheritancerelationsfor workflow processes.Considertwo work-
flow processdefinitionsx andy in n . Whenis x a subclassof y? Processdefinitionx is a subclass
of superclassy if x inheritscertainfeaturesof y. Intuitively, onecould saythat x is a subclassof
y if andonly if x cando what y cando. Clearly, all taskspresentin y shouldalsobe presentin x.
Moreover, x will typically addnew tasks.Therefore,it is reasonableto demandthatx cando what y
candowith respectto thetaskspresentin y. With respectto new tasks(i.e., taskspresentin x but not
in y), therearebasicallytwo mechanismswhich canbeused.Thefirst mechanismsimply disallows
theexecutionof any new tasksandthencomparestheresultingbehavior of x with thebehavior of y.
Thismechanismleadsto thefollowing notionof inheritance.

If it is not possibleto distinguishthebehaviors of x andy whenonly tasksof x thatare
alsopresentin y areexecuted,thenx is asubclassof y.

Intuitively, this definitionconformsto blocking tasksnew in x. Theresultinginheritanceconceptis
calledprotocol inheritance; x inheritstheprotocolof y.

Anothermechanismwould be to allow for the executionof new tasksbut to consideronly the
effectsof old ones.

If it is not possibleto distinguishthebehaviors of x andy whenarbitrarytasksof x are
executed,but whenonly theeffectsof tasksthatarealsopresentin y areconsidered,then
x is asubclassof y.

This inheritancenotionis calledprojectioninheritance; x inheritstheprojectionof workflow process
definition y onto the old tasks. Projectioninheritanceconformsto hiding or abstracting from tasks
new in x.

Recallfrom Section2.3 thatbranchingbisimilarity is theequivalenceusedto comparethebehav-
iors of markedP/T-netsand,thus,thebehaviors of workflow processdefinitions.Also recall that the
actionlabel G is usedto denoteinternalor unobservableactions.As a consequence,hiding tasksin
a workflow processdefinitioncanbeachievedby renamingthesetasksto G . In theremainderof this
paper, we assumethatthesetof actionor tasklabelsL usedin WF-nets(seeDefinition2.19)is equal
to thesetO of observabletasksextendedwith G , i.e., L ��#�GN%�� O.

Althoughthedistinctionbetweenthetwo inheritancemechanismspresentedabovemayseemsub-
tle, thecorrespondinginheritancenotionsarequitedifferent. To illustratethis difference,we usethe

17

i

p1

handle

register

p2

archive

N0

o

p3

i

p1

handle

register

p2

archive

N1

o

check

i

p1

handle

register

p2

archive

N3

o

check

p4

p3

i

p1

handle

register

p2

archive

N2

o

check

i

p1

handle

register

p2

archive

N4

o

check

Figure3.1: Fiveworkflow processdefinitions.

fiveworkflow processdefinitionsshown in Figure3.1.ProcessdefinitionN0 correspondsto asequen-
tial workflow processwhich consistsof threetasks:register, handle, andarchive. Eachof theother
workflow processdefinitions(i.e., N1, N2, N3, andN4) extendsN0 with anadditionaltaskcheck. In
processdefinitionN1, taskcheck canbeexecutedarbitrarilymany timesbetweenregisterandhandle.
ProcessN1 is a subclassof N0 with respectto protocol inheritance;if check is blocked, then N1 is
identicalto N0. ProcessN1 is alsoa subclassof N0 with respectto projectioninheritance;if every
executionof check is hidden,thenN1 is equivalent(asdefinedin Definition 2.25)to N0. In N2, task
check canbeexecutedinsteadof taskhandle. ProcessN2 is a subclassof N0 with respectto protocol
inheritance;if check is blocked, thenN2 is equivalentto N0. Processdefinition N2 is not a subclass
of N0 with respectto projectioninheritance,becauseit is possibleto skip taskhandleby executing
the(hidden)taskcheck. In processdefinition N3, taskcheck is executedin parallelwith taskhandle.
ProcessN3 is not a subclassof N0 with respectto protocolinheritance;if check is blocked, thentask
archivecannotbeexecuted.However, N3 is asubclassof N0 with respectto projectioninheritance.If
oneabstractsfrom thenewly addedparalleltaskcheck, onecannotdistinguishN3 andN0. Taskcheck
is insertedbetweenhandleandarchive in the remainingworkflow processdefinition N4 shown in
Figure3.1.ProcessN4 is notasubclassof N0 with respectto protocolinheritance;if check is blocked,
thentheprocessdeadlocksafterexecutingtaskhandle. However, N4 is a subclassof N0 with respect
to projectioninheritance.If oneabstractsfrom check, onecannotobserveany differencesbetweenthe

18

behaviors of N4 andN0.
The two mechanisms(i.e., blocking and hiding) result in two orthogonalinheritancenotions.

Therefore,we alsoconsidercombinationsof the two mechanisms.A workflow processdefinition
is asubclassof anotherworkflow processdefinitionunderprotocol/projectioninheritanceif andonly
if bothby hidingthenew methodsandby blockingthenew methodsonecannotdetectany differences,
i.e., it is a subclassunderbothprotocolandprojectioninheritance.In Figure3.1, N1 is a subclassof
N0 with respectto protocol/projectioninheritance.Thetwo mechanismscanalsobeusedto obtaina
weaker form of inheritance.A workflow processdefinitionis a subclassof anotherworkflow process
definitionunderlife-cycleinheritanceif andonly if by blockingsomenewly addedtasksandby hid-
ing someothersonecannotdistinguishbetweenthem.Life-cycle inheritanceis moregeneralthanthe
otherthreeinheritancerelations.All workflow processdefinitionsshown in Figure3.1aresubclasses
of N0 with respectto life-cycle inheritance.A detailedstudyof thefour inheritancerelationscanbe
found in [15, 14]. For thepurposeof this paper, it sufficesto formalizethe relations.We do not go
into muchdetailaboutthepropertiesof theinheritancerelations.

To formalizethefour formsof inheritance,we introducetwo operatorsonP/T-nets,namelyencap-
sulationandabstraction.Encapsulationis usedto block tasks;abstractionis usedto hide tasks.The
two operatorsareinspiredby the encapsulationandabstractionoperatorsknown in processalgebra
[12]. Theoperatorscanbedefinedon labeledP/T-netsasfollows.

Definition 3.2. (Encapsulation)Let N � �
P � T0

� F0
���

0 � bean L-labeledP/T-net. For any H � O,
the encapsulationoperatoro H is a function that removes from a given P/T-net all transitionswith
a label in H . Formally, o H

�
N �I� �

P � T1
� F1

���
1 � suchthat T1 �p# t � T0

� �
0
�
t �&q� H % , F1 �

F0 � ��� P � T1 ��� � T1 � P ��� , and � 1 � � 0 � � T1 � L � .
Notethatremoving transitionsfrom aWF-netasdefinedin Definition2.19mightyield a resultthatis
no longeraWF-net.

Definition 3.3. (Abstraction) Let N � �
P � T � F ��� 0 � be an L-labeledP/T-net. For any I � O,

theabstractionoperatorG I is a function that renamesall transitionlabelsin I to thesilent action G .
Formally, G I

�
N �r� �

P � T � F ��� 1 � suchthat,for any t � T , � 0
�
t � � I implies � 1

�
t �+�sG and � 0

�
t �tq� I

implies � 1
�
t �!� � 0

�
t � .

Giventhesetwo operators,thefour notionsof inheritancecanbedefinedasfollows:

Definition 3.4.(Inheritance relations)

1. Protocolinheritance:
For any workflow processdefinitions N0 and N1 in n , workflow processdefinition N1 is a
subclassof N0 underprotocolinheritance,denotedN1 � pt N0, if andonly if thereis an H � O
suchthat

� o H
�
N1 � � [i] �c b

�
N0
� [i] � .

2. Projectioninheritance:
For any workflow processdefinitions N0 and N1 in n , workflow processdefinition N1 is a
subclassof N0 underprojectioninheritance,denotedN1 � pj N0, if andonly if thereis an I � O
suchthat

� G I
�
N1 � � [i] �c b

�
N0
� [i] � .

3. Protocol/projectioninheritance:
For any workflow processdefinitions N0 and N1 in n , workflow processdefinition N1 is a
subclassof N0 underprotocol/projection inheritance,denotedN1 � pp N0, if andonly if thereis
anH � O suchthat

� o H
�
N1 � � [i] �6c b

�
N0
� [i] � andan I � O suchthat

� G I
�
N1 � � [i] �Xc b

�
N0
� [i] � .

19

4. Life-cycle inheritance:
For any workflow processdefinitions N0 and N1 in n , workflow processdefinition N1 is a
subclassof N0 underlife-cycle inheritance,denotedN1 � lc N0, if andonly if therearean I � O
andan H � O suchthat I � H ��� and

� G I u o H
�
N1 � � [i] �Kc b

�
N0
� [i] � .

v
pj

v
lc

v
pp

v
pt

Figure3.5: An overview of thefour inheritancerelationsfor behavior.

Thefour inheritancerelationsarebasedontheequivalencenotion(branchingbisimilarity) introduced
in Definition 2.16. Note that for life-cycle inheritancethenew tasksarepartitionedinto two setsH
and I : Tasksthat areblocked by meansof the operatoro H andtasksthat arehiddenby meansof
G I . Figure3.5givesanoverview of the four inheritancerelations.Thearrows depictstrict inclusion
relations. It is easyto seethat protocol/projectioninheritanceimplies both protocolandprojection
inheritance.Moreover, protocolinheritanceimplies life-cycle inheritanceandalsoprojectioninheri-
tanceimplies life-cycle inheritance.However, life-cycle inheritancedoesnot imply protocolor pro-
jectioninheritance.Considerfor exampletheworkflow processdefinitionshown in Figure3.6. This
workflow processdefinitionextendstheprocessdefinitionshown in Figure2.2 with four new tasks:
inform customer, contactmanagement, inform management, andignore complaint. It correspondsto
theWF-netof Figure2.21without theplaceerror. (Notethatin contrastto theWF-netof Figure2.21
thesoundnesspropertyis satisfied.)Thequestionis whethertheextendedworkflow processdefinition
shown in Figure3.6 is a subclassof theworkflow processdefinitionshown in Figure2.2. It is not a
subclassunderprotocolinheritance;blockingcontactmanagementresultsin a potentialdeadlock.It
is alsonot a subclassunderprojectioninheritance;by executingignore complaint, theoriginal task
sendletter is skipped. Sinceprotocol/projectioninheritancerequiresboth protocol inheritanceand
projectioninheritance,theextendedworkflow processdefinition is clearlynot a subclassunderpro-
tocol/projectioninheritance.However, theextendedworkflow processdefinitionshown in Figure3.6
is a subclassof theworkflow processdefinitionof Figure2.2 underlife-cycle inheritance;by hiding
contactmanagementandinform management, blockingignore complaint, andhidingor blockingin-
form customer, oneobtainsa workflow processdefinition that is branchingbisimilar to theoriginal
one.

Thefour inheritancerelationsintroducedin thissubsectionhave anumberof desirableproperties.
For example,the relationsarepreorders(i.e., they arereflexive andtransitive; seeProperty6.21 in
[15]). Furthermore,if one workflow processdefinition is a subclassof anotherworkflow process
definitionunderany of the four inheritancerelationsandvice versa,thenthe two workflow process
definitionsareequivalentasdefinedin Definition 2.25(i.e., thetwo workflow processdefinitionsare
branchingbisimilar; seeProperty6.23 in [15]). In other words, the four inheritancerelationsare
anti-symmetric.A relationthatis reflexive,anti-symmetric,andtransitive is apartialorder. Thus,the
following propertyis givenwithout furtherproof.

Property 3.7. Assuming c� , asdefinedin Definition 2.25, as the equivalenceon workflow process
definitions, � lc, � pt, � pj, and � pp arepartialorders.

20

i

registered

custcontacted

contactdepartment

file dossier

contactcustomer

take action

contactmanagement

contactcust

contactman

mancontacted

ignore complaint
inform management

ready

inform man

sendletter

classified

classifycomplaint
register

inform customer

pendingcomplaint

o

Figure3.6: An extendedworkflow processdefinition.

Anotherobservationis thatthedefinitionof life-cycle inheritancedoesnotallow thatsomeexecutions
of a taskareblocked while otherexecutionsof thesametaskarehiddenor left untouchedin deter-
miningasubclassrelationshipbetweentwo workflow processdefinitions.To illustratethis restriction,
consideraworkflow processdefinition N5. Processdefinition N5 is anextensionof workflow process
definition N0 of Figure3.1 thatcombinesthetwo extensionsof processdefinitionsN2 andN3 in the
samefigure. Processdefinition N5 is not a subclassunderlife-cycle inheritanceof N1, whereasthe
workflow processdefinitionsN2 andN3 are. Thereasonis that life-cycle inheritancedoesnot allow
theencapsulationof taskcheck whenit is executedasan alternative to taskhandleandtheabstrac-
tion of taskcheck whenit is executedin parallelto handle. However, it is not difficult to generalize
thedefinitionof life-cycle inheritance,or any of theotherthreeinheritancerelationsfor thatmatter,
in sucha way that it is allowed to treatdifferentexecutionsof the sametaskin a differentway. It
simply requiresthe useof temporarytasknamesto distinguishthe differentexecutionsof a single
task.For example,sucha variantof life-cycle inheritancecouldbedefinedasfollows. If a workflow
processdefinitionis a subclassunderthecurrentdefinitionof life-cycle inheritanceof anotherwork-
flow processdefinition, thenany renamingof the tasksnew in the subclassyields a subclassunder
thevariantof life-cycle inheritance.Consider, for example,thevariant N6 of the workflow process
definition N5 introducedabove in which thetwo checkshave namescheck2 andcheck3, respectively.
It is not difficult to seethatblockingoneof thesetasksandhiding theotheroneprovesthat N6 is a
subclassof N0 underthecurrentdefinitionof life-cycle inheritance.Renamingthetwo taskscheck2

andcheck3 to check provesthat N5 is asubclassof N0 undertheproposedvariantof life-cycle inheri-
tance.However, in thispaper, wedonot formalizethegeneralizationsof thefour inheritancerelations
alongthelinesdiscussedin thisparagraph.Thegoalis to focuson theimportantconceptsthatplay a
role whenapplyinginheritancenotionsin thecontext of workflow management.Althoughtheabove
generalizationsmight beusefulin someoccasions,they distractfrom theessentialconcepts.

21

Finally, thequestionremainswhichinheritancerelationis appropriate.Theanswerto thisquestion
dependson the context. For someapplications,a very liberal notion of inheritanceis suitable(i.e.,
life-cycle inheritance).For otherapplications,a morerestrictive notion is desirable. In Section4,
we discusstheusefulnessof the inheritancerelationsin differentapplicationareasin thecontext of
workflow management.

3.2 Inheritance-preserving transformation rules

Theinheritancerelationsof theprevioussubsectionby themselvesarenotalwaysimmediatelyuseful.
Theworkflow designercanonly benefitfrom theinheritancerelationsif thereis amethodor a tool to
supportworkflow changeswhich preserve inheritance.For thispurpose,we presentfour inheritance-
preservingtransformationrules.Eachof thesetransformationrulescanbeusedto constructasubclass
of agivenworkflow processdefinitionby extendingit. Therulesarelocalandrelatively easyto check
(from acomputationalpointof view). Furthermore,they correspondto typicaldesignconstructsused
by aworkflow designerto extendor changeaworkflow.

Therulespresentedin thispaperareslightly differentversionsof therulespresentedin [15, 14, 4,
16]. The main distinctionis the requirementthatworkflow processdefinitions(calledlife cyclesin
[15, 14, 4, 16]) have to besafe.Therefore,therulesarenamedPPS, PTS, PJS, andPJ3Sratherthan
PP, PT, PJ, andPJ3. Thesafenessrequirementsimplifiestheformulationof therulesandallows for
generalizationswith respectto thefree-choicerequirementsstatedin [15].

Two auxiliarydefinitionsareneededfor thedefinitionof thetransformationrules.

Definition 3.8. (Alphabet) The alphabetoperatoris a function S : (� " � O� . Let
�
N � s� be a

marked,L-labeledP/T-netin (, with N � �
P � T � F ��� � . Thealphabetof

�
N � s� is definedastheset

of visible labelsof all transitionsof the net that arenot dead: S � N � s�m�w# � � t � � t � T � � � t �xq�
Gy� t is notdeadin

�
N � s��% .

Sinceworkflow processdefinitionsdonotcontaindeadtransitions,thealphabetof aworkflow process
definitionequalsthesetof its observabletransitionlabels.

Property 3.9. (Alphabet of a workflow processdefinition) For any N � �
P � T � F ��� � � n , the

alphabetS � N � [i] � equals# � � t � � t � T � � � t �zq��GN% .
Proof. It follows immediatelyfrom Definitions2.24(Workflow processdefinition),2.22(Soundness),
and3.8(Alphabet). j

For thesake of simplicity, thealphabetof aworkflow processdefinition N � n is denotedS � N � .
Definition 3.10.(Union of labeled P/T-nets) Let N0 � �

P0
� T0
� F0

���
0 � and N1 � �

P1
� T1
� F1

���
1�

be two L-labeledP/T-netssuchthat
�
P0 � P1 �!� � T0 � T1 �{�]� andsuchthat, for all t � T0 � T1,�

0
�
t �U� � 1

�
t � . TheunionN0 � N1 of N0 andN1 is thelabeledP/T-net

�
P0 � P1

� T0 � T1
� F0 � F1

���
0 � � 1 � .

If two P/T-netssatisfytheabovementionedtwo conditions,their unionis saidto bewell defined.

The rule that is theeasiestoneto understandis presentedfirst. It is namedPPSandpreservesboth
protocolandprojectioninheritance.Transformationrule PPS is illustratedin Figure3.11. Let N0

bea workflow processdefinition. Let N bea (connected)P/T-netsuchthat theunion N1 � N0 � N
is well defined. The workflow processdefinition N1 is a subclassof processdefinition N0 under
protocol/projectioninheritanceif thefollowing four conditionsaresatisfied:(1) N0 andN only share

22

a singleplace p, (2) all transitionsof N have a label which doesnot appearin the alphabetof N0,
(3) eachtransitionof N with p asoneof its input placeshasa visible label,and(4)

�
N � [p] � is live

andsafe.Transformationrule PPSshows thatunderprotocol/projectioninheritance,it is allowedto
postponebehavior. When

�
N1
� [i] � reachesastatein whichplacep is marked,it is possibleto iterate

thebehavior definedby N anarbitrarynumberof timesbeforecontinuingwith theoriginal behavior.
Therequirementthat

�
N � [p] � is live andsafeguaranteesthatevery tokenconsumedfrom placep by

a transitionof N canalwaysbereturnedto p. Thispropertyof N is crucialfor thecorrectnessof rule
PPS.

i

N0

o

PPS

N
p

Figure3.11:A protocol/projection-inheritance-preserving transformationrule.

Theorem 3.12.(Protocol/projection-inheritance-preserving transformation rule PPS) Let N0 ��
P0
� T0
� F0

���
0 � bea workflow processdefinitionin n . If N � �

P � T � F �b� � is a labeledP/T-netwith
placep � P suchthat

1. p q � # i � o% , P0 � P ��# p% , T0 � T ��� ,

2.
�`|

t : t � T : � � t �}q � S � N0 ��� ,
3.
�`|

t : t � T � p � t : � � t �}q��GN� ,
4.
�
N � [p] � is liveandsafe,and

5. N1 � N0 � N is well defined,

thenN1 is aworkflow processdefinitionin n suchthat N1 � pp N0.

Proof. Transformationrule PPS is a specialcaseof two rules that arepresentedin the remainder,
namelythe rules PTSof Theorem3.14 and PJSof Theorem3.16. SincePTSpreserves protocol
inheritanceandPJSpreservesprojectioninheritance,it is shown thatrulePPSpreservesbothprotocol
andprojectioninheritanceand,thus,protocol/projectioninheritance.Theproof is a simplificationof
theproof of Theorem7.3 in [15]. (The free-choicerequirementin [15] is replacedby thecondition
thatboth N0 andN aresafe.) j
In Figure3.1, N1 canbe constructedfrom N0 usingtransformationrule PPS; place p1 is the place
sharedby N0 andtheextensioncontainingtransitioncheck.

Theremainingthreetransformationrulesof thissubsectionareall basedon thesameprinciplesas
rule PPS. Thesecondtransformationrule of this subsection,namedPTS, preservesprotocolinheri-
tance.It is illustratedin Figure3.13.TransformationrulePTScanbeusedto extendagivenworkflow

23

processdefinitionwith alternative branchesof behavior. Let N0 beaworkflow processdefinition.The
extensionof N0 is basedon a P/T net N with a placepi suchthat

�
N � [pi] � is live andsafe.NetsN0

andN sharetwo placespi andpo andnoothernodes.Furthermore,N containsa transitiony with po

asits only input placeand pi asits only outputplace.TheP/T net N1 resultingfrom transformation
rule PTSis definedasthe union of N0 and N after the removal of transitiony. Placepi functions
asthe entry point of the alternative branchesof behavior addedto N0, whereaspo functionsasthe
exit point. Therequirementthat

�
N � [pi] � is live andsafeensuresthatany tokenthattransitionsin N

consumefrom placepi is eventuallyreturnedto po. Two additionalrequirementsguaranteethatN1 is
aworkflow processdefinition.First, it is requiredthatN0 extendedwith afreshtransitionx with input
placepi andoutputplacepo is a workflow processdefinition. Transitionx emulatesthebehavior of
N in N1. Notethatx is only introducedto formulatetherequirementsof rulePTS; it is notpresentin
theoriginal processdefinition N0, theextensionN, or thesubclassN1. Second,transformationrule
PPSis a specialcaseof transformationrule PTS. RulePTSreducesto rule PPSwhenplacespi and
po coincide.If placespi andpo aredifferent,thenit is assumedthattheonly input transitionof place
pi in N is transitiony andthat theonly outputtransitionof po in N is y. This assumptionexcludes
thepossibilityof iterationsbeginningandendingin placepi or placepo, thusguaranteeingthat the
modificationof theoriginal processdefinitiontruly hasplacepi asits entrypoint andplacepo asits
exit point. A final requirementguaranteesthat N1 is a subclassof N0 underprotocolinheritance:All
transitionsof N with inputplacepi musthaveavisible labelnotappearingin thealphabetof N0. This
requirementmeansthattransitionsof N with inputplacesin N0 actasso-calledguards. Encapsulating
theguardsleadsto anetwhosebehavior is identicalto thebehavior of theoriginalprocessdefinition,
thusguaranteeingthat N1 is asubclassof N0 underprotocolinheritance.

RecallthatweuseN' and N' to denotethepresetandpostsetfunctionsof N. Without thisnotation
it is not possibleto distinguishthepresetandpostsetfunctionsof theextensionN from thoseof the
original workflow processdefinition N0 andtheresultingsubclassN1.

y

i

N0

b0

o

PTS

N

x

po

pi
b1

Figure3.13:A protocol-inheritance-preserving transformationrule.

