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Abstract—This paper presents a novel reverse engineering tech-
nique for obtaining real-life event logs from distributed systems.
This allows us to analyze the operational processes of software
systems under real-life conditions, and use process mining tech-
niques to obtain precise and formal models. Hence, the work can
be positioned in-between reverse engineering and process mining.

We present a formal definition, implementation and an instru-
mentation strategy based the joinpoint-pointcut model. Two case
studies are used to evaluate our approach. These concrete exam-
ples demonstrate the feasibility and usefulness of our approach.

Index Terms—Reverse Engineering, Process Mining, Event
Log, Distributed Systems, Performance Analysis, Process Discov-
ery, Joinpoint-Pointcut Model, Aspect-Oriented Programming

I. INTRODUCTION

A. Behavior Analysis of Real-Life Processes

System comprehension, analysis and evolution are largely
based on information regarding the structure, behavior and
operation of the System Under Study (SUS). When no complete
information regarding the behavior is available, one has to
extract this information through dynamic analysis techniques.

Typically, dynamic behavior is captured in the form of
process models. These models describe the dynamic, operational
and interactive aspects of the SUS. This dynamic behavior is
often an emergent product of the intercommunication between
the different system components. The resulting behavior of these
communicating components is often not well understood, which
makes process models particularly interesting. In addition to
understanding the dynamic behavior, better insight into the
operational aspects, including monitoring real-life performance,
is critical for the success of software systems.

Besides monitoring real-life behavior, there is a need to support
dynamic analysis with precise and formal models. Unified Model-
ing Language (UML) diagrams have become the de facto standard
for describing software. However, UML diagrams have no precise
semantics, are not directly usable for model-based techniques, and
do not support performance analysis. In contrast, event logs show
the actual behavior and, hence, serve as a starting point for pro-
cess mining. The combination of event logs and process mining
techniques provides a powerful way to discover formal process
models and analyze operational processes based on event data.

In this paper, we define a novel reverse engineering technique
for obtaining real-life event logs from distributed software sys-
tems, spanning across multiple system components. This allows
us to analyze the operational processes of software systems under
real-life conditions, and use process mining techniques to obtain
precise and formal models (see for example Figures 4 and 5).
Unlike conventional approaches (e.g. profilers), our approach
provides an integrated view, across system components, and
across perspectives (performance, end-to-end control flow, etc.).

B. On Reverse Engineering Dynamic Models
Any dynamic analysis approach based on reverse engineering

techniques must address the following concerns:
Information Retrieval Strategy This concern addresses how

information is obtained from the SUS. One has to choose
a retrieval technique (e.g., an instrumentation strategy),
for which constraints on the target language have to be
considered. In addition to how information is obtained,
one has to address which information is to be obtained,
and at which level of detail (i.e., the granularity). Finally,
one has to take into account the environment that actually
triggers behavior in the SUS.

Information Collecting and Processing Strategy This
concern addresses how information obtained from the SUS
is collected and processed. First of all, in a distributed
context, one has to specify a data collecting infrastructure
to combine information streams from the different system
components. Next, one has to specify a target model.
On the one hand, there is the question of correlating
information, especially in the context of a distributed SUS
(e.g., which events belong together). On the other hand,
there are inter-component and inter-thread aspects to be
considered, as well as timing issues in a distributed system.

Analysis Strategy This concern addresses how, using the
obtained information and target model, the SUS is actually
analyzed. One has to consider how to interpret the resulting
artifacts, and how analysis questions can be answered. This
analysis ranges from discovering control-flow patterns to
performance analysis; and ranges from finding deviations
with respect to expected behavior to finding anti-patterns.

C. Overview of Methodology
Our high-level strategy for analyzing distributed systems

consists of the following steps (see also Figure 1):
1) We instrument the SUS code or binary with tracing code

using instrumentation advices (see Section III-E).
2) We gather event data from real-life user requests, and

convert the data into event logs by discovering business
transactions (see Section III-F).

3) With the resulting event log we can answer various
analysis questions using process mining techniques.

Note that our methodology does not require detailed input about
the SUS. In fact, many details about the SUS are discovered
from data present in the generated event log. We only need
some predicates (pointcuts, see Section III-E) specifying areas
of interest in the SUS. With these pointcuts, we automatically
add tracing code that generates event data upon execution.

D. Goal and Assumptions
Our goal is to analyze the operational processes of software

systems. In particular, we target at analyzing the functional



Fig. 1. Overview of our high-level strategy and the corresponding input and
output. See Section III for a detailed discussion of the terminology used.

perspective, focusing on user requests. The reverse engineering
technique we use to achieve this goal is designed for any
instrumentable programming language. That is, our approach
and results are language-independent.

Our approach supports the analysis of distributed systems,
provided they rely on point-to-point communication. We will
abstract from the details of local clocks in a distributed setting,
as addressed in Subsection IV-B.

The current realization is restricted to a single thread per
node. However, the introduced definitions can be extended to
support multi-threaded distributed software systems, as will be
discussed in Section VI.

E. Outline
The remainder of this paper is organized as follows. Section II

positions the work in existing literature. A detailed definition
of the System Under Study (SUS) as well as the conversion
from system events to an event log is given in Section III. The
novel notion of discovering business transactions, as well as
our information retrieval and processing strategies are discussed
in Section IV. The approach and implementation are evaluated
in Section V using two case studies, performed on existing
open-source software. Section VI concludes the paper.

