
Handling Duplicated Tasks in Process Discovery by
Refining Event Labels

Xixi Lu1, Dirk Fahland1, Frank J.H.M. van den Biggelaar2, Wil M.P. van der Aalst1

1 Eindhoven University of Technology, The Netherlands
2 Maastricht University Medical Center

{x.lu,d.fahland,w.m.p.v.d.aalst}@tue.nl
{f.vanden.biggelaar}@mumc.nl

Abstract. Processes may require to execute the same activity in different stages
of the process. A human modeler can express this by creating two different task
nodes labeled with the same activity name (thus duplicating the task). However,
as events in an event log often are labeled with the activity name, discovery al-
gorithms that derive tasks based on labels only cannot discover models with du-
plicate labels rendering the results imprecise. For example, for a log where “pay-
ment” events occur at the beginning and the end of a process, a modeler would
create two different “payment” tasks, whereas a discovery algorithm introduces
a loop around a single “payment” task. In this paper, we present a general ap-
proach for refining labels of events based on their context in the event log as a
preprocessing step. The refined log can be input for any discovery algorithm. The
approach is implemented in ProM and was evaluated in a controlled setting. We
were able to improve the quality of up to 42% of the models compared to using a
log with imprecise labeling using default parameters and up to 87% using adap-
tive parameters. Moreover, using our refinement approach significantly increased
the similarity of the discovered model to the original process with duplicate labels
allowing for better rediscoverability. We also report on a case study conducted for
a Dutch hospital.

1 Introduction

Real-life processes may require that the same activity occurs at different stages or
branches of the process [1–4]. A human modeler would use different nodes in a model
(e.g., different transitions in a Petri net) labeled with the same activity to express differ-
ent occurrences of an activity in the process. We call each node labeled with an activity
a task. Thus, there could be many tasks referring to the same activity, which are known
as duplicated tasks. In a log, events are usually labeled with activity names instead of
tasks. As a result, two different events with the same activity label may originate from
the same task or from different tasks, i.e., the labeling in the event log is imprecise.

Process discovery aims at creating an accurate representation of the real process
from an event log helping users to understand the executed process [3,5]. However, most
existing discovery algorithms assume the labels of events to be precise and consider for
each label as one task represented by a single task node in the model. In case of event
logs with imprecise labels, these discovery algorithms tend to return over-generalized

r
c2

c1

b2 x2 c3

x1 b1

d
r

x

b

c

d

(c) Model 𝑀𝑙𝑎𝑏

Focus of the paper

Problem:
label refinement

5

Discovery

(e) Model 𝑀𝑟𝑒

t1 = < r c b x c d >
t2 = < r x b c d >
t3 = < r x c b d >

(b) Imprecise log 𝐿𝑙𝑎𝑏
< r c2 b2 x2 c3 d >
< r x1b1c1 d >
< r x1c1b1 d >

(d) Refined log 𝐿𝑟𝑒
(a) The original system 𝑆

Discovery

b

x
r

cRegistration x
d

p0 p1

p2 p3

p5 p6

c
p4

b

c
p8

p7

p10

p9
Discharge

Consultation Consultation

Consultation

Blood test

Blood test X-ray

X-ray

Fig. 1: The imprecise label problem settings and the running example.

models that allow much more behavior than in the event log [2, 3]. Such models may
be misleading or even incorrect, obstructing users to use the models for understanding
the real processes or performing accurate process analysis. A better solution would be
to discover models where two tasks carry the same label, i.e., duplicate tasks [1, 2].

We exemplify the problem using an example shown in Fig. 1. The original system
(a) has five activities “r”, “d”, “c”, “b” and “x” and ten tasks; activities “c”, “b” and
“x” occur at multiple different tasks, which result in an imprecise log (b), in which
the events only refer to activities “c”, “b” and “x” rather than the different tasks in the
system. Using a standard discovery algorithm, we discover for the imprecise log (b) an
imprecise model (c) that states “b” could be skipped and has a loop that allows “c” and
“x” to be executed an arbitrary number of times, even though every trace in the log has
an event labeled “b” and only one event labeled “x”. Overall, model (c) is imprecise
as it contains many behaviors neither seen in the log (b), nor in the original system
(a). Refining the labels of events could yield the refined log (d), from which a refined
model (e) can be discovered that corresponds to the original model (a) while using the
same discovery algorithm. However, the trivial refinement where each event gets its
own unique label is not desired as it would lead to models that overfit the event log.
Thus, our goal is to refine an imprecise log in such a way that a discovery algorithm
finds a better model which is more precise and closer to the original model.

In this paper, we investigate the problem of imprecise labels of events for process
discovery and propose an approach to resolve the problem through log preprocessing.
In particular, we introduce an approach for refining labels and relabeling events in the
log such that any existing or future process discovery algorithm can infer duplicated
tasks from the refined labels. As the optimal refined log or model may be unknown, our
approach aims at adding more alternative representations of a process into the solution
space of process discovery algorithms to help users find better models systematically.

Our approach has three steps: (1) identify one or multiple candidates for imprecise
event labels; then refine imprecise labels (2) across traces and (3) within traces. Here,
we leverage previous work on trace matching technique which groups events based on
similarities in their context [6]; dissimilar groups of events are labeled differently.

The approach is implemented in ProM 3 and has been evaluated in a controlled
setting and in a real life case study. In the controlled experiment, we investigated how
well our approach can detect and refine labels in imprecise event logs generated from a
large set of synthetic process models with duplicated tasks. We analyzed model quality

3
http://www.promtools.org/

http://www.promtools.org/

with respect to the event log and the similarity to the original model. For 87% of the
processes having duplicated tasks outside of loops, our approach automatically refined
imprecise logs so that a discovery algorithm returned a more precise model. For pro-
cesses having duplicated tasks in a loop, label refinement improved precision for 61%
of the imprecise logs.

