
Process mining using BPMN: relating event logs and
process models
Kalenkova, A.A.; van der Aalst, W.M.P.; Lomazova, I.A.; Rubin, V.A.

Published in:
Software and Systems Modeling

DOI:
10.1007/s10270-015-0502-0

Published: 01/10/2017

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Kalenkova, A. A., van der Aalst, W. M. P., Lomazova, I. A., & Rubin, V. A. (2017). Process mining using BPMN:
relating event logs and process models. Software and Systems Modeling, 16(4), 1019-1048. DOI:
10.1007/s10270-015-0502-0

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Jan. 2018

http://dx.doi.org/10.1007/s10270-015-0502-0
https://pure.tue.nl/en/publications/process-mining-using-bpmn-relating-event-logs-and-process-models(46b0578b-2b89-4cd7-9656-8f93c0644247).html

Softw Syst Model
DOI 10.1007/s10270-015-0502-0

REGULAR PAPER

Process mining using BPMN: relating event logs and process
models

Anna A. Kalenkova1 · Wil M. P. van der Aalst1,2 · Irina A. Lomazova1 ·
Vladimir A. Rubin1

Received: 11 March 2015 / Revised: 17 July 2015 / Accepted: 22 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Process-aware information systems (PAIS) are
systems relying on processes, which involve human and soft-
ware resources to achieve concrete goals. There is a need to
develop approaches formodeling, analysis, improvement and
monitoring processeswithin PAIS. These approaches include
process mining techniques used to discover process models
from event logs, find log and model deviations, and analyze
performance characteristics of processes. The representa-
tional bias (a way to model processes) plays an important
role in process mining. The BPMN 2.0 (Business Process
Model and Notation) standard is widely used and allows to
build conventional and understandable process models. In
addition to the flat control flow perspective, subprocesses,
data flows, resources can be integrated within one BPMN
diagram. This makes BPMN very attractive for both process
miners and business users, since the control flow perspec-

Communicated by Prof. Ulrich Frank.

This work is supported by the Scientific Fund of the National
Research University Higher School of Economics and is supported by
Russian Fund for Basic Research (Project 15-37-21103).

B Anna A. Kalenkova
akalenkova@hse.ru

Wil M. P. van der Aalst
w.m.p.v.d.aalst@tue.nl

Irina A. Lomazova
ilomazova@hse.ru

Vladimir A. Rubin
vrubin@hse.ru

1 National Research University Higher School of Economics,
Moscow, Russia

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The
Netherlands

tive can be integrated with data and resource perspectives
discovered from event logs. In this paper, we describe and
justify robust control flow conversion algorithms, which pro-
vide the basis for more advanced BPMN-based discovery
and conformance checking algorithms. Thus, on the basis of
these conversion algorithms low-level models (such as Petri
nets, causal nets and process trees) discovered from event
logs using existing approaches can be represented in terms of
BPMN.Moreover, we establish behavioral relations between
Petri nets and BPMN models and use them to adopt existing
conformance checking and performance analysis techniques
in order to visualize conformance and performance infor-
mation within a BPMN diagram. We believe that the results
presented in this paper can be used for a wide variety of
BPMN mining and conformance checking algorithms. We
also provide metrics for the processes discovered before and
after the conversion to BPMN structures. Cases for which
conversion algorithms produce more compact or more com-
plicated BPMNmodels in comparisonwith the initial models
are identified.

Keywords Process mining · Process discovery · Confor-
mance checking · BPMN (Business Process Model and
Notation) · Petri nets · Bisimulation

1 Introduction

Process-aware information systems (PAIS) are the systems
designed to manage processes, operating in various domains
of human activity. There is a natural requirement to monitor
their work and analyze executed processes. In many cases,
analysts are interested in a real system behavior, which may
be hidden from domain experts and system engineers. This

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0502-0&domain=pdf

A. A. Kalenkova et al.

Table 1 An event log of a booking process

Case ID Event name Timestamp Price Client IP

1 Book flight 2014-12-24 08:30:00:232 145 188.44.42.45

1 Get insurance 2014-12-24 08:31:05:171 23 188.44.42.45

2 Book flight 2014-12-24 08:31:08:543 94 93.180.0.62

1 Book hotel 2014-12-24 08:32:08:703 295 188.44.42.45

3 Book flight 2014-12-24 08:32:11:534 192 188.44.50.103

1 Pay 2014-12-24 08:34:17:456 463 188.44.42.45

1 Confirm 2014-12-24 08:35:17:537 463 188.44.42.45

...

real behavior can be reconstructed from the event logs. For
that purpose, Data Science approaches can be applied. The
interest in Data Science and Big Data signifies the growing
importance of evidence-based approaches. Process mining
techniques provide wide range of data-driven approaches
that are process-centric at the same time. Other data-driven
approaches are often no process-centric.

Process mining offers techniques for automatic discovery
of process models from event logs, checking compatibility
of process models and event logs (conformance checking)
and enhancing discovered processes with additional data [1].
Process mining has been successfully applied in a variety of
application domains such as healthcare [2], tourism [3] and
education [4]. There is a IEEE process mining community,
including more than 60 organizations [5]. Moreover, there
is a wide range of research and commercial tools available
in this area: ProM, Disco (Fluxicon), ARIS Process Perfor-
mance Manager (Software AG), Perceptive Process Mining
(Perceptive Software), ProcessAnalyzer (QPR) and Celonis.

Today, BPMN 2.0 (Business Process Model and Nota-
tion) [6] is the de facto standard notation for modeling
business processes understandable by a wide audience of
people. Business analysts and product managers, technical
designers and developers, system and enterprise architects
effectively use this notation in their everyday job almost
everywhere where BPM is applied. An absolute majority of
freeware and commercial BPM tools and Business Suites,
like Oracle BPM Suite, IBM Business Process Manager,
jBPM, Activiti, Appian BPM Suite, Bizagi BPM Suite,
MagicDraw Enterprise Architect (Sparx), Mega Process
(MEGA), Signavio Process Editor and others, either natively
support BPMN or provide conversion in order to stay com-
patible and up to date. BPMN applicability and best BPMN
modeling practices are presented in [7–9].