II. RELATED WORK

Reverse engineering models from systems is not new, and
there exists a lot of literature on extracting models from
(software) systems. In the area of dynamic systems analysis,
there exist techniques targeted at understanding the behavior of
systems. In this section we start with a comparison of various
reverse engineering techniques, discussing the current trends
and their advantages and disadvantages in Subsection II-A. We
conclude this section by discussing the techniques available
in the area of process mining in Subsection II-B.

A. Dynamic Analysis Techniques
Overview of Dynamic Analysis Techniques: Dynamic

system analysis techniques are used for understanding the
behavior of systems. Understanding the dynamic part of a
system is often not possible by just analyzing the source code,
especially in the face of polymorphism and dynamic binding. An
even greater challenge is discovering the interactive aspect of the
system, which is an emergent product of the intercommunication
between the different system components. There is an abundance
of literature with proposals and techniques addressing dynamic
analysis techniques. In Table I we have compared several
approaches targeted at non-distributed and distributed systems,
evaluated using the following criteria:

Distributed Whether the technique is designed for a distributed
or non-distributed setting.

Granularity The level of detail of the analysis technique. In
[1], [3], [4], [5], [6], the behavior is captured down to
the control-flow level (i.e., down to the loop and if-else
statements). At the other end, in [7], [9], [10], [11] the
behavior is captured at the high-level components level
(i.e., external interfaces). In [2], only the end-user “pages”
are captured (i.e., the user interface level).

Information Retrieval Strategy The techniques used for
retrieving dynamic information. Lion’s share of the existing
techniques uses some form of instrumentation (either
source code transformation and/or binary weaving) to add
tracing code to the SUS [1], [2], [3], [6], [8], or adapt
existing tracing code [11]. In [1], source code analysis is
used for enriching the dynamic information. An altogether
different technique is used in [7], where network packages
are monitored, outside of the SUS.

Environment The environment that triggers behavior in the
system. Most of the techniques only considered discovering
the control-flow aspect of the system behavior, and thus
used black-box testing techniques for triggering the system
[1], [2], [3], [4], [5], [6], [10], [11]. A few techniques also
looked at the behavior in a real-life environment [7], [8], [9].

Target Language Restrictions on the target language for which
the approach is defined. Frequently, the instrumentation
tool AspectJ is used (see [12]), thereby targeted at the
Java programming language [1], [6], [8], [11]. In addition,
for relating events, [6] assumes the Java RMI distributed
middleware, [9] the COBRA distributed middleware, and
[7] assumes only low-level TCP/IP communication.

Distributed Events Correlation How, in a distributed setting,
events across different components are correlated. Not many
techniques explicitly addressed the concern of correlating
events across components in a distributed setting. In [6],
correlation is handled by introducing extra communication
with correlation indicators. The authors of [7] relied on
deep packet inspection, retrieving sender and receiver
information. The process of inspecting communication
channels used in [10] is similar to our technique.

Target Model The type of target model produced by the
approach. Lion’s share of the techniques produces a
UML Sequence Diagram (UML SD) [1], [2], [6], [7].
The authors of [11] produce Communicating Finite State
Machines (CFSM). In [8], the authors specified a set of
events, called a Monitor Log, as target model.

Shortcomings of Current Approaches: The majority of the
techniques considered relies on a testing environment, and pro-
duce a UML Sequence Diagram. In addition, in many cases the
issue of correlating distributed events is not addressed explicitly.

One complication is that the produced UML models are
imprecise; they have no precise semantics, are not directly usable
for model-based techniques, and do not support performance
analysis. Several proposals in literature attempted to address this
by defining a precise subset for UML [13], [14], or translating
UML models into precise models like Petri nets [15], [16].
However, in the translation steps from events via abstractions
like UML to Petri net models, valuable information is lost.
A better approach would be to go directly from events to
precise models with clear semantics, thus enabling the use of



TABLE I
STRATEGY COMPARISON OF DYNAMIC ANALYSIS TECHNIQUES

Author Distributed Granularity Information
Retrieval Strategy

Environment Target Language Correlation of
Distributed Events

Target Model

[1] Labiche - Control-flow Instrumentation + source Testing Java via AspectJ n/a UML SD
[2] Alalfi - “User pages” Instrumentation Testing Scripting (PHP) via TXL n/a UML SD
[3] Briand - Control-flow Instrumentation Testing C++ n/a UML SD
[4] Oechsle - Control-flow Java debug interface Testing Java n/a UML SD
[5] Systä - Control-flow Customized debugger Testing Java n/a UML SD-like

[6] Briand + Control-flow Instrumentation Testing Java + RMI via AspectJ Extra communication UML SD
[7] Ackermann + Components Monitor network packets Real-life TCP/IP Network packet from/to UML SD
[8] Van Hoorn + Varied Instrumentation Real-life Java via AspectJ No correlation Monitor Log
[9] Moe + Components Call interceptors Real-life COBRA No correlation Performance statistics
[10] Salah + Components JVM profiler Testing Java Comm. channel from/to UML SD
[11] Beschastnikh + Components Given log, Instrument. Testing Log-only, Java via AspectJ Predef. comm. channels CFSM

Leemans M. + Interfaces Instrumentation Real-life Instrumentable + TCP/IP Comm. channel from/to Process models, with,
i.a., performance info

model-based analysis and techniques.
Related to the issues of imprecise UML models and the

use of model-based techniques is the lack of insight into the
performance aspect of system behavior [16]. As observed by the
authors of [8], real-live monitoring may enable early detection
of quality-of-service problems, and may deliver usage data
for resource management. Therefore, we argue that we need
to discover precise models reflecting real-life behavior.