Theorem 3.14.(Protocol-inheritance-preserving transformation rule PTS) Let N0 � �
P0
� T0
� F0

�
�

0 � bea workflow processdefinitionin n . Let N � �
P � T � F ��� � bea labeledP/T net. Assumethat

x � U is a freshidentifiernot appearingin P0 � T0 � P � T . If N containsplacespi
� po

� P anda
transitiony � T suchthat

1. P0 � P ��# pi
� po % , T0 � T ��� ,

2. N' y ��# po % , y N' �;# pi % , pi q� po 2 N' pi � po
N' ��# y% ,

24

3.
�`|

t : t � pi
N' : � � t � � OZ[S � N0 ��� ,

4.
�
N � [pi] � is liveandsafe,

5. N1 � N0 � � P � T Z[# y% � F Z[# � y � pi � � � po
� y��% ��� Z~# � y ��� � y���9%�� is well defined,and

6. Nx
0 �

�
P0
� T0 �D# x % � F0 �D# � pi

� x � � � x � po ��% ��� 0 �D# � x � GN��%�� is aworkflow processdefinition,

thenN1 is aworkflow processdefinitionin n suchthat N1 � pt N0.

Proof. The proof is similar to the proof of Theorem7.17. in [15]. (The free-choicerequirementin
[15] is replacedby theconditionthatboth N0 andN aresafe.) j
To illustratetransformationrule PTS, we usetheworkflow processdefinitionsshown in Figure3.1.
Processdefinition N1 canbe constructedfrom N0 using transformationrule PTS; net N is the net
containingplace p1 andtransitioncheck. Note that, in this particularcase,pi and po coincide. Net
N2 canalsobe constructedfrom N0 usingtransformationrule PTS. Sincethe remainingworkflow
processdefinitions(i.e., N3 and N4) areno subclassesof N0 with respectto protocolinheritance,it
makesno senseto try andapplyPTSto obtaineitherof theseworkflow processdefinitions.

The next transformationrule of this subsection,PJS, preservesprojectioninheritance.Theorem
3.16given below formalizestransformationrule PJS. Figure3.15 illustratesthe rule. It shows that
rule PJScorrespondsto asequentialcomposition.New behavior maybeinsertedbetweensequential
partsof aworkflow processdefinition,yieldingasubclassunderprojectioninheritance.In contrastto
theprevioustwo transformationrules,theoriginalworkflow processdefinitionis modified.Basically,
transformationrule PJSsaysthat it is allowed to replacean arc in the original workflow process
definitionby anentireP/T-net.Theoriginalworkflow processdefinition N0 containsaplacep which
hasa transitiontp asoneof its input transitions.Themodificationof N0 is basedupona P/T-net N
sharingplacep andtransitiontp with N0. Placep is theonly input placeof tp in N. The resultof
the transformationrule is the P/T-net N1 obtainedby taking the union of N0 and N after removing
both thearcbetweentp and p from N0 andthearcbetweenp andtp from N. Therequirementthat�
N � [p] � is live andsafeguaranteesthat N1 alwayshastheoptionto move every tokenthattransition

tp would normallyhave put into placep to placep by only firing transitionsof N. Therequirement
thatall transitionsof N otherthantp arelabeledwith taskidentifiersnotappearingin thealphabetof
N0 guaranteesthathidingthesetasksdoesnot influencethebehavior of theoriginalworkflow process
definition.

i

N0

o

N
p

PJS

tp

Figure3.15:A projection-inheritance-preserving transformationrule.

25

Theorem 3.16.(Projection-inheritance-preserving transformation rule PJS) Let N0 � �
P0
� T0
�

F0
���

0 � be a workflow processdefinition in n . If N � �
P � T � F ��� � is a labeledP/T-netwith place

p � P andtransitiontp
� T suchthat

1. P0 � P ��# p% , T0 � T ��# tp % , � tp
� p� � F0, N' tp ��# p% , andp � o 2 pN' ��# tp % ,

2.
�`|

t : t � T Z T0 : � � t �zq � S � N0 ��� ,
3.
�
N � [p] � is liveandsafe,and

4. N1 � �
P0
� T0
� F0 Z~# � tp

� p�9% ��� 0 ��� � P � T � F Z~# � p � tp ��% ��� � is well defined,

thenN1 is aworkflow processdefinitionin n suchthat N1 � pj N0.

Proof. Theproof is similar to theproofof Theorem7.13in [15]. (Thefree-choicerequirementin [15]
is replacedby theconditionthatboth N0 andN aresafe.) j

In Figure3.1,N4 canbeconstructedfrom N0 usingtransformationrulePJS; thearcbetweentransition
handleandplacep2 is replacedby thenetcontainingplacep3 andtransitioncheck.

As mentionedin theproofof Theorem3.12,transformationrulePPSof Theorem3.12is aspecial
caseof transformationrule PJSof Theorem3.16. For moredetails,thereaderis referredto [15]. (It
is aninterestingexerciseto prove thisclaim.)

To formulatethe last transformationrule of this subsection,the following auxiliary definition is
needed.A placeof a marked P/T-net is said to be redundantor implicit if andonly if it doesnot
dependon thenumberof tokensin theplacewhetherany of its outputtransitionsis enabledby some
reachablemarking.

Definition 3.17.(Implicit place)Let
�
N � s� with N � �

P � T � F ��� � bea marked, labeledP/T-net. A
placep � P is calledimplicit in

�
N � s� if andonly if, for any reachablemarkingss? � [N � s) andany

transitiont � p , s?��� t Z[# p%U2 s?�� t .

Implicit placesandtheirpropertieshave beenstudiedin [17, 22].
Transformationrule PJ3Sis formalizedin Theorem3.19 given below. It shows underwhat re-

strictionsit is allowedto extendaworkflow processdefinitionwith aparallelbranchof behavior. The
resultof rule PJ3Sis a subclassof theoriginal workflow processdefinitionunderprojectioninheri-
tance.It is illustratedin Figure3.18.As before,N0 is theoriginalworkflow processdefinition.Again,
the modificationof N0 is basedon a P/T-net N containinga place p suchthat

�
N � [p] � is live and

safe.Thetwo netstructuresN0 andN sharetwo transitionsti andto. In N, placep is theonly input
placeof ti andthe only outputplaceof to. Furthermore,p hasno otherinput or outputtransitions.
The net structureN1 resultingfrom transformationrule PJ3Sis definedas the union of N0 and N
after the removal of placep. Theseassumptionsmeanthat transitionsti andto functionasthe input
andoutput transitionof the extra parallelbranchmodeledby N. The basicideais that the P/T-net�
N1
� [i] � satisfiesthe propertythat every firing of transitionti is eventually followed by a firing of

transitionto. Therequirementthat
�
N � [p] � is liveandsafeguaranteesthateachtimetransitionti fires

the resultingtokensin placesof N canbe moved to the input placesof transitionto in N by only
firing transitionsof N otherthanti andto. In addition,to guaranteethat

�
N1
� [i] � satisfiesthedesired

property, also
�
N0
� [i] � mustbesuchthatevery firing of ti is followedby exactly onefiring of to. To

achieve this goal, assumethat N0 is extendedwith a placeq with ti asits only input transitionand
to asits only outputtransition. Requiringthatplaceq is implicit in this extensionguaranteesthat a

26

firing of transitionto is alwaysprecededby a firing of ti . It is not difficult to seethat thenumberof
tokensin q (zeroor one)correspondsto thenumberof firingsof transitionti whichhavenot yetbeen
followedby afiring of to. To guaranteethat

�
N0
� [i] � cannotterminatewithoutfiring to asmany times

asti , theextensionof N0 with placeq mustbesuchthatit cannotputa tokenin placeo while leaving
tokensin q. Clearly, this is achievedwhentheextensionof N0 with q yieldsanotherworkflow process
definition. Thecombinationof therequirementson N0 andN impliesthat N1 is a workflow process
definition satisfyingthe propertythat every firing of ti is eventuallyfollowed by a firing of to. The
attentive readermight noticethedualitybetweenrulesPTSandPJ3S.

p

i

o

N

ti

to

N0
q

PJ3S

Figure3.18:A projection-inheritance-preserving transformationrule.

Theorem 3.19.(Projection-inheritance-preserving transformation rule PJ3S) Let N0 � �
P0
� T0
�

F0
���

0 � bea workflow processdefinition in n . Let N � �
P � T � F ��� � bea labeledP/T-net. Assume

thatq � U is a freshidentifiernot appearingin P0 � T0 � P � T . If N containsa placep � P and
transitionsti � to � T suchthat

1. P0 � P ��� , T0 � T �s# ti � to % ,
2. N' p ��# to % , pN' �;# ti % , N' ti ��# p% , to

N' ��# p% ,
3.
�`|

t : t � T Z T0 : � � t �zq � S � N0 ��� ,
4.
�
N � [p] � is liveandsafe,

5. N1 � N0 � � P Z~# p% � T � F Z[# � p � ti � � � to � p��% ��� � is well defined,

6. q is implicit in
�
Nq

0
� [i] � with Nq

0 �
�
P0 �l# q % � T0

� F0 �D# � ti � q � � � q � to ��% ��� 0� , and

7. Nq
0 is aworkflow processdefinition,

thenN1 is aworkflow processdefinitionin n suchthat N1 � pj N0.

Proof. Theproof is similar to theproofof Theorem7.23in [15]. (Thefree-choicerequirementin [15]
is replacedby theconditionthatboth N0 andN aresafe.) j

Thetransformationruledefinedin Theorem3.19is namedPJ3Sfor historicalreasons(see[15]). It is
easyto seethatworkflow net N3 in Figure3.1canbeconstructedfrom N0 usingtransformationrule
PJ3S.

27

In Section3.1,weconcludedthattheworkflow processdefinitionshown in Figure3.6is asubclass
of theworkflow processdefinitionshown in Figure2.2with respectto life-cycle inheritance.It is not
difficult to seethatthetransformationrulespresentedin thissectioncanbeusedto constructthesub-
classof Figure3.6from thesuperclassof Figure2.2.TransformationrulePTScanbeusedto addthe
alternative taskignore complaint. RulePJScanbeusedto addtaskinform managementin-between
sendletter andready. Theparalleltaskcontactmanagementcanbeaddedusingtransformationrule
PJ3S. Taskinform customercanbeaddedusingeitherPPS, PTS, or PJS.

In this subsection,four transformationruleshave beenpresentedto constructsubclassesof work-
flow processdefinitionsunderdifferent forms of inheritance.The rulescorrespondto designcon-
structsthatareoftenusedin practice,namelychoice,iteration,sequentialcomposition,andparallel
composition.If a designersticksto theserules,inheritanceis guaranteed.In theremainder, we show
that the transformationrulescanbe usedto avoid the problemsdiscussedin the introduction. The
rulesarealso interestingfrom a computationalpoint of view. By usingthe inheritance-preserving
transformationrulesratherthanmakingarbitrarychanges,the complexity of checkingwhetherthe
extendedworkflow processdefinition is a subclassof theoriginal processdefinition is reducedcon-
siderably. Notethatall requirementsspecifiedfor thetransformationrulescanbeverifiedlocally, i.e.,
eachrequirementwhich involvestheevaluationof dynamicbehavior is aconstraintoneithertheorig-
inal workflow processdefinition N0 or theextensionN. For noneof therules,it is requiredto verify
thedynamicbehavior (e.g.,liveness,safeness,andreachability)of thecombinednet N1. Soundness
of thesubclassN1 follows from local requirements.Nevertheless,thecomplexity of many of there-
quirementsin thetransformationrulesappearsto bePSPACE-complete(see[29]). Froma practical
point of view, this is not an unconquerableproblem. The requirementsareof the samecomplexity
ascheckingsoundness.As arguedin Section2.5, existing tools suchasWoflan canalreadyverify
thesoundnesspropertyfor complex workflowsencounteredin practice.Moreover, if only free-choice
WF-netsareallowed,asis thecasein mostof theworkflow managementsystems,all requirements
canbeverifiedin polynomialtime. See[14, 15] and[2] for moredetails.

4 Inheritance in the workflow-managementdomain

In this section,we discusstheusefulnessof inheritanceconceptsin thecontext of workflow manage-
ment.To addressthis issue,it is worthwhileto considerthefollowing two trends:

 Theshift from a“Sellers’ Market” to a “Buyers’ Market” in thelast30 yearshasresultedin an
increasein thenumberof productsandservicesofferedto thecustomer. Considerfor example
mortgageloans;today, mostfinancialinstitutionsoffer varioustypesof mortgageloans.More-
over, thecustomerexpectsflexibility, i.e., thestandardproductor servicehasto becustomized.

 Today’s enterpriseshave a complex andrapidly changingstructure. Communicationmecha-
nismssuchasElectronicDataInterchange(EDI) andtheInternethaveenabledElectroniccom-
merce(E-commerce)andextended/virtualenterprises.As a result,many businessprocesses
have becomeinterorganizationalor intraorganizational.

Theimpactof thesetwo trendson workflow managementis significant.As a resultof thefirst trend,
thenumberof workflow processesandvariantsfor theseprocesseshasincreasedconsiderably. The
secondtrendhasresultedin inter/intraorganizational workflows distributedover severalsitesandin-
volving heterogeneousresources.Workflow processesaremoving from long-lasting,well-defined,
centralizedbusinessprocessesto dynamicallychanging,distributed businessprocesseswith many

28

variants.Giventhesedevelopmentsandtheassociatedproblems,inheritanceconceptsareof particu-
lar relevancefor thenext generationof workflow managementsystems.To illustratethis, we give a
numberof situationswheretheinheritanceconceptcanbeusedto tacklecertainproblems.

4.1 Ad-hoc change

It is widely recognizedthat workflow managementsystemsshouldprovide flexibility. However, as
indicatedin the introduction, today’s workflow managementsystemshave problemsdealingwith
change.A particularkind of changeis ad-hocchange. Ad-hocchangeaffectsindividual cases,i.e., it
refersto changesonacase-by-casebasisratherthanstructuralmodificationsof theworkflow process
definition.An ad-hocchangeis typically theresultof anerror, a rareevent,or specialdemandsof the
customer. Exceptionsoftenresultin ad-hocchanges.A typicalexampleof ad-hocchangeis skipping
a task in caseof an emergency. This kind of changeis often initiated by someexternal factor. A
typicaldilemmarelatedto ad-hocchangeis theproblemto decidewhatkindsof changesareallowed
andthefactthatit is impossibleto foreseeall possiblechanges.

The inheritanceconceptspresentedin this papercanoffer somesupportfor ad-hocchange.The
predefinedworkflow processdefinition is the superclass.The modifiedworkflow processdefinition
resultingfrom an ad-hocchangeshouldbe a subclassof this superclassunderoneof the four in-
heritancerelations. By enforcingthis requirement,certainpropertiesare preserved. In a process
resultingfrom anad-hocchangethatis a subclassof thepredefinedworkflow processunderprotocol
inheritance,new alternativesareofferedbut every sequenceof taskspossiblein thesuperclassis also
possiblein thesubclass.For example,underprotocolinheritance,it is possibleto skip existing tasks
by introducing“bypass”tasks.Whenprojectioninheritanceis used,it is not allowedto skip existing
tasks.However, it is possibleto addnew tasksin-betweenor in parallel.Which notionof inheritance
is mostappropriatedependson the situation. It is alsopossibleto usedifferent inheritancenotions
for differentpartsof the workflow process,e.g.,subflows without interactionoutsidethe company
may be changedunderlife-cycle inheritanceandsubflows which communicatewith externalactors
canonly bechangedunderprojectioninheritance.Notethatin generalit is notpossibleto foreseeall
potentialchanges.Theinheritancerelationsallow for formulatingruleswith respectto changerather
thanenumeratingall possibleexceptions.

Ad-hocchangetypically leadsto many variantsof a givenworkflow process.Sincesuchchanges
often correspondto exceptions,it is not desirableto combineall thesevariantsin a singlecomplex
workflow. By usinginheritanceratherthancreatinga copy andmodifying it eachtime a changeis
needed,only changesneedto be stored. Moreover, asshown in Section6, it is possibleto provide
aggregatemanagementinformation.

4.2 Evolutionary change

New technology, new laws, andnew market requirementsleadto modificationsof theworkflow pro-
cessdefinitionsat hand.Evolutionarychange refersto changesof a structuralnature:Froma certain
momentin time, theprocesschangesfor all new casesto arrive at thesystem.This type of change
is the resultof a new businessstrategy, reengineeringefforts, or a permanentalterationof external
conditions(e.g.,a changeof law). Evolutionarychangeis initiated by the managementto improve
efficiency or responsiveness,or is forcedby legislatureor changingmarket demands.Evolutionary
changealwaysaffectsnew casesbut it mayalsoinfluenceold cases.Basically, therearefour waysto
dealwith existingcases:

29

 Restart
All existing casesareabortedandrestartedin thenew process.At any time, all casesusethe
samerouting definition. For mostworkflow applications,it is not acceptableto restartcases
becauseit is notpossibleto rollbackwork or it is tooexpensive to flushcases.

 Abort
All existing casesare stoppedand are not processedany further, i.e., all pendingcasesare
abortedandconsideredto beready. Thisapproachis usedif all existingcasesarecompletedby
hand.In general,this solutionis notacceptable.

 Proceed
Eachcaserefersto aspecificversionof theworkflow process.Newerversionsdonotaffectold
cases.Mostworkflow managementsystemssupportsuchaversioningmechanism.A drawback
of thisapproachis thatold casescannotbenefitfrom animprovedroutingdefinition.In addition,
it mightbeacomplex taskto managetoomany versions.

 Transfer
Existingcasesaretransferredto thenew process,i.e.,they candirectlybenefitfrom evolutionary
changes. Often, the transferof casesis the preferredsolution. The term dynamicchange,
introducedin theintroduction,refersto theproblemof transferringcasesto aconsistentstatein
thenew process.

Evolutionarychangecancauseproblemsinternalto thecompany suchasthedynamic-changeproblem
illustratedin Figure1.1. In addition,it canalsocauseconfusionfor theoutsideworld. If a customer
is usedto receiving goodsbeforethebill andnow startsreceiving thebill beforethegoods,this may
resultin irritation. Therefore,changeneedsto berestrictedandthedesignerneedsto beawareof the
fact that theenvironmentcanbeaffectedby certainchanges.The inheritancerulespresentedin the
previoussectioncanbeusedto restrictchanges.Sinceobservablebehavior is oneof thecornerstones
of the definedinheritancenotions(seeSections3.1 and2.3), the degreeof changeasobserved by
theenvironmentcanbequantified.If externalbusinesspartnersareinvolved in a changewhich does
not satisfycertaininheritancerequirements,they needto agreeon sucha changebecausethechange
might have externallynoticeableeffects. As a consequence,businesspartnerswill beableto notice
thedifferencesandneedto actaccordingly.

In Section5,weshow thatby restrictingevolutionarychangeto thefour inheritancerulespresented
in theprevioussectionthedynamicchange-problemcanbeavoided.

4.3 Workflow templates

Althoughworkflow processeswithin differententerpriseshave commonelements,they aretypically
designedfrom scratch.Also within largecompanies,it is oftennotpossibleto specifyaworkflow pro-
cessdefinitiononceandreplicateit acrossall partsof thecompany thatarein needof suchaprocess.
Local differenceshave to betakeninto accountandprohibit theuseof oneuniform solution.As a re-
sult,workflow processesaretypically designedfrom scratchandthe“wheel” is re-inventedeveryday.
To avoid re-inventingthewheel,onecanuseworkflowtemplates. A workflow templateis a standard
designof a commonworkflow process.An enterpriseor a departmentwithin theenterprisecanuse
suchaworkflow templateasthestartingpoint for thedesignof anew workflow process.Thestandard
solutionprovided by the templateis changedto accommodatespecificneeds.Theuseof templates
allows the designersto reflect local differences(resultingfrom specificregulations,organizational
structures,andotherparticularities)andstill re-usethecommonparts.

30

The idea of using templatesfor workflow processesis not new. Malone et al. defineda large
numberof processtemplatesin theso-called“processhandbook”[45]. Moreover, today’s Enterprise
ResourcePlanning(ERP)systemssuchasSAPR/3 (SAPAG, Walldorf, Germany, [38]) andBaan-
ERP (BaanCompany, Barneveld, The Netherlands,[49]) offer hundredsof ready-madeworkflow
templates(oftennamedbusinessmodelsor referencemodels)thatcanbeusedasa startingpoint for
configuringthesystem.Theseworkflow templatesareoften basedon “best businesspractices”and
reflecttheexperiencesof leadingenterprises.Althoughthesetof workflow templatesofferedby to-
day’s workflow managementsystemsis still limited, it is clearthattheuseof templateswill increase
to avoid startingfrom scratchevery timeanew workflow hasto bedesigned.

CurrentERPandworkflow managementsystemsprovide limited supportfor templates.A de-
signerhasto make a copy of a templateandcustomizeit to accommodatespecificneeds.This “copy
andmodify” approachis not very sophisticated;any changeis allowedandchangesof the template
do not affect theworkflow processesdesignedusingthetemplate.Insteadof the“copy andmodify”
approach,onecouldalsouseanapproachbasedon inheritance.By establishinganinheritancerela-
tionshipbetweenthecustomizedworkflow processandthecorrespondingtemplate,it is possibleto
restrictchangeandcertainchangesof thetemplatecanbetransferredto thecustomizedprocess.

4.4 E-commerce

Traditional Electronic commerce (E-commerce),mainly using Electronic Data Interchange (EDI),
is rapidly moving to the Internet. Moreover, E-commerceis moving from long-lastingwell-defined
businessrelationshipsto amoredynamicsituation,wherepartieshaving noprior tradingrelationship
engagein a commonbusinessprocess.Consequently, theoperationalboundariesbetweenorganiza-
tionshave becomefluid. As a result,it is difficult to separateinterorganizationalbusinessprocesses
from the intraorganizationalones. E-commercehascomplicatedthe managementof businesspro-
cesses.Theprocessesarescatteredover multiple organizationsandaresubjectto frequentchanges.
Therearemany problemswhich needto be solved to enablethe enactmentof workflows crossing
organizationalborders.Theseproblemsareof a conceptual(e.g.,how to designinterorganizational
workflows), a technical(e.g.,how to exchangedataover the internet),a financial(e.g.,how to dis-
tributethebenefits),and/oramanagerial(e.g.,who is responsible)nature.Two interestingconceptual
problemsthatmaybenefitfrom theinheritanceconceptspresentedin thispaperarethefollowing.

 How to agreeon a commonworkflow without having to know all the detailsof eachothers
businessprocesses?

 How to allow for localchanges(e.g.,oneof thebusinesspartnersinvolvedoptimizesits internal
process)without theneedfor globalcoordination?