In the remainder, we first discuss related work in Sect. 2. In Sect. 3, we recall the
concepts used for defining the problem, the measures used in the evaluation, and the
methods used in the approach. In Sect. 4, we formalize problems and aims. Sect. 5
explains the proposed approach. The evaluation results are presented in Sect. 6, and
Sect. 7 concludes the paper.

2 Related Work

Process Model Elements Labeling or Relabeling. Many studies have investigated the
problem of labeling or relabeling process elements (e.g., activities, flow relations) in
process models [7, 8]. These works assume that a collection of structurally correct pro-
cess models is available and use additional domain knowledge or other semantically
correct labels to then suggest or revise the incorrect labels of elements in these models.
Here, we assume no models to be available and operate solely on event logs, in order
to discover structurally correct models. One then may apply [7, 8] on the discovered
models to revise and improve their labels.

Process Discovery and Duplicated Tasks. Process discovery algorithms aim at discov-
ering “good” models from an event log to help users to understand real-life processes.
Most existing discovery algorithms map each unique event label to one task, making
it impossible to discover processes with two tasks with the same label. Some discov-
ery algorithms can refine labels during model construction to some extent [1, 2, 4, 5, 9].
However, these internal mechanism to handle duplicated tasks can not be used in other
discovery algorithms. Moreover, these algorithms have other limitations such as they
do not guarantee sound models or fitting models. To be able to benefit from current and
future progress in process discovery techniques [10, 11], we propose to refine labels in
the event log itself, which then can be used by any process discovery algorithm.

Trace Clustering and Clone Detection. As duplicated tasks may also manifest them-
selves as multiple variants of executing a set of activities within the same process,
trace clustering was proposed as a way to distinguish these variants [12, 13]. However,
clustering techniques always consider entire traces and thus also unnecessary duplicate
tasks which are the same in all variants. In [14], the authors proposed a top-down ap-
proach that clusters the traces, discovers models for each cluster separately and uses
clone detection to find tasks that are the same in all variants, preventing unnecessary
duplicating tasks [15]. However, trace clustering techniques are unable to distinguish
two events having the same label within a trace or a variant [12]. In this paper, we aim
at tackling both problems.

Data Quality and Noise/Deviation Filtering. Imprecise labels could also be seen as
data quality problem, i.e., events having incorrect labels. To the best of our knowledge,

no existing work investigated this problem from this point of view. Other existing work
on log preprocessing such as noise/deviation filtering would change input logs, both
structurally and behaviorally, e.g., by removing events [6]. Such changes would also
affect fitness of the discovered model with respect to the original log as a process dis-
covery algorithm can only guarantee fitness for the filtered log. In this paper, we propose
to not change the event log but only the labeling of events, which help us to preserve
fitness if the discovery algorithm has such a guarantee.

Model Quality of Discovered Models. Dozens criteria and measures have been pro-
posed for assessing the quality of discovered models, which may be discussed in three
categories. Measures that evaluate the quality of the model using the input log often
consider fitness, precision, and generalization [3, 5]; we use the fitness defined in [16]
and precision in [17]. In the context of controlled experiments, the quality of a discov-
ered model can be evaluated against the original system in terms of how much of the
behavior of the system can be reproduced by the discovered model and how precise the
model describes the system [18]. When evaluating the quality of model irrespective of
the log, then soundness and simplicity are often considered [5, 19]. In the next section,
we further discuss the measures used in this paper.

3 Preliminaries

In this section, we present (1) the input for our approach, (2) the quality measures used,
and (3) the key concepts of a technique for finding events with a similar context.

Event, Label, and Event log. Let E be the universe of unique events, i.e., the set of all
possible event identifiers. A trace σ ∈ E∗ is a finite sequence of events. An event log
C = {σ1, σ2, · · · , σn} ⊆ E∗ is a set of traces. Here we assume no event appears twice
in the same trace nor in different traces. We use EC for the set of events in log C. Let
A be a set of activities and C a log. A labeling function l : EC → A is surjective and
assigns to each event e ∈ EC a label l(e) = a ∈ A. We call L = (C, l) a labeled event
log over activities A.

Process Discovery and Model Quality. Let L = (C, l) be a labeled log over A. A
discovery algorithm D returns a model M (i.e. D(L) = M) such that the activitiesA(M)
occurring in model M are A, i.e., A(M) = A. The quality of the discovered model
D(L) = M may be evaluated in two ways. First, with respect to the input log L, the
log fitness(L,M) and log precision(L,M) of the model can be computed, for which we
use the measures defined in [16] and [17], respectively. Both return a value between 0
and 1: if log fitness(L,M) = 1, every trace in the log can be replayed by the model
perfectly. When log precision(L,M) is close to 1, most (alternative) behavior allowed
by the model is also observed in the log.

In addition, we compare the discovered M = D(L) to the original system in terms of
system recall and system precision to evaluate the generalization and discoverability of
our approach. Let S be the system that generated L. The system recall sys recall(S,M,L)
and system precision sys precision(S,M,L) of the discovered model are computed ac-
cording to [18]. For example, in Fig. 1(b), after executing events “r” and “x” in trace t2,
tasks “b” and “c” are enabled in the original system; in model (c), “b” and “c” but also

“x” are enabled, which has 100% recalled all enabled activities in the system but is less
precise (an additional “x” not enabled in the system); a trace model would only allow
“b” (the next event in the trace), which is precise but has bad recall. Note that the recall
with respect to system thus also captures the aforementioned generalization quality [5].
Furthermore, note that the system precision is different from the log precision, as the
system could be imprecise with respect to the log (when the log is incomplete), but
system is always precise with respect to to itself.