B. Event Logs and Process Mining
In order to obtain process models, we rely on event logs.

An event log can be viewed as a multiset of traces [17]. Each
trace describes the life-cycle of a particular case (i.e., a process
instance) in terms of the activities executed. In Subsection III-D
a formal definition for event logs is given, and in [18], [19],
corresponding meta-model, implementations and standardized
exchange format are defined.

Process mining techniques use event logs to discover, monitor
and improve real-life processes [17]. The three main process
mining tasks are:
Process discovery: Learning a process model from example

behavior recorded in an event log.
Conformance checking: Aligning an event log and a process

model for detecting and diagnosing deviations between
observed (logged) behavior and modelled behavior.

Performance analysis: Replaying observed behavior on
process models for identifying bottlenecks, delays and
inefficiencies in processes.

Many process discovery techniques have been presented in
literature. These techniques produce precise models and are read-
ily available through the Process Mining Toolkit ProM [19]. A
variety of discovery techniques yielding Petri nets [20], [21], [22],
[23] and process trees [24], [25] were proposed. By aligning an
event log and a process model, it is possible to perform advanced
conformance and performance analysis [26]. Current state of the
art techniques also looks into leveraging additional information
like location (which is also present in our event log) to produce
more accurate models [27]. In addition, additional insights can
be gained through investigating organizational information (e.g.,
resource collaboration) [28] and partial order information [29].

III. DEFINITIONS

Before we can discuss the different strategies we developed,
we need a clear understanding of the System Under Study (SUS)
and event logs. We start out with some basic preliminaries

in Subsection III-A. Next, we present our view on distributed
systems in Subsection III-B. After that, we quickly cover the
basic principles of process mining (Subsection III-C) and event
logs (Subsection III-D). Finally, we will discuss the basic
principle used for instrumenting the SUS (Subsection III-E),
and the conversion from system events to an event log
(Subsection III-F). The key concepts and their relations are
captured in the domain model shown in Figure 2.

A. Preliminaries
Sequences: Sequences are used to represent traces in an

event log.
Given a set X , a sequence over X of length n is denoted

as σ = 〈a1, a2, . . . , an〉 ∈ X∗. We denote the empty sequence
as 〈〉.

Intervals: Intervals are used to define the start and end
time of an event.

Let I = { (i, j) | i ≤ j } ⊂ N2 be the set of intervals. We
use ⊥ /∈ I to denote an invalid (empty) interval. Given an
interval x = (i, j) ∈ I , we write xs = i and xe = j for the
start and end of an interval respectively.

We define the following relations on I , with x, y ∈ I:

x = y
def
= ((xs = ys) ∧ (xe = ye)) equality

x v y def
= (ys ≤ xs ≤ xe ≤ ye) containment

x < y
def
= ((x v y) ∧ (x 6= y)) strict containment

x ∩ y def
=

{
z, if x 6= ⊥ ∧ y 6= ⊥ ∧ z ∈ I;
⊥, otherwise. intersection

with z = (max(xs, ys),min(xe, ye))

x ∪ y def
=

{
z, if x 6= ⊥ ∧ y 6= ⊥;
⊥, otherwise. union

with z = (min(xs, ys),max(xe, ye))

B. The System Under Study: Anatomy of a Distributed System
In this section, we present our view on distributed systems.

To make things more concrete, we will map our view onto an
imaginary distributed software system.

A distributed system consists of a set of interacting system com-
ponents, distributed over a set of logical platforms. Each system
component is instantiated on a node, and can offer services via
its external interfaces. Each logical platform can deploy multiple
nodes, that is, multiple instantiations of system components. In
our imaginary software system, our system components could
be a business and a data component: a webserver and database,



Fig. 2. Domain model illustrating the key concepts and their relations (using UML notation). See Section III for a detailed description of each concept.

respectively. The logical platforms would be the servers in the
datacenter. The nodes are instances of the webserver and database.
Note that the webserver and database may be instantiated multiple
times, for example, in a load-balancing setting. In the latter case,
it would make sense to host the resulting nodes on different
servers (i.e., different logical platforms). The webserver offers
webpage services, while the database offers query services.

A service request, denoting the use of an external interface, is
processed on a node by a node instance. We assume that a node
instance is executed by one of the execution threads provided by
a node, but future work can remove this restriction. A service can
be requested by a node part of the SUS (i.e., intercommunication),
or by an external user (i.e., a user request). In our imaginary
software system, the webserver (the node) would have a pool
of execution threads. Whenever the client browser requests a
webpage service (a user request), the webserver assigns one
of the available threads to process this request. For this user
request, the node instance is executed by the assigned thread.

Whenever two nodes are communicating to execute a service
request, they are sharing a communication channel. A communi-
cation channel is identified by a pair of communication resources,
each representing one endpoint of the communication channel.
Node instances can acquire communication resources provided by
the node in order to communicate. The moment a communication
resource is used by a node instance, that node instance owns
that resource. Note that communication resources can be reused,
and thus can have different owners at different moments in time.
See also the group labeled “System Under Study” in Figure 2.
In our imaginary software system, a communication channel
could be a TCP/IP connection. An endpoint is the combination
of an IP address and a port on a node. Hence, a communication
resource is a pair of ‘from’ and ‘to’ endpoints.

For the rest of the paper, we use the formal definition below
for referencing these concepts.