The representational bias used for process mining is not
only relevant for the understandability of the results, it is
also vital to guide process discovery by setting a suitable
class of target models. Using the BPMN notation as a rep-
resentational bias within process mining opens excellent

perspectives for applicability of process mining: Discovered
process models become available and understandable by
the majority of users, the models can be imported/exported
from/to any BPMN-aware modeling tool and executed,
process mining techniques can be easily integrated to the
existing suites (BPMN serves as an interface in this case).
Moreover, BPMN models allow for the combination of dif-
ferent perspectives varying from control flow (including
subprocesses) to the perspective of resources.

In this paper, we present methods for discovering the
control flow perspective of a process in terms of BPMN. It
should be noted that process mining offers plenty of algo-
rithms for the control flow discovery and each of them has
its own characteristics. The goal is not to invent new algo-
rithms, but to benefit from the existing ones and to make them
BPMN-compatible. Thus the discovery of the control flow
relies on conversion algorithms and existing process mining
techniques. To that end we firstly formalize the semantics
for a subset of BPMN models and then present the con-
version algorithms from well-known control flow modeling
formalisms such as Petri nets (including non-free-choice
Petri nets), causal nets [10] and process trees [11] to BPMN.
The conversion algorithms presented in the paper are also
given the justifications in order to show that behavioral prop-
erties of process models discovered from an event log are
preserved. Moreover, we show relations between languages
of Petri nets and corresponding BPMN models, tacking into
account properties of the initial Petri nets.

As a short introductory example, let us consider an event
log1 reflecting a small portion of the history of a ticket book-
ing process, which is presented in Table 1. In this process,
people use a Web site to book a flight, a hotel, get insurance
and pay for the ticket. Different people in different cases
execute these activities in a different order. Beside case iden-
tifiers, event names and timestamps, an event log can contain

1 In order to give an intuitive example, we consider a simple and expres-
sive synthetic event log. The analysis of processmodels discovered from
real-life event logs is demonstrated in Sect. 9.

123

Process mining using BPMN: relating event logs and process models

Fig. 1 A Petri net constructed from the log

additional event properties, such as costs and resources (par-
ticipants of the process); in this example, they are represented
by prices and clients ip addresses.

To discover a control flow, an event log is represented as
a multiset of traces, each of which is a sequence of events,
corresponding to a concrete case identifier:

L =
[
〈book f light, get insurance, book hotel, pay, con f irm〉5 ,

〈book f light, book hotel, get insurance, pay, con f irm〉4 ,

〈book hotel, book f light, get insurance, pay, con f irm〉4 ,

〈book hotel, get insurance, book f light, pay, con f irm〉3 ,

〈get insurance, book hotel, book f light, pay, con f irm〉1 ,

〈get insurance, book f light, book hotel, pay, con f irm〉1
]
.

A Petri net discovered from L by the Alpha mining algo-
rithm [12] is presented in Fig. 1.

With the help of a conversion algorithm, we construct a
BPMN model from the Petri net, as shown in Fig. 2. This
BPMNmodel ismore compact than the initial Petri net. Thus,
the result of process mining is available in a BPMN notation
now; this BPMNmodel can be easily imported and executed
by any of BPM tools mentioned above.

In order to estimate the advantages of using the BPMN
notation for mining, we additionally compare the complexity
of themodels produced by the existing control flowdiscovery
algorithms and the complexity of the corresponding BPMN
models. We use the various metrics, such as the number
of nodes, density and diameter for this evaluation. Correla-
tions between the process metrics and the quality of process
models are discussed in [13–16]. We present not only theo-
retical but also practical evaluations based on real-life event
logs. Moreover, applied to these event logs, the metrics of
the discovered BPMN models are compared to the metrics
of the models designed manually with a BPMN-editor. This
helps us to understand structural differences betweenmodels,
which are created by process analysts andmodels discovered
from event logs.

Since not only discovery but also conformance checking
and process enhancement are essential steps in process min-
ing, this paper also shows how to enable them for BPMN
models. A BPMNmodel is converted to a Petri net, and then
replay techniques are applied [17] to retrieve performance
and conformance information. This information is used to

Fig. 2 A BPMN model obtained by a conversion from the Petri net

enhance BPMN models. Theoretical observations presented
in this paper help us to relate states of a BPMN model with
the states of a corresponding Petri net. Thus, both confor-
mance and performance information obtained for a Petri net
can be visualized using the initial BPMN model.

A general scheme of using BPMN for process mining is
presented in Fig. 3. The user discovers a BPMN model by
applying discovery and BPMN conversions plugins. To show
performance and conformance information and to annotate
the BPMN diagram, the BPMNmodel is converted to a Petri
net, such that replay techniques can be used.

The paper is organized as follows. Section 2 overviews
related work. Section 3 introduces basic definitions and
notions, including traces, Petri nets, system nets, (weak)

Fig. 3 A general scheme of using BPMN for process mining

123

A. A. Kalenkova et al.

simulation and (weak) bisimulation relations. In Sect. 4,
we propose algorithms for conversion from well-known for-
malisms such as Petri nets to BPMN and prove correctness
of these conversions. In Sect. 5, transformations of causal
nets and process trees to BPMN are introduced. Section 6
contains a set of BPMN simplification rules. In Sect. 7, a
technique for conformance checking and performance analy-
sis on the basis of BPMNmodels is presented. A tool, which
implements the proposed conversion and enhancement tech-
niques, is presented inSect. 8. Section 9 includes a case study,
which shows the results of an application of the algorithms
presented in the paper to real-life event logs. Also the struc-
tural business-processesmetrics are calculated and presented
in this section. Section 10 concludes the paper.