To solve thefirst problemonecoulddesigna simplecommonworkflow whereonly the taskswhich
arerelevantfor all partnersarespecified.Then,thecommonworkflow is partitionedover thebusiness
partnersinvolved, i.e., theglobalworkflow processis split into local parts.Eachbusinesspartnerex-
tends/refinesthelocalworkflow processuntil it canbemadeoperational.However, changingthelocal
workflow cancauseproblems,e.g.,swappingtwo taskscanleadto deadlocksof thesharedworkflow.
To avoid suchproblems,threeof the four inheritance-preserving transformationrulescanbe used
(PPS, PJS, andPJ3S). If thechangesof thelocalworkflow preserve projectioninheritance, theother
businesspartnerscannotdetectany differencesandthereforeproblemssuchasdeadlocksandlive-
lockscanbeavoided. Thenotionof projectioninheritanceis appropriatebecauseit only allows for
changeshaving internaleffects.Notethatprotocolinheritanceandlife-cycle inheritancearenotsuit-
ablefor thisapplication.An alternative routein oneof thelocal workflows mayleadto adeadlockof

31

theoverall workflow process.Thesecondproblemcanbesolvedby usingthesamemechanism(i.e.,
projectioninheritance);if local changeis restrictedto thetransformationrulespreservingprojection
inheritance,thentheotherbusinesspartnerscannotdetectany differencesandthereis no needfor a
new agreementon theglobalprotocols.

Theexamplesgiven in this sectionillustratethat inheritanceconceptscanbeusedto supportad-hoc
change,evolutionarychange,workflow templates,andE-commerce.Clearly, thispaperis justastart-
ing point for augmentingworkflow managementsystemswith inheritanceconcepts.For example,all
theexamplesgivenin thispaperfocuson theprocessperspective, i.e.,only thecontrolflow androut-
ing aspectsareconsidered.Inheritanceis equallyimportantfor theotherperspectivesdealingwith the
organization,data,applications,andoperations.However, sincetheprocessperspective is dominant
in workflow managementapplications,we restrictourselvesto this perspective. In theremainder, we
show thatinheritancecantruly assistin dealingwith theproblemsidentifiedin Section1.

5 Dynamic change

Theproblemof dynamicchangewasintroducedusingFigure1.1. If a sequentialprocessis changed
to a parallelone,thereareno problems.However, if the degreeof parallelismis reduced,thereare
statesin theold processwhich do not correspondto statesin thenew process.Thestatewith a token
in both p1 and p4 (right-handsideof Figure1.1) cannotbe mappedonto a statein the sequential
process(left-handside). Putting a token in i , s1, or s2 will result in the doubleexecutionof task
sendbill . Puttinga token in s2, s3, or o will resultin theskippingof (at least)tasksendgoods. The
problemidentifieddoesnotonly applyto thesituationwherethedegreeof parallelismis changed.For
example,swappingor removing tasksmayleadto similarproblems.This is thereasonmostworkflow
managementsystemsdo not allow dynamicchange,i.e., if a workflow processis changed,thenall
existing casesarehandledthe old way andthe new processonly appliesto new cases.Every case
hasa pointerto a versionof theworkflow andeachversionis maintainedaslong astherearecases
pointingto it. For someapplications,thissolutionwill do. However, if theflow timeof acaseis long,
it maybeunacceptableto processrunningcasestheold way. Considerfor examplethechangeof a
4-yearcurriculumat a university to a 5 yearone.It is tooexpensive to offer bothcurriculafor a long
time. Sooneror later, cases(i.e.,students)needto betransferred.Otherexamplesaremortgageloans
andinsurancepolicy’s with a typical flow time of decades.Maintainingold versionsof a processis
oftentoo expensive andmaycausemanagerialproblems.It is alsopossiblethatthereareregulations
(e.g.,new laws)enforcingadynamicchange.

Theinheritance-preserving transformationrulesdo not solvetheproblemindicatedin Figure1.1.
Theonly way to avoid theincorrectexecutionof casesis to postponethetransferof runningcasesin
state[p1

� p4]. Theinheritance-preserving transformationrulescanbeusedto avoidsuchproblemsby
restrictingchangeto thosechangeswhereacorrecttransferis alwayspossible.

Theremainderof this sectionis organizedasfollows. First, we introducethenotionof a transfer
rule, i.e., a rule to map casesfrom one workflow processdefinition to another. Second,we give
concrete,generictransferrules to map casesfrom a superclassto a subclass(i.e., specialization).
Third, we provide genericrulesto supportgeneralization,i.e., mappingcasesfrom a subclassto a
superclass.Fourth,wediscussrelatedwork ondynamicchange.Finally, weexplainhow ourapproach
canbecombinedwith so-calledchangeregions.Thiscombinedapproachcancopewith changessuch
astheonein Figure1.1thatprohibit animmediatetransferof cases.

32

5.1 Valid transfer rules

In this subsection,we assumethepresenceof two workflow processdefinitions: theold oneandthe
new one. Casespresentin theold processat themomentof changeneedto be transferredfrom the
old workflow processdefinitionto thenew one,i.e., eachcasein theold processdefinitionhasto be
removedandmappedontoa new casein thenew processdefinition. Sincethestateof thecasein the
new processdefinitiondependsonthestateof thecasein theold processdefinition,weneedto define
a transferrule.

Definition 5.1.(Transfer rule) Let N0 � �
P0
� T0
� F0

���
0� andN1 � �

P1
� T1
� F1

���
1 � betwo workflow

processdefinitionsin n . A transferrule r from N0 to N1 (notationN0
r� N1) is a partial function

mappingmarkingsof N0 ontomarkingsof N1, i.e.,r : � � P0 �}q� � � P1� .
A transferrulemapsstatesof anold workflow processdefinitionontostatesof anew workflow process
definition. Notethat thefunctioncanbepartial(dom

�
r ����� � P0 �), i.e., if thestateof thecaseis not

in thedomainof the transferrule, thenthecaseis not transferred.Clearly, not every transferrule is
acceptable.Thetransferof a caseaccordingto a transferrule shouldnot resultin deadlocksor other
anomalies.In this paper, we considera transferrule to be acceptableif andonly if every transfer
of a caseresultsin a statein thenew workflow processdefinitionwhich is alsoreachableby newly
initiatedcases.A transferrulesatisfyingthispropertyis calledvalid.

Definition 5.2. (Valid transfer rule) Let N0 and N1 be two workflow processdefinitionsin n and
r a transferrule N0

r� N1. Transferrule r is valid if andonly if, for all s � dom
�
r ��� [N0

� [i]) ,
r
�
s� � [N1

� [i]) .
Basically, a valid transferrule makessurethat the soundnesspropertyof the target workflow net is
guaranteedfor casesthataretransferredfrom anotherworkflow processdefinition.

Property 5.3. Let N0 � �
P0
� T0
� F0

���
0 � and N1 � �

P1
� T1
� F1

���
1 � be two workflow processdefi-

nitions in n andr a valid transferrule N0
r� N1. For any s � dom

�
r �>� [N0

� [i]) , the following
conditionsaresatisfied:

1. safeness: for any placep � P1, r
�
s� � p��� 1,

2. propercompletion: if o � r
�
s� , thenr

�
s�>� [o], and

3. absenceof deadlock: [o] � [N1
� r � s��) .

Proof. It follows directly from Definitions2.24(Workflow processdefinition),2.22(Soundness),and
5.2(Valid transferrule). j
Therearethreegenerictransferruleswhichareguaranteedto bevalid.

Definition 5.4. (r i , ro, and r �) Let N0 and N1 be two workflow processdefinitionsin n . Transfer
rulesN0

r i� N1, N0
ro� N1, andN0

r �� N1 aredefinedasfollows:

 r i is the transferrule which mapsevery possiblemarkingonto [i], i.e., for any s � [N0
� [i]) ,

r i
�
s�U� [i].

 ro is the transferrule which mapsevery possiblemarkingonto [o], i.e., for any s � [N0
� [i]) ,

ro
�
s�U� [o].

33

 r � is thetransferrulewith theemptydomain,i.e.,dom
�
r ���!��� .

Property 5.5.r i , ro, andr � arevalid.

Proof. It follows directly from Definitions2.24(Workflow processdefinition),2.22(Soundness),5.2
(Valid transferrule), and 5.4; states[i] and [o] are reachablein any soundworkflow net and the
transferrulewith theemptydomainis trivially valid. j
Transferrulesr i , ro, andr � correspondto threeof the four policiesdescribedin Section4.2. Rule
r i correspondsto restartingall existing cases,ro correspondsto abortingall existing cases,and r �
correspondsto completingall runningcasesaccordingto the old processdefinition (i.e., the useof
a versioningmechanism).In the remainderof this section,we do not considerthesetrivial transfer
rules;we focuson transferruleswhich leadto a direct transfer(i.e., no postponementsuchasin r �)
to ameaningfulstate(i.e.,notby default to [i] or [o]). Eachof therulespresentedcorrespondsto one
of theinheritance-preserving transformationrulespresentedin Section3.2.

5.2 Transfer of casesfr om superclassto subclass

In this paper, we considertwo typesof transferrules,namelyfrom a classto a subclassandfrom a
classto asuperclass.In thissubsection,wepresenttransferrulesmappingstatesof aclassontostates
of a subclass.Eachof thetransferrulesis basedon oneof theinheritance-preserving transformation
rulesof Section3.2. Beforewe introducethetransferrulescorrespondingto respectively PPS, PTS,
PJS, andPJ3S, we introducetheidentity functionasagenerictransferrule.

Definition 5.6.(r id) Let N0 andN1 betwo workflow processdefinitionsin n . N0
r id� N1 is thetransfer

rulewhichcorrespondsto theidentity function,i.e., for any s � [N0
� [i]) , r id

�
s�U� s.

Transferrule r id is notnecessarilyvalid. A statein thefirst workflow processdefinitiondoesnothave
to exist in thesecondprocessdefinition. However, r id turnsout to bea suitabletransferrule for PPS,
PTS, andPJS.

The first transferrule is basedon the inheritance-preserving transformationrule illustratedby
Figure3.11(rule PPS, seeTheorem 3.12). SincePPSonly addsnew alternative behavior anddoes
notrestrictthebehavior of thepartcorrespondingto the“old” workflow processdefinitionin any way,
thecasecansimplybetransferredwithout changingits state.

Theorem 5.7.(Transfer rule rPPS) Let N0 andN1 betwo workflow processdefinitionssatisfyingthe
requirementsstatedin Theorem3.12.MappingrPPS � r id is a transferrule N0

rPPS� N1 thatis valid.

Proof. RecallthatPPSis a specialcaseof PTS. Therefore,thevalidity of rPPS follows directly from
thevalidity of thetransferrule rPTS which is presentednext (seeTheorem5.9). However, it is easyto
seethatrPPS is valid: TheextensionN only addsbehavior, i.e., [N0

� [i])y� [N1
� [i]) . Therefore,the

identity functionis valid. j
Figure5.8illustratestransferrule rPPS. Inheritance-preserving transformationrulePPShasbeenused
to extendtheold workflow processdefinitionon theleft-hand-sidewith taskinform customerwhich
canbe executedat any point betweenregistrationandfiling. Transferrule rPPS transferseachcase
from the left-hand-sideprocessdefinition to theright-hand-sideprocessdefinitionwithout changing
thestate.Figure5.8alsoillustratestransferrule r C 1

PPSwhich is definedin Section5.3.
Thesecondtransferruleisbasedoninheritance-preserving transformationrulePTSandis identical

to rPPS.

34

pendingcomplaint

ready

i

registered

ready

sendletter

classifycomplaint

cust contacted

classified

file dossier

contactcust

o

inform customer

pendingcomplaint

i

registered

cust contacted

file dossier

contactcust

classifycomplaint
register

rPPS

contactcustomer

takeaction

contactdepartment

register

sendletter

takeaction

contactcustomer

contactdepartment

o

r � 1
PPS

classified

Figure5.8: Transferrule rPPS.

Theorem 5.9.(Transfer rule rPTS) Let N0 andN1 betwo workflow processdefinitionssatisfyingthe
requirementsstatedin Theorem3.14.MappingrPTS � r id is a transferrule N0

rPTS� N1 thatis valid.

Proof. Let N0 � �
P0
� T0
� F0

���
0 � and N1 � �

P1
� T1
� F1

���
1 � be two workflow processdefinitions

satisfyingtherequirementsstatedin Theorem3.14.SinceP0 � P1 andtheextensionN only enables
new behavior (ratherthanrestrictingtheexisting behavior), it follows that[N0

� [i])�� [N1
� [i]) . This

observation impliesthattheidentity functionrPTS is valid. j

pendingcomplaint pendingcomplaint

i

registered

ready

sendletter

classifycomplaint

cust contacted

classified

file dossier

contactcust

o

r � 1
PTS� P

register

contactdepartment

contactcustomer

takeaction

i

registered

cust contacted

file dossier

contactcust

register

updatestatistics

ignore complaint

contactdepartment

classifycomplaint

classified

ready

sendletter

ingnored

o

takeaction

contactcustomer

r � 1
PTS� C

rPTS

Figure5.10:Transferrule rPTS.

Transferrule rPTS is illustratedin Figure5.10.Usinginheritance-preserving transformationrulePTS,
theold workflow processdefinitionon theleft-hand-sideis extendedwith analternative branchcon-
taining tasksignore complaintandupdatestatistics. Every statein the left-hand-sideprocessdefi-
nition is alsoreachablein theright-hand-sideprocessdefinition. Therefore,it is easyto seethat the
transferrule rPTS is valid in this particularsituation.(Notethatupdatestatisticsis notpresentin Fig-
ure3.6. The taskhasbeenaddedto theWF-netshown in Figure5.10to introducea subclasswhich
hasstatesnotpresentin thesuperclass,i.e., thestatesmarkingplaceignored.)

Thethird transferrule canbeusedwhennew tasksareinsertedbetweenexisting sequentialtasks
asdefinedin Theorem3.16(i.e., transformationrulePJS).

Theorem5.11.(Transfer rule rPJS) Let N0 andN1 betwo workflow processdefinitionssatisfyingthe
requirementsstatedin Theorem3.16.MappingrPJS � r id is a transferrule N0

rPJS� N1 thatis valid.

35

Proof. Theproof is similar to theproofsof Theorems5.7and5.9. SinceP0 � P1 andtheaddedpart
N only insertsnew behavior anddoesnot restrict the existing behavior, it follows that [N0

� [i])��
[N1

� [i]) . This impliesthattheidentity functionrPJS is valid. j

pendingcomplaint

i

registered

ready

custcontacted

classified

file dossier

contactcust

o

rPJS

r � 1
PJS

contactdepartment

contactcustomer

takeaction

register

sendletter

classifycomplaint

i

registered

file dossier

contactcust

register

contactdepartment

contactcustomer

custcontacted

takeaction

inform management

sendletter

classifycomplaint

o

classified

inform man

ready

pendingcomplaint

Figure5.12:Transferrule rPJS.

Figure 5.12 illustratestransferrule rPJS. Inheritance-preserving transformationrule PJShasbeen
usedto inserttaskinform managementbetweensendletter andready. Theadditionof this taskonly
introducesnew states.Therefore,transferrule rPJS transferseachcasewithout changingthestate.At
a glance,analternative transferrule might bea mappingthattransfersthetokenin placereadyof the
left-handprocessdefinitionto placeinform manof theright-handprocessdefinition. Sucha transfer
rule would imply thatthenewly addedtaskinform managementmustbeexecutedfor thetransferred
case.However, sucha transferis only meaningfulif thetokenin placereadyof theleft-handprocess
definitionis theresultof executingtasksendletter. Clearly, this is notnecessarilythecase.

pendingcomplaint

i

registered

custcontacted

contactdepartment

file dossier

contactcustomer

takeaction

contactmanagement

contactcust

contactman

man contacted

ready

classified

classifycomplaint
register

pendingcomplaint

o

i

registered

ready

sendletter

classifycomplaint

cust contacted

classified
contactdepartment

file dossier

register

contactcustomer

takeaction

contactcust

o

rPJ3S� C

r � 1
PJ3S

sendletter

rPJ3S� P

Figure5.13:TransferrulesrPJ3S� C andrPJ3S� P.

Transferrules rPTS, rPPS, andrPJS are rathertrivial becauseadditionalbehavior (i.e., alternative
branchesor partsinsertedin-betweenexistingparts)is introducedwithouteliminatingexistingstates.
Thetransferof casescorrespondingto transformationrule PJ3Sis morecomplex becausePJ3Sadds
parallelbehavior ratherthanadditionalbehavior. Whenaddingparallelbehavior, it maybenecessary
to markplacesin thenewly addedparts.Considerfor examplethetwo workflow processdefinitions
shown in Figure5.13.Theleft-hand-sideprocessdefinitionhasbeentransformedinto theright-hand-
side processdefinition using transformationrule PJ3S; task contactmanagementhasbeenadded
suchthat it canbeexecutedin parallelwith contactcustomer. Clearly, thestatewith a token in both

36

pendingcomplaintandregistered in theleft-hand-sideprocessdefinitionshouldbemappedontothe
identicalstatein theright-hand-sideprocessdefinition. Also tokensmarkingi, classified, ready, and
o shouldbe transferredto thesameplacein the right-hand-sideprocessdefinition. However, if one
of theplacescontactcustor cust contactedis marked,thentransferringthecaseto theidenticalstate
will result in a deadlock. Considerfor examplea casewith tokensin both pendingcomplaintand
contactcustpresentin the left-hand-sideprocessdefinition. If this stateis transferredwithout mod-
ificationsto the right-hand-sideprocessdefinition, task take action cannever be executed,because
placemancontactedwill never get marked. The only way to solve this problemis to addan addi-
tional tokento eitherplacecontactmanor man contacted. In a conservative approach,contactman
is markedandthenew taskcontactmanagementis requiredto beexecutedbeforetasktake action is
performed.In aprogressive approach,man contactedis markedandtasktake actioncanbeexecuted
without executingthenew taskcontactmanagement.

Figure 5.13 illustratestwo complicatingissueswhen transferringcasesunder the inheritance-
preservingtransformationrule PJ3S: (1) Sometimes(but not always)additionaltokensneedto be
added,and (2) when addingtokens, thereare sometimesmultiple ways to add thesetokens(e.g.,
conservative or progressive approach).Closelyobservingthe requirementsstatedin Theorem3.19
providesa solution for the first issue;the implicit placeq actsassomekind of counterindicating
whetherthe newly addedpart shouldbe marked with additionaltokens. The secondissueis dealt
with by providing two transferrules: a conservative or pessimisticone(rPJ3S� C) anda progressive
or optimistic one(rPJ3S� P). To definethesetwo rulesandprove their validity, we usethe following
lemma.

Lemma 5.14.Let N � �
P � T � F ��� � andNq � �

Pq
� Tq
� Fq

���
q � betwo workflow processdefinitionsin

n andq aplacein U suchthatq � Pq, P � Pq Z[# q % , T � Tq, F � Fq � ��� P � T �~� � T � P ��� , � � � q,
andq is implicit in

�
Nq � [i] � . For any reachablemarkings � [N � [i]) andfiring sequences3 1

� 3 2
� T :

suchthat
�
N � [i] � [3 1) � N � s� and

�
N � [i] � [3 2) � N � s� , thereis a uniquemarkings? � [Nq � [i]) such

that,for all p � P, s? � p�U� s
�
p� and

�
Nq � [i] � [3 1) � Nq � s? � and

�
Nq � [i] � [3 2) � Nq � s? � .

Proof. It is well known thatany firing sequence3 � T : enabledin
�
N � [i] � andresultingin s (i.e.,�

N � [i] � [3>) � N � s�) is enabledin
�
Nq � [i] � (i.e.,

�
Nq � [i] � [3>)) (seeDefinition3.17(Implicit place)and

[17, 22]). Assumes1 ands2 arethe two markingsin [Nq � [i]) suchthat
�
Nq � [i] � [3 1) � Nq � s1 � and�

Nq � [i] � [3 2) � Nq � s2 � . It follows from Definition 3.17that, for all p � P, s1
�
p�y� s2

�
p�t� s

�
p� .

Thus,it remainsto beproventhats1
�
q �+� s2

�
q � . Assumes1

�
q �yq� s2

�
q � . Without lossof generality,

we canassumethats1
�
q ��� s2

�
q � . SinceN is a workflow processdefinition, thereis a 3 3 suchthat�

N � s� [3 3) � N � [o] � (seeDefinition2.24).Sinceq is implicit in
�
Nq � [i] � , 3 3 is alsoenabledin

�
Nq � s1 �

and
�
Nq � s2 � . Let s?1 ands?2 betwo markingssuchthat

�
Nq � s1 � [3 3) � Nq � s?1 � and

�
Nq � s2 � [3 3) � Nq � s?2 � .

It follows from the fact that s1 � s2 � s that s?1 � s?2 � [o]. However, the fact that s?1 � [o]
contradictsthefactthatNq is aworkflow processdefinition(nopropercompletion;seeDefinition2.22
(Soundness)).Thiscontradictionshows thats1 � s2, whichcompletestheproof. j
For any two workflow processdefinitionsN andNq satisfyingtherequirementsof Lemma5.14,the
lemmastatesthat any two firing sequencesleadingto thesamemarkingin N alsoleadto thesame
marking in Nq andthat, in addition, thesetwo markingsareidenticalwith respectto placesof N.
Lemma5.14impliesthatthefunctionin thefollowing definitionis well defined.

Definition 5.15.Let N � �
P � T � F ��� � , Nq � �

Pq
� Tq
� Fq

���
q � , andq bedefinedasin Lemma5.14.

Functionidq : [N � [i])!� [Nq � [i]) is definedasfollows. For any reachablemarkings � [N � [i]) and

37

firing sequence3 � T : suchthat
�
N � [i] � [3>) � N � s� , idq

�
s��� s? wheres? is theuniquemarkingin

[Nq � [i]) definedby
�
Nq � [i] � [3�) � Nq � s? � .

Considertheprojection-inheritance-preserving transformationrule PJ3Sof Theorem3.19. To define
therequirementsof this transformationrule, theimplicit placeq wasaddedto theoriginal workflow
N0. Placeq is a virtual place(i.e., it is not really presentin oneof theworkflow processdefinitions
N0 or N1) and hasbeenaddedto make sure that every activation of the extensiondefinedby N
(i.e., a firing of transitionti) is followed by a deactivation (i.e., a firing of transitionto). Note that
workflow processdefinitionsN0 and Nq

0 of Theorem3.19 satisfythe requirementsof Lemma5.14
andDefinition 5.15. Function idq asdefinedin Definition 5.15 countsthe numberof tokensin q.
Sinceworkflow processdefinitionsaresafe,for any reachablemarkings of N0, eitheridq

�
s�z� s or

idq
�
s�U� s
 [q]. Recallthetwo complicationsconcerningthetransferof casesundertheinheritance-

preservingtransformationrule PJ3Sidentified above. If idq indicatesthat q is not marked, then
it suffices to transfera casefrom the superclassN0 to the subclassN1 without changingits state.
However, if idq indicatesthatq is marked(i.e., q containsonetoken), thenthenewly addedparallel
branchof behavior needsto bemarkedwhentransferringa case.Thereareat leasttwo waysto mark
the parallelpart: (1) The outputplacesof ti aremarked (the conservative/pessimisticapproach)or
(2) theinput placesof to aremarked(theprogressive/optimisticapproach).Therefore,we definetwo
transferrulesbasedonPJ3S: rPJ3S� C andrPJ3S� P
Theorem 5.16.(Transfer rules rPJ3S� C and rPJ3S� P) Let N0 � �

P0
� T0
� F0

���
0� andN1 � �

P1
� T1
� F1

�
�

1 � be two workflow processdefinitionssatisfyingthe requirementsstatedin Theorem3.19. More-
over, let q and Nq

0 be as definedin Theorem3.19 and idq : [N0
� [i])�� [Nq

0
� [i]) as definedin

Definition5.15.Finally, assumethatSq �;# s � [N0
� [i]) � idq

�
s� � q ��� 0% .