Definition 1 (Nodes and Communication Resources): We
denote the set of nodes with N , the set of node instances at
node n ∈ N with Tn, and let T =

⋃
n∈N Tn. Furthermore,

let Rn denote the set of communication resources available at
node n ∈ N , and let R =

⋃
n∈N Rn. In addition, let r ∼ r′

denote that the two communication resources r ∈ Rn, r′ ∈ Rn′ ,
with n, n′ ∈ N ∧n 6= n′ identify the same communication chan-
nel. We impose the following constraint on the above defined sets:

∀n, n′ ∈ N, n 6= n′ : (Rn ∩Rn′) = (Tn ∩ Tn′) = ∅
C. Process Mining

Recall, in Subsection II-B we covered how process mining
techniques use event logs to discover, monitor and improve
real-life processes. Each trace in the event log describes the
life-cycle of a particular process instance. Together, these
process instances describe the behavior of the SUS.

As a passive learning technique, the quality of the resulting
model depends on the quality and volume of the behavior that
has been observed. It is therefore important to obtain a large,
high quality event log in order to build an accurate model. See
also the group labeled “Process Mining” in Figure 2.

D. Event Log and Business Transactions
Event Log: The starting point for any process mining

technique is an event log, which is formally defined below.
Definition 2 (Event, Trace, and Event Log): Let EL be

the set of events occurring in the event log. A trace is a
sequence σ ∈ E∗L of events. An event log L ⊆ E∗L is a
collection of traces. Each trace corresponds to an execution
of a process, i.e., a case or process instance.

Business Transactions: In the context of analyzing system
behavior, we recognize a special type of traces, called business
transactions. A business transaction consists of a sequence of
related events, which together contribute to serve a user request.



Events in a single case can span multiple nodes. Recall, a
user request is a service requested by an external user. Hence,
a business transaction captures the emergent product of the
intercommunication between system components required for
one external interface exposed by the software system as a whole.

See also the group labeled “Event Log and Business
Transactions” in Figure 2.

E. Joinpoint-Pointcut Model

In order to obtain an event log detailing the dynamic behavior
of the SUS, we instrument the SUS with tracing code to generate
the necessary events. This tracing instrumentation should mini-
mize the impact on the SUS, and provide as little human overhead
as possible. Note that the behavior of the instrumented SUS may
be different from the unmodified SUS, especially in the context
of deadlines. This is an unavoidable consequence; observing a
system changes the system [30]. However, we should nevertheless
strive to minimize the impact of the tracing instrumentation.

To make the instrumentation less intrusive and as systematic
as possible, we use the joinpoint-pointcut model frequently
used in the area of Aspect-Oriented Programming (AOP) [31].
This way, developers can work on the clean, unmodified code,
and we can monitor any SUS that can be instrumented without
manually modifying the source code.

A joinpoint is a point in a running program where additional
behavior can be usefully joined or added. A joinpoint needs to
be addressable and understandable by an ordinary programmer to
be useful. A pointcut is an expression (predicate) that determines
whether a given joinpoint matches. An advice is a piece of code
(e.g., event trace code) to be added. An aspect defines an advice
to be added at all joinpoints matched by a specified pointcut.
Hence, an aspect is a container detailing how to instrument what.
Each tracing aspect typically instruments a particular (possible
user-defined) location in a software system, such as a method
in a particular component, library or layer. See also the group
labeled “Joinpoint-Pointcut Model” in Figure 2. In Section IV-A
we will use the joinpoint-pointcut model to define which parts
of a software system we wish to include in our event log.

In the remainder of the paper, we use the formal definition
below for referencing these concepts.

Definition 3 (Joinpoint-Pointcut Model): Let Jn ⊆ UJ denote
the set of joinpoints available at node n ∈ N . A pointcut is
a predicate matching a subset of joinpoints. In addition, we
denote the set of locations with L. We impose the following
constraint on the above defined set:

∀n, n′ ∈ N, n 6= n′ : (Jn ∩ Jn′) = ∅

F. From System Events to Event Logs

System Events: Recall, we are interested in discovering
business transactions: a sequence of related events, which
together contribute to serve a user request. Therefore, we specify
the structure of system events (described below), capturing
enough information to relate events within and across the
external interfaces of system components. Using the data in
these system events, we can discover business transactions, the
basis for instantiating our event log.

Definition 4 (System Events): Let E be the set of system
events, such that every e ∈ E has the following structure:

e = (i : I, n : N, t : Tn, j : Jn, r : Rn ∪ {⊥}, l : L)

We write e.n to access attribute n in event e.
The interpretation of the above attributes is as follows:
• i : I models the time interval of the event. That is, it

models the call (start) and return (end) of the involved
joinpoint. Typically, this will correspond to the entry and
exit of a method, see also Section IV-A.

• n : N models the node on which the event was generated.
• t : Tn models the node instance, which generated the event.
• j : Jn models the joinpoint that was executed to generate

this event.
• r : Rn ∪ {⊥} models the (optional) communication

resource associated with this event.
• l : L models the location specified in the aspect that

instrumented this joinpoint.
Communication and Related Events: In order to obtain

business transactions, we need to correctly cluster events. To
correctly cluster events, we will use the notion of communication
intervals and related events.