2 Related work

This section surveys previouswork on Petri net andworkflow
graph conversions and includes an overview of existing dis-
covery and conformance checking techniques dealing with
“high-level” process models (e.g., BPMN models and mod-
els presented not only by the control flow, but also including
data and resource perspectives as well).

Algorithms for conversion of free-choice workflow nets
[18] (a special subset of Petri nets) to workflow graphs (gen-
eralization concept for process modeling notations such as
BPMN,UMLActivity [19], EPC [20,21], etc)were proposed
in [22,23]. In our paper, we will deal with arbitrary Petri nets
structures and arbitrary safe initial markings. Moreover, in
contrast to the approaches proposed before [22,23], we prove
that the targetmodel will simulate (i.e., will be able tomimic)
the behavior of the initial net and vice versa. These simula-
tion relations give the possibility to prove important (in the
context of processmining) propositions on the language rela-
tions. Another key result is that having simulation relations
between initial and target models allows us to project various
analysis data (such conformance and performance informa-
tion) obtained for one model to another.

An approach for constructing BPMN models containing
subprocesses was presented in [24]. In contrast to our paper,
this technique is mainly focused on deriving subprocesses
from event logs. We present basic robust conversion algo-
rithms, which help to construct flat control flow skeletons of
the target BPMN models from the discovered Petri nets and
other low-levelmodels.Wehope that our approach canbe fur-
ther used as a basis for discoveringmore advanced constructs.
As [24] our approach is generic and can work with multi-
ple discovery algorithms (such as [12,25,26]) in the process
mining context. The approach presented in [27] demon-
strates the possibility ofminingBPMNmodels covering both
the control flow perspective and the resource perspective.
Unfortunately, this approach is rather narrow in scope as it

presents very concrete algorithms for mining BPMN control
flow and resource elements. Algorithms for discovering data
and resources from event logs were proposed in [28–30],
respectively. To evaluate the quality of BPMN models and
multiperspective processmodels obtained from the real event
logs, an analysis of process quality metrics proposed in var-
ious studies, such as [13–16], can be applied. An approach
for finding deviations between an event log and a multiper-
spective process model was presented in [31].

3 Preliminaries

In this section, we introduce basic notions, event logs, Petri
nets, system nets and BPMN semantics.

Multisets are used to present states of Petri nets andBPMN
models, and also they are used to define event logs, in which
one trace can appear multiple times.

B(A) is the set of all multisets over some set A. For some
multiset b ∈ B(A), b(a) denotes the number of times ele-
ment a ∈ A appears in b. By b = [a12, a23] we denote
that elements a1, a2 ∈ A appear in b two and three times,
respectively.

The sum of two multisets b and b′ over set A is defined
as: (b � b′)(a) = b(a) + b′(a) for all a from A. We say that
b ⊇ b′ iff ∀a ∈ A : b(a) ≥ b′(a). For two multisets b and b′
over set A, such that b ⊇ b′, the difference function is defined
as: (b\b′)(a) = b(a) − b′(a). The size of a multiset b over
set A is denoted by |b| and defined as |b| = ∑

a∈A b(a). Sets
will be considered as a special case of multisets, where each
element can appear 0 or 1 times. Thus, operations applicable
to multisets can be applied to sets.

Function f : X � Y is a partial function with
domain dom(f) ⊆ X and range defined as rng(f) =
{ f (x)|x ∈ dom(f)} ⊆ Y . f : X → Y is a total func-
tion, i.e., dom(f) = X . Let f : X � Y be a partial
function, f can be applied to sequences of X using the recur-
sive definition f (〈〉) = 〈〉 and for some σ ∈ X∗ and
x ∈ X f (〈x · σ 〉) = 〈 f (x)〉 · f (σ), if x ∈ dom(f) and
f (〈x · σ 〉) = f (σ) otherwise.

3.1 Event logs and Petri nets

Definition 1 (Petri Net) A Petri net is a tuple PN =
(P, T, F) with P the set of places, T the set of transitions,
P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) the flow relation.

Definition 2 (Marking) Let PN = (P, T, F) be a Petri net.
A marking M is a multiset of places, i.e., M ∈ B(P).

Definition 3 (Safe Marking) A marking M of a Petri net
PN = (P, T, F) is safe iff ∀p ∈ P : M(p) ≤ 1, i.e., each
place contains not more than 1 token.

123

Process mining using BPMN: relating event logs and process models

Pictorially, places are represented by circles, transitions by
boxes and the flow relation F by directed arcs. Places may
carry tokens represented by filled circles. A current marking
M is designated by putting M(p) tokens into each place
p ∈ P .

For a node n ∈ P ∪ T , the set of input nodes and the
set of output nodes are defined as •n = {x |(x, n) ∈ F} and
n• = {x |(n, x) ∈ F}, respectively.

A transition t ∈ T is enabled in a marking M of net PN,
denoted as (PN, M) [t〉, iff ∀p ∈ •t : M(p) ≥ 1, i.e., each
of its input places contains at least one token.

An enabled transition t may fire, i.e., one token is removed
from each of the input places •t and one token produced for
each of the output places t•. Formally: M ′ = (M\•t) � t•
is the marking resulting from firing enabled transition t in
marking M of Petri net PN. (PN, M) [t〉 (PN, M ′) denotes
that t is enabled in M and firing results in marking M ′.

Let σ = 〈t1, . . . , tn〉 ∈ T ∗ be a sequence of transi-
tions. (PN, M) [σ 〉 (PN, M ′) denotes that there is a set of
markings M0,M1,…, Mn , such that M0 = M , Mn = M ′,
and (PN, Mi)

[
ti+1〉 (PN, Mi+1) for 0 ≤ i < n. We say

that M ′ is reachable from M if there exists σ , such that
(PN, M) [σ 〉 (PN, M ′).

R(PN, M) denotes the set of all markings reachable in
PN from the marking M .