 If rPJ3S� C is a transferrule N0
rPJ3S� C� N1 suchthat,for all s � � � P0��Z Sq, rPJ3S� C � s�r� s and,for

all s � Sq, rPJ3S� C � s�!� s
 ti zZ P0, thenrPJ3S� C is valid.

 If rPJ3S� P is a transferrule N0
rPJ3S� P� N1 suchthat,for all s � � � P0 ��Z Sq, rPJ3S� P � s�+� s and,for

all s � Sq, rPJ3S� P � s��� s
^ to Z P0, thenrPJ3S� P is valid.

Proof. Let s � [N0
� [i]) and 3 � T0 : be suchthat

�
N0
� [i] � [3>) � N0

� s� . We have to prove that
rPJ3S� C � s� � [N1

� [i]) andrPJ3S� P � s� � [N1
� [i]) .

Let ti , to, andN beasdefinedin Theorem3.19. In thefiring sequence3 , ti andto occuralternat-
ingly, i.e., at any point in thesequencethenumberof timesti hasoccurredis equalto thenumberof
timesto hasoccurredor ti hasoccurredonetimeextra. Thispropertyis adirectresultof thefactthatq
is implicit in

�
Nq

0
� [i] � (whichmeansthat 3 is enabledin

�
Nq

0
� [i] �) andthatNq

0 is aworkflow process
definition(whichmeansthatq is safe).Becauseti andto occuralternatinglyin 3 , we distinguishtwo
possibilities:

1. The numberof times ti occursin 3 (possiblyzero)is equalto the numberof times to occurs
in 3 , which meansthat s q � Sq. Note that 3 is not necessarilyenabledin

�
N1
� [i] � when

ti occursin 3 . Let 3 :
� � T Z[# ti � to %���: be suchthat

�
N � ti .� [3 :)

�
N � to � . Sucha firing se-

quenceexists,because
�
N � [p] � is live andsafe(seeTheorem3.19). Let 3 ? bea modification

of thefiring sequence3 whereimmediatelyafterevery occurrenceof ti thesequence3 : is in-
serted.Sequence3 ? is enabledin

�
N1
� [i] � andresultsin states. Since

�
N1
� [i] � [3 ?) � N1

� s� and
rPJ3S� C � s�U� rPJ3S� P � s�U� s (s q � Sq), bothrPJ3S� C � s� andrPJ3S� P � s� areelementsof [N1

� [i]) .

38

2. Transitionti occurspreciselyoncemore in sequence3 than transitionto, which meansthat
s � Sq. Also in this case,3 is not necessarilyenabledin

�
N1
� [i] � andin bothstatesrPJ3S� C � s�

and rPJ3S� P � s� someof the placesin P1 Z P0 are marked. Constructsequence3 : as before
(i.e.,

�
N � ti .� [3 :)

�
N � to �). Sequence3 ? is the modificationof the firing sequence3 where

immediatelybeforeevery occurrenceof to the sequence3 : is inserted. Sequence3�? is en-
abledin

�
N1
� [i] � and resultsin staterPJ3S� C � s��� s
 ti �Z P0 (note that s � Sq). Hence,

rPJ3S� C � s� � [N1
� [i]) . Sequence3 ? ? is the sequenceobtainedby concatenating3 ? and 3 : .

Also 3>? ? is enabledin
�
N1
� [i] � and resultsin staterPJ3S� P � s��� s
� to Z P0. Hence,also

rPJ3S� P � s� � [N1
� [i]) .

j
In Figure 5.13, the left-hand-sideprocessdefinition hasbeentransformedinto the right-hand-side
processdefinition by addingtaskcontactmanagementusingtransformationrule PJ3S. Considera
casein the left-handprocessdefinitionwith a token in bothpendingcomplaintandcontactcust. If
transferrule rPJ3S� C is used,this caseis transferredto the statein the right-handprocessdefinition
wherependingcomplaint, contactcust, and contactman aremarked. Transferrule rPJ3S� P marks
mancontactedinsteadof contactman.

The transferrulespresentedthusfar mapstatesof a superclassontostatesof a subclass.If a series
of inheritance-preserving transformationrules is appliedto a workflow processdefinition, then it
is possibleto constructa compositetransferrule which is valid andmapsany stateof the original
workflow processdefinition (superclass)onto the new processdefinition (subclass). The transfer
rulespresentedin this subsectionimply that for dynamically-changingworkflow processdefinitions
following the rulesPTS, PPS, PJS, andPJ3Sproblemssuchasdeadlocks,livelocks,anddangling
referencescanbeavoided. At theendof thenext subsection,theconstructionof compositetransfer
rulesis illustratedby meansof our runningexample.

5.3 Transfer of casesfr om subclassto superclass

The transferrulesof the previous subsectionassumethat casesaretransferredfrom a superclassto
a subclass.However, onecanthink of applicationswherethe inheritance-preserving transformation
rules presentedin Section3.2 are appliedin the reverse direction. Note that noneof the rules of
Section3.2 assumesa direction. Therefore,the inheritance-preserving transformationrulescanalso
beappliedto createasuperclassbasedonasubclass.Thismeansthataworkflow processdefinitionis
not extendedbut reduced(i.e.,partsof theworkflow processdefinitionareremoved). For example,a
parallelbranchcanberemovedby applyingPJ3Sin thereversedirection.If theinheritance-preserving
transformationrulesareappliedin thereversedirection,wealsoneedtransferruleswhichmapstates
of thesubclassontostatesof thesuperclass.Thesetransferrulesarepresentedin theremainderof this
section.

First, let us considera subclassworkflow processdefinition anda superclassworkflow process
definitionconstructedby applyingrule PPSof Theorem3.12in the reversedirection. Transferrule
r C 1

PPS is usedto mapstatesfrom thesubclassto thesuperclass.

Theorem 5.17. (Transfer rule r C 1
PPS) Let N0 � �

P0
� T0
� F0

���
0 � and N1 � �

P1
� T1
� F1

���
1 � be two

workflow processdefinitionssatisfyingthe requirementsstatedin Theorem3.12. Moreover, let p

be the placeasdefinedin Theorem3.12andlet r C 1
PPS be a transferrule N1

r � 1
PPS� N0 suchthat, for all

s � � � P0 � , r C 1
PPS

�
s��� s, and,for all s � � � P1 �9Z_� � P0� , r C 1

PPS

�
s�	� s � � P0
 [p]. Transferrule r C 1

PPS is
valid.

39

Proof. TransformationrulePPSis aspecialcaseof rulePTSof Theorem3.14.Thiscanbeprovenby
assumingthattheplacespi andpo of Theorem3.14arebothequalto placep. Underthisassumption,
transferrule r C 1

PPSequalsthetransferrulescorrespondingto PTSappliedin thereversedirectionwhich
arepresentednext. Both transferrulesr C 1

PTS� C andr C 1
PTS� P statedin Theorem5.20correspondto r C 1

PPS.
Thus,thevalidity of r C 1

PPS follows immediatelyfrom thevalidity of r C 1
PTS� C andr C 1

PTS� P. j

Figure5.8illustratestransferrule r C 1
PPS. Inheritance-preserving transformationrulePPShasbeenused

to reducetheold workflow processdefinitionon the right-handsideinto thenew workflow process
definitionon the left-handside. Sincetheremoved taskinform customerdid not addany new states
r C 1

PPS corresponds(in thisparticularsituation)to theidentity function. If theremovedpartwould have
beenanetwork of tasks,thenall tokensin theremovedpartwouldhave beenmappedontoonesingle
tokenin placependingcomplaint.

Givenaworkflow processdefinitionandasubclassof thisprocessdefinitionconstructedby means
of transformationrule PPS, thetransferof a casefrom thesuperclassto thesubclassandbackyields
theoriginal state.

Property 5.18. Let N0, N1, rPPS, and r C 1
PPS be as definedin Theorems5.7 and5.17. For any s �

[N0
� [i]) , r C 1

PPS
�
rPPS

�
s�9�!� s.

Proof. The propertyfollows immediatelyfrom the definitionsof the transferrulesin Theorems5.7
and5.17. j

Generally, theconversedoesnothold. TransferrulerPPScorrespondsto specializationandr C 1
PPScorre-

spondsto generalization.If specializationfollowsgeneralization,it maynotbepossibleto reconstruct
theoriginal statebecauseinformationis lostduringthegeneralizationstep.

Second,weconsiderthetransferof casesundertheinheritance-preserving transformationrulePTS
appliedin thereversedirection.Considerthetwo workflow processdefinitionsshown in Figure5.10.
Theold processdefinitionon theright-hand-sideis reducedby removing thealternative branchcon-
taining tasksignore complaintandupdatestatistics. Note that we now have to transfercasesfrom
“right to left” ratherthanfrom “left to right.” For a casenot in thealternative branchto beremoved,
thetransferis simple;thecasecanbetransferredwithoutchangingits state.For acasein thisalterna-
tivebranch(i.e.,placespendingcomplaintandignoredaremarked),thetransferis morecomplicated
sinceplaceignored is not presentin thenew processdefinition. Therearetwo waysto dealwith this
problem:Eitherthecorrespondingtokencanbemovedto thepointwherethealternativebranchstarts
(i.e., placeclassified; conservativeapproach)or it canbe moved to the point wherethe alternative
branchends(i.e., placeready; progressiveapproach).Therefore,we give two valid transferrules:
r C 1

PTS� C andr C 1
PTS� P.

Beforewe formulater C 1
PTS� C andr C 1

PTS� P, we needto consideranotherproblemwhich is illustrated
by Figure5.19. (Thenetshown in Figure5.19without transitionx is takenfrom [24].) Supposewe
removetaskx by applyingrulePTSin thereversedirection,i.e.,theold workflow processdefinitionis
theprocessdefinitionwith x andthenew workflow processdefinitionis theprocessdefinitionwithout
x. In theold processdefinition,themarkingwith a token in both p3 and p6 is reachableby firing t1,
t2, andx. Although p3 and p6 arestill presentin thenew workflow processdefinition,this marking
is no longerreachableafter removing x. This situationis ratherexceptional;normally, the removal
of analternative branchof behavior suchastheonemodeledby transitionx doesnot changetheset
of reachablemarkingswith respectto the setof placesthat remainin the new workflow. If sucha
changedoesoccur, it is not possibleto comeup with aneleganttransferrule which is valid. Recall

40

p5

i

o

t1

t8

t3

p8

t2

p7

t4 t5 t7t6

p2p1

p3

x
p6p4

Figure5.19:Transitionx introducesamarkingnot reachablein theworkflow processdefinitionwith-
out x.

that a transferrule is only valid if every transferresultsin a stateof the new WF-net that is also
reachablefrom the initial markingin the new workflow processdefinition. Therefore,to definethe
transferrulesr C 1

PTS� C andr C 1
PTS� P, we addthe requirementthat the removed part doesnot changethe

behavior in theremainingpart. To formalizethis requirement,we usethevirtual transitionx defined
in Theorem3.14. Transitionx emulatesthe behavior of the removed part. Therefore,it is required
thatx doesnot influencethesetof reachablemarkings.

Theorem 5.20.(Transfer rules r C 1
PTS� C and r C 1

PTS� P) Let N0 � �
P0
� T0
� F0

���
0� andN1 � �

P1
� T1
� F1

�
�

1 � be two workflow processdefinitionssatisfyingthe requirementsstatedin Theorem3.14. More-
over, let pi , po, x, andNx

0 beasdefinedin Theorem3.14.Finally, assumethat[Nx
0
� [i])�� [N0

� [i]) .

 Let r C 1
PTS� C bea transferrule N1

r � 1
PTS� C� N0 suchthat,for all s � � � P0� , r C 1

PTS� C
�
s��� s, and,for all

s � � � P1��Z_� � P0 � , r C 1
PTS� C

�
s�U� s � � P0
 [pi]. Transferrule r C 1

PTS� C is valid.

 Let r C 1
PTS� P bea transferrule N1

r � 1
PTS� P� N0 suchthat,for all s � � � P0 � , r C 1

PTS� P
�
s��� s, and,for all

s � � � P1��Z_� � P0 � , r C 1
PTS� P

�
s�U� s � � P0
 [po]. Transferrule r C 1

PTS� P is valid.

Proof. Let s � [N1
� [i]) and 3 � T1 : be suchthat

�
N1
� [i] � [3>) � N1

� s� . We have to prove that
r C 1

PTS� C
�
s� � [N0

� [i]) and r C 1
PTS� P

�
s� � [N0

� [i]) . Let N be the labeledP/T net as definedin The-
orem3.14. We show that therearefiring sequences3�? � 3>? ? � � T0 �&# x %��9: suchthat

�
Nx

0
� [i] � [3>?�)�

Nx
0
� rPTS� C � s�9� and

�
Nx

0
� [i] � [3 ? ?) � Nx

0
� rPTS� P � s��� . Since[Nx

0
� [i])�� [N0

� [i]) , this resultsufficesto
prove thatr C 1

PTS� C andr C 1
PTS� P arevalid.

Let T I �;# t � T � t �;# pi %�% andT O �;# t � T � t {��# po %�% . Moreover, let y andN beasdefined
in Theorem3.14. In thefiring sequence3 , transitionsin T I � T O have thesameeffect in

�
N1
� [i] �

astransitionx in
�
Nx

0
� [i] � . Let 3 x

� � T1 �l# x %��9: bethesequence3 with eachtransitionin T I � T O

replacedby transitionx. As a result, in sequence3 x, transitionsin T I andT O occuralternatingly,
i.e., at any point in thesequencethenumberof timesthata transitionin T I hasoccurredis equalto
thenumberof timesthata transitionin T O hasoccurredor a transitionin T I hasoccurredonetime

41

extra. This propertyfollows from thefact that
�
N1
� [i] � is safeandthat

�
N � [pi] � is live andsafe(see

Theorem3.14). Becausethe transitionsin T I andT O occuralternatinglyin 3 x, we distinguishtwo
possibilities:

1. Assumethat thenumberof timesthata transitionin T I occursin 3 x is equalto thenumberof
timesthat a transitionin T O occursin 3 x. Since

�
N � [pi] � is live andsafe,firing a transition

in T O removesall tokensin P Z[# pi
� po % . Since,in

�
N1
� [i] � , the only way to mark placesin

P Z~# pi
� po % is to fire transitionsin T I , it follows thats � � � P0� . Considerall subsequencesof

3 x thatstartwith a transitionin T I , endwith anoccurrenceof a transitionin T O, andcontain
no other occurrencesof transitionsin T I or T O. For eachsucha subsequence,replaceall
occurrencesof transitionsin T by asingleoccurrenceof transitionx at somearbitraryposition
amongthe transitionsremainingin the subsequence.Let 3 ?x �

�
T0 ��# x %�� : be the resulting

firing sequence.Clearly, 3>?x is a sequenceenabledin
�
Nx

0
� [i] � and

�
Nx

0
� [i] � [3>?x)

�
Nx

0
� s� (i.e.,

s � [Nx
0
� [i])). Sinces � � � P0 � and,thus,r C 1

PTS� C
�
s��� r C 1

PTS� P
�
s��� s, this completestheproof

in thiscase.

2. Assumethat the numberof timesthat a transitionin T I occursin 3 x exceedsthe numberof
timesthat a transitionin T O occursin 3 x by one. Note that P Z[# pi

� po % cannotbe empty in
this case,becausethenT I would equalT O, which contradictstheassumption.It follows that
s � � � P1��Z_� � P0 � . Again, considerall subsequencesof 3 x that startwith an occurrenceof a
transitionin T I , endwith anoccurrenceof a transitionin T O, andcontainnootheroccurrences
of transitionsin T I or T O. Foreachsuchasubsequence,replaceall occurrencesof transitionsin
T by asingleoccurrenceof transitionx. Theremainingoccurrencesof transitionsof T in 3 x are
simply removed.Let 3>?x �

�
T0 �D# x %���: betheresultingfiring sequence.Sequence3>?x is enabled

in
�
Nx

0
� [i] � and

�
Nx

0
� [i] � [3 ?x)

�
Nx

0
� s � � P0
 [pi] � , becausetransitionx emulatesin

�
Nx

0
� [i] � the

behavior of subnetN in
�
N1
� [i] � . Sinces � � � P1��Z_� � P0 � and,thus,r C 1

PTS� C
�
s�>� s � � P0
 [pi],

this completestheproof for r C 1
PTS� C

�
s� . Let sequence3�? ?x �

�
T0 ��# x %���: bethesequenceobtained

by concatenating3 ?x andtransitionx. Also sequence3 ? ?x is enabledin
�
Nx

0
� [i] � andresultsin

stater C 1
PTS� P

�
s�U� s � � P0
 [po], whichcompletestheproof alsofor r C 1

PTS� P
�
s� .

j

Therequirementin Theorem5.20that[Nx
0
� [i])!� [N0

� [i]) is essentialfor thevalidity of bothtransfer
rules. Notethatcheckingthis requirementcanbequitecomplex. However, from a practicalpoint of
view, it doesnot createa new problem. If a coverability graphis usedto decidewhetherNx

0 is
sound,thenthe requirement[Nx

0
� [i])�� [N0

� [i]) canbe checked at no extra costs.First, construct
a coverability graphfor

�
N0
� [i] � and, then,add the arcscorrespondingto x. If no new statesare

introduced,therequirementholds. In the remainderof this paper, we assumethat theapplicationof
PTSis restrictedto situationswheretheaddedpartdoesnotaddany new behavior in theoriginalpart
(i.e., [Nx

0
� [i])�� [N0

� [i])).
ConsiderFigure5.10wheretheold workflow processdefinitionon theright-handsideis reduced

by removing the alternative branchcontainingtasksignore complaintandupdatestatistics. If rule
r C 1

PTS� C is appliedto acasewhichmarksplacespendingcomplaintandignored, thenthetransferresults
in the statewhich marksplacespendingcomplaintandclassified. Rule r C 1

PTS� P mapsthe samecase
ontothestatewhich markspendingcomplaintandready. For all otherstates,bothr C 1

PTS� C andr C 1
PTS� P

correspondto theidentity function.
The following propertystatesthat transferringa casefrom a superclassto a subclassandback

yieldstheoriginal state.

42

Property 5.21.Let N0, N1, rPTS, r C 1
PTS� C, andr C 1

PTS� P beasdefinedin Theorems5.9 and5.20. For any
s � [N0

� [i]) , r C 1
PTS� C

�
rPTS

�
s���U� r C 1

PTS� P
�
rPTS

�
s���U� s.

Proof. Thedesiredresultfollows immediatelyfrom thedefinitionsof thetransferrulesin Theorems
5.9and5.20. j

Note that thepropertydoesnot hold in theoppositedirection,i.e., theremaybestatess � [N1
� [i])

suchthat rPTS
�
r C 1

PTS� C
�
s����q� s and rPTS

�
r C 1

PTS� P
�
s����q� s. Considerfor exampleFigure 5.10, where

the left-handprocessdefinition correspondsto N0 in Property5.21andthe right-handprocessdefi-
nition correspondsto N1. If s � [N1

� [i]) equals[pendingcomplaint� ignored], thenrPTS
�
r C 1

PTS� C
�
s���

� [pendingcomplaint� classified] andrPTS
�
r C 1

PTS� P
�
s���z� [pendingcomplaint� ready]. This example

shows thattransferringa casefrom a subclassto a superclassandbackdoesnot necessarilyyield the
original state.

Ruler C 1
PJS is a valid transferrule wheninheritance-preserving transformationrule PJSof Theorem

3.16is usedin the reversedirection. RecallthatPJSinsertsnew tasksbetweena transitiontp anda
placep. Ruler C 1

PJS removestokenspresentin theinsertedpartandmarksplacep instead.

Theorem 5.22. (Transfer rule r C 1
PJS) Let N0 � �

P0
� T0
� F0

���
0 � and N1 � �

P1
� T1
� F1

���
1� be two

workflow processdefinitionssatisfyingtherequirementsstatedin Theorem3.16. Moreover, let p be

thespecialplacedefinedin Theorem3.16andlet r C 1
PJS bea transferrule N1

r � 1
PJS� N0 suchthat, for all

s � � � P0 � , r C 1
PJS

�
s��� s, and,for all s � � � P1 ��Z_� � P0� , r C 1

PJS

�
s��� s � � P0
 [p]. Transferrule r C 1

PJS is
valid.

Proof. Let T O �� p � T . Moreover, let tp be the specialtransitiondefinedin Theorem3.16. If
transitiontp is an elementof T O, then the theoremreducesto Theorem5.17, becausein this case
transformationrule PJSreducesto transformationrule PPSof Theorem3.12. If tp is not anelement
of T O, thentheproof is similar to theproof of Theorem5.20andis mainly basedon the following
observation. In thefiring sequence3 , transitiontp andthetransitionsin T O occuralternatingly. This
propertyfollows from thefactthat

�
N1
� [i] � is safeandthat

�
N � [p] � is live andsafe. j

Figure5.12 is usedto illustratetransferrule r C 1
PJS. If placeinform man in the old processdefinition

on the right-handside is not marked, a casecanbe transferredwithout changingits state. If place
inform manis marked,thenthetokenin inform manis movedto ready.

Property 5.23.Let N0, N1, rPJS, and r C 1
PJS be asdefinedin Theorems5.11 and5.22. For any s �

[N0
� [i]) , r C 1

PJS

�
rPJS

�
s���U� s.

Proof. Thepropertyfollows directly from Theorems5.11and5.22. j
Ruler C 1

PJ3S is theremainingtransferrule which canbeusedto mapstatesto a new workflow process
definitionwherea parallelbranchis removed (i.e., rule PJ3Sappliedin the reversedirection). This
transferrulesimply removesall tokensin thedeletedparallelpart.

Theorem 5.24. (Transfer rule r C 1
PJ3S) Let N0 � �

P0
� T0
� F0

���
0 � and N1 � �

P1
� T1
� F1

���
1 � be two

workflow processdefinitionssatisfyingtherequirementsstatedin Theorem3.19. Moreover, let r C 1
PJ3S

bea transferrule N1
r � 1
PJ3S� N0 suchthat,for all s � � � P1 � , r C 1

PJ3S

�
s�U� s � � P0. Transferrule r C 1

PJ3Sis valid.