Definition 5 (Communication intervals): Given a resource
r ∈ R, we can get the set of events Er that are associated with r:

Er
def
= { e ∈ E | e.r = r }

Recall, a node instance owns a resource during the time it
uses a resource, and a resource can have different owners at
different moments in time. To define the time interval where a
node instance owns a resource r ∈ R, we look for ‘evidence’ in
the form of events associated with resource r. Given two events
e, e′ ∈ Er associated with resource r ∈ Rn. If the two events
have the same node instance t ∈ Tn, and there is no other
event e′′ ∈ Er, e

′′.t 6= t in between e and e′, then we know
that during the time e.i ∪ e.i′, node instance t owns resource
r. Formally, the set of intervals where t ∈ Tn owns r ∈ Rn

is defined by function hR:

hR(t, r)
def
= { i = (e.i ∪ e′.i) | e, e′ ∈ Er, e.t = e′.t = t,

¬(∃e′′ ∈ Er, e
′′.t 6= t : (e′′.i ∩ i) 6= ⊥) }

Given the definition above, we can define the set of maximal
intervals where t ∈ Tn owns r ∈ Rn (i.e., the communication
intervals) as follows:

fR(t, r)
def
= { i ∈ hR(t, r) | ¬(∃i′ ∈ hR(t, r) : i < i′) }

Definition 6 (Related events): Two events x, y ∈ E, x 6= y
are directly related, notation x→ y, iff either:

1) x and y are part of the same node instance, and x.i is
contained in y.i.

2) y started before x, and there exists related resources
rx, ry ∈ R, rx ∼ ry that are at a certain point in time
owned by x.t and y.t respectively (see Definition 5).

Formally, the directly related relation is defined as follows:

(x→ y)
def
= ( (x 6= y) ∧ ( Distinct.

( x.t = y.t ∧ x.i v y.i ) Case 1.
∨ ( x.t 6= y.t ∧ y.is ≤ x.is ∧ Case 2.
∃rx, ry ∈ R, rx ∼ ry :

∃ix ∈ fR(x.t, rx), iy ∈ fR(y.t, ry) :
((x.i ∩ ix) ∩ (y.i ∩ iy)) 6= ⊥

) ))



Intuitively, an event x is directly related to y (i.e., x → y)
if x is ‘caused’ by y (e.g., in case 1, called by). Note that →
is an irreflexive and antisymmetric relation.

Two events x, y ∈ E, x 6= y are related, notation x� y, iff
there is a path from x to y in the relation →. Formally:

(x� y)
def
= (( x→ y) Base case.
∨ ( ∃z ∈ E : x� z ∧ z → y)) Step case.

Note that � is an irreflexive, antisymmetric and transitive
relation.

Let X ∈ P(E) be the set of subsets of related events, and
let Y ⊆ X be the set of maximal subsets of related events (i.e.,
the basis for business transactions). Formally:

X
def
= { {e} ∪ { e′ ∈ E | e′ � e } | e ∈ E }

Y
def
= {x′ ∈ X | ¬(∃x′′ ∈ X : x′ ⊂ x′′) }

Instantiating Event Logs: Using the set Y of maximal
subsets of related events, we can now instantiate an event
log L. We construct our event log L ⊆ E∗L from the set of
log-events EL by finding all valid business transactions. The
set of log-events EL is obtained from the set of events E by
mapping each event to a start and end event, based on its interval.

Definition 7 (Event Log Instantiation): For an event e ∈ E,
the set of log-events fL(e) corresponds to the start and end
of e.i. The set EL of log-events is the union of all mapped
events. Formally:

EL
def
=

⋃
e∈E

fL(e) with fL(e)
def
= {(e.is, e), (e.ie, e)}

The event log L ⊆ E∗L (see Definition 2) of business
transactions is based on Y (see Definition 6), and defined as:

L
def
=
{
σ ∈ E∗L

∣∣∣ sorted(σ) ∧ ∃x′ ∈ Y : {e ∈ σ} =
⋃

e∈x′
fL(e)

}
Note that we assumed a total ordering on the elements of EL,
where events are sorted by time. In the edge case that two related
events are logged with the same timestamp (i.e., a tie), in the
resulting trace σ, the tie is handled as per a stable sort algorithm.

IV. METHODOLOGY AND REALIZATION

Using the definition from Section III, we will now discuss
the different strategies we developed. We start out with detailing
our information retrieval strategy in Subsection IV-A, specifying
how we instrument the System Under Study (SUS) with tracing
code. After that, we will cover the collecting and information
processing strategy in Subsection IV-B, specifying how we
gather the event data and how we convert it into an event log.
As a mental reference, please consult Figure 3 as a sample
application of our strategies.

A. Dynamic Information Retrieval Strategy
Recall from Subsection III-E, that we use the joinpoint-

pointcut model to instrument the SUS with tracing code. This
makes the instrumentation less intrusive and as systematic as
possible. In addition, instrumentation minimizes the impact of the
tracing instrumentation on the SUS and on the developers. In this
section we will discuss how we use the joinpoint-pointcut model
as the basis for our information retrieval strategy. Note that the
question of ‘what information has to be logged’ is answered by
our definition of system events, as discussed in Subsection III-F.

Fig. 3. Domain infrastructure model illustrating the implementation of our
information retrieval, collecting and information processing strategy.

Instrumentation Strategy: Our instrumentation strategy
focuses on the resulting behavior from the intercommunication
between different system components via their external
interfaces. Therefore, we recognize two types of joinpoints we
will target at: communication resource joinpoints and interface
joinpoints. The tracing advice code added via pointcuts targeting
these types of joinpoints adds invocations to a logging client
interface.1 This logging client interface generates events and
streams these to a logging server; see also Figure 3.

The communication resource joinpoint type is about recogniz-
ing when a node instance has acquired which communication
resource. This type of joinpoint can be matched by application-
independent language-dependent pointcuts targeting low-level
network communication methods. The advice code could, for
example, recover the involved communication resource based
on the socket involved. Note that this type of aspect needs to
be defined only once for any programming language.