Similar Events, Mapping, and Cost Function. We build on existing concepts [6] to
identify events that carry the same label but occur in different contexts. Let σ, σ′ be two
traces. A mapping λ(σ,σ′) ⊆ Eσ × Eσ′ between σ and σ′ is a binary, injective relation;

(e, e′) ∈ λ(σ,σ′) is a matched pair. We write λ(σ,σ′) for the set of events having not

match in λ(σ,σ′), i.e. λ(σ,σ′) = {e ∈ E | ¬ ∃ e′ ∈ E′ : (e, e′) ∈ λ(σ,σ′)} ∪ {e′ ∈
E′ | ¬ ∃ e ∈ E : (e, e′) ∈ λ(σ,σ′)}. In this paper, we assume for all (e, e′) ∈ λ(σ,σ′),
l(e) = l(e′).

17

cr dc xb

dr x cb

Neighbors
Distance = 4

Distance = 3 Similar = Matched
Dissimilar = No Match

e1 e2 e3 e4 e5 e6
e7 e8 e9 e11e10

Fig. 2: An example of a map-
ping between two traces.

Given any two traces σ and σ′, there are many
possible mappings between them. An optimal map-
ping that maximizes the pairs of mapped events with
large similarity in their context can be selected using a
cost function with three weighted components: (1) the
differences in the (direct or indirect) neighbors of the
matched pairs (using costMatched), (2) the differences
in the distances between a matched pair (e, e′) and
other matched pairs (using costStruc), and (3) the non-
matched events e ∈ λ (using costNoMatch). Formally,
cost(σ, σ′, λ) = wM ∗

∑
(e,e′)∈λ costMatched(e, e′, λ) +

wS ∗
∑

(e,e′)∈λ costStruc(e, e′, λ) + wN ∗
∑

e∈λ costNoMatch(e), in which wM,wS,wN are
the weights for the components. Fig. 2 shows an example of a mapping between traces
t1 and t2 of log Llab of Fig. 1 (see [6] for a detailed explanation). As the traces σ and σ′

are finite, one may simply enumerate all possible mappings between two traces, com-
pute the cost of each mapping, and select the optimal ones. In [6], a greedy algorithm
is proposed to find a locally optimal mapping in polynomial time. The results of this
paper have been obtained with the greedy variant.

4 Problem Definition and Analysis

In this section, we first formally define our research problem and then discuss the related
complications and our design decisions. In essence, given an imprecisely labeled log
L = (C, lA) over the set of activities A, we would like to return a more refined labeling
function lB for the events EC in order to help a discovery algorithm find better models.

Definition 1 (Refined labeling function). For a labeled log LA over the set of labels
A, the log LB over an arbitrary set of labels B is a refined log iff (1) they have the same
traces, i.e., LA = (C, lA),LB = (C, lB), and (2) for each two events e, e′ ∈ Ec, e and e′

can only have the same label according to lB, if they also have the same label by lA, i.e.,
(lB(e) = lB(e′))⇒ (lA(e) = lA(e′)). We call lB a refined labeling function for LA.

Note that the model MB discovered from LB has a different set of activity labels
(i.e., A(MB) = B) than the model MA discovered from LA (i.e., A(MA) = A). However,
for comparing MA and MB w.r.t. various measures, both models should have the same
set of activities. To allow for this comparison, we introduce some notions that allow
replacing the refined labels B of MB with the original labels in A. Each refined log
LB = (C, lB) of LA = (C, lA) induces the label abstraction function β : B → A
with β =

⋃
e∈E{lB(e) 7→ lA(e)}. The inverse β−1(a) = {b ∈ B | β(b) = a} gives

the set of refined labels for original label a ∈ A. Note that β(lB(e)) = lA(e) for all
events e ∈ E. For example, in Fig. 1, the refined log Lre of Llab induces the abstraction
β = {r → r, c1 → c, c2 → c, c3 → c, b1 → b, b2 → b, x1 → x, x2 → x, d → d}, label
c is refined into the set β−1(c) = {c1, c2, c3}.

Using β, we can abstract model MB by replacing each label b in MB with β(b).
Let β(MB) denote the resulting model. Lemma 1 then follows immediately from the
definitions.

Lemma 1 (MB and β(MB) have the same behaviors). Let LA be an event log and LB

be a refined log of LA. Let MB be a model discovered from LB such that each trace of LB

is a trace of MB. Let β be the label abstraction induced by LB. Then each trace of LA is
a trace of β(MB).

Through β we can now compare models MA and β(MB) respectively discovered
from both original log LA and refined log LB and formally define our problem.

Problem Definition. Let Llab = (C, l) be an (imprecisely) labeled event log over the
set of activities A. Let S denote the system model that generated Llab with A(S) = A.
Given discovery algorithm D, let Mlab = D(Llab) be the model discovered on the labeled
log. We would like to find a refined labeling function l′ of l that with induced label
abstraction β such that for the refined log Lre = (C, l′) and the discovered, abstracted
model Mre = β(D(Lre)) over A, the following properties hold:
1) Fitness and precision of Mre improves over Mlab w.r.t. the given labeled log:

– log precision(Mre,Llab) ≥ log precision(Mlab,Llab) and
– log fitness(Mre,Llab) ≥ log fitness(Mlab,Llab)

2) Recall and precision of behavior of Mre should be higher than Mlab w.r.t. S, i.e.,
– sys precision(S,Mre,Llab) ≥ sys precision(S,Mlab,Llab) and
– sys recall(S,Mre,Llab) ≥ sys recall(S,Mlab,Llab)

When the system S is unknown, we consider our third aim as providing different
refined labeling functions that satisfy the first requirement which allows users to explore
different representations of the input log.

Related Issues and Design Decisions. We discuss three complications related to the
research problem to motivate our design decisions and assumption. First, there is a
large combinatorial number of possible solutions, since in principle any label can be
refined into an arbitrary number of refined labels. In addition, we have no criteria nor
metrics that define when a refinement is optimal for the algorithm D. This depends
on the discovery algorithm used. Furthermore, when the system is unknown, the same
process may have different equally good representations depending on the stakeholder,
the context, and decisions made in the formalization of the model. Since one can not

deduce the optimal log nor the optimal model, we have to base the decisions for refining
event labels on the behavioral structure of the event log and some basic principles and
heuristics we discuss later.