43

Proof. Let s � [N1
� [i]) and 3 � T1 : be suchthat

�
N1
� [i] � [3>) � N1

� s� . We have to prove that
r C 1

PJ3S

�
s� � [N0

� [i]) .
Let N bethelabeledP/Tnetdefinedin Theorem3.19.Let 3�? � T0: bethefiring sequenceobtained

by removing all occurrencesof transitionsin T Z[# ti � to % from 3 . Sequence3 ? is enabledin
�
N0
� [i] � . It

is not difficult to verify that thestateresultingfrom firing 3>? in � N0
� [i] � is equalto s with respectto

theplacesin P0, i.e.,r C 1
PJ3S

�
s�U� s � � P0

� [N0
� [i]) . j

In Figure 5.13, the right-hand-sideprocessdefinition hasbeentransformedinto the left-hand-side
processdefinition by removing taskcontactmanagement. Transferrule r C 1

PJ3S removesany token in
contactmanor mancontacted(if present)suchthat thecasecanbetransferredfrom thesubclassto
thesuperclass.

Property 5.25.Let N0, N1, rPJ3S� C, rPJ3S� P, andr C 1
PJ3S beasdefinedin Theorems5.16and5.24. For

any s � [N0
� [i]) , r C 1

PJ3S
�
rPJ3S� C � s���U� r C 1

PJ3S
�
rPJ3S� P � s���U� s.

Proof. It follows directly from Theorems5.16and5.24. j

For eachinheritance-preserving transformationrule of Section3.2, we have definedvalid transfer
rulesfor moving a casefrom a superclassto a subclassandvice versa.Theserulesaresuchthat if a
caseis movedfrom thesuperclassto thesubclassandback,theoriginal stateis obtained.(Generally,
theconversedoesnothold.)

pendingcomplaint

i

registered

custcontacted

contactdepartment

file dossier

contactcustomer

takeaction

contactmanagement

contactcust

contactman

man contacted

ignore complaint
inform management

ready

inform man

sendletter

classified

classifycomplaint
register

inform customer

pendingcomplaint

o

i

registered

ready

sendletter

classifycomplaint

cust contacted

classified
contactdepartment

file dossier

register

contactcustomer

takeaction

contactcust

o

Figure5.26: Dynamicchangebetweena superclass(left-hand-sideworkflow processdefinition)and
asubclass(right-hand-sideprocessdefinition).

If a seriesof inheritance-preserving transformationrules is applied,the compositionof the ap-
propriatecorrespondingtransferrulesyields a compositetransferrule which is valid. Considerfor
examplethe two workflow processdefinitionsshown in Figure5.26. The right-hand-sideprocess
definitionis asubclassof theleft-hand-sideprocessdefinitionunderlife-cycle inheritanceandcanbe
obtainedby applyingrulesPTS, PPS, PJS, andPJ3S. Let rC (r P) be the transferrule obtainedby
composingthe transferrulesrPTS, rPPS, rPJS, andrPJ3S� C (rPJ3S� P). Considera casein thesuperclass
whichmarkspendingcomplaintandcust contacted. If rC is usedto transferthiscaseto thesubclass,
theplacespendingcomplaint, cust contacted, andcontactmanaremarkedafterthetransfer. If r P is
used,man contactedis marked insteadof contactman. Let r C 1

C (r C 1
P) be the transferrule obtained

by composingthetransferrulesr C 1
PTS� C (r C 1

PTS� P), r C 1
PPS, r C 1

PJS, andr C 1
PJ3S. (Notethatfor this particularpair

of workflow processdefinitionsr C 1
C is equivalent to r C 1

P .) Considera casein the subclassmarking

44

pendingcomplaintand inform man. If r C 1
C is usedto transferthis caseto thesuperclass,theplaces

pendingcomplaintandreadyaremarkedafterwards.
To conclude,let us return to the problemillustratedby Figure1.1. Has this problem(i.e., the

dynamic-changebug) beensolved? Onemight arguethat theproblemhasnot beensolved,because
theinheritanceconceptsdo not provide a solutionfor this particularexample.However, asexplained
in the beginning of this section,thereis no satisfactory solutionbut to postponethe transfer(e.g.,
transferrule r �). Thestatewith a token in both p1 and p4 (right-handsideof Figure1.1) cannotbe
mappedontoa reasonablestatein thesequentialprocessdefinition(left-handside). Puttinga token
in i , s1, or s2 will result in the doubleexecutionof task sendbill . Putting a token in s2, s3, or o
will resultin theskippingof tasksendgoods. Thetransferrulespresentedin this sectionshow that,
if onerestrictschangeto the inheritance-preserving transformationrulespresentedin Section3.2, it
is alwayspossibleto find a satisfactory transferrule which is valid and, thus, the dynamic-change
problemcanbeavoided.We have not formalizedtheterm“satisfactory” but it is easyto seethat the
transferrulesdonot leadto theunnecessaryskippingor multipleexecutionof tasks.Thetransferrules
offer reasonablesolutionsfor the typesof changestypically usedto adapta workflow processdefi-
nition: adding/removing alternative branches(PTS), adding/removing loops(PPS), adding/removing
subflows betweensequentialtasks(PJS), andadding/removing parallelbranches(PJ3S).

5.4 Relatedwork on dynamic change

Therearemany similaritiesbetweendynamicchangein theworkflow domainandschemaevolutionin
thedatabasedomain.As therequirementsof databaseapplicationschangeover time,thedefinitionof
theschema,i.e.,thestructureof thedataelementsstoredin thedatabase,ischanged.Schemaevolution
hasbeenanactivefield of researchin thelastdecade(mainly in thefield of object-orienteddatabases,
cf. [18]) andhasresultedin techniquesandtoolsthatpartiallysupportthetransformationof datafrom
onedatabaseschemato another. Althoughdynamicchangeandschemaevolution aresimilar, there
aresomeadditionalcomplicationsin caseof dynamicchange.First, aswasshown in theexampleof
Figure1.1, it is not alwayspossibleto transfera case.Second,it is not acceptableto shutdown the
system,transferall cases,andrestartusingthenew procedure.Casesshouldbe migratedwhile the
systemis running. Finally, dynamicchangemay introducedeadlocksandlivelocks. The solutions
provided by today’s object-orienteddatabasesdo not dealwith thesecomplications.Therefore,we
neednew conceptsandtechniques.

Several researchershave worked on problemsrelatedto dynamicchange. Ellis, Keddara,and
Rozenberg [26] proposea techniquebasedon so-called“changeregions.” A changeregion contains
all partsof aworkflow processdefinitionthatpotentiallycauseproblemswith respectto thetransferof
cases.A changeregionhastwo versions;theold situationandthenew situation.In thissolution,there
is oneversionof thecompleteprocesswhich coverstheold andthenew situationandchangesaffect
casesassoonaspossible.Partsof theworkflow (i.e., changeregions)becomeinactive aftera while,
becauseall old caseshave beenhandled.This approachhasthedrawbackthat theprocessdefinition
canbecomevery complex (unlesssomeautomaticgarbagecollectionis added).Anotherdrawback
is the fact that the authorsdo not provide a methodfor identifying the changeregion, i.e., change
regionsneedto be identifiedmanually. The authorsdo provide a notion of changecorrectnessand
give specificcircumstancesfor which this is guaranteed.In [27], theauthorsimprove their approach
by introducingjumpers. A jumpermovesa casefrom the old workflow to the new workflow. The
jump is postponedif for a stateno jumper is available. Again, the authorsdo not give a concrete
techniquefor the transferof cases,i.e., jumpersareaddedmanually. In [25, 41], KeddaraandEllis
presentalanguageto supportdynamicevolutionwithin workflow systems(ML-DEWS).Basedonthe

45

differentmodalitiesof change,theauthorsgive a specialpurposemeta-languagegearedto modelthe
workflow of change.Agostini andDeMichelis [10] proposea techniquefor theautomatictransferof
casesfrom anold processdefinitionto anew processdefinitionandalsogive criteriafor determining
whethera transferis possible.Theapproachis interestingsinceit automaticallycomputesthestates
for which it is not possibleto migrate.Considerfor exampleFigure1.1. Theapproachpresentedin
[10] indicatesthenecessityto postponethetransferof runningcasesin state[p1

� p4]. Unfortunately,
the approachonly works for a restrictedclassof workflows (e.g., the modelinglanguagedoesnot
allow for iteration,althoughat runtimeiterationcanbeachievedby backwardjumps).A summaryof
this approachis given in [23]. Casati,Ceri, andPernici[20] tackletheproblemof dynamicchange
via a setof transformationrulesandpartition the statespaceinto a part that is aborted,a part that
is transferred,a part that is handledthe old way, and partswhich are handledby hybrid process
definitions(similar to the approachusingchangeregions). ReichertandDadam[52] usea similar
approach.However, semanticalissuessuchaserrorsintroducedby swappingtasks,skippingtasks,or
multiple executionsof a taskarenot considered.Voorhoeve andVanderAalst [60, 61] alsopropose
a fixed set of transformationrules to supportdynamicchange. However, the rules are not given
explicitly at thenetlevel andsemanticalissuesarenot considered.Thereaderinterestedin workflow
changeandPetri netsis alsoreferredto [6] which containsseveral papersof theauthorsmentioned
above. Wealsoreferto thePhDthesisof Keddara[41] for amorecompleteoverview of relatedwork
on dynamicchange.

Noneof thework mentionedaboveusesanapproachbasedoninheritance.Thetransferrulesbased
on the four inheritance-preserving transformationrulesguaranteethe preservation of the soundness
propertyafter a transfer. Moreover, semanticalerrorssuchas the swappingof tasks,the skipping
of tasks,andthemultiple executionof taskscanbeavoidedby choosingtheappropriateinheritance
notion,e.g.,projectioninheritanceguaranteesthattaskscannotbeskippedby transferringacasefrom
thesuperclassto thesubclass.

5.5 Combining an approachbasedon inheritance with changeregions

Thedynamic-changebug illustratedby Figure1.1 cannotbe solved usinganapproachbasedon in-
heritance.If, for example,a casein theparallelprocess(right) needsto bemigratedto thesequential
process(left), thentheinheritance-preserving transformationrulesandothertechniquespresentedin
thispaperarenotof any assistance.Thereis not anacceptableway to migrateacasein state[p1

� p4]
to thesequentialprocess.Theonly wayto avoid anomaliesis to postponethetransferof thiscaseuntil
sendgoodsis executed.Theinheritancenotionscanonly beusedto avoid suchasituation:If change
is limited to the inheritance-preserving transformationrules,thenit is alwayspossibleto circumvent
the dynamic-changebug. In Section4, it hasbeenmotivatedthat therearemany situationswhere
it is reasonableto limit changeto oneof the four inheritancenotions. However, it is not realisticto
expectthatany changecanberestrictedin this way. As Figure1.1shows, therearesituationswhere
it makessenseto changethedegreeof parallelism.Moreover, theremaybeothersituationswhereit
makessenseto deliberatelychangeto orderingof tasks.For thesesituations,noneof four inheritance
notionsapplies.Therefore,we proposean approachcombiningthe the techniquespresentedin this
paperwith thetechniquespresentedin [10, 23,26, 27].

Supposethatwe want to changea workflow processdefinition from N0 to N1 in sucha way that
not all changesare capturedby our inheritance-preserving transformationrules. The first stepin
thecombinedapproachis the identificationof thosechangesthatarecapturedby thetransformation
rules.Applying thetransformationsyieldsanintermediateworkflow processdefinition N2; asshown
in this section,all casesof N0 canbe transferredto N2. Thesecondstepin thecombinedapproach

46

is to identify the remainingchangesaschangeregions. Every changeregion is definedby a pair of
workflow processdefinitions

�
Nc

2
� Nc

1 � suchthatNc
2 , theold region, is asubnetof N2 andNc

1 , thenew
region, is asubnetof N1. For simplicity, let usassumethatthereis only onechangeregion

�
Nc

2
� Nc

1 � .
For this changeregion, we canusethe techniquespresentedin [10, 23, 26, 27]. For example,if the
degreeof parallelismis increasedin thechangeregion, thenwe canapplyTheorem8.2of [26]. This
theoremstatesthatit is possibleto migratecaseswhenmoving to a moreparallelprocess(upsizing),
i.e., thereis anacceptablefunctionfor migratingcasesfrom Nc

2 to Nc
1 . Considera workflow process

wherethe changeregion
�
Nc

2
� Nc

1 � is describedby Figure1.1: The left-handsidedescribesthe old
region andtheright-handsidedescribesthenew region. Theorem8.2 statesthat for any stateof the
old region it is possibleto migratethecaseto thenew region. Thus,in this example,all casescanbe
transferredfrom theoriginal workflow processdefinition N0 via the intermediateprocessdefinition
N2 to thenew processdefinition N1 by combiningthetechniquesof this paperandthoseof [26]. As
anotherexample,assumethat the degreeof parallelismis reducedin changeregion

�
Nc

2
� Nc

1 � (i.e.,
downsizing). In this case,Theorem8.1 of [26] canbeapplied. This theoremstatesthata so-called
SyntheticCut-OverChange (SCOC),which temporarilyaddsboth Nc

2 to Nc
1 to the new workflow

processdefinition,canbeusedto dealwith theproblem.ConsideragainFigure1.1. If theright-hand
sidedescribestheold region Nc

2 andtheleft-handsidedescribesthenew region Nc
1 , thenboththeold

andthenew region needto beaddedtemporarilyto thenew workflow processdefinition. New cases
arehandledaccordingto thenew region andexisting casesarehandledaccordingto theold region.
Thus,in thiscase,acompletetransferof all casesis notpossible.

Theabove examplesshow how our approachcanbecombinedwith thetechniquesof [26]. Simi-
larly, we canapplythetechniquespresentedin [10, 23, 27]. Thescopeof thesetechniquesis limited
to thosechangesthatarenot capturedby theinheritance-basedtechniquespresentedin thispaper.

6 Managementinformation

Thetransferrulesdefinedin theprevioussectionareusedto migratecasesfrom oneworkflow process
definitionto anotherworkflow processdefinition.If all casesaremigratedto themostrecentworkflow
processdefinition, it is easyto provide aggregatemanagementinformation. For eachplace p, it
is possibleto count the numberof casesmarking p. By indicating thesenumbersin the WF-net
representingthemostrecentworkflow processdefinition, themanagerobtainsa condensedview of
thework-in-progress.However, in many situations,therearemultiple versionsand/orvariantsof the
sameworkflow process.For evolutionarychange,thenumberof versionsis typically limited. In fact,
if all casesare transferreddirectly after a change,thereis just oneactive version. However, if the
proceedpolicy (transfersarepostponeduntil thecaseis handledcompletely, i.e., transferrule r � of
Definition 5.4) is usedor transfersaredelayed,therearemultiple active versions.As indicatedin the
introduction,theremay be variousreasonsfor usingsuchpolicies(e.g., legal constraints,technical
problems,or managerialconsiderations).If theaverageflow time of casesis long andevolutionary
changesoccurfrequently, therecanbedozensof versions.Ad-hocchangemayresultin anevenlarger
numberof variantsof thesameworkflow process.In fact,it is possibleto endupin thesituationwhere
thenumberof variantsis of thesameorderof magnitudeasthenumberof cases.In Section4, it has
beenpointedout thattheshift from a“Sellers’ Market” to a “Buyers’ Market” leadsto anincreasein
thenumberof productsandservicesoffered.Considerfor examplethenumberof variantsof aspecific
carmodel(combinationsof colors,engines,options,accessories).Thenumberof variantsmayin fact
exceedthe numberof carsactuallysold. Clearly, the resultof this shift is an increasingnumberof
variantsof a givenworkflow process.Moreover, today’s customersexpectflexibility which maylead

47

to evenmorenew ad-hocvariants.To managea workflow processwith differentversions/variants,it
is desirableto have anaggregatedview of thework-in-progress.Therefore,asindicatedin Section1,
it is of theutmostimportanceto supplyamanagerwith toolsto obtainacondensedbut accurateview
of thestatusof thecasesin theworkflow processathand.

In this section,we show that the inheritancenotionsintroducedin this paperfacilitate the con-
structionof aggregatemanagementinformation. First, we introducethe notion of a management-
informationnet. Second,wedefinethenotionsof aMaximal/GreatestCommonDivisor (MCD/GCD)
anda Minimal/LeastCommonMultiple (MCM/LCM) of a numberof workflow processdefinitions.
Third, we discussthe utilization of the four inheritance-preserving transformationrulesof Section
3.2 for constructingaggregatemanagementinformation. Finally, we discussseveral approachesfor
obtainingaggregatemanagementinformationin thevariousapplicationareasidentifiedin Section4.

6.1 Management-information nets

To provide a managerwith succinctinformationaboutwork-in-progress,we needonediagramsum-
marizingthestatesof all runningcasesin all versionsand/orvariantsof a workflow process.That is,
thediagramshouldnotshow thestatesof individual casesnorshouldit show all theversions/variants
of a workflow process;the informationshouldbe at an aggregatelevel. Every version/variantof a
workflow processis representedasaworkflow processdefinition(i.e.,asoundWF-net).Therefore,it
is reasonableto useaworkflow processdefinitionto presentaggregatemanagementinformation.We
usethetermManagement-Informationnet(MI-net) to referto aworkflow processdefinitionwhich is
usedto visualizework-in-progress.

Definition 6.1. (MI-net) Let N0
� N1

�.45454�� NnC 1, wheren is somenaturalnumber, be n workflow
processdefinitionsin n , which areversions/variantsof thesameworkflow process.In addition,let
N be a workflow processdefinition in n . Net N is a Management-Informationnet (MI-net) for
N0
� N1

�.45454�� NnC 1 if andonly if thereis a total, valid transferrule for eachversion/variant, i.e., for
eachk, with 0 � k < n, thereis a transferrule rk suchthat Nk

rk� N, [Nk
� [i])�� dom

�
rk � , andrk is

valid.

Givenanumberof versionsand/orvariantsof aworkflow processandanMI-net with accompanying
transferrules,thestatesof every runningcasecanbemappedonto theMI-net usingtheappropriate
transferrule. Notethat thereis no actualtransferof cases;only informationaboutthestateof a case
is mappedonto theMI-net. Sincewe want to collect informationaboutall cases,the transferrules
in Definition 6.1arerequiredto be total. Furthermore,becausemanagementinformationmustbeas
accurateaspossible,it is requiredthatthetransferrulesarevalid.

Note that Definition 6.1 is not very restrictive. In fact, the definition doesnot imposeany re-
strictionson anMI-net otherthantherequirementthat it is a workflow processdefinition;any sound
WF-netcanserve asan MI-net. In principle, we canmapcasesfrom any setof workflow process
definitionsonto an arbitraryMI-net by usingoneof the trivial transferrulesgiven in Definition 5.4
(i.e.,r i or ro). Therefore,thequalityof managementinformationcanbelow. In general,it is noteasy
to find ameaningfulMI-net andnon-trivial valid transferrules.

Considerfor examplethe threeworkflow processdefinitionsshown in Figure6.2. Theseprocess
definitionsare variantsof the sameworkflow process.Thesevariantscan be the result of ad-hoc
changes.Processdefinition N0 represents,for example,the normalprocess.Processdefinition N1

yieldsaslightly changedworkflow wheretheparallelbranchcontainingtaskcheck1 is added.Process
definition N2 is anotherad-hocvariantwheretaskcheck2 is addedin-betweenhandleandarchive.

48

5

0

2

2

0

1

3

1

4

3

0

0

2

1

3

p5

i

p1

handle

register

p2

archive

o

N1 i

p1

handle

register

p2

archive

o

N2i

p1

handle

register

p2

archive

o

N0

check1

p3

p4

check2

Figure6.2: Threevariantsof aworkflow process.

Note that the threeworkflow processdefinitionscanalsobe the resultof evolutionarychanges(in
which casethey arecalledversions).Net N0 is for examplethe oldestprocessdefinition, N1 is the
successorof N0, andN2 is thesuccessorof N1. Notethat N2 is nota subclassof N1 underany of the
four inheritancerelationsof Definition 3.4. This is not a problemsince,for now, arbitrarychanges
areconsidered,i.e., alsochangesnot respectingthe inheritancerelations. In the remainderof this
section,we only usetheterm“variant” andnot theterm“version”whenreferringto anelementof a
setof workflow processdefinitions.However, theconceptsarevalid for bothad-hocandevolutionary
changes.

Thenumbersshown in Figure6.2 areusedto indicatethenumberof caseswithin a certainstate
for eachvariant.For example,in variantN1, therearefour cases.For eachof thesecases,registerhas
beenexecutedandfor noneof thesecasesarchivehasbeenexecuted.Taskhandlehasbeenexecuted
for two of thesecasesandcheck1 hasbeenexecutedfor threeof thesecases.Note that, in total,
thereare23 casesin the threevariantsshown in Figure6.2: eleven in N0, four in N1, andeight in
N2. For thesethreesimplevariants,thereis no realneedfor aggregatemanagementinformationwith
respectto work-in-progress.However, onecanimaginethat, if the numberof variantsincreasesor
thevariantsthemselvesbecomemorecomplex, thereis a needfor aggregateinformationratherthan
separatestatusreportsfor eachvariant(asis shown in Figure6.2). To accommodatethis need,the
caseshave to bemappedontoanMI-net. Even for the threesimplevariantsshown in Figure6.2, it
is not clearhow to constructa meaningfulMI-net. ShouldanMI-net beoneof thevariants?Should
theMI-net emphasizethecommonpartsasmuchaspossible?Shouldit captureall possibleroutings?
Anothernon-trivial questionis how to obtainmeaningfultransferrules.

Figure6.3 shows two MI-nets for the threeprocessvariantsshown in Figure6.2. The left-hand-
side MI-net NGCD emphasizesthe commonpart of the threevariants. Eachof the threevariants
containsthestepsregister, handle, andarchiveandthesestepsarealwaysexecutedin this order. The
right-hand-sideMI-net NLCM containsall taskspresentin any of thevariantsin aneffort to captureall
possibleroutings. Note that the two MI-netsareaugmentedwith numbersindicatingthenumberof
casesin eachstate.For example,in bothMI-nets,placep1 is labeledwith 7 � 1
 2
 4 indicating
that seven casesin Figure6.2 arein a statebetweenregister andhandle, onein variant N0, two in
variantN1, andfour in variantN2.

It is interestingto notethat eachof the threeworkflow processdefinitionsshown in Figure6.2
is a subclassunderlife-cycle inheritanceof the left-handMI-net NGCD; N0 is identicalto NGCD; N1

49

7 = 1+2+4

3 = 2+0+1

7 = 1+2+4

8 = 3+2+3

3 = 2+0+1

3 = 0+0+3

5 = 3+2+0
14 = 4+3+7

1 = 0+1+0

5 = 5+0+0 5 = 5+0+0
p4

i

p1

handle

register

p2

archive

o

NGCD i

p1

register

p2

archive

o

NLCM

check2
check1

p5
handle

p3

Figure6.3: TheGreatestCommonDivisor (GCD) andLeastCommonMultiple (LCM) of the three
workflow processdefinitionsof Figure6.2.

canbeconstructedfrom NGCD by applyingtransformationrule PJ3Sof Theorem3.19andN2 canbe
constructedfrom NGCD by applyingrule PJSof Theorem3.16. As a result,we canusethe transfer
rulesr id, r C 1

PJ3S, andr C 1
PJSof theprevioussectionto mapstatesof thethreeworkflow processdefinitions

of Figure6.2onto NGCD of Figure6.3. It is not difficult to verify thatoneobtainsthenumbersgiven
in Figure6.3whendoingso.