Definition 4 (Labeled Petri Net) A labeled Petri net PN =
(P, T, F, l) is a Petri net (P, T, F) with labeling function
l ∈ T � UA where UA is some universe of activity labels.
Letσv = 〈a1, . . . , an〉 ∈ UA

∗ be a sequenceof activity labels.
(PN, M)[σv � (PN, M ′) iff there is a sequence σ ∈ T ∗ such
that (PN, M) [σ 〉 (PN, M ′) and l(σ) = σv .

If t /∈ dom(l), transition t is called invisible. An occur-
rence of visible transition t ∈ dom(l) corresponds to
observable activity label l(t).

In the context of process mining, we normally consider
so-called complete firing sequences, and thus we deal with
processes, which have well-defined initial and end states.
Therefore, let us give a notion of a system net.

Definition 5 (System Net) A system net is a triplet SN =
(PN, Minit, Mfinal)wherePN = (P, T, F, l) is a labeled Petri
net, Minit ∈ B(p) is the initial marking and Mfinal ∈ B(p) is
the final marking.

Definition 6 (Language of a System Net) Suppose that
SN = (PN, Minit, Mfinal) is a system net. Language LSN

of SN will be defined as a set of all visible execution
sequences starting in Minit and ending in Mfinal, i.e., LSN ={
σv | (PN, Minit)[σv � (PN, Mfinal)

}
.

Event logs are considered as a starting point in the context
of process mining, so let us give their formal definition.

Fig. 4 A fragment of a non-free-choice Petri net

Definition 7 (Trace, Event Log) Let A ⊆ UA be a set of
activity labels. A trace σ ∈ A∗ is a sequence of activity
labels. L ∈ B(A∗) is an event log, i.e., a multiset of traces.

Note that a trace can appear multiple times in an event log.
Some conversion techniques presented in this paper deal

with free-choice nets. Let us define them.

Definition 8 (Free-choice Nets) A system net SN = (PN,

Minit, Mfinal) and a corresponding labeled Petri net PN =
(P, T, F, l) are called free-choice iff for any two transitions
t1, t2 ∈ T with •t1 ∩ •t2 �= ∅ holds •t1 = •t2.

To illustrate the concept of a free-choice Petri net, let us
consider a fragment of a Petri net presented in Fig. 4. It is
not a free-choice Petri net, and t1 and t2 share an input place,
but do not have identical sets of input places. Indeed, if place
p1 contains tokens enabling t1, while p2 is empty, there is
“no free choice” between t1 and t2, only t1 is enabled and
may fire. If an arc is added from p2 to t1, then the net is
free-choice.

3.2 BPMN semantics

In this subsection,wewill present an approach for the formal-
ization of BPMN control flow semantics based on a concept
of token. This formalization will give an ability to justify
the conversion algorithms presented later in this paper. We
restrict ourselves to the core set of BPMN elements, which
includes activities, start and end events, exclusive and parallel
gateways. We hope that these initial results will give a basis
for formal description of more advanced BPMN modeling
constructs.

Let us give a formal definition of a BPMN model.

Fig. 5 Core BPMN modeling constructs

123

A. A. Kalenkova et al.

Fig. 6 Initial marking

Definition 9 (BPMN Model) A BPMN model is a tuple
BPMNmodel = (N , A,GXOR,GAND, estart, Eend, SF, λ),
where

– N is a set of flow nodes,
– A ⊆ N is a set of activities,
– GXOR ⊆ N ,GAND ⊆ N are sets of exclusive and parallel
gateways,

– estart ∈ N is a start event,
– Eend ⊆ N is a set of end events,
– sets A, GXOR, GAND, {estart}, Eend form a partition of N ,
– SF ⊆ N × N is a set of sequence flows,
– λ : N � UA is a labeling function, where UA is some

universe of activity labels,
– start event estart does not have incoming sequence flows,
and has not more than one outgoing sequence flow,

– end events from Eend do not have outgoing sequence
flows.

Figure 5 shows the core BPMN constructs used to model
processes.

Let n ∈ N be an arbitrary BPMN model node, the preset
•n and the postset n• are defined as sets of incoming and
outgoing sequence flows for the node n, respectively.

To restrict the set of all possible BPMN models, we will
consider and discoverwell-formed BPMNmodels, which are
revealed as weakly connected graphs with a source and sink
nodes.

Definition 10 (Well-formed BPMNModel) A BPMNmodel
is calledwell-formed iff every node of this model is on a path
from the start event to some end event.

Definition 11 (BPMN Model Marking) Let BPMNmodel be
a BPMN model with a set of sequence flows SF. A marking
M is a multiset over the set sequence flows, i.e., M ∈ B(SF).
An initial marking Minit is a marking, such that for all sf from
SF Minit(sf) = 1, if sf ∈ e•

start, and Minit(sf) = 0, otherwise.

An illustration for the initialmarking is presented in Fig. 6.
Each node independently of its type may be enabled, and

an enabled nodemay fire. Let us consider an arbitrary BPMN

Fig. 7 Firing activity

Fig. 8 Firing exclusive gateway

model BPMNmodel = (N , A,GXOR,GAND, estart, Eend,

SF, λ) and define its firing rules:

1. An activity a ∈ A is enabled in a marking M iff ∃sf ∈
SF : (•a(sf) = 1) ∧ (M ⊇ [

sf 1
])
. Suppose activity a

is enabled and this activity may fire, producing a new
marking M ′, such that M ′ = M\ [

sf 1
] � a•. In other

words, activity a is enabled in marking M iff it has an
incoming sequence flow, which contains at least one
token. When activity fires, it consumes one token from
an incoming sequence flow and produces a token for
each outgoing sequence flow (Fig. 7).