The interface joinpoint type is about recognizing (external)
interfaces, thus providing a context for the system analyst. This
type of joinpoint can be matched by application-dependent
method pointcuts defined by the system analyst. The advice
code associated with interface joinpoint aspects is application-
independent language-dependent. This means that the system
analyst only has to define the pointcuts and possible location
information, and the rest of the aspect is handled in a generic,
automated fashion. Note that this type of advice code needs
to be defined only once for any programming language.

Granularity of Information Retrieval: Our instrumentation
aspects are designed to capture enough information to relate
events within and across the external interfaces of system
components. Hence, we are primarily retrieving information
on the system component instances. Secondarily, through the
option to specify interface pointcuts, we can provide more
detailed context information.

The advice code added to the SUS records event data on the
method level. The moments when a method is entered and exited
correspond to the start and end of the event time interval. Each
event is enriched with the current node and joinpoint information,
available through the pointcut specification. The current node
instance information is a piece of application-independent
language-dependent information. In our evaluation, we used
the notion of thread ids for instance identification within a node.

1Java tracing advice code online: https://svn.win.tue.nl/repos/prom/XPort/



Note that node instance identification needs be defined only
once for any programming language.

This way, all the information specified for system events in
Subsection III-F is accounted for.

Environment: Most analysis techniques assume some
controlled environment in which the SUS is executed. Frequently,
through the use of black-box testing techniques, many scenarios
(i.e., user requests) are triggered. However, our approach focuses
on capturing dynamic information about real-life usage of the
SUS. Therefore, instead of relying on testing techniques for
generating executions, we assume real-life interaction. One
concern may be that this approach cannot cover enough relevant
distinct scenarios. But since we want to understand the real-life
usage of the system, it stands to reason that the most relevant
scenarios are those scenarios that are (frequently) triggered by
the actual users of the system.

Target Language Considerations: Any language for which
method-level AOP techniques exist can be supported after
defining the basic communication resource and interface advices.
For the Java language one can use techniques like Java Agents
and Javassist [32], [33] or AspectJ [12]. The C++ language
can be supported via the use of, for example, AspectC++ [34]
or AOP++ [35]. Most other languages can be supported via
source transformation techniques like the TXL processor [36].

B. Information Collecting and Processing Strategy

In Subsection IV-A, we have discussed how we get our SUS
to generate events, and stream these to a logging server; see
also Figure 3. In this section we will detail how this information
is processed into actual event logs. In addition, we will touch
on two related issues: 1) event timing in a distributed context,
and 2) communication within system components.

Collecting Strategy: The events generated by the logging
clients are streamed to one central logging server. Although
not required by the basic definitions from Section III, for
practical reasons we assume an offline event processing strategy.
Therefore, our collecting strategy on the server side will be
a simple merge of event streams, and storing the results on disk.
Future work could focus on enabling the processing strategy
for real-time event stream processing, but we did not consider
this for our initial proof of concept.

Event Processing Strategy: The event processing strategy
consists of an algorithm that takes the set of generated events,
and produces an event log. That is, we cluster events into traces
based on the notion of related events (see Subsection III-F). Our
basic algorithm consists of two parts: 1) discovering ownership
of communication resources, and 2) discovering actual traces.

The discovery of communication resources ownership is
essentially the function fR(t, r) in Definition 5. We simply
traverse the recorded events in ascending order and build the
resource acquisition intervals.

The discovery of actual traces is now possible by resolving
the ‘related events’ mapping. For each pair of events
x, y ∈ E, x 6= y we can calculate x → y by checking the
two cases of the formal definition in Definition 6. For finding
resources rx, ry and corresponding acquisition intervals ix, iy ,
we can use the function fR(t, r). In order to find rx, we can
simply investigate the domain of fR(x.t).

In order to obtain the actual event log, we use the idea
presented in Definitions 6 and 7. We consider each event e ∈ E

for which there is no e′ ∈ E such that e � e′, and create a
trace out of all the events e′′ ∈ E with e′′ � e.

Timing Issues: Until now we have assumed that time
across platforms in a distributed system can be used for ordering
and comparing event intervals. However, in a distributed system,
local clocks (i.e. the time on different platforms) can be different.
To remedy this issue, we assume the Network Time Protocol
(NTP) is used to synchronize platform clocks via the internet
(see also RFC 5905 [37]). For systems not connected to the
internet, similar algorithms can be employed to synchronize
with a local global clock server.

Inter-Thread Communication: Recall from Subsection III-B,
we assume that a node instance is executed by one of the execu-
tion threads provided by a node. This restricts the current imple-
mentation to a single thread per node instance. Future work can re-
move this restriction, and we will elaborate on this in Section VI.

V. EVALUATION

This section discusses two case studies using existing
open-source software to demonstrate the feasibility and
usefulness of our approach. In addition, the instrumentation
overhead is investigated via a performance benchmark.

A. Methodology
We used two existing open-source software applications for our

experiments. The first is a pet catalog demo available in the Net-
Beans IDE [38]. The second is Wordcount MapReduce example
available in the Apache Hadoop distributed computing framework
(version 2.6.0) [39], [40]. For these experiments we used a laptop
with a 2.40 GHz CPU, Windows 8.1 and Java SE 1.7.0 67 (64
bit) with 4 GB of allocated RAM. The instrumentation is done
via Java Agents, using Javassist 3.19.0-GA [32], [33].