As mentioned,the otherMI-net shown in Figure6.3, NLCM, attemptsto captureall possiblebe-
haviors of the threeworkflow processdefinitionsof Figure6.2 ratherthanfocusingon thecommon
parts;by hiding check1 and/orcheck2, onecanfind eachof thethreevariants.This meansthateach
of the threeworkflow processdefinitionsshown in Figure6.2 is a superclassof NLCM: NLCM can
be constructedfrom N0 by applyingthe inheritance-preserving transformationrulesPJSandPJ3S;
NLCM canbeconstructedfrom N1 by applyingPJSandit canbeobtainedfrom N2 by applyingPJ3S.
Consequently, we canuserPJS of Theorem5.11to mapstatesof N1 onto NLCM. Furthermore,states
of N2 canbemappedonto NLCM usingeitherrPJ3S� C or rPJ3S� P of Theorem5.16. Statesof N0 canbe
mappedonto NLCM usingrPJS andeitherrPJ3S� C or rPJ3S� P. Notethat,in Figures6.2and6.3, thefour
casesin N0 in-betweenregisterandarchiveaswell asthesevencasesin N2 in-betweenregisterand
archivehave beenmappedontoplacep4 of NLCM usingtransformationrule rPJ3S� P. As aresult,place
p4 of NLCM is labeledwith 14 � 4
 3
 7. (Placep4 containsalsoinformationon the threecases
residingin statesmarking p4 in N1.)

In thecontext of managementinformation,thereis agoodreasonto usetransferrulerPJ3S� P instead
of rule rPJ3S� C if both rulesareapplicable.Technically, it is possibleto usea conservative mapping
basedon rPJ3S� C (i.e., in the above example,twelve casesaremappedonto place p3 in NLCM) or a
progressive mappingbasedon rPJ3S� P (i.e., justonecaseis mappedontoplacep3 in NLCM). However,
for the purposeof managementinformation, it is not meaningfulto userPJ3S� C. The conservative
mappingresultsin a view which is too pessimistic.Thecasesin N0 andN2 in-betweenregisterand
archivedo not requiretheexecutionof taskcheck1, whereastheconservative mappingof thesecases
onto NLCM suggeststhat they do. Transformationrule rPJ3S� C doesnot provide an accurateestimate
of work-in-progress.Therefore,we exclude this transformationrule for determiningmanagement
information. In the remainder, we only usethe othertransferrulesof the previous section,namely
rPTS, rPPS, rPJS, rPJ3S� P, r C 1

PTS� C, r C 1
PTS� P, r C 1

PPS, r C 1
PJS, andr C 1

PJ3S. Notethatit is meaningfulto considerboth
r C 1

PTS� C andr C 1
PTS� P. If analternative branchpresentin onevariantof a workflow processis not present

50

in theMI-net that is beingused,casesfor which partof thealternative branchhasbeenexecutedcan
bemovedto thepointwherethealternative branchstarts(conservative view) or to thepointwherethe
alternative branchends(progressive view). Thequestionof whichmappingis mostaccuratedepends
on thecontext.

Theexampleof Figures6.2and6.3illustratesthebasicideaof constructingaggregatemanagement
information.It shows thattheinheritanceconceptsintroducedin thispapercanbeusefulin obtaining
meaningfulMI-nets and transferrules. Clearly, the namesNGCD and NLCM of the two MI-nets in
Figure6.3aresuggestive. In thenext subsection,thenotionsof aMaximal/GreatestCommonDivisor
(MCD/GCD) of a numberof variantsof a workflow processand the notionsof a Minimal/Least
CommonMultiple (MCM/LCM) of a numberof variantsareformalized. In Section6.3, the role of
the inheritance-preserving transformationrulesof Section3.2 andthe transferrulesof Section5 is
studiedin moredetail.

6.2 Maximal common divisors and minimal common multiples of workflow process
definitions

The left-hand-sideWF-net NGCD shown in Figure6.3 is an MI-net which is a superclassof eachof
the threevariantsshown in Figure6.2. As explained,the casespresentin the threevariantscanbe
mappedonto NGCD using respectively transferrule r id (seeDefinition 5.6), transferrule r C 1

PJ3S (see
Theorem5.24),andtransferrule r C 1

PJS (seeTheorem5.22). Onecanthink of NGCD asthe intersection
or greatestcommondivisor(GCD)of thethreeprocessdefinitionsshown in Figure6.2; NGCD contains
theelementswhich arepresentin all variants.By coincidence,NGCD equalsoneof thevariants(N0).
The right-hand-sideMI-net NLCM shown in Figure6.3 doesnot correspondto oneof the variants.
One can think of this MI-net as the union or least commonmultiple (LCM) of the threevariants
shown in Figure6.2. However, theterms“intersection”and“union” maybemisleading,becausethe
straightforwardintersectionandunionof thenetwork structureof asetof workflow processdefinitions
generallydoesnot yield anMI-net. Therefore,we prefertheterms“GCD” and“LCM.” Thenotions
of aGCDandanLCM aredefinedusingthelife-cycle-inheritance relationof Definition3.4-4andthe
auxiliary notionsof a Maximal CommonDivisor (MCD) anda Minimal CommonMultiple (MCM).
Recall that c� , as definedin Definition 2.25, denotesbehavioral equivalenceof workflow process
definitions.

Definition 6.4. (MCD/GCD, MCM/LCM) Let N0
� N1

�.45454�� NnC 1, wheren is somenaturalnumber,
andN beworkflow processdefinitionsin n .

1. Net N is aMaximalCommonDivisor (MCD) of N0
� N1

�.45454�� NnC 1 if andonly if

(a)
�`|

k : 0 � k < n : Nk � lc N � and,

(b) for any workflow processdefinition N ? suchthat
�`|

k : 0 � k < n : Nk � lc N ? � and
N ?�� lc N, N ? c� N.

2. Net N is a GreatestCommonDivisor (GCD) of N0
� N1

�.45454�� NnC 1 if andonly if, it is anMCD
of N0

� N1
�.45454�� NnC 1 suchthat,for all MCDs N ? of N0

� N1
�.454545� NnC 1, N ? c� N.

3. Net N is aMinimal CommonMultiple (MCM) of N0
� N1

�.454545� NnC 1 if andonly if

(a)
�`|

k : 0 � k < n : N � lc Nk � and,

(b) for any workflow processdefinition N ? suchthat
�`|

k : 0 � k < n : N ?K� lc Nk � and
N � lc N ? , N ? c� N.

51

4. Net N is aLeastCommonMultiple (LCM) of N0
� N1

�.454545� NnC 1 if andonly if, it is anMCM of
N0
� N1

�.45454�� NnC 1 suchthat,for all MCMs N ? of N0
� N1

�.454545� NnC 1, N ? c� N.

Notethatthenotionsof anMCD/GCDandanMCM/LCM aredefinedwith respectto life-cycle inher-
itanceandnot with respectto thesizeof workflow processdefinitions(wherethesizeof a workflow
processdefinitionis determinedby its numberof tasks).If NMCD is anMCD of two workflow process
definitionsN0 andN1, thenNMCD typically containsfewer tasksthanN0 andN1, which conformsto
theintuitive notionof anMCD. On a first reading,thedefinitionof anMCD of a numberof process
variantsmight becounterintuitive becauseanMCD is requiredto beasuperclassof theprocessvari-
ants.Similarly, if NMCM is anMCM of N0 andN1, thenNMCM typically containsmore tasksthanN0

andN1. Moreover, althoughit is straightforwardto show thatany MCM is asubclassunderlife-cycle
inheritanceof any MCD (� lc is transitive; seeProperty3.7),anMCM is typically largerthananMCD
in termsof their numbersof tasks.Considerfor exampletheprocessdefinitionsshown in Figure6.3.
Accordingto Definition 6.4, NGCD is anMCD of thethreevariantsshown in Figure6.2andNLCM is
anMCM of thesethreevariants.Although NLCM � lc NGCD, NLCM hastwo tasksmorethanNGCD.

Definition 6.4raisestwo interestingquestions:

1. Hasany setof workflow processdefinitionsalwaysat leastoneMCD andat leastoneMCM?

2. Hasany setof workflow processdefinitionsalwaysaGCDandanLCM?

In theremainder, weanswerthesequestions.Weshow thattheanswerto thefirst questionis affirma-
tive. Unfortunately, theanswerto thesecondquestionis negative. Notethat,sofar, we have usedthe
terms“a GCD” and“an LCM” ratherthan“the GCD” and“the LCM.” However, it follows immedi-
atelyfrom Definition6.4thatany two GCDsof asetof workflow processdefinitionsareequivalentin
thesensedefinedin Definition 2.25;that is, a GCD of asetof workflow processdefinitionsis unique
up to branchingbisimilarity. Thesameis true for anLCM of a setof workflow processdefinitions.
Therefore,in theremainder, we usetheterms“the GCD” and“the LCM.”

Thefollowing propertyis neededto provethatfor any setof workflow processdefinitionsthereisat
leastoneMCD andat leastoneMCM. A setof totally ordered(accordingto thelife-cycle-inheritance
relation � lc) workflow processdefinitionsis calledachain.

Property 6.5.Let N0 andN1 betwo workflow processdefinitionsin n suchthat N0 � lc N1. There
is no infinite chain N0 � lc N1 � lc

45454 of different(with respectto c�) workflow processdefinitions
N0 � N1 �.45454 � n suchthat N0 � lc N0 � lc N1 � lc

45454 � lc N1.

Proof. Let N and N ? be two workflow processdefinitionsin n suchthat N � lc N ? . The following
threeobservationsareimportant. First, S � N ? ����S � N � . Second,if N qc� N ? , then S � N ? ����S � N � .
Third, S � N �9Z[S � N ?B� is finite.

Let N0 � lc N1 � lc
45454 beaninfinite chainof differentworkflow processdefinitionsN0 � N1 �.45454 � n

suchthat N0 � lc N0 � lc N1 � lc
45454 � lc N1. It follows from thefirst two of theabove observationsthat

S � N1 ��� 45454 �;S � N1 ���sS � N0 ���;S � N0 � . The third observation above statesthat S � N0 ��Z[S � N1 � is
finite. However, this yieldsacontradiction,whichprovestheproperty. j
Thefollowing theoremanswersthefirst questionraisedabove affirmatively.

Theorem6.6.(Existenceof an MCD and an MCM) Let N0
� N1

�.45454�� NnC 1, wheren is somenatural
number, ben workflow processdefinitionsin n . ThereexistsanMCD of N0

� N1
�.454545� NnC 1 andthere

existsanMCM of N0
� N1

�.454545� NnC 1.

52

Proof. RecallProperty6.5. It statesthat thereareno infinite chainsin-betweenany two workflow
processdefinitionsrelatedby � lc. Consequently, to provetheexistenceof anMCD, it sufficesto show
that thereexists a workflow processdefinition that is a superclassof all variantsN0

� N1
�.454545� NnC 1.

Similarly, to prove the existenceof an MCM, it suffices to show that thereis a workflow process
definitionthatis asubclassof all variants.

Let N� be the workflow processdefinition containingonetasklabeledG , i.e., N�m� � # i � o% � #�GN% �
� i � GN� � � G � o��% � # � G � GN��%�� . Clearly, N� is asuperclassof any workflow processdefinition.Thus,N� is a
superclassof eachof thevariants,whichprovestheexistenceof anMCD.

Let N� be the net which is constructedfrom all the variantsN0
� N1

�.45454�� NnC 1 asfollows. The
sourceplacei of N� hasn outputtransitions,onefor eachvariant.Eachof thesenew transitionshasa
uniquetasklabelthatdoesnotoccurin thealphabetsof any of thevariants.Thesourceplaceof each
variantis givena new identifierandconnectedasanoutputplaceto oneof then new transitions.In
thisway, thenew transitionsactasguardsfor then original variants.Thesinkplacesof then variants
aresimply fusedtogether, yielding thesink placeo of N� . Clearly, N� is a subclassof eachvariant;
by blockingall new transitionsexceptonewhich is hidden,oneobtainsaworkflow processdefinition
branchingbisimilar to oneof thevariants.Therefore,weconcludethatalsoanMCM of then variants
exists. j

Theanswerto thefirst questionphrasedabove is positive: Any setof workflow processdefinitionshas
anMCD andanMCM. Unfortunately, asalreadymentioned,theanswerto thesecondquestionis neg-
ative. A setof workflow processdefinitionsmayhave two or moredifferentMCDs,whichmeansthat
it hasnoGCD.Similarly, asetof workflow processdefinitionsmayhavetwo or moredifferentMCMs
and,thus,no LCM. Considerfor examplethetwo processdefinitionsshown in Figure1.1. Thereare
at leasttwo MCDs. Both thesequentialprocessdefinitionconsistingof taskprepare shipment, task
sendgoods, and task record shipmentand the sequentialprocessdefinition consistingof taskpre-
pare shipment, tasksendbill , andtaskrecord shipmentareMCDs of N0 andN1. It is easyto verify
that both workflow processdefinitionsareMCDs. Eachof themis a superclassof both N0 and N1

and,in bothcases,thereis not a smaller(with respectto � lc) candidate.Similarly, thetwo workflow
processdefinitionsN0 andN1 shown in Figure1.1 have morethanoneMCM. Considertheprocess
definition N� mentionedin theproof of Theorem6.6. Thatis, consideraworkflow processdefinition
consistingof N0 andN1 andstartingwith two additionalguardtransitions.Eachof theguardtransi-
tionshasauniquelabel,sayl0 andl1, respectively. If l0 is blockedandl1 hidden,thenN� is branching
bisimilar to N1; if l1 is blocked andl0 hidden,then N� is branchingbisimilar to N0. Therefore,N�
is a subclassof both variants. Thereis no workflow processdefinition which is a subclassof both
variants,a superclassof N� , andnot branchingbisimilar to N� . Therefore,N� is anMCM of N0 and
N1. However, the labelsl0 andl1 werechosenarbitrarily, i.e., any pair of labelsnot usedin N0 and
N1 will do. Therefore,N0 andN1 have asmany MCMs astherearecombinationsof labelsnot used
in N0 andN1.

Basedon thetwo variantsshown in Figure1.1,we concludethata givensetof workflow process
definitionscanhaveseveralMCDsandMCMs. In theexampleof Figure1.1,thereasonis thatN0 and
N1 doagreeonthepresenceof thetaskssendgoodsandsendbill , whereasthey donotagreeontheir
ordering. However, in many situations,thereis oneunique(modulobranchingbisimilarity) MCD,
which is thereforetheGCD,andoneuniqueMCM, theLCM. For example,thethreevariantsshown
in Figure6.2have a GCD andanLCM, namelythenetsNGCD andNLCM of Figure6.3, respectively.
Thefollowing theoremstatesnecessaryandsufficient requirementsfor theexistenceof aGCDand/or
anLCM.

53

Theorem 6.7.Let N0
� N1

�.454545� NnC 1, wheren is somenaturalnumber, ben workflow processdefini-
tionsin n .
Workflow processdefinition N in n is theGCD of N0

� N1
�.45454�� NnC 1 if andonly if

1.
�`|

k : 0 � k < n : Nk � lc N � and,

2. for any workflow processdefinition N ? in n ,
�`|

k : 0 � k < n : Nk � lc N ? � implies N � lc N ? .
Workflow processdefinition N in n is theLCM of N0

� N1
�.454545� NnC 1 if andonly if

1.
�`|

k : 0 � k < n : N � lc Nk � and,

2. for any workflow processdefinition N ? in n ,
�`|

k : 0 � k < n : N ?N� lc Nk � implies N ?�� lc N.

Proof. Theproofsof thetwo partsof thetheoremarevery similar. Therefore,we only prove thefirst
part.

First,assumethatN is theGCDof N0
� N1

�.454546� NnC 1. It follows from Definition6.4(MCD,GCD)
that

�`|
k : 0 � k < n : Nk � lc N � . Thus,N satisfiesthefirst requirementof Theorem6.7. To prove

thatit alsosatisfiesthesecondrequirement,assumethatthereexistsaworkflow processdefinitionN ?
in n suchthat

�`|
k : 0 � k < n : Nk � lc N ?V� and N q� lc N ? . It follows from Property6.5 that N ?

canbechosenin sucha way that it is anMCM of N0
� N1

�.45454�� NnC 1. However, by Definition 6.4-2
(GCD), this meansthat N c� N ? , which contradictsthefact that N q� lc N ? (� lc is a partialorder;see
Property3.7). Thus,N satisfiesalsothesecondrequirementof Theorem6.7.

Second,let N beaworkflow processdefinitionsatisfyingthefirst pairof requirementsof Theorem
6.7. ConsiderDefinition 6.4-1 (MCD). Assumethat N ? is a workflow processdefinition suchthat�`|

k : 0 � k < n : Nk � lc N ? � and N ? � lc N. It follows that N � lc N ? , which in combinationwith
N ?� lc N implies that N ? c� N (� lc is a partial order; seeProperty3.7). Thus,net N satisfiesthe
requirementsin Definition 6.4-1,which meansthat it is anMCD. Assumethat NMCD is anarbitrary
MCD of the n variants. It follows from the assumptionson N that N � lc NMCD. Consequently,
Definition6.4-1(MCD) yieldsthatN c� NMCD, whichmeansthatN satisfiesDefinition6.4-2(GCD).

j
So far, we have formalizedthe notionsof MCD, GCD, MCM, and LCM. It hasbeenshown that
MCDsandMCMs alwaysexist, but thatthey arenotnecessarilyunique.If asetof workflow process
definitionshasa uniqueMCD (MCM), thenthis MCD (MCM) is the GCD (LCM). The reasonfor
studyingthesenotionsis that they aresuitableto aggregatemanagementinformation. That is, any
MCD or MCM of a setof workflow processdefinitionsis a suitableMI-net, asdefinedin Definition
6.1,for theseprocessdefinitions.However, in general,it is not straightforwardto determineanMCD
or anMCM of a setof workflow processdefinitionsor, whenthey exist, theGCD or theLCM of this
set.In addition,evengivenanMCD, anMCM, theGCD,or theLCM, it is notalwayspossibleto find
meaningfultransferrulesfor mappingcasesin thevariousworkflow processdefinitionsontosucha
net.However, therearesituationswhereit is quiteeasyto pinpointtheGCD and/ortheLCM of aset
of workflow processdefinitions.Theremainderof this subsectionis devotedto explaininga number
of thesesituations.In thenext subsection,we returnto thetopicof findingappropriatetransferrules.

Considersomenumberof workflow processdefinitions that are variantsof a single workflow
process. First, if all the variantsare equivalent (accordingto the behavioral equivalencerelation
c�), an arbitraryvariant is the GCD aswell asthe LCM. Second,if the variantsform a chain, i.e.,
thevariantsaretotally orderedaccordingto the � lc relation,thenthe leastelementis theLCM and
the greatestelementis the GCD. Third, if onevariant is a superclassof all the othervariants,then

54

this variant is the GCD. Note that the threeworkflow processdefinitionsof Figure6.2 satisfy this
requirement.ProcessdefinitionN0 is asuperclassof both N1 andN2, whichmeansthatit is theGCD
of the threevariants.This resultconformsto our earlierclaims. Fourth, if onevariantis a subclass
of all theothervariants,thenthisvariantis theLCM. Fifth, if two variantshave no tasksin common,
thentheGCDequalstheemptyworkflow processdefinitionN� asintroducedin theproofof Theorem
6.6. Finally, if thevariantshave nothingin common(i.e., with respectto internalplaces,transitions,
andlabels)andalwaysstartwith a realtask(i.e.,a non-G -labeledtransition),thentheLCM is simply
theunionof all workflow processdefinitions.Thefollowing propertyformalizestheabove claims.

Property 6.8.Let N0
� N1

�.454545� NnC 1, wheren is somenaturalnumber, ben workflow processdefini-
tionsin n .

1. If N0
c� N1

c� 45454 c� NnC 1, then,for any k with 0 � k < n, Nk is boththeGCD andtheLCM
of N0

� N1
�.45454�� NnC 1.

2. If N0 � lc N1 � lc
45454 � lc NnC 1, thenN0 is theLCM andNnC 1 is theGCD of N0

� N1
�.45454�� NnC 1.

3. If, for all k with 0 � k < n, Nk � lc N0, thenN0 is theGCDof N0
� N1

�.454546� NnC 1.

4. If, for all k with 0 � k < n, N0 � lc Nk, thenN0 is theLCM of N0
� N1

�.454546� NnC 1.

5. If, for some j andk with 0 � j < k < n, S � N j ��lS � Nk ����� , thenN� � � # i � o% � #�GN% � # � i � GN� �� G � o��% � # � G � GN�9%�� is theGCDof N0
� N1

�.454546� NnC 1.

6. If, for all j andk with 0 � j < k < n, S � N j ���DS � Nk �!�;� and
�
Pj � Tj ��� � Pk � Tk �!�s# i � o%

and,for all k with 0 � k < n andall transitionst � i
Nk' , t hasa label differentfrom G , then

N�z� 0� k n Nk is theLCM of N0
� N1

�.45454�� NnC 1.

Proof. Thefirst four propertiesfollow immediatelyfrom Theorem6.7.
To prove thefifth property, first, observe that N� is a superclassunderlife-cycle inheritanceof all

n variants.(SeeDefinition 3.4-4(Life-cycle inheritance);clearly, hiding all tasksin a variantyields
a processequivalentto N� .) Second,let N ? beanarbitrarysuperclassof N0

� N1
�.45454�� NnC 1. Consider

two variantsN j andNk, with 0 � j < k < n, suchthat S � N j �¡�zS � Nk �!��� . SinceN j � lc N ? , it follows
that S � N ?O�	�^S � N j � ; similarly, S � N ?V�	�¢S � Nk � . Hence,it follows that S � N ?V�	�¢S � N j ���DS � Nk �U�;� ,
which meansthat S � N ? �£�$� . Consequently, N ? c� N� , which meansthat N� � lc N ? . Hence,by
Theorem6.7,we concludethat N� is theGCD of thesetof variantsN0 throughNnC 1.