2. Exclusive gatewaysmerge alternative paths: The incom-
ing sequence flow token is routed to one of the outgoing
sequence flows (Fig. 8).
Similar to activities, exclusive gateway gXOR ∈ GXOR is
enabled in marking M iff there is an incoming sequence
flow, which contains at least one token in marking M ,
i.e., ∃sf ∈ SF : (•gXOR(sf) = 1) ∧ (M ⊇ [

sf 1
])
. In

contrast to activities, it produces a token to one of the
outgoing sequence flows. Suppose an exclusive gateway
gXOR consumes a token froman incoming sequenceflow
sf and produces a token to an outgoing sequence flow
sf ′, and then a new model marking M ′ will be defined
as follows: M ′ = M\ [

sf 1
] �

[
sf ′1

]
.

3. A parallel gateway gAND ∈ GAND is enabled in mark-
ing M iff ∀sf ∈ •gAND : M(sf) ≥ 1, i.e., each incoming
sequence flow contains at least one token. An enabled
parallel gateway gANDmayfire andproduce a newmark-
ing: M ′, such that M ′ = M\•gAND � g•

AND, i.e., a
parallel gateway consumes a token from each incoming
sequence flow and produces a token to each outgoing
sequence flow (Fig. 9).

4. The unique start event is never enabled, since it does not
have any incoming sequence flow.

5. An end event eend ∈ Eend is enabled in marking M iff
∃sf ∈ SF : (sf ∈ •eend) ∧ (M(sf) ≥ 1). When end event
fires, it consumes a token from an incoming sequence
flow sf, and yields in a new marking M ′ = M\ [

sf 1
]

(Fig. 10).

Fig. 9 Firing parallel gateway

123

Process mining using BPMN: relating event logs and process models

Fig. 10 Firing end event

When node n ∈ N fires, we denote this firing as
(BPMNmodel, M) [n〉 (BPMNmodel, M ′).

We write (BPMNmodel, M) [σ 〉 (BPMNmodel, M ′) for
some sequence of nodes σ = 〈n1, . . . , nk〉 ∈ N∗ iff there
are markings M0, . . . , Mk , such that M0 = M , Mk =
M ′, and for 0 ≤ i < k the following statement holds
(BPMNmodel, Mi)

[
ni+1〉 (BPMNmodel, Mi+1).

Likewise in Petri nets marking M ′ is reachable from
marking M iff there is a sequence σ ∈ N∗, such that
(BPMNmodel, M) [σ 〉 (BPMNmodel, M ′).

For some sequence of activity labels σv ∈ U∗
A, we write

(BPMNmodel, M)[σv � (BPMNmodel, M ′), if there is σ , such
that (BPMNmodel, M) [σ 〉 (BPMNmodel, M ′) and λ(σ) = σv .

ByR(BPMNmodel, M), we will denote the set of all mark-
ings reachable in BPMNmodel from the marking M .

To define the notion of language generated by a BPMN
model, let us first give a definition of a final marking.

Definition 12 (Final BPMN Model Marking) Let
BPMNmodel be a BPMN model with an initial marking
Minit and a set of nodes N . Mfinal is a final marking
iff Mfinal ∈ R(BPMNmodel, Minit) and ∀n ∈ N�M ′ :
(BPMNmodel, M) [n〉 (BPMNmodel, M ′).

As it follows from this definition, the final marking of a
BPMN model is the marking, in which no node can fire.

Definition 13 (Languageof aBPMNModel)LetBPMNmodel

be a BPMN model with an initial marking Minit and a set of
final markings Mfinal. The language of BPMNmodel is a set
LBPMNmodel = {σv |(BPMNmodel, Minit)[σv � (BPMNmodel,

M) ∧ M ∈ Mfinal
}
.

Thus, we define the language of a BPMNmodel as a set of
all visible sequences starting in an initial marking and ending
in some final marking.

According to the BPMN 2.0 specification [6], BPMN
model gets the status completed iff there is no token remain-
ing. Following the specification, a language of a BPMN
model can be considered as a union of two disjoint sets:
LBPMNmodel = VBPMNmodel ∪ IBPMNmodel .

VBPMNmodel = {σv|((BPMNmodel, Minit)[σv� BPMNmodel,

M)) ∧ (∀sf ∈ SF : M(sf) = 0)} is a set of valid sequences,
corresponding to the model executions, which lead to mark-
ings with no tokens remaining. Note that according to BPMN
semantics if no tokens remaining, no node is enabled.

IBPMNmodel = LBPMNmodel\VBPMNmodel stands for a set of
invalid sequences, which are the traces of the BPMN model

executions, stopped in markings with tokens on sequence
flows. These sequences of activity labels correspond to the
BPMN model deadlocks.

3.3 Transition systems, reachability graphs and
simulation relations

In this subsection, some basic definitions, which are used for
the justification of the conversion algorithms, will be given.

Definition 14 (Transition system) Let S and E be two dis-
joint non-empty sets of states and events, let τ ∈ E be a
special silent event, and let B ⊆ S × E × S be a transition
relation. A transition system is a tuple TS = (S, E, B, sin),
where sin ∈ S is an initial state. Elements of B are called
transitions.

We write s
e→ s′, when (s, e, s′) ∈ B. Assume that ∀s ∈

S : s τ→ s, i.e., there is a transition from every state to itself,
labeled by τ .

A state s is reachable from a state s′ iff there is a (possibly
empty) sequence of transitions leading from s to s′ (denoted
by s

∗→ s′). The reflexive transitive closure of
τ→ will be

denoted as ⇒. By s
e⇒s′, we denote s ⇒ s′′ e→ s′′′ ⇒ s′,

i.e., s′ can be reached from s via e preceded and followed by
zero or more τ transitions.

A transition system must satisfy the following basic
axiom: Every state is reachable from the initial state: ∀s ∈
S : sin ∗→ s.

Definition 15 (Simulation) For transition systems: TS =
(S, E, B, sin) and TS ′ = (S′, E, B ′, s′

in) relation R ⊆ S× S′
is called a simulation iff:

– (sin, s′
in) ∈ R,

– ∀(u, v) ∈ R ∀e ∈ E : if ∃u′ : u e→ u′ then ∃v′ : v
e→ v′

and (u′, v′) ∈ R.