For the two case studies we indicate the instrumentation
pointcuts used (i.e., the input). After instrumentation, we
simulate a batch of user requests, collect the data and process it
to obtain event logs. Finally, we will use process discovery and
performance analysis to answer the following analysis questions:

1) What is the high-level end-to-end process corresponding
to the interfaces of the System Under Study?

2) What are the main bottlenecks or areas for improvements
in this process?

B. Case Study - Pet Catalog
The pet catalog software system consists of a JavaEE

webserver implementation. At the front external interface, users
can issue webpage requests, handled via JavaEE servlets. At
the backend, the software interfaces with a MySQL database
through the JavaEE persistence interface.

Instrumentation Pointcuts: To target communication
resource joinpoints, we defined pointcuts targeting Java socket
read and writes, as well as the JavaEE servlet interface. To
target interface joinpoints, we defined pointcuts targeting the
JavaEE persistence interface. The exact pointcuts are:

HasInterface: javax.persistence.EntityManager
Communication: java.net.SocketInputStream,
java.net.SocketOutputStream, javax.servlet.*,
javax.faces.*

Note that this, together with the actual SUS, is only the input
we need.



(a) Using the complete event log for performance analysis

(b) Using a filtered event log (filtered after extraction) for performance analysis, focusing only on cases with database queries

(c) Using a filtered event log (filtered after extraction) for performance analysis, exclusively focusing only on the database query events

Fig. 4. Process model of the Pet Catalog software system, depicted as a Petri net overlaid with performance information as per the replay algorithm [26].
Transitions (rectangles) from left to right read: (1) Servlet+start, (2) EntityManagerWrapper.createQuery()+start, (3) EntityManagerWrapper.create-
Query()+complete, (4) SocketOuputStream.write()+start, (5) SocketOuputStream.write()+complete, (6) SocketInputStream.read()+start,
(7) SocketInputStream.read()+complete, (8) Servlet+complete.

(a) Using the complete event log for performance analysis

(b) Using a filtered event log (filtered after extraction) for performance analysis, ignoring the wrapping main() method

Fig. 5. Process model of the Wordcount MapReduce job on the Apache Hadoop software system, depicted as a Petri net overlaid with performance information
as per the replay algorithm [26].
Transitions (rectangles) from left to right read: (1) WordCount.main()+start, (2) TokenizerMapper.map()+start, (3) TokenizerMapper.map()+start,
(4) TokenizerMapper.map()+complete, (5) TokenizerMapper.map()+complete, (6) IntSumReduce.reduce()+start, (7) IntSumReduce.reduce()
+start, (8) IntSumReduce.reduce()+complete, (9) IntSumReduce.reduce()+complete, (10) WordCount.main()+complete. (Outer map() reduce()
methods are untyped variants, the inner methods are typed variants.)

High-level End-to-end Process: The process model
displayed in Figure 4 was discovered via the inductive miner
[25]. Each transition (rectangle) represents the start or end (i.e.,
the call and return, respectively) of a method. The beginning
(left) and end (right) of this model is the call and return of
the Servlet front external interface. In between are the activities
during a Servlet call.

At the beginning of executing the Servlet, there is a choice
to perform some query requests or skip querying the database.
In the case the decision is to query the database, then a query
statement is first created (i.e., prepared). After that, there is
some communication with the database to issue the request
and receive the results (write and read). When done receiving
results, we have the option to loop back and perform additional
queries, or to finish the Servlet process.

Main Bottlenecks: The color highlighting applied in
Figure 4 is the result of replaying (a filtered version of) the event
log on the process model [26]. The coloring on the transitions
and places indicate waiting time between calls, between returns
or between a start and end (i.e., a call and return, and hence,
throughput). Dark red and light yellow colors indicate a high or
low waiting/throughput time, respectively. The color scale is auto-
matically computed by the replaying algorithm. The arc coloring
indicate how frequently that branch is used (over all traces), with

black and gray denoting a high and low frequency respectively.
As can be seen near the choice in the beginning in Figure 4(a),

in most cases querying the database is skipped. The average
case throughput, from start to end, is 2,77 milliseconds.

By applying the appropriate filter to our event log, we
obtain the in Figure 4(b), showing only the cases with database
interaction. Note that no re-instrumentation was needed, process
mining techniques provide advanced filtering after extraction [17],
[19]. The average case throughput with this log, from start to end,
is 7,96 milliseconds. There are two large delays visible, before
and after the query loop, indicated by the red circle before (2) and
the orange circle before (8). These delays correspond with the
Servlet startup and shutdown (in this case, a JavaServer Facelet).

After filtering out the Servlet start and complete events, we
obtain the Figure 4(c), focusing only on the database querying.
In this filtered view, thanks to a rescaled performance color
scale, we see a delay between creating queries (the orange circle
between (2) and (3)) and the actual database communication (the
red circle after (3)). In addition, a similar delay is visible during
reading results from the database (the red circle before (7)).

Conclusion: After specifying a few simple pointcuts, the
end-to-end process was quickly discovered. For these pointcuts,
no real in-depth knowledge or manual coding was needed,
allowing a quick instrumentation of the system. Through the use
of performance analysis, the Servlet startup and shutdown, as well



as the transition between query preparation and communication
were identified as the main bottlenecks. Since in most cases
the database is not queried (based on frequency information),
the latter bottleneck could be considered less of an issue.