The second complication is posed by the discovery algorithms and measures used
for evaluation. Ideally, a more precise log would result in a more precise model, inde-
pendent of the discovery algorithm and the measures we applied. However, this is not
the case. A discovery algorithm may return a less precise model while the log is more
refined (for example to avoid overfitting). Therefore, we decided to propose a backup
plan. If log precision(Mre,Llab) < log precision(Mlab,Llab), we simply return the log
with its imprecise labeling. This guarantees that at least using the refined log would not
lead to discovering a model worse than using the imprecise log.

Finally, in this paper, we assume the discovered model is sound and fitting for the
following reasons. Most state-of-art measures assume a fitting log when evaluating the
quality of a model. We observed in our own experiments that the measures become
rather unreliable and difficult to compare or to understand the improvements when the
models are not sound and fitting. Moreover, as fitness is defined in terms of the number
of events that can be replayed by a model and we are not adding or removing any
events (which would have direct influence on the fitness), changes in fitness are merely
a quality of the discovery algorithms used. For example, if the algorithm guarantees to
return a fitting model, relabeling events would not change this property.

5 Approach

We decompose the label refinement problem into three subproblems. First, we identify
one or multiple labels as candidates for imprecise labels. Then, we consider a group of
traces that have similar behavior to be a variant of the process and refine the imprecise
label candidates (horizontally) into different variants and (vertically) within a variant.
Fig. 3 shows an overview of the three subproblems using an example.

5.1 Detecting Imprecise Labels

The first step is to identify one or multiple candidates for imprecise labels. This step
helps to limit the search scope to those events that have an imprecise label and to avoid
splitting non-duplicated tasks. Furthermore, it helps to consolidate the context informa-
tion of events with imprecise labels. One may also consider all labels, however, this
may unnecessarily complicate the label refinement process.

Formally, we define the problem as follows. Let L = (C, lA) be a labeled event log
and A the set of labels used. We would like to identify a subset of labels A′ ⊆ A and
consider them as candidates for imprecise labels. In other words, the labels in A\A′ are
precise labels, and there is no need to refine them, i.e., for e ∈ EC and lA(e) = a ∈ A\A′,
any refined labeling function lB of lA with its β implies lB(e) = a, and β−1(a) = {a}.

There are many different ways to detect imprecise labels. We discuss two methods
(used in the evaluation) and consider other possibilities as future work. The optimal case
is to have an oracle that returns the truly imprecise labels as candidates. For example,

Refining Label

s a b c t
s a b a b c t
s a b a b c t
s a a b t
s a c t
s a c t

s a b c t
s a b a b c t
s a b a b c t
s a a b t
s a c t
s a c t

{a, b, c} s a b c t
s a b a b c t
s a b a b c t

s a a b t

s a c t
s a c t

s a1 a2 b1 t

s a3 c1 t
s a3 c1 t

1. Detect
Imprecise

labels

2. Refine
Labels

horizontally

3. Refine
Labels

Vertically

Imprecise log
One or Multiple

Imprecise label candidates
Horizontal clusters

of events

Vertical clusters
of events

General Framework

s a0 b0 c0 t
s a0 b0 a0b0c0 t
s a0 b0 a0b0c0 t

11

s a0 b0 c0 t
s a0 b0 a0 b0 c0 t
s a0 b0 a0 b0 c0 t
s a1 a2 b1 t
s a3 c1 t
s a3 c1 t

“precise” log

Fig. 3: The proposed approach for refining imprecise label as log preprocessing.

domain experts indicate a particular label to be imprecise. In the remainder, we refer to
this as Oracle Detection (OD).

Besides having an oracle, we propose an automated method that uses properties of
Inductive Miner (IM) [11]. IM systematically parses an event log and finds a locally
optimal “subprocess” recursively. If IM fails to find an accurate subprocess, it returns
a generic subprocess that can replay any trace over the events in the corresponding
sublog (i.e., a local “flower loop”). In this paper, we consider this type of subprocess to
be imprecise. We choose to select the smallest imprecise subprocess (i.e., local “flower
loop”) and return the activity labels in the subprocess as imprecise label candidates. For
instance, applying IM on the running example, IM returns a process model of Fig. 1(c)
containing a flower loop with activity labels c, b and x, and this set {c, b, x} is returned
as candidates for imprecise labels. We use the IM Detection (IMD) to refer to this
method. In principle, any subprocess or multiple subprocesses can be selected.

5.2 Intermediate Step - Matching Events

After finding imprecise label candidates, we propose an intermediate step before refin-
ing these labels. The objective of this intermediate step is to identify similarities be-
tween events across traces. Similar events should carry the same refined label whereas
dissimilar events should carry a different label.

In essence, the procedure for computing the similarity of events of different traces
uses the existing trace matching technique of Sect. 3 and goes as follows. Given a
labeled log L = (C, l), for each two traces σ, σ′ ∈ C, we find an optimal mapping
λσ,σ′ ∈ Eσ × Eσ′ between their events for a given cost function. This way we get the
distance between any two traces σ and σ′ as cost(σ, σ′, λσ,σ′). This distance can be
normalized w.r.t. the highest cost maxCost = max σ,σ′∈C cost(σ, σ′, λσ,σ′).