Definition 16 (Weak simulation) Let us consider two transi-
tion systems: TS = (S, E, B, sin) and TS ′ = (S′, E, B ′, s′

in).
Relation R ⊆ S × S′ is called a weak simulation iff:

– (sin, s′
in) ∈ R,

– ∀(u, v) ∈ R ∀e ∈ E : if ∃u′ : u e→ u′ then ∃v′ : v
e⇒ v′

and (u′, v′) ∈ R.

Definition 17 (Bisimulation) If R is a (weak) simulation
relation and R−1 is a (weak) simulation relation as well, then
relation R is called a (weak) bisimulation.

Definition 18 (Reachability Graph for a System Net) A
reachability graph for a system net SN = (PN, Minit, Mfinal),
where PN = (P, T, F, l), and l ∈ T � UA, is a transition
system TS = (S, E, B, sin), such that:

123

A. A. Kalenkova et al.

– S = R(SN, Minit), i.e., the set of states is defined as a set
of markings reachable from Minit,

– E = rng(l) ∪ {τ }, i.e., the set of events is defined as a
union of the range of l and a silent event τ ,

– B contains a transition (M, e, M ′) iff at least one the
following conditions holds:

– ∃t ∈ T : (SN, M) [t〉 (SN, M ′), such that l(t) = e, if
t ∈ dom(l), or e = τ , otherwise,

– M = M ′ and e = τ , this holds for silent transitions
from states to itself.

– sin = Minit, i.e., the initial state inTS is the initialmarking
of SN.

Definition 19 (Reachability graph for a BPMN model) A
reachability graph for a BPMN model BPMNmodel = (N ,

SF, A,GXOR,GAND, estart, Eend, λ) with an initial marking
Minit is defined as a transition system TS = (S, E, B, sin),
such that:

– S = R(BPMNmodel, Minit),
– E = rng(λ) ∪ {τ }, where τ is a special silent event,
– (M, e, M ′) ∈ B iff at least one of the following condi-
tions holds:

– there exists n ∈ N , such that (BPMNmodel, M) [n〉
(BPMNmodel, M ′), where λ(n) = e, if n ∈ dom(λ),
or e = τ , otherwise,

– M = M ′ and e = τ .

– sin = Minit.

4 Converting process models into BPMN

In this section, we will propose algorithms for the con-
version from well-known formalisms such as Petri nets,
causal nets and process trees to BPMN. These formalisms
are widely used within process mining as results of appli-
cation of process discovery algorithms [12,25,26,32–35].
Having conversion algorithms to BPMN format will give
an opportunity to discover control flow models, which could
be integrated with other process perspectives. The correct-
ness of the proposed system nets conversion algorithm will
be proven.

First, let us show that every system net with a safe ini-
tial marking can be transformed to an equivalent system net,
which contains a unique source place.

4.1 Adding a source place to an arbitrary system net
with a safe initial marking

In most cases, models discovered from event logs are arbi-
trary system nets with safe initial markings. We start with

Fig. 11 Creating a source place

transforming of a system net with a safe initial marking into
a system net, which contains a unique source place and does
not contain hanging places (places without outgoing arcs). In
the next subsections, we will show algorithms for conversion
of such nets to BPMN.

Algorithm 1 [Adding a source place to a system net].
Input: A system net SN = (PN, Minit, Mfinal), where PN =
(P, T, F, l), such that ∀p ∈ P : Minit(p) ≤ 1.

Step 0: Adding a source place. Add a novel place i ∈ P ,
a novel initial transition t∗ (note that t∗ does not
have a label, since t∗ /∈ dom(l)) and connect them
with an arc (i, t∗). For each place p ∈ P , such that
Minit(p) = 1, add an arc (t∗, p). This step is pre-
sented in Fig. 11.

Step 1: Handling unconnected transitions. For each transi-
tion t ∈ T , such that •t = ∅, add a place p, connected
with t by an incoming and outgoing arc. Add an arc
from the initial transition t∗ to the place p (Fig. 12).

Step 2: Removing dead places. Remove each place p ∈ P
and transitions from p• along with incident arcs, if
there is no path from i to p. Repeat Step 2 until there
are no more dead places.

Step 3: Removing hanging places.Remove all places p ∈ P ,
such that |p•| = 0, along with incident arcs.

Step 4: Constructing novel markings. Suppose that P ′ is the
resulting set of places, and P∗ ⊆ P ′ is the set of
places added at Step 1.Then the initial andfinalmark-
ings M ′

init and M ′
final are defined as follows: For all

p ∈ P ′, such that p �= i , M ′
init(p) = 0, M ′

init(i) = 1,
for all p ∈ P∗ holds that M ′

f inal(p) = 1, and
for all p ∈ (P ∩ P ′) the number of tokens is pre-
served, i.e., M ′

final(p) = Mfinal(p). The source place

Fig. 12 Handling unconnected transitions

123

Process mining using BPMN: relating event logs and process models

does not contain any tokens in the final marking, i.e.,
M ′

f inal(i) = 0.

Output: A system net SN ′ = (PN ′, M ′
init, M

′
final), where

PN ′ = (P ′, T ′, F ′, l) is defined on the basis of PN =
(P, T, F, l) at Steps 0–3. Markings M ′

ini t and M ′
f inal are

defined at Step 4.

Proposition 1 Let SN = (PN, Minit, Mfinal) be a sys-
tem net and SN ′ = (PN ′, M ′

init, Mfinal), where PN ′ =
(P ′, T ′, F ′, l), be a result of applying Algorithm 1 to SN.
Let i ∈ P ′ be a source place constructed by Algorithm 1.
Then for each node n ∈ (P ′ ∪ T ′) exists a path from i to n.

Proof Suppose that n ∈ P ′. Since all the places, to which
there were no paths from i , were deleted at the Step 2, there
exists a path from i to n. If n ∈ T ′, then either n did not
have incoming arcs and was connected with i at the Step 1,
or either it is connected by an incoming arc with a place, and
for this place there is a path from i , and hence there is a path
from i to n. ��

Note that places, which were added at Step 1, contain
tokens in any reachable marking.