To prove the lastproperty, we first show that N� is a subclassof eachof thevariants.Considera
variantNk, for somek with 0 � k < n. Sincefor all j with 0 � j < n and j q� k, S � N j ����S � Nk �U��� ,�
Pj � Tj �� � Pk � Tk ����# i � o% , andall transitionst � i

Nj' have a labeldifferentfrom G , blockingall

transitionsin i
N ¤' Z i Nk' in N� , yields a processbranchingbisimilar to Nk. Hence,N��� lc Nk, which

meansthat it is a subclassof all n variants.Second,we prove that any workflow processdefinition
N ? in n that is a subclassof all the variantsis alsoa subclassof N� . Assumethat N ? � n is a
subclassof all variants. Let, for all k with 0 � k < n, Ik and Hk be setsof task labelssuchthat� G Ik u o Hk

�
N ? � � [i] �_c b

�
Nk
� [i] � (seeDefinition3.4-4(Life-cycle inheritance)).Let I � 0� k n Ik and

H � 0� k n Hk. Clearly,
� G I u o H

�
N ?O� � [i] ��c b

�
N� � [i] � , becauseeachlabelin H or I appearsin the

alphabetof preciselyoneof then variants.Hence,N ? � lc N� . Combiningthetwo resultsderivedso
far, it follows from Theorem6.7that N� is theLCM of thesetof variantsN0 throughNnC 1. j

55

6.3 Inheritance-preserving transformation rules and managementinformation

In Section6.1, thenotionof anMI-net hasbeenintroducedasa meansto collectaggregatemanage-
mentinformationon thestatusof casesin a numberof variantsof a workflow process.It is essential
that a setof total andvalid transferrules is available to map informationof runningcasesonto an
MI-net. Section6.2hasintroducedthenotionsof anMCD/GCD andanMCM/LCM of a numberof
workflow processdefinitions.It hasbeenarguedthatanMCD/GCD andanMCM/LCM areMI-nets
thataregoodcandidatesfor collectingaggregatemanagementinformation.However, it is notalways
easyto determineanMCD, anMCM, theGCD, or theLCM. As indicatedin Section6.2, theremay
evenbesituationswheretheGCD or LCM doesnotexist.

Themappingof runningcasesin differentvariantsof theworkflow processontoasuitableMI-net is
crucial.Unfortunately, it isnotalwaysstraightforwardtoobtainausefulsetof transferrules.However,
in Section5, it hasbeenshown thatit is alwayspossibleto transferacasefrom oneworkflow process
definitionto anotheroneif thelatteris constructedfrom theformerby meansof oneof theinheritance-
preservingtransformationrulesof Section3.2. Thus,theinheritance-preserving transformationrules
andaccompanying transferrulescanalsobeusedto extractaggregatemanagementinformation.

Observation 6.9.Considera setof workflow processdefinitionsthatarecreatedfrom eachotherby
meansof theinheritance-preserving transformationrulespresentedin Section3.2(in bothdirections).
For eachpair of elementsof this set,the transferrulesof Section5 canbe usedto constructa total
valid transferrulewhichmapscasesfrom oneelementof thispair to theotherelement.

Observation 6.9 implies thatanyworkflow processdefinition of a setof processdefinitionsthatare
createdfrom eachotherby meansof the inheritance-preserving transformationrulesof Section3.2
forms a meaningfulMI-net. Consideragainthe threeworkflow processdefinitionsin Figure 6.2.
Workflow processdefinition N1 canbe obtainedfrom N0 by meansof inheritance-preserving trans-
formationrule PJ3Sof Theorem3.19,whereasN2 canbeobtainedfrom N0 with transformationrule
PJSof Theorem3.16. This meansthatall casesin N1 and N2 canbemappedonto N0 by meansof
transferrulesr C 1

PJ3STheorem5.24andr C 1
PJS of Theorem5.22,respectively. However, it is moreinter-

estingto seehow casescanbe mappedonto N1 and N2. Assumethat N1 is usedasan MI-net. All
casesin N0 canbe mappedonto N1 by meansof the rule rPJ3S� P of Theorem5.16. (Recall that we
have explicitly excludedrule rPJ3S� C in thecontext of aggregatingmanagementinformation.) Cases
in N2 canbemappedonto N1 by meansof thecompositetransferrule rPJ3S� P u r C 1

PJS. That is, net N0

is usedasanintermediateto mapcasesfrom N2 onto N1. Similarly, all casescanbemappedonto N2

by meansof transferrulesrPJSof Theorem5.11andrPJS u r C 1
PJ3S.

Observation 6.9 hasseveral importantconsequences.Considera setof workflow processdefini-
tionssatisfyingtherequirementin Observation6.9. As alreadymentioned,any processdefinition in
this setcanbe chosenasan MI-net. The transferrulesof Section5 basedon the four inheritance-
preservingtransformationrules(i.e., rPTS, rPPS, rPJS, rPJ3S� P, r C 1

PTS� C, r C 1
PTS� P, r C 1

PPS, r C 1
PJS, andr C 1

PJ3S) pro-
vide mappingsfor runningcasesin any of theworkflow processdefinitionsontostatesin theMI-net.
Thesestatesareascloseto theactualstatesof thecasesaspossible,which is very importantfor the
qualityof themanagementinformation.NotethatthechosenMI-net is notnecessarilyanMCD or an
MCM of thesetof processdefinitions(seealsotheexamplediscussedabove andillustratedin Fig-
ures6.2 and6.3). However, if thesetof workflow processdefinitionssatisfiesany of theconditions
of Property6.8, thena suitablechoicefor the MI-net yields the GCD or the LCM (see,again,the
exampleillustratedin Figures6.2and6.3).

Figure6.10illustratesa slightly largerexample.It shows four workflow processdefinitions.The
two processdefinitionsN0 andN1 in themiddlearetwo variantsof thecomplaints-handlingprocess.

56

5 = 0+5

3 = 2+1

8 = 1+7

5 = 3+2

28 = 8+20

6 = 4+2

3 = 0+3

1 = 0+1

3 = 2+1

6 = 2+4

20

3

2

1

2

5

1

7

1

3

4

8

4

2

3

1

0

2

2

28 = 8+20

3=2+1

6 = 2+4

10 = 3+7

8 = 1+7

3 = 2+1

7 = 4+3

1 = 0+1

7 = 4+3

i

registered

custcontacted

contactdepartment

file dossier

contactcustomer

takeaction

contactcust

ready

classified

classifycomplaint
register

pendingcomplaint

o

NGCD

i

registered

custcontacted

contactdepartment

file dossier

contactcustomer

takeaction

contactcust

ready

classified

classifycomplaint
register

inform customer

pendingcomplaint

o

N0

i

registered

custcontacted

contactdepartment

file dossier

contactcustomer

takeaction

contactmanagement

contactcust

contactman

man contacted

inform management

ready

inform man

sendletter

classified

classifycomplaint
register

inform customer

pendingcomplaint

o

NLCM

i

registered

custcontacted

contactdepartment

file dossier

contactcustomer

takeaction

contactmanagement

contactcust

contactman

man contacted

inform management

ready

inform man

sendletter

classified

classifycomplaint
register

pendingcomplaint

o

N1

sendletter

sendletter

ignore complaint

ignore complaint

Figure6.10:Two workflow processdefinitionsN0 andN1 andtwo aggregateviews NGCD andNLCM.

57

Thesetwo variantshold 38 cases,14 in N0 and 24 in N1. The other two processdefinitionsare
MI-nets. Net NGCD (top) is the GCD of N0 and N1; net NLCM (bottom)is the LCM of N0 and N1.
Net NGCD canbeobtainedfrom N0 by meansof transformationrulesPPSandPTS, bothappliedin
reversedirection; NGCD is obtainedfrom N1 by meansof rulesPJSandPJ3Sin reversedirection.
Furthermore,net N0 yields NLCM via rulesPJSandPJ3S, whereasN1 yields NLCM via rulesPPSand
PTS.

Thetransferrulesof Section5 areusedto mapcasesof thevariantsN0 andN1 ontothetwo MI-
nets;thecompositionof r C 1

PPSandr C 1
PTS� C (or r C 1

PTS� P wich equalsr C 1
PTS� C for thisexample)is usedto map

casesof N0 onto NGCD, thecompositionof r C 1
PJS andr C 1

PJ3S is usedto mapcasesof N1 onto NGCD, the
compositionof rPJS andrPJ3S� P is usedto mapcasesof N0 onto NLCM, andthe compositionof rPPS

andrPTS is usedto mapcasesof N1 onto NLCM.
Consider, for example,placereadyin NGCD. Thelabel10 � 3
 7 indicatesthattenof the38cases

arein thestatecorrespondingto placeready. In N0, threecasesarereadyand,in N1, two casesare
ready, i.e., just five casesareactuallyready. However, therearefive casesin thestatecorresponding
to inform man in N1. If we abstractfrom task inform management, thesecasesarealsoready. This
bringsthetotal to tencasesin statereadyin NGCD. Note that, in NLCM, therearejust five casesin a
statecorrespondingto placeready, becausetheLCM distinguishesbetweeninform manandready.
Figure6.10is a goodexampleillustratingthat theLCM is morecomplex andcontainsmoredetailed
information,whereastheGCD is moresuccinctandonly containsinformationwhich is relevant for
all variants.Whichoneis mostsuitableasanMI-net dependson thecontext.

6.4 Managementinformation in the workflow-managementdomain

To endthis sectionon managementinformation,let us returnto Section4. In that section,we have
discussedthe relevanceof inheritancein four domains:ad-hocchange, evolutionarychange, work-
flow templates, andE-commerce. In the remainder, we discussfor eachof thesedomainspossible
approachesfor obtainingaggregatemanagementinformationusingthe inheritance-preserving trans-
formationrulesandthetransferrulespresentedin thispaper.

Ad-hocchangetypically resultsin many slightly differentvariantsof a predefinedworkflow pro-
cess.Thesevariantsareusuallytheresultof anerror, a rareevent,or specialdemandsof a customer.
The predefinedworkflow processcanbe seenasa template. If all variantsareconstructedby ex-
tendingthetemplateworkflow usingtheinheritance-preserving transformationrulesandthetemplate
itself is alsoa variant,thenthetemplateworkflow is theGCD of all variants(seeProperty6.8-3). If
thevariantsareconstructedby applyingtheinheritance-preserving transformationrulesin thereverse
directiononly andthe templateitself is alsoa variant,thenthetemplateworkflow is theLCM of all
variants(seeProperty6.8-4). If the variantsareconstructedby applyingthe inheritance-preserving
transformationrules in both directions,the templateworkflow is not the GCD nor the LCM but it
is still a suitableMI-net for presentingaggregatemanagementinformation. If changeis restricted
accordingto the inheritance-preserving transformationrules,thenthetransferrulesof Section5 can
beusedto obtaintransferrulesfrom thead-hocvariantsto thetemplateworkflow process(seeObser-
vation6.9).

Evolutionarychangetypically resultsin a limited setof versionsof a workflow process.If every
time a changeoccurs,all casesaretransferredimmediately, thereis just oneactive version. Only if
transfersarepostponed(e.g.,transferruler �), thereisaneedtoaggregatemanagementinformation.In
caseof evolutionarychange,themostrecentversionof aworkflow processis themostlikely candidate
for presentingaggregatemanagementinformation. If all changesare restrictedto the inheritance-
preservingtransformationrules,it is no problemto mapthecasesontothemostrecentversionof the

58

workflow process(Observation 6.9). Note that, if all changesin the pastwereextensions(i.e., the
transformationruleswereonly appliedin the forwarddirection),thenthemostrecentversionof the
workflow processdefinitionis theLCM of all variants(seeProperty6.8-2).

Whenusinga workflow templateas the startingpoint for designingworkflows, the templateis
the most likely candidatefor projectingaggregatemanagementinformation. Again, by restricting
modificationsof thetemplateto thefour inheritance-preserving transformationrulespresentedin this
paper, all casescanbemappedontotheworkflow templatewithoutany problems.

For E-commerce,it is importantthatbusinesspartnersagreeon somecommonworkflow process
(seeSection4.4). For eachof the businesspartners,it is useful to have aggregatedmanagement
informationat the level of thecommonworkflow process.In Section4.4, it hasbeensuggestedthat
eachof thelocal workflow processesshouldbea subclassof (partof) thecommonworkflow process
underprojectioninheritance.If local extensionsarerestrictedto transformationrulesPPS, PJS, and
PJ3S, thenthetransferrulesr C 1

PPS, r C 1
PJS, andr C 1

PJ3Scanbeusedto mapcasesontothecommonprocess
definition. Moreover, the commonprocessdefinition is, undercertainrestrictions,the GCD of the
workflow processesperceivedby thebusinesspartners(i.e., local andglobalview).

7 Tool support

In the precedingsections,we have shown that inheritanceconceptscanbe usedto tacklemany of
the problemsrelatedto ad-hocchangeandevolutionarychangeof workflow processes.Moreover,
theconceptscanbeusedto enhancetheapplicationof workflow templatesandmaybebeneficialin
thedesignandenactmentof interorganizationalworkflows (seeSection4.4). Unfortunately, today’s
workflow managementsystemsdonotsupportworkflow inheritanceasdiscussedin thispaper. Some
workflow managementsystemshave adoptedobject-orientedconcepts.For example,InConcert[39]
allows for building workflow classhierarchies.However, in theseclasshierarchies,inheritanceis
restrictedto the static interface(i.e., attributesand/oris-part-of relationships).To our knowledge,
thereis not a singleworkflow managementsystemtakingthedynamicsof theworkflow processinto
accountwhendefininginheritance.In thissection,webriefly discusshow theresultspresentedin this
papercanbeusedto aid existingworkflow managementsystems.

In the remainderof this section,first, we describeWoflan which allows for the verification of
soundness.(Recall that soundnessis pivotal to the notionsof inheritance,the transformationrules,
andthe transferrules.) Then,we discusstool supportfor the inheritancenotionsintroducedin Sec-
tion 3. Woflancanbeusedto checkrelationshipsunderany of thefour inheritancerelationsintroduced
in this section.Finally, we considerwaysto integratechangefacilities, i.e., servicesto supportdy-
namicchangeandto constructaggregatemanagementinformation,in existingworkflow management
systems.

7.1 Verifying soundness

Throughoutthis paper, we consideredworkflow processdefinitions. Recallthata workflow process
definition is a soundWF-net.That is, a workflow processdefinitiondeterminesnot anarbitrarypro-
cessbut a processwith desirablepropertiessuchaspropercompletion,absenceof deadlock,etc.(see
Definitions2.19 (WF-net)and2.22 (Soundness)).Most of today’s workflow managementsystems
canonly enactworkflow processeshaving theseproperties.However, they do not supportadvanced
techniquesto verify the correctnessof workflow processdefinitions[2]. At design-time,thereare
hardly any checksto verify whetherthe propertiesstatedin Definitions2.19and2.22arefulfilled.

59

Violationsof thesepropertiestypically result in seriousrun-timeerrorssuchasdeadlocksor live-
locks. Contemporaryworkflow managementsystemstypically restrict themselves to a numberof
(trivial) syntacticalchecks. Therefore,seriouserrorssuchasdeadlocksand livelocksmay remain
undetected.This meansthat an erroneousworkflow may go into production,thuscausingdramatic
problemsfor theorganization.An erroneousworkflow may leadto extra work, legal problems,an-
gry customers,managerialproblems,anddepressedemployees. Therefore,it is importantto verify
thecorrectnessof a workflow processdefinitionbefore it becomesoperational.If therearefrequent
ad-hocor evolutionarychanges,thenthe role of verificationbecomeseven moreimportant. This is
the reasonthatwe developedWoflan (WOrkFLow ANalyzer) [58, 59]. Woflan is a stand-alonever-
ification tool specificallydesignedfor workflow analysis. Woflan is product independent, i.e., it is
possibleto analyzeprocessesdesignedwith variousworkflow productsof differentvendors.Woflan
is ableto handlecomplex workflowswith up to hundredsof tasks.Woflanprovidesto-the-pointdi-
agnosticinformation for repairingthe errorsdetected.Pivotal to Woflan is the notion of soundness
asdefinedin Definition 2.22. In fact,Woflanusesa slightly weaker versionof soundnesswherethe
safenessrequirementis omitted(cf. [2, 59]). However, Woflanalsoanalyzesthestrongernotionused
in this paper. Thesoundnessnotionexpressestheminimal requirementsany workflow shouldsatisfy
andincludespropertiessuchasproperterminationandthe absenceof deadlockandlivelocks. The
currentversionof Woflancananalyzeworkflowsdesignedwith thefollowing four workflow products:
COSA,Staffware,METEOR,andProtos. COSA [56] is oneof the leadingworkflow management
systemson theDutchworkflow market. COSAusesPetri netsasa modelinglanguageandthusal-
lows for the modelingandenactmentof complex workflow processeswhich useadvancedrouting
constructs.However, COSAdoesnotsupportverification.Fortunately, Woflancananalyzeany work-
flow processdefinitionconstructedby usingCONE (COSA Network Editor), thedesigntool of the
COSA system.Woflan canalsoimport processdefinitionsmadewith Staffware[7, 57], METEOR
[55], or Protos[48]. Staffwareis oneof themostwidespreadworkflow managementsystemsin the
world. METEOR is a workflow managementsystembasedon CORBA andsupportstransactional
workflows ([31]). Protosis a Business-Process-Reengineering tool which canbe usedto (re)design
anddocumentworkflow processes.

To illustrate the useof Woflan, considerthe WF-net shown in Figure 2.21. Figure 7.1 shows
thisworkflow modeledwith COSAandFigure7.2showssomeof thediagnosticsprovidedby Woflan
whenanalyzingthisworkflow. Woflanreportsthattheworkflow modeledwith COSAis notsoundand
thattheconnectionbetweentasksignore complaintandinform managementis thesourceof theerror.
(Notethattheboundednessandsafenesspropertyin thediagnosisof Woflanreferto theshort-circuited
workflow net;seeDefinition 2.19(WF-net)andTheorem2.23(Characterizationof soundness).)For
moreinformationon Woflan,we refer to [59]; the interestedreadercanalsodownloada versionof
Woflanvia theWorld-Wide-Web[58].

Note that the four inheritance-preserving transformationrulespresentedin Section3.2 appearto
reducetheneedfor a tool like Woflan: Thefour rulespreserve soundness.However, theinheritance-
preservingtransformationrules requireessentialpartsof the functionality implementedin Woflan.
Considerfor examplerequirement4 in Theorem3.12,requirements4 and6 in Theorem3.14,require-
ment3 in Theorem3.16,andrequirements4, 6, and7 in Theorem3.19. Theserequirementsneed
to becheckedvia algorithmslike thoseimplementedin Woflan. As explainedin thenext subsection,
Woflanprovidesanexcellentbasisto incorporatesupportfor inheritance.

60

Figure7.1: TheCOSAdesignof theerroneousworkflow processdefinitionshown in Figure2.21.

7.2 Supporting inheritance

In Section4, we have shown severalapplicationareaswhereit is desirableto limit possiblechanges
by imposinginheritancerelationships,e.g.,the designedworkflow processdefinition shouldbe ex-
tendedin sucha way that theresultis a subclassof a predefinedworkflow processdefinition(e.g.,a
workflow templateor existingworkflow) underlife-cycle inheritance.Recallthatwehavedefinedfour
inheritancerelations:protocol/projectioninheritance,protocolinheritance,projectioninheritance,and
life-cycle inheritance.Basically, therearetwo waysto supporttheseinheritancerelations.

1. Enumerativeverificationmethod
For any two workflow processdefinitions,it is decidablewhetheroneworkflow processdefi-
nition is a subclassof theotherworkflow processdefinitionunderoneof the four inheritance
relationsof Definition 3.4. By comparingthe statespacesof two processdefinitions, it is
possibleto decidewhethertheprocessdefinitionsarebranchingbisimilar. Therefore,a brute-
forceapproachcanbeusedby systematicallyblockingandhidingtasks,enumeratingall reach-
ablestatesof the resultingnets,andcomparingthe statespaces.Thereareseveral tools that
cancheckbranchingbisimilarity usingenumerative methods.It is well-known that deciding
whethertwo finite processesarebranchingbisimilar canbe donein polynomial time, where
thesizeof theproblemis definedasthenumberof statesandtransitionsof thetwo processes
[35]. However, evena workflow processwith a limited numberof taskscanhave many states.
Therefore,thereare two practicalproblemswhenusinga separateverification tool basedon
enumerative methods.First, it is difficult to provide an interfacebetweentheworkflow editor

61

Figure7.2: Someof thediagnosticsprovidedby Woflanwhenverifying thecorrectnessof theCOSA
designshown in Figure7.1.

(i.e., theworkflow designtool) andtheverificationtool. Theworkflow editorhasto construct
thestatespacetypically containingthousandsof statesandsendit to theverificationtool. Sec-
ond, it is very difficult to translatethe resultsgeneratedby theverificationtool to diagnostics
understandableby theworkflow designer.

2. Workfloweditor supportinginheritance-preserving transformationrules
In Section3.2,we have identifiedfour inheritance-preserving transformationrules. Insteadof
usinganenumerativemethodto verify inheritancerelationsafterwards,it is possibleto limit the
changesin theworkflow editorto thefour inheritance-preserving transformationrulesidentified
in this paper. Note that the transformationrulescorrespondto thedesignconstructstypically
usedwhenconstructing/adapting a workflow processdefinition. Using an editor augmented
with theseruleshastwo benefits. First, usingthe rules insteadof an enumerative methodis
moreefficient from a computationalpoint-of-view. Second,theuseris forcedto make correct
designswith respectto the selectedinheritancerelation (correctnessby design). Therefore,
there is no needto provide diagnosticsto locatethe sourceof an error. Unfortunately, the
editorsof currentworkflow managementsystemsdo not provide facilities to enforcedesign
rulesandthe conditionsfor the transformationrulesarequite complex to checkby tools not
dedicatedto Petri-netanalysis.Therefore,it will not be easyto extendtheexisting workflow
toolswith inheritance-preserving transformationrules.

Theidealsituationwould beaneditorwhich automaticallychecksinheritancerelationshipsor limits
changeto theinheritance-preserving transformationrules.At themoment,suchtoolsaremissing.Un-

62

fortunately, it is alsonot likely thatworkflow managementsystemswill provide sophisticatededitors
supportingtheinheritancenotionsin theverynearfuture.Therefore,it is usefulto extendWoflanwith
supportfor the inheritancenotionsof this paper. Recall that Woflan canimport processdefinitions
from severalworkflow tools. Thus,Woflancanprovide tool-independentsupportfor inheritance.In
principle, it is possibleto implementboth enumerative verificationof inheritancerelationshipsand
supportfor theinheritance-preserving transformationrulesin Woflan.

The currentversionof Woflan implementsthe enumerative approachbasedon the algorithmof
[35]. It cancheckwhetheroneworkflow processdefinition is a subclassof anotherworkflow pro-
cessdefinitionunderany of thefour inheritancerelationsof Definition 3.4. For protocolinheritance,
projectioninheritance,andprotocol/projection inheritance,this checkis quiteefficient, i.e., polyno-
mial in thenumberof statesandtransitionsof thetwo workflow processes.In thecurrentversionof
Woflan, it is moreinvolved to checklife-cycle inheritance.At themoment,Woflanonly supportsa
brute-forceapproachwhich (in theworstcase)checksall possiblepartitionsof new tasks(i.e., tasks
presentin oneworkflow processdefinitionbut not in theotherone)into setsof tasksthatneedto be
blocked andthosethat needto be hidden(seeDefinition 3.4-4). A workflow designercanusethe
currentversionof Woflanto verify whetheror not a proposedchangeof a workflow processis cap-
turedby any of thefour inheritancerelations.Notethatthisapproachonly partlysolvestheproblems
relatedto enumerative verificationmentionedabove. Woflanprovidestool-independentsupport,but
statespacesmaystill becomevery largeandit might bedifficult to provide usefuldiagnosticsin case
adesiredsubclassrelationshipdoesnotexist.