To obtain the distance between any two events, we project the normalized distance
between traces onto the individual pairs of events. Formally, we construct an undirected
weighted graph G = (EC,R, l,w) where nodes EC are the events of L = (C, l) with
labeling l. For each pair (σ, σ′) of traces in L and a best matching λσ,σ′ and for each
pair (e, e′) ∈ λσ,σ′ of events, we add the edge (e, e′) to R with weight w(e, e′) =
cost(σ, σ′, λσ,σ′)/maxCost. Note that in G a single event may have many weighted
edges describing how close it is to the most similar event in other traces. When mapping
the costs from pairs of traces to pairs of events in G, any edge between events with a
precise label a (i.e., a 6∈ A′) gets cost 0. This way, we will enforce that these labels are

cr dc xb

dr x cb

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc xbe1 e2 e3 e4 e5

dr x bce17 e18 e19 e21e20

Trace t0

Trace t1

Trace t2

Trace t3

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0 0.7 0.7 0.7

c2r dc2 x2b2

dr x1 c1b1

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc2 x2b2e1 e2 e3 e4 e5

dr x1 b1c1e17 e18 e19 e21e20

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0

Horizontal refinement zv = 0.6

c3r dc2 x2b2

dr x1 c1b1

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc2 x2b2e1 e2 e3 e4 e5

dr x1 b1c1e17 e18 e19 e21e20

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0

Vertical refinement zf = 0.4(a) (b) (c)

Fig. 4: A graph of labeled events with weighted edges denoting the dissimilarity (a),
for which the labels are refined horizontally (b) and then vertically (c).

not refined. The higher the cost between two events, the more likely that they receive
different labels. Searching for a mapping with least cost ensures we group the most
similar events and give them together the same label during refinement. Fig. 4(a) shows
an example of a weighted graph of events for an imprecise log that consists of four
traces. Note that the graph is incomplete; the mappings between t0 and t2, t1 and t3, and
t0 and t3 are not shown for the sake of simplicity.

5.3 Refining Labels Horizontally Across Variants
We can now identify variants within a process by grouping events across traces based
on their similarity. The reason for distinguishing variants is the following. If two very
different variants of a part of the process are considered together, a discovery algorithm
may return a more general structure than exists in reality. Consider for example the two
traces σ = 〈..., c, b, x, ...〉 and σ′ = 〈..., x, b, c, ...〉. One may consider them a single
variant and return for example a model with activities b, c and x in parallel (i.e. can be
executed in any order). However, an alternative would be having a precise model that
only allows these two variants. The “optimal” model depends on the particular case.
When the original model for the system is unknown, we cannot claim one of them is
better, therefore we simply want to add the alternative with both variants to the solution
space of existing discovery algorithms allowing user to explore both representations.
Label refinement allows us to achieve this systematically.

The similarity measure enables us to be flexible when considering which variants to
split by introducing a variant threshold zv. We say, two traces σ and σ′ are in the same
variant, written σ ∼ σ′ iff their normalized cost(σ, σ′, λσ,σ′)/maxCost ≤ zv or there
exists σ′′ with σ ∼ σ′′ ∼ σ′. Note that ∼ is an equivalence relation where two very
dissimilar traces may become equivalent if there is a “chain” of similar traces between
them. Thus, two events e ∈ σ, e′ ∈ σ′ that have imprecise labels (i.e., l(e), l(e′) ∈ A′)
are in the same variant iff σ ∼ σ′. In our graph G, we materialize (dis-)similarity by
removing any edge (e, e′) with weight w(e, e′) > zv. As all mappings between events of
the same two traces σ and σ′ carry the same weight, all events of a trace are kept in the
same variant. Note that edges between the events that carry precise labels have weight
0 and are not split into multiple variants.

For example, setting the variant threshold for the event distance graph G of Fig. 4(a)
to 0.6 yields the graph G′ of Fig. 4(b) showing two variants in the part of the process
involving labels c, b, x. Labels r and d are not refined into multiple variants.

5.4 Refining Labels Vertically Within Variant

After refining labels horizontally to distinguish different variants, there can still be mul-
tiple events carrying the same label within a single variant indicating either a loop or
different tasks. Assuming in 50% of cases activity c is executed once and in the other
50% of the cases, c is executed twice, we could infer that there are two c tasks (one
optional), or just one c task in a loop. In the following, we again use label refinement to
add both alternatives to the solution space.

For refining labels within a single variant, we assume the following characteristics
of a proper loop: when the number of iterations increases, the probability of execut-
ing this iteration decreases. For example, one may always execute the first iteration,
whereas the second iteration is only executed in 20% of the cases. In contrast, a dupli-
cated task in a sequence would show similar numbers of executions in all traces of the
same variant.

Based on this assumption, we introduce an unfolding threshold parameter zf . For
each imprecise label candidate a ∈ A′, let G1

a , ..., Gm
a be the connected components

of G in which all events have label a. Gi
a and Gj

a are in the same variant iff for any
two events ei ∈ Gi

a and ej ∈ Gj
a, ei and ej are in the same variant (see Sect. 5.3).

For example, Fig. 4(c) highlights for imprecise label c the three connected compo-
nents G1

c = {e2, e7}, G2
c = {e10}, G3

c = {e15, e19}, in which G1
c and G2

c in the same
variant. Next, let #Gi

a denote the average position of the events of #Gi
a in their re-

spective traces. Let G1
a ... Gk

a be in the same variant ordered by #Gi
a. Let maxSize =

max1≤i≤k
∣∣Gi

a

∣∣ be the size of largest component (w.r.t. its events). For 1 ≤ i ≤ k, if
i = 1 or

∣∣Gi
a

∣∣ ≥ vf ∗maxSize, then all events in Gi
a get a new label, otherwise Gi

a get the
label of the events of Gi−1

a . For example, for imprecise label c, for the two connected
components G1

c = {e2, e7} and G2
c = {e10} that are in the same variant, #G1

c = 2,
#G2

c = 5, and maxSize = 2. Therefore, if the unfolding threshold vf is 0.6, then the
events in G2

c get the same label as the events in G1
c . If vf is 0.4, then both G1

c and G2
c

each get a new label.

6 Experimental Evaluation and Case Study

We implemented the techniques of Sect. 5 in the process mining toolkit ProM and con-
ducted controlled experiments and a real-life case study to evaluate our approach. Plu-
gins and experiments are available in the TraceMatching package of ProM. We first
explain the experimental setup and then discuss the result.