Algorithm 1 transforms a system net with a safe initial
marking to an equivalent system net with a source place and
no hanging places. More formally, there is a weak bisimu-
lation relation between reachability graphs of the initial and
the target system nets. The proof is straightforward accord-
ing to Definition 17. Further we will consider only system
nets with unique source places and without hanging places
and call them just system nets.

4.2 Free-choice system nets to BPMN conversion

In this subsection, an algorithm for conversion from a free-
choice system net to a BPMN model will be presented.

The conversion algorithm will be illustrated by a run-
ning example: a system net, which defines a booking process

Fig. 13 A system net of a booking process

Fig. 14 An initial BPMN model

(Fig. 13), will be converted to an equivalent BPMN model.
The source place is p1, the final marking Mfinal is the mark-
ing, such that Mfinal(p) = 0 for all p.

Note that in contrast to the booking model presented ear-
lier (Fig. 1), this model contains a choice construction (the
user books a flight or a train ticket), also note that there is
a transition used as a splitting node, and this transition does
not have a label.

Algorithm 2 [Constructing a BPMN model for a system
net]. Input: A free-choice system net SN, where SN = (PN,

Minit, Mfinal), PN = (P, T, F, l), and i is a source place.

Step 0: Initializing BPMN model.
Determine a BPMN model BPMNmodel = (N , A,

GXOR,GAND, estart, Eend, SF, λ), which contains a
start event only, i.e., N = {estart}, SF = ∅, A = ∅,
GXOR = ∅, GAND = ∅, and Eend = ∅ (Fig. 14).

Step 1: Converting transitions.
Create aBPMNmodel activity a ∈ A for each transi-
tion t ∈ T and determine the corresponding bijective
mapping function M : T → A. The labeling func-
tion λ is defined as follows λ(M(t)) = l(t), for all
t from dom(l). If there exists a transition t ∈ T ,
such that |t•| > 1, i.e., t has more than one outgo-
ing arc, add a parallel gateway gAND and a sequence
flow (M(t), gAND). BPMNmodel with activities and a
parallel gateway added is shown in Fig. 15.

Fig. 15 Adding activities and parallel gateways to the BPMN model
of a booking process

Fig. 16 Identifying place nodes

123

A. A. Kalenkova et al.

Step 2: Converting places.
In this step, each place p ∈ P is converted to BPMN
routing constructs, identifying a corresponding
place node and a corresponding place flow within
BPMNmodel. During the BPMN model construction,
we will define functions, which map places from
P to corresponding place nodes and place flows
for BPMNmodel, and denote them as N : P →
N and F : P → SF, where N and SF are
the sets of BPMNmodel nodes and sequence flows,
respectively. The function N will be used to define
nodes, which correspond to places, and used for
establishing connections within the target model.
The function F will be used to show the rela-
tions between places and sequence flows, and will
help to relate a system net and a BPMN model
markings.

Step 2.1: Connecting to inputs. Let us transform places and
identify place nodes, taking into account presets:

– If |• p| = 0 (p does not have incoming arcs), then
place p is a source place of SN, and the place
node will be defined as estart, i.e,N (p) = estart.

– If |• p| = 1, i.e., there exists one and only one
transition t ∈ T connected with p by an outgo-
ing arc. If there exists gAND ∈ GAND, such that
(M(t), gAND) ∈ SF, then the place node is set to
gAND:N (p) = gAND, otherwiseN (p) = M(t).

– If |• p| > 1 (there is more than one transi-
tion connected with p by outgoing arc), then an
exclusive gateway gXOR is added to GXOR and
for each transition t from • p a sequence flow
is added to SF. If there exists gAND ∈ GAND,
such that (M(t), gAND) ∈ SF, this sequence
flow is defined as (gAND, gXOR), otherwise the
sequence flow is (M(t), gXOR). The exclusive
gateway gXOR is set as the place node for p, i.e.,
N (p) = gXOR.
The result of applying Step 2.1 to the booking
process is shown in Fig. 16. For each place of the
initial system net, a corresponding place node is
specified.

Step 2.2: Merging places with coinciding postsets: For all
maximum sets of places {p1, . . . , pn} ⊆ P with

Fig. 17 Merging places with coinciding postsets

Fig. 18 The resulting BPMN model

coinciding non-empty postsets (p•
1 = ... = p•

n)
2,

such that n ≥ 2, an additional parallel gateway
gAND is added to GAND. This gateway is con-
nected by incoming sequence flows with all the
corresponding place nodes, i.e., sequence flows
(N (p1), gAND), ..., (N (pn), gAND) are added to
SF and are defined as place flows: for all si
from {s1, . . . , sn},F(si) = (N (pi), gAND). After
that the parallel gateway gAND is considered to
be a novel place node for places p1,…,pn , i.e.,
N (p1) = gAND, ..., N (pn) = gAND. Fig. 17
shows the result of applying the places merge
procedure to the booking process presented in
Fig. 16.

Step 2.3: Connecting to outputs. In this step for each group
of places p1,…, pn with coinciding postsets:
post = p•

1 = ... = p•
n
3 corresponding place

nodes:N (p1), . . . ,N (pn) are connected by out-
going sequence flows with other BPMN model
elements.

– If |post | = 1, i.e., there is only one transition
t ∈ T connected with p1,…,pn by incom-
ing arcs, then sequence flow (N , M(t)), where
N = N (p1) = ... = N (pn), is added to SF.
If the group of places with coinciding postsets
contains only one node (let this node be p1), then
F(p1) = (N , M(t)).

– If |post | > 1, an exclusive gateway gXOR and
a sequence flow (N , gXOR) are added to GXOR

and SF, respectively.4 Then for each t from post
a sequence flow (gXOR, M(t)) is added to SF. If
n = 1, F(p1) = (N , gXOR).
The resulting BPMN model is shown in Fig. 18.