Thealgorithmson which Woflanis basedcanalsobeusedto verify mostof therequirementsfor
the inheritance-preserving transformationrules. Thus, it is possibleto extendWoflan with support
for the transformationrulesin a relatively straightforward way. However, in orderto beusefulwith
existing workflow tools, a workflow designermust translatea transformationverified by suchan
extendedversionof Woflan to the workflow model usedby the tool. Sucha translationmay be
error-proneif themodelinglanguageof theworkflow tool is not closelyrelatedto Petrinets. As an
alternative, thetransformationrulescanalsobeusedasamethodto beemployedin combinationwith
existing workflow tools. For this purpose,it is usefulto translatethe rulesto thespecificmodeling
languageof theworkflow tool. This meansthat theworkflow designerhasto checktheappropriate
conditionsbeforemakinga change.If necessary, verificationsupportcould be provided by Woflan
and/ortherulescanbesimplifiedby further restrictions.Currently, sucha methodappearsto bethe
mostpromisingway to enableworkflow designersto benefitfrom thetransformationrulespresented
in this paperusingcurrenttechnology.

7.3 Supporting dynamic change

Most of today’s workflow managementsystemsprovide a versioningmechanism,i.e., it is possible
to enactmultiple versionsof thesameworkflow processat thesametime. However, eachcase(i.e.,
workflow instance)refersto oneversionandit is notpossibleto migrateacasefrom oneversionto an-
other. In addition,sucha mechanismis not suitablefor ad-hocchange.Someworkflow management
systemssuchas InConcert[39] andEnsemble[30] provide supportfor ad-hocchanges,i.e., while
executinga caseit is possibleto adaptthecorrespondingprocessdefinition; eachcasehasa private
copy of theworkflow processdefinitionwhichcanbemodifiedwithoutany problems.

Noneof today’s commercialworkflow managementsystemssupportdynamicchange,i.e., it is
not possibleto transfera casefrom oneprocessdefinition to another. Yet, for many applications
suchdynamicchangesarea necessity. In Section5, we presentedseveral transferrulesunderthe
assumptionthat changesare limited to the applicationof the inheritance-preserving transformation

63

rulesof Section3.2 (both directions). To supportthe transferof casesfrom oneversionof a pro-
cessto another, theworkflow enactmentservice([44]) needsto extended.If changeis limited to the
inheritance-preserving transformationrules,theimplementationof atransferfacility is ratherstraight-
forwardsincethereis noneedto postponetransfers(i.e., thereis alwaysjustoneactive versionof the
workflow process).Note,however, that this assumptionimpliesthat theworkflow managementsys-
tem includessomesupportfor the inheritancerules, asdiscussedin the previous subsection.The
transferof casescanbehandledby theworkflow engine(s)or by a separateservice.If theworkflow
engineis extendedwith a transferfacility, thenthe engineis notified every time thereis a new ver-
sionof a workflow process.For eachcasewhich is not active (i.e., no tasksarebeingexecuted),the
transferis asimpledatabaseupdate:Changethereferenceof thecaseandcreateanew workflow state
(i.e., marking). If a taskis beingexecuted(for a casewhich needsto be transferred),the transferis
delayeduntil completionof thetaskor therunningtaskis abortedandrolled backbeforethecaseis
transferred.If a separateserviceis usedto transferthecases(i.e., a servicenot integratedin theen-
gine),all relevantcasesneedto beblocked(i.e.,all instanceswhichneedto betransferredarefrozen)
to avoid concurrency problems.

7.4 Providing aggregatemanagementinformation

If therearemultiple versionsor variantsof thesameworkflow process,it is desirableto have anag-
gregatedview of thework-in-progress,i.e.,condensedmanagementinformationshowing thestatuses
of all casesin onediagram(i.e., an MI-net). In Section6, we have shown that if changeis limited
to the inheritance-preserving transformationrules(appliedin both directions),thenit is possibleto
constructsucha view. For this purpose,thefollowing informationis needed:Thestatesof all cases
involved(includingversion/variantinformation),thetransformationrulesusedto movefrom onever-
sion or variant to another, andthe MI-net. For a suitablychosenMI-net, the transferrulescanbe
calculatedautomaticallyandall casescanbemappedontoa singlediagram.Clearly, today’s work-
flow managementsystemsdonotprovidesuchafacility andshow aggregatemanagementinformation
at thelevel of versions/variantsratherthanprocesses.(In fact,many workflow managementsystems
provide hardlyany managementinformation.) Althoughthe implementationof sucha facility is far
from trivial, therearetwo circumstanceswhichsimplify therealizationof theideaspresentedin Sec-
tion 6. First, the informationneededto distill themanagementinformationcanbeextractedwithout
interferingwith theenactmentservice,becausecasesarenot actuallytransferred.Second,muchof
the functionalityneededto implementdynamicchange(e.g.,the transferrules)canbe usedfor this
facility.

8 Conclusion

This papertacklestwo notoriousproblemsrelatedto adaptive workflow: (1) supportingdynamic
change and (2) providing managementinformation at the right aggregation level. The solution is
basedon anapproachusinginheritance.Sincetheinheritancenotionsusedin this paperfocuson the
dynamicbehavior of processesratherthantheir staticstructure,they areof particularrelevancefor
workflow management.Wehave providedfour inheritancerelations(protocol/projection inheritance,
protocol inheritance,projectioninheritance,andlife-cycle inheritance),four inheritance-preserving
transformationrules which can be appliedin two directions(PTS, PPS, PJS, and PJ3S), and ten
transferrules(rPTS, rPPS, rPJS, rPJ3S� C, rPJ3S� P, r C 1

PTS� C, r C 1
PTS� P, r C 1

PPS, r C 1
PJS, andr C 1

PJ3S). Thetransformation
rules can be usedto restrict changesin workflow processdefinitionsin sucha way that the new

64

workflow processdefinition inheritscertainpropertiesof theold workflow processdefinition. Such
restrictionsareusefulwhendealingwith ad-hocworkflow, evolutionarychange,workflow templates,
and interorganizational workflows. Moreover, the transformationrulescombinedwith the transfer
rulesenabledynamicchangeandaggregationof managementinformation. If processchangesare
restrictedto the transformationrules,thenthe typical problemsrelatedto adaptive workflow canbe
avoided. Thetransferruleswhich areusedto transfercasesfrom oneworkflow processdefinitionto
anothercanalsobeusedto generatecondensedmanagementinformationshowing anaggregateview
of thework-in-progress.Theinheritancenotionsareinterestingbothfrom atheoreticalandapractical
perspective. On theonehand,theinheritancerelationsleadto interestingconceptssuchastheGCD
andtheLCM of a setof processdefinitions. On theotherhand,they provide concretesolutionsfor
problemstoday’s workflow managementsystemsarefacedwith.

An interestingtopic for future researchis the applicationof the inheritancerules in variousdo-
mains. We alreadymentionedthe applicationof projection inheritanceto E-commerce.Another
applicationwould be the integrationof our inheritanceconceptsinto component-basedsoftwarear-
chitectures.A futurechallengeis alsoto dealwith thedynamic-changeproblemin casethereis no
inheritancerelationshipbetweentheold andthenew processdefinition. Onesolutionis to mergethe
approachpresentedin this paperwith thetechniquesof [10, 23, 26, 27] asexplainedin Section5.5.
Sucha combinedapproachidentifieschangesthatarecapturedby our inheritance-preserving trans-
formationrulesaswell asregionswith changesthatarenot capturedby theserules. Changesinside
theseregionsarehandledusingthe techniquespresentedin [10, 23, 26, 27]. A final challengeis to
furtherdeveloptool supportfor theinheritancenotionsof thispaper. As explainedin Section7.2,our
tool Woflanprovidesagoodstartingpoint. Theultimategoalis to integratetheinheritancenotionsin
anindustrialworkflow managementsystemthatsupportsdynamicchangeaswell astheaggregation
of managementinformation.

Acknowledgment Wewantto thankRobertvanderToorn,Eric Verbeekandananonymousreferee
for their careful readingof and useful commentson early versionsof this paper. We thank Eric
Verbeekalsofor his valuablecontribution to theon-goingdevelopmentof Woflan.

References

1. W.M.P. van der Aalst. Verificationof Workflow Nets. In P. AzémaandG. Balbo, editors,Application
and Theoryof Petri Nets1997,Proceedings, volume1248of Lecture Notesin ComputerScience, pages
407–426,Toulouse,France,June1997.Springer, Berlin, Germany, 1997.

2. W.M.P. vanderAalst. TheApplicationof PetriNetsto Workflow Management.TheJournal of Circuits,
SystemsandComputers, 8(1):21–66,1998.

3. W.M.P. van der Aalst. Process-orientedArchitecturesfor ElectronicCommerceandInterorganizational
Workflow. InformationSystems, 24(8):639–671,2000.

4. W.M.P. vanderAalstandT. Basten.Life-cycle Inheritance:A Petri-net-basedApproach.In P. Azémaand
G. Balbo,editors,ApplicationandTheoryof Petri Nets1997,Proceedings, volume1248of Lecture Notes
in ComputerScience, pages62–81,Toulouse,France,June1997.Springer, Berlin, Germany, 1997.

5. W.M.P. vanderAalst,T. Basten,H.M.W. Verbeek,P.A.C. Verkoulen,andM. Voorhoeve. AdaptiveWork-
flow: OntheInterplaybetweenFlexibility andSupport.In J.Filipe,editor, EnterpriseInformationSystems,
pages61–68.Kluwer AcademicPublishers,Norwell, 2000.

6. W.M.P. vanderAalst, J. Desel,andA. Oberweis,editors. BusinessProcessManagement:Models,Tech-
niques,andEmpirical Studies. Springer, Berlin, Germany, 2000.

65

7. W.M.P. van der Aalst andA.H.M. ter Hofstede. Verificationof Workflow TaskStructures:A Petri-net-
basedApproach.InformationSystems, 2000.To appear.

8. W.M.P. van der Aalst, G. De Michelis, andC.A. Ellis, editors. Workflow Management:Net-basedCon-
cepts,Models,Techniques,and Tools (WFM’98), Proceedings, Lisbon, Portugal,June1998.Eindhoven
Universityof Technology, Eindhoven,TheNetherlands,ComputingScienceReport98/7,1998.

9. N.R. Adam,V. Atluri, andW.K. Huang. ModelingandAnalysisof Workflows usingPetriNets. Journal
of IntelligentInformationSystems, 10(2):131–158,March1998.

10. A. Agostini and G. De Michelis. Simple Workflow Models. In W.M.P. van der Aalst, G. De Miche-
lis, andC.A. Ellis, editors,Workflow Management:Net-basedConcepts,Models,Techniques,and Tools
(WFM’98), Proceedings, pages146–164,Lisbon,Portugal,June1998.EindhovenUniversityof Technol-
ogy, Eindhoven,TheNetherlands,ComputingScienceReport98/7,1998.

11. Baan.BaanWorkflowProductDescription. BaanCompany, Barneveld,TheNetherlands,1998.

12. J.C.M.BaetenandW.P. Weijland. ProcessAlgebra, volume18 of Cambridge Tractsin Theoretical Com-
puterScience. CambridgeUniversityPress,Cambridge,UK, 1990.

13. T. Basten.BranchingBisimilarity is anEquivalenceindeed! InformationProcessingLetters, 58(3):141–
147,May 1996.

14. T. Basten.In Termsof Nets: SystemDesignwith Petri NetsandProcessAlgebra. PhDthesis,Eindhoven
Universityof Technology, Eindhoven,TheNetherlands,December1998.

15. T. BastenandW.M.P. vanderAalst. Inheritanceof Behavior. ComputingScienceReport99/17,Eindhoven
Universityof Technology, Eindhoven,TheNetherlands,November1999.

16. T. BastenandW.M.P. van der Aalst. Inheritanceof DynamicBehavior: Developmentof a Groupware
Editor. In G. Agha,F. De Cindo,andG. Rozenberg, editors,ConcurrentObject-OrientedProgramming
and Petri Nets, LectureNotesin ComputerScience,Advancesin Petri Nets.Springer, Berlin, Germany,
2000.To appear.

17. G. Berthelot. TransformationsandDecompositionsof Nets. In W. Brauer, W. Reisig,andG. Rozenberg,
editors,Advancesin Petri Nets1986,Part I: Petri Nets,Central Modelsandtheir Properties, volume254
of LectureNotesin ComputerScience, pages360–376.Springer, Berlin, Germany, 1987.

18. E. Bertino andL. Martino. Object-OrientedDatabaseSystems:Conceptsand Architectures. Addison-
Wesley, 1993.

19. G. Booch,J.Rumbaugh,andI. Jacobson.TheUnifiedModelingLanguageUserGuide. Addison-Wesley,
1998.

20. F. Casati,S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data and Knowledge Engineering,
24(3):211–238,1998.

21. S.ChristensenandK. Mortensen.World of PetriNets.http://www.daimi.au.dk/PetriNets/.

22. J.M. ColomandM. Silva. Improving theLinearly BasedCharacterizationof P/T Nets. In G. Rozenberg,
editor, Advancesin Petri Nets1990, volume483of Lecture Notesin ComputerScience, pages113–146.
Springer, Berlin, Germany, 1990.

23. G. De Michelis andC.A. Ellis. ComputerSupportedCooperative Work andPetriNets. In W. Reisigand
G. Rozenberg,editors,LecturesonPetri NetsII: Applications, volume1492of LectureNotesin Computer
Science, pages125–153.Springer, Berlin, Germany, 1998.

24. J.DeselandJ.Esparza.FreeChoicePetri Nets, volume40 of Cambridge Tractsin Theoretical Computer
Science. CambridgeUniversityPress,Cambridge,UK, 1995.

25. C.A. Ellis andK. Keddara.ML-DEWS: ModelingLanguageto SupportDynamicEvolutionwithin Work-
flow Systems.ComputerSupportedCooperativeWork, 2000.To appear.

66

26. C.A. Ellis, K. Keddara,andG. Rozenberg. DynamicChangewithin Workflow Systems.In N. Comstock,
C.A. Ellis, R. Kling, J. Mylopoulos, andS. Kaplan,editors,Conferenceon OrganizationalComputing
Systems,Proceedings, pages10 – 21,Milpitas, California,August1995.ACM Press,New York, 1995.

27. C.A. Ellis, K. Keddara,andJ.Wainer. ModelingWorkflow DynamicChangesUsingTimedHybrid Flow
Nets. In W.M.P. vanderAalst,G. De Michelis,andC.A. Ellis, editors,WorkflowManagement:Net-based
Concepts,Models,Techniques,andTools(WFM’98),Proceedings, pages109–128,Lisbon,Portugal,June
1998.EindhovenUniversityof Technology, Eindhoven,TheNetherlands,ComputingScienceReport98/7,
1998.

28. C.A. Ellis andG.J.Nutt. Modelling andEnactmentof Workflow Systems.In M. Ajmone Marsan,edi-
tor, Applicationand Theoryof Petri Nets1993,Proceedings, volume691 of Lecture Notesin Computer
Science, pages1–16,Chicago,Illinois, June1993.Springer, Berlin, Germany, 1993.

29. J.EsparzaandM. Nielsen.Decibility Issuesfor PetriNets- A Survey. Journal of InformationProcessing
andCybernetics, 30(3):143–160,1994.

30. FileNET. EnsembleUserGuide. FileNETCorporation,CostaMesa,California,1998.

31. D. Georgakopoulos,M. Hornick, andA. Sheth. An Overview of Workflow Management:FromProcess
Modeling to Workflow Automation Infrastructure. Distributed and Parallel Databases, 3(2):119–153,
1995.

32. R.J.vanGlabbeek.TheLinearTime– BranchingTimeSpectrumII: TheSemanticsof SequentialSystems
with Silent Moves(extendedabstract). In E. Best,editor, CONCUR’93, 4th. InternationalConference
on ConcurrencyTheory, Proceedings, volume715 of Lecture Notesin ComputerScience, pages66–81,
Hildesheim,Germany, August1993.Springer, Berlin, Germany, 1993.

33. R.J.van GlabbeekandW.P. Weijland. BranchingTime andAbstractionin BisimulationSemantics(ex-
tendedabstract).In G.X. Ritter, editor, InformationProcessing89: Proceedingsof the IFIP 11th.World
ComputerCongress, pages613–618,SanFrancisco,California,August/September1989.Elsevier Science
PublishersB.V., North-Holland,1989.

34. R.J.vanGlabbeekandW.P. Weijland. BranchingTime andAbstractionin BisimulationSemantics.Jour-
nal of theACM, 43(3):555–600,1996.

35. J.F. GrooteandF.W. Vaandrager. An Efficient Algorithm for BranchingandStutteringEquivalence. In
M.S. Paterson,editor, Automata,Languages and Programming, 17th. International Colloquium, Pro-
ceedings, volume443 of Lecture Notesin ComputerScience, pages626–638,Warwick, UK, July 1990.
Springer, Berlin, Germany, 1990.

36. Y. HanandA. Sheth.On Adaptive Workflow Modeling. In InformationSystemsAnalysisandSynthesis,
4th. InternationalConference, Proceedings, pages108–116,Orlando,Florida,July1998.

37. P. Heinl, S. Horn, S. Jablonski,J.Neeb,K. Stein,andM. Teschke. A ComprehensiveApproachto Flexi-
bility in Workflow ManagementSystems.In G. Georgakopoulos,W. Prinz,andA.L. Wolf, editors,Work
ActivitiesCoordinationandCollaboration(WACC’99),Proceedings, pages79–88,SanFrancisco,Califor-
nia,February1999.ACM press,New York, 1999.

38. J.A. Hernandez.TheSAPR/3Handbook. McGraw-Hill, 1997.

39. InConcert.InConcertProcessDesigner’sGuide. InConcertInc.,Cambridge,Massachusetts,1997.

40. S. JablonskiandC. Bussler. WorkflowManagement:ModelingConcepts,Architecture, andImplementa-
tion. InternationalThomsonComputerPress,London,UK, 1996.

41. K. Keddara. DynamicEvolution of Workflow Systems. PhD thesis,University of Colorado,Boulder,
Colorado,1999.

42. M. Klein, C. Dellarocas,andA. Bernstein,editors.TowardsAdaptiveWorkflowSystems,CSCW-98 Work-
shop,Proceedings, Seattle,Washington,November1998.http://ccs.mit.edu/klein/cscw98/.

67

43. T.M. Koulopoulos.TheWorkflowImperative. VanNostrandReinhold,New York, 1995.

44. P. Lawrence,editor. Workflow Handbook1997,WorkflowManagementCoalition. JohnWiley andSons,
New York, 1997.

45. T.W. Malone,K. Crowston,J. Lee,B. Pentlandet al. Tools for InventingOrganizations:Towarda Hand-
bookfor OrganizationalProcesses.ManagementScience, 45(3):425–443,1999.

46. T. Murata. Petri Nets: Properties,AnalysisandApplications. Proceedingsof the IEEE, 77(4):541–580,
April 1989.

47. A. Oberweis.ModellierungundAusf̈uhrungvonWorkflowsmit Petri-Netzen. Teubner-Verlaggesellschaft,
Germany, 1996. In German.

48. PallasAthena.ProtosUserManual. PallasAthenaBV, Plasmolen,TheNetherlands,1997.

49. Y. PerreaultandT. Vlasic. ImplementingBaanIV. MacmillanComputerPublishing,New York, 1998.

50. L. Pomello,G. Rozenberg, andC. Simone. A Survey of EquivalenceNotionsof Net BasedSystems.In
G. Rozenberg, editor, Advancesin Petri Nets1992, volume609 of Lecture Notesin ComputerScience,
pages410–472.Springer, Berlin, Germany, 1992.

51. Promatis.IncomeWorkflowUserManual. PromatisGmbH,Karlsbad,Germany, 1998.

52. M. Reichertand P. Dadam. ADEPTflex: SupportingDynamic Changesof Workflows without Losing
Control. Journalof IntelligentInformationSystems, 10(2):93–129,1998.

53. W. Reisig.Petri Nets:AnIntroduction, volume4 of EATCSMonographsonTheoreticalComputerScience.
Springer, Berlin, Germany, 1985.

54. A. Sheth. From ContemporaryWorkflow ProcessAutomationto Adaptive andDynamicWork Activity
CoordinationandCollaboration. In R. Wagner, editor, Databaseand ExpertSystemsApplications,8th.
InternationalWorkshop,DEXA’97, Proceedings, pages24–27,Toulouse,France,September1997.IEEE
ComputerSocietyPress,LosAlamitos,California,1997.

55. A. Sheth,K. Kochut, andJ. Miller. Large ScaleDistributed Information Systems(LSDIS) laboratory,
METEORprojectpage.http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

56. Software-Ley. COSAUserManual. Software-Ley GmbH,Pullheim,Germany, 1998.

57. Staffware.Staffware97 / GWDUserManual. StaffwarePlc,Berkshire,UK, 1997.

58. H.M.W. VerbeekandW.M.P. vanderAalst. WoflanHomePage.http://www.win.tue.nl/̃ woflan.

59. H.M.W. Verbeek,T. Basten,andW.M.P. van der Aalst. DiagnosingWorkflow ProcessesusingWoflan.
ComputingScienceReport99/02,EindhovenUniversityof Technology, Eindhoven,TheNetherlands,May
1999.

60. M. VoorhoeveandW.M.P. vanderAalst. ConservativeAdaptionof Workflow. In M. Wolf andU. Reimer,
editors,Practical Aspectsof Knowledge Management(PAKM’96), 1st. InternationalConference, Work-
shopon AdaptiveWorkflow, Proceedings, pages1–15,Basel,Switzerland,October1996. An extended
versionof thepaperis availableasComputingScienceReport96/24,EindhovenUniversityof Technology,
Eindhoven,TheNetherlands,1996.

61. M. Voorhoeve and W.M.P. van der Aalst. Ad-hoc Workflow: Problemsand Solutions. In R. Wagner,
editor, DatabaseandExpertSystemsApplications,8th. InternationalWorkshop,DEXA’97, Proceedings,
pages36–40,Toulouse,France,September1997.IEEEComputerSocietyPress,LosAlamitos,California,
1997.

62. W.P. Weijland. Synchrony and Asynchrony in ProcessAlgebra. PhD thesis,University of Amsterdam,
Amsterdam,TheNetherlands,1989.

63. M. Wolf andU. Reimer, editors. Practical Aspectsof Knowledge Management(PAKM’96), 1st. Interna-
tional Conference, Workshopon AdaptiveWorkflow, Proceedings, Basel,Switzerland,October1996.

68