Experimental Setup. The experimental setup is shown in Fig. 5. We randomly gener-
ated block structured models as systems with n number of visible tasks. Each system
has k tasks that have the same activity label (here we consider just one duplicated la-
bel). For each system, we generate one imprecisely labeled log Llab = (C, llab) of a 1000
cases each. From the imprecise log Llab, we discover Mlab = D(Llab). For the same log,
we also apply our approach of Sect. 5 to obtain a refined log Lre = (C, lre) (note that
β(Lre) = Llab), for which we discover model Mre. Two algorithms are used: IM [11],
i.e., Mre,IM = β(DIM(Lre)), and ILP [10], i.e., Mre,ILP = β(DILP(Lre)). The quality of
each of the models is compared with the corresponding model Mlab for evaluating to

Compute Model Qualities

Label
refinement

L_lab

Generator

System S,

in which k number of
transitions have

the same label

L_re
M_lab

M_re

D

D qualities of
M_lab (LB)

qualities of
M_re

D = IM, ILP
Model qualities = Log_fitness, Log_precision,

Sys_fitness, Sys_precision

improved

For Sys_recall and Sys_precision

For Log_fitness and Log_precision

Fig. 5: An overview of the experimental design.

The refined models (c)(e) shows that the duplicated tasks were rediscovered
in their respective positions, but unable to identify the concurrency between
two consecutive duplicated tasks.

(a) System

(b)𝑀𝑙𝑎𝑏
𝐼𝑀

Log_precision improved by 0.55
Sys_precision improved by 0.68
Syst_recall is 1

Log_precision improved by 0.58
Sys_precision improved by 0.51
Syst_recall is 1

(d)𝑀𝑙𝑎𝑏
𝐼𝐿𝑃

(c)𝑀𝑟𝑒
𝐼𝑀

(e)𝑀𝑟𝑒
𝐼𝐿𝑃

𝑡1
𝑡2

𝑡3
𝑡4

B
B
B

B

B

B B B B

B
B B B

B

Fig. 6: Original model with duplicate tasks (a), results of IM on imprecise log (b)
and on refined log (c), same for ILP (d) and (e).

what extent our aims has been achieved. In all experiments, the same cost configuration
is used for matching events. To speed up the experiments, the events that have precise
labels, i.e. l(e) = l(e′) 6∈ A′, are matched naively based on their labels and ordering in
their respective traces. All models, logs and results can be downloaded4.

Exp.1) When imprecise labels are not in a loop, what are the improvements? In
this experiment, we used the default parameters: the variant threshold zv is 0.05 and the
unfolding threshold zf is 0.60 for all models. We generated for size n = [10, 15, 20] 200
models (600 models in total). For each model, there are k = 4 transitions having the
same label and that are not in a loop.

We show two examples of the refined models compared to their imprecise models in
Fig. 6 and Fig. 7 to illustrate our results: Fig. 6 shows an improvement in log precision
of more than 0.50 and Fig. 7 an improvement of 0.10. In Fig. 6, the original model
(a) has four duplicated tasks labeled “B”; applying IM and ILP on the imprecise log
respectively results in discovering an imprecise model (b), which has a flower subpro-
cess consisting of 5 activities, or an imprecise model (d), which has two unconnected

4 doi: 10.4121/uuid:ea90c4be-64b6-4f4b-b27c-10ede28da6b6
or https://svn.win.tue.nl/repos/prom/Documentation/TraceMatching/BPM2016.zip

http://dx.doi.org/10.4121/uuid:ea90c4be-64b6-4f4b-b27c-10ede28da6b6
https://svn.win.tue.nl/repos/prom/Documentation/TraceMatching/BPM2016.zip

Log_precision improved by 0.10,
Sys_precision improved by 0.22, Sys_recall = 1

(a) System

78

(b)𝑀𝑙𝑎𝑏
𝐼𝑀

The refined model (c) shows that the large
flower loop in (b) is unfolded by correctly
identifying the duplicated task t1 , but
unable to completely rediscover t2 , t3 and t4.

𝑡1
𝑡2

𝑡3

𝑡4

(c)𝑀𝑟𝑒
𝐼𝑀

A
A

A
A

A

A A
A

Fig. 7: Original model (a), result of IM on imprecise log (b) and on refined log (c).

88
50 32

112
81

57

112
150 168

88
119

143

0

50

100

150

200

10 15 20 10 15 20

ILP IM

(a) Number of logs
refined (IMD)

TRUE FALSE

71

31 25 14 12 11 6

139

54
34 11 8 4

0

50

100

150

200

250

300

(0,
0.1]

(0.1,
0.2]

(0.2,
0.3]

(0.3,
0.4]

(0.4,
0.5]

(0.5,
0.6]

(0.6,
0.7]

(0.7,
0.8]

(0.8,
0.9]

(0.9,
1.0]

(b) Frequency of improvements in
Log_Precision (IMD)

ILP IM

1

91

151
123

49

51

35

76

104

132

72

0

50

100

150

200

[0,
0.5]

(0.5,
0.6]

(0.6,
0.7]

(0.7,
0.8]

(0.8,
0.9]

(0.9,
1.0)

[1.0]

(c) Shift in System F1-Score
(IMD)

#M_lab #M_re

Fig. 8: Number of refined log (a), frequency of improvements in log precision (b)
and shifts in system scores (c).

activities; on the refined log, for both ILP and IM, the refined models (c) and (e) shows
that the four duplicated tasks were correctly discovered in their respective positions in
the process, however, our approach is unable to identify the concurrency between two
consecutive duplicated tasks t2 and and t3 in (a).

Overall, Fig. 8(a) shows the number of systems for which our approach was able to
find a refinement for its log that leads to discovering a better model with a higher log
precision, while using automated detection of imprecise labels (IMD). In general, in
35% (420 of 1200) of the logs, we were able to find a refinement with default parameters
using IMD; using domain knowledge (OD) increased this number by 3%. For 42% of
the refined logs, IM discovered an improved model, which is 14% more than for ILP.