C. Case Study - Wordcount MapReduce
The Wordcount MapReduce job is a simple application that

counts the number of occurrences of each word in a given
input set [40]. The job is executed on the Hadoop MapReduce
framework. We used the English version of the Universal
Declaration of Human Rights as input [41]. The front-end of the
application is the MapReduce client, whose main function sets
up the Wordcount job. The back-end of the application, i.e., the
actual map() and reduce() tasks, are executed on a different (local)
node. In between these nodes is the Hadoop MapReduce system.

Instrumentation Pointcuts: To target communication
resource joinpoints, we defined pointcuts targeting Java channel
socket read and writes. To target interface joinpoints, we defined
pointcuts targeting the client main and backend map and reduce
interfaces. The exact pointcuts are:

Interfaces: org.apache.hadoop.examples.*.map(*,
org.apache.hadoop.examples.*.reduce(*,
org.apache.hadoop.examples.*.main(*
Communication: java.net.SocketInputStream,
java.net.SocketOutputStream,
java.nio.channels.SocketChannel

Note that this, together with the actual SUS, is only the input
we need.

High-level End-to-end Process: The process model
displayed in Figure 5 was discovered via the inductive miner
[25]. The beginning (left) and end (right) of this model is the
call and return of the main() method. The remained of the
model occurs inside, or during this main() method.

The are two main phases in the MapReduce job: the first
loop is for the map() methods, and the second loop is for the
reduce() methods. Note that both map() and reduce() consists
of two functions: the generic interface implementation, and the
typed variant that is called during executing the generic method.

Main Bottlenecks: Again, we replayed (a filtered version
of) the event log on the process model, resulting in Figure 5.

As can be seen in Figure 5(a), the methods in the second
phase (i.e., the reduce methods) are executed more frequently:
roughly 4 times the frequency of the map methods. Taking
into account that the wordcount job computes the number of
occurrences of each word, we conclude that there are many
small reduce tasks as a result of a few map tasks. The average
case throughput for this application, from start to end, is 17,96
seconds. The biggest delays are at the beginning and end of
the job, before the first map call, and after the final reduce call.

After filtering out the main() start and complete, we obtain
the Figure 5(b), focusing only on the map and reduce methods.
In this filtered view, thanks to a rescaled color scale, we discover
a delay between map-reduce and reduce-reduce transitions.

Conclusion: Again, a few simple pointcuts and no real in-
depth knowledge or manual coding sufficed to quickly discover
the end-to-end process. Although the system under study is rather
complex, the initial effort needed to start analyzing its behavior
is very small. Through the use of performance analysis, the
MapReduce job startup and shutdown, as well as map-reduce and
reduce-reduce transitions were identified as the main bottlenecks.

D. On Instrumentation Overhead
We investigate the extend of instrumentation overhead via

a performance benchmark. We measure the time to complete of
both the Pet Catalog and the Wordcount MapReduce software
for both the instrumented and unmodified version of the
software. This time measurement is performed on the user side,
and thus includes the communication overhead between the
SUS and the client user. By measuring on the user side, we
can measure the time of the unmodified software, and influence
the SUS as little as possible. We repeated these measurements
several times, and calculated the average runtime and associated
95% confidence interval. The results are presented in Figure 6.

For the Pet Catalog case, we requested a batch of 5000
webpages involving database querying. As shown in Figure 6(a),
the difference in performance is very small.

For the Wordcount MapReduce case, we performed a batch
of 60 jobs in sequence. As shown in Figure 6(b), we see a
small difference in runtime.

Although in both cases the difference is observable, it is very
small compared to the total time to complete. Based on the
above presented observations, we conclude that the impact of
the instrumentation is negligible.

Instrumented SUS 

Unmodified SUS 

0 1 2 3 4 5 6 7 8

Average time to complete (in miliseconds) [95% confidence interval] 

Instrumentation overhead - Pet Catalog 

(a) The Pet Catalog case

Instrumented SUS 

Unmodified SUS 

0 5 10 15 20 25

Average time to complete (in seconds) [95% confidence interval] 

Instrumentation overhead - Wordcount MapReduce 

(b) The Wordcount MapReduce case

Fig. 6. Effect of instrumentation on the average time to complete.

VI. CONCLUSION

In this paper, we presented a novel reverse engineering tech-
nique for obtaining real-life event logs from distributed systems.
This allows us to analyze the operational processes of software
systems under real-life conditions, and use process mining tech-
niques to obtain precise and formal models. In addition, process
mining techniques can be used to monitor and improve processes
via, for example, performance analysis and conformance check-
ing. We presented a formal definition, implementation and an
instrumentation strategy based on the joinpoint-pointcut model.

Two case studies demonstrated how, after specifying a few
simple pointcuts, we quickly gained insight into the end-to-end
process, and the main performance bottlenecks in the context
of this process. By changing the pointcut specifications, and
filtering the obtained event logs, system analysts can easily
select the right amount of detail. Through the use of frequency
and performance information we can determine the seriousness
of discovered bottlenecks.

The current implementation is limited to single-threaded
distributed software systems, but future work will look into



adapting Definition 6 (related events) to handle multi-threaded
software. Note that, in essence, the related events relation in
Definition 6 relates threads based on inter-thread communication.
That is, this basic definition does not assume that the correlated
threads are on different nodes, and could also be applied in the
context of inter-thread communication within one node. When
adapting this definition, one should pay special attention to
inter-thread communication via data-structures, such as present
in typical producer-consumer settings.

In this paper, we assumed an offline process analysis setting,
but developing process mining techniques supporting event
streams could yield valuable real-time insight. Finally, with the ad-
vent of software event logs, which are rich in data and semantics,
new process mining techniques could focus on making location
information and subprocesses explicit in the discovered models.
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