Fig. 8(b) shows the histogram of frequencies of actual log precision improvements
using IMD. As can be seen, for both ILP and IM, our approach is able to help discover
models with significant improvements. For ILP, the approach was able to find for 99 out
of 600 models an improvement between 0.1 and 0.7 (using OD, this number increased
by 9%); similar for IM, 111 out of 600 refined models had such an improvement (using
OD, this number is increased by 20%). The average log precision is increased by 0.15.

Fig. 8(c) shows the absolute F1-score (which is the harmony average of sys precision
and sys recall) for Mlab (discovered on imprecise logs) versus Mre (discovered on the
successfully refined logs using IM and ILP); our refinement clearly shifts the F1-score
towards 1. When using automated detection (IMD), 16% (67 out of 420) of the im-
proved logs were refined in such way that F1-score becomes 1, which indicates that
the resulting model have exactly the same alternative behavior as the original system

187 174 160

13 26 40

0

50

100

150

200

10 15 20

IM

(a) Number of logs refined
(OD & Adaptive)

FALSE

TRUE

305

92
57

35 23 9 0 0 0 0
0

50

100

150

200

250

300

(0,
0.1]

(0.1,
0.2]

(0.2,
0.3]

(0.3,
0.4]

(0.4,
0.5]

(0.5,
0.6]

(0.6,
0.7]

(0.7,
0.8]

(0.8,
0.9]

(0.9,
1.0]

(b) Freq. of Improvements in
Log_Precision (OD & Adaptive)

IM

0 1

75

151 163

116

15
0 1 33

63

117

203

104

0

50

100

150

200

[0.0,
0.5]

(0.5,
0.6]

(0.6,
0.7]

(0.7,
0.8]

(0.8,
0.9]

(0.9,
1.0)

[1.0]

(c) Shift in System F1-score
(OD & Adaptive)

#M_lab

#M_re

Fig. 9: The same types of result as Fig. 8 when using adaptive parameters.

117 127 123

83 73 77

0

50

100

150

200

10 15 20

IM

(a) Number of logs refined
(OD & Adaptive & In Loop)

FALSE

TRUE

254

30 15 20 28
11 7 2 0 0

0

50

100

150

200

250

300

(0,
0.1]

(0.1,
0.2]

(0.2,
0.3]

(0.3,
0.4]

(0.4,
0.5]

(0.5,
0.6]

(0.6,
0.7]

(0.7,
0.8]

(0.8,
0.9]

(0.9,
1.0]

(b) Freq. of improvements in
Log_precision (OD & Adaptive & In Loop)

IM

0

16

96

122

80

53

00 7

56

98
77 65

64

0

50

100

150

200

[0.0,
0.5]

(0.5,
0.6]

(0.6,
0.7]

(0.7,
0.8]

(0.8,
0.9]

(0.9,
1.0)

[1.0]

(c) Shift in System F1-score
(OD & Adaptive & In Loop)

#M_lab

#M_re

Fig. 10: The same types of result as Fig. 8, if a duplicated task is found in a loop.

enabled by the log (using OD we obtain 77 out of 516). Performance-wise, the average
running time for computing one refined log varies between 8 and 14 sec. depending on
the model size.

Exp.2) Influence of our parameters. Next, we investigated whether adjusting parame-
ters improves the quality of label refinement and whether such parameters can be found
automatically for each model. For this, we repeated the above experiment for IM and
OD and changed variant threshold (from 0.08 to 0.00 in steps of 0.01) and unfolding
threshold (from 0.00 to 0.60 in steps of 0.10). We stopped when getting a log where Mre

had higher log precision than Mlab. The average running time for computing one such
refined log has increased to between 53 and 111 sec. depending on the model size.

Fig. 9(a) shows the number of imprecise logs improved, (b) shows the actual im-
provements in log precision, and (c) shows the F1-scores of sys recall and sys precision.
It is worthwhile to note that, using the adaptive parameters, for 87% of the imprecise
logs, we were able to refine the log helping IM discover a better model. The average
log precision is increased by 0.12. Compared to the 46% (when using default param-
eters and OD), the number is increased by more than 89%. Another notable result is
that the number of Mre that has an increase in log precision between 0.2 and 0.7 is also
increased by 72.2% compared to the default parameter. This states for over one out of
five logs, the adaptive approach is able to find a rather significant improvement, if the
imprecise labels are not in a loop.

We manually inspected the models that could not be improved by using adjusted
parameters. We found that this mostly concerned models that either have a large loop or
have duplicated tasks concurrent to many other tasks. The difference in the correspond-
ing components (i.e. such loops increase the cost of structure and such concurrency

81

(a) 𝑀𝑟𝑒
𝐼𝑀 = System

(b)𝑀𝑙𝑎𝑏
𝐼𝑀The original model (a) has the second duplicate task in a loop.

Without refinement a large flower loop is discovered (b). Using
our approach refines labels so that model (a) is rediscovered.

Log_precision improved by 0.67,
Sys_precision improved by 0.79,
Sys_recall = 1

T

T

T

Fig. 11: Original model with duplicate tasks and rediscovered by IM on refined log
(a), result of IM on imprecise log (b).

increases the cost of neighbors) becomes dominant in the cost returned by trace match-
ing, resulting in splitting the imprecise labels wrongly even though the matching may
be correct.

Exp.3) What if imprecise labels appear in a loop? We again generated 600 models,
200 for each n = 10, 15, 20. We used OD and set k = 2 transitions that have impre-
cise label: one inside and one outside of a loop. We used adaptive parameter selection
and IM as discovery algorithm. Fig. 10 shows the results. In 60.5% of the models,
the approach could find an improvement (32% less compared to the results when no
duplicated task is in a loop), which indicates that the approach has more difficulties
to distinguish imprecise labels in loops. Another interesting result is that although the
approach could improve fewer logs, the improvements achieved were considerable in
some cases; 20 models have increased log precision by more than 0.5. Fig. 11 shows an
example of the model discovered using the refined log, which rediscovered the original
model Fig. 11(a).

Inspecting the models, we observe that the approach is able to to distinguish loops
if an imprecise transition t outside of a loop is followed by an imprecise transition
inside of a loop. We found three patterns where our approach failed: (1) distinguishing
a second iteration of a loop from a choice for a duplicate activity, (2) distinguishing a
duplicate activity at the end of a loop body from one immediately after the loop, (3) one
duplicate activity is concurrent to another duplicate activity within a loop. We plan to
address these issues in our future work.

Real-life Case Study. We conducted a case study involving a healthcare process. The
log was provided by Maastricht University Medical Center (MUMC+), a large academic
hospital in the Netherlands. We used existing approaches to filter the known deviating
cases and events. The cleaned hospital log contains 1039 cases and 6213 events having
five distinct labels. Since the log still contains imprecise labels and misses some events,
applying the Inductive Visual Miner (IvM) yields an imprecise model with two self
loops, as shown in Fig. 12(a). Using the default parameter, the approach was unable to
refine the log. Therefore, we took an iterative approach.

We first refined events labeled with “surgery”, i.e., the imprecise label candidate is
“surgery”. In the second and third iteration we refined events labeled with “consulta-
tion”. The resulting model shows the sequential behavior expected by domain experts.

Iteration 1 :
refine “surgery” events

Iteration 2 :
refine “consultation” events

Iteration 3 :
refine “consultation” events

“1st surgery” (~59 days
after the last
test or consultation)

3 types of measurements and measurement result consultation

“after surgery
consultation” (~8 days
after the surgery)

“2nd surgery”
(~14 days after
1st surgery or last
consultation)

(a)

(b)

(c)

(d)

Fig. 12: Real-life log obtained from a Dutch hospital that was refined our approach;
the resulting model better reflects reality and can be used to diagnose performance.

An interesting result is that after refining the labels, the discovered model is now suit-
able for computing performance. For example, a domain expert stated that within 2
months after the measurements, the first surgery should be executed, and the model
shows on avg. 59 days. After the first surgery, a post-surgery consultation should take
place within a week, and the model shows on avg. 8 days. If a second surgery should
take place, then it should be performed after two weeks, and the model shows on avg.
14 days. Note that such performance diagnostics are difficult to obtain using the model
discovered from the imprecise log Fig. 12(a).

7 Discussion and Conclusion

In this paper, we investigated the problem of imprecise labels and proposed a fresh look
at the problem from a log preprocessing point of view. We used context and structural
information of events in a log to find dissimilar groups of events that have the same
label and refined their labels accordingly.

The results of our evaluation provide interesting insights. When imprecise labels
are not in a loop, our approach is able to improve logs by refining labels in 35% of
the cases using a default parameter, which increased to 87% if the parameter is auto-
matically adapted to the log and the discovery algorithm. If one imprecise label is in
a loop, we could still improve 61% of the logs. The case study demonstrated that the
approach can be used iteratively (i.e., refining labels in multiple steps) in practice to
obtain more accurate and precise models. Interestingly, such a model can be used to de-
rive reliable performance diagnostic. Future research aims at investigating and tackling
the limitations of the approach found during the experiments.

References

1. Herbst, J.: A machine learning approach to workflow management. In: Proceedings 11th
European Conference on Machine Learning. (2000) 183–194

2. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,
C.W.: Process mining: a two-step approach to balance between underfitting and overfitting.
Software and System Modeling 9(1) (2010) 87–111

3. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs. Infor-
mation Systems 37(7) (2012) 654–676

4. vanden Broucke, S.K.L.M.: Advances in Process Mining: Artificial negative events and other
techniques. PhD thesis, KU Leuven (2014)

5. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process
discovery: The importance of fitness, precision, generalization and simplicity. Int. J. Coop-
erative Inf. Syst. 23(1) (2014)

6. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Detecting deviating
behaviors without models. In: BPM 2015, Workshops, Springer (2015) (accepted)

7. Pittke, F., Richetti, P.H.P., Mendling, J., Baião, F.A.: Context-sensitive textual recommenda-
tions for incomplete process model elements. In: BPM 2015, Proceedings. (2015) 189–197

8. Koschmider, A., Ullrich, M., Heine, A., Oberweis, A.: Revising the vocabulary of business
process element labels. In: CAiSE 2015, Proceedings. (2015) 69–83

9. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining:
an experimental evaluation. Data Min. Knowl. Discov. 14(2) (2007) 245–304

10. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: ILP-based process discovery using
hybrid regions. In: Proceedings of the International Workshop on Algorithms & Theories for
the Analysis of Event Data, ATAED 2015. (2015) 47–61

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - A constructive approach. In: Application and Theory of Petri Nets
and Concurrency, 2013. Proceedings. (2013) 311–329

12. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by
clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8) (2006) 1010–1027

13. De Weerdt, J., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace clus-
tering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12) (2013) 2708–
2720

14. Garcı́a-Bañuelos, L., Dumas, M., La Rosa, M., De Weerdt, J., Ekanayake, C.C.: Controlled
automated discovery of collections of business process models. Inf. Syst. 46 (2014) 85–101

15. La Rosa, M., Dumas, M., Ekanayake, C.C., Garcı́a-Bañuelos, L., Recker, J., ter Hofstede,
A.H.M.: Detecting approximate clones in business process model repositories. Inf. Syst. 49
(2015) 102–125

16. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process mod-
els for conformance checking and performance analysis. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 2(2) (2012) 182–192

17. Munoz-Gama, J.: Conformance checking and diagnosis in process mining. PhD thesis,
Universitat Politècnica de Catalunya (2014)

18. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equivalence: Com-
paring two process models based on observed behavior. In: BPM 2006, Proceedings. (2006)
129–144

19. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W.,
Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Asp. Comput. 23(3) (2011) 333–363

	Handling Duplicated Tasks in Process Discovery by Refining Event Labels