Output: BPMNmodel and mappings: M , N , F .

2 Note that due to the free-choice structure of PN, postsets either coin-
cide or do not intersect.
3 Note that we consider system nets without hanging places.
4 All the places have the same place nodeN , obtained on the previous
step of the algorithm.

123

Process mining using BPMN: relating event logs and process models

4.3 Non-free-choice system nets to BPMN

Often non-free-choice Petri nets, which allow more behav-
ior than free-choice Petri nets, are obtained as a result of
applying process discovery algorithms. In this subsection,
we will introduce an algorithm for constructing free-choice
Petri nets from Petri nets with non-free-choice constructions.
This algorithm works as follows: for each arc, which pro-
duces a non-free-choice construction, do the transformation
presented in Fig. 19. A more formal description of the algo-
rithm is presented below.

Algorithm 3 [Constructing a free-choice Petri net from
an arbitrary Petri net]. Input: A labeled Petri net PN =
(P, T, F, l).

For each arc (p∗, t), p∗ ∈ P , t ∈ T , such that ∃t ′ ∈
T : p∗ ∈ (•t ∩ •t ′) and ∃p′ ∈ P : p′ ∈ •t, p′ /∈ •t ′
do the following transformation: remove flow (p∗, t), add
transition t ′′, place p′′, and connecting sequence flows:
(p∗, t ′′), (t ′′, p′′), (p′′, t) (see Fig. 19). The labeling func-
tion l is not defined for t ′′, i.e., t ′′ /∈ dom(l).
Output: Labeled Petri net PN ′ = (P ∪ {

p′′} , T ∪ {
t ′′

}
, F ∪{

(p∗, t ′′), (t ′′, p′′), (p′′, t)
}
, l).

The algorithm can be applied iteratively and arcs can be
considered in any order, since each transformation does not
change the set of arcs, which have to be replaced.

4.4 System nets conversions justification

This subsection presents justifications of the systemnets con-
version algorithms.

Let us prove that Algorithm 2 preserves structural and
some behavioral properties of a process model.

Lemma 1 Let SN, where SN = (PN, Minit, Mfinal), and
PN = (P, T, F, l), be a free-choice system net with a source
place i . Let BPMNmodel be a result of applying Algorithm
2 to SN. Suppose that M : T → A is a mapping function
obtained during an execution of Algorithm 2. Suppose also
thatN : P → N is a function, which defines place nodes in
BPMNmodel. Then for any two places p1, p2 ∈ P, such that
∃t ∈ T : (t ∈ p•

1)∧ (t ∈ • p2) (Fig. 20), there are paths from
N (p1) to M(t) and from M(t) toN (p2) within BPMNmodel.

Proof According to the Algorithm 2, node N (p1) is either
directly connected with M(t) or directly connected with

Fig. 19 Converting non-free-choice Petri nets into free-choice Petri
nets

Fig. 20 Connected places

its immediate predecessor—an exclusive gateway (see Step
2.3). Hence there is a path from N (p1) to M(t). Now let us
consider N (p2). This node is either M(t) activity or a gate-
way, such that there is a path from M(t) to this gateway (see
Steps 2.1, 2.2). This implies that there is a path from M(t)
to N (p2) within BPMNmodel. ��
Lemma 2 Suppose that SN is a system net with a source
place i . Then the result of applyingAlgorithm2 is BPMNmodel

= (N , SF, A,GXOR,GAND, estart, Eend, λ), such that for
each node there is a path from estart to this node.

Proof Source place i is converted to the start event estart. It
inductively follows from Lemma 1 that all the place nodes
and all the activities A are located on paths from estart. All
other BPMNmodel nodes are gatewaysGXOR,GAND and end
events Eend, which lie on paths from place nodes to activities
or from activities to the place nodes by the construction;
consequently, they are also located on paths from estart. ��
Theorem 1 (Well-formedness) Every system net with a safe
initial marking can be converted to a well-formed BPMN
model.

Proof Algorithm 3 allows to construct free-choice system
nets fromnon-free-choice systemnets, preserving nodes con-
nectivity. Proposition 1 shows that an arbitrary system net
with a safe initial marking can be converted to an equivalent
system net, which has a unique source place, such that for
every node of this net there is a path from the source place to
this node. Lemma 2 allows us to construct a BPMN model,
where for each node there is a path from the start event to
this node. According to Algorithm 2, the only possible hang-
ing nodes in the target BPMN model are activities. Thus,
additional end events can be added to the BPMN model and
connected by incoming sequence flows with activities, mak-
ing all the nodes be on paths from a start event to end events.

��
Note that end events consume tokens from incoming

sequence flows, and thus the global execution order ofBPMN
model will not be changed. Since end events do not change
the global execution order, further wewill prove some propo-
sitions for model conversions, which do not involve addition
of end events.

Now let us discuss the behavioral relation between initial
system net and the BPMN model generated by Algorithm 2.
We will show that each firing of a Petri net corresponds to a
sequence of the BPMN model firings.

123

A. A. Kalenkova et al.

(a)

(b)

Fig. 21 Initial markings

Theorem 2 (Weak similarity)Let SNbea free-choice system
net with a source place i , where SN = (PN, Minit, Mfinal),
PN = (P, T, F, l). Let BPMNmodel be a result of applying
Algorithm 2 to SN, M : T → A is the mapping function. Let
TS = (S, E, B, sin), TS ′ = (S′, E, B ′, s′

in) be reachability
graphs of SN and BPMNmodel, respectively. There exist weak
simulation relations R and R′ from TS to TS ′ and from TS ′
to TS, respectively, such that:

1. (u, v) ∈ R iff ∀p ∈ P : u(p) = v(F(p)),
2. if (u, v) ∈ R then (v, u) ∈ R′,
3. ∀v ∈ S′∃v′ ∈ S′ : (v

∗→ v′)∧(∃u′ ∈ S : (u′, v′) ∈ R). In
other words, from each state v ∈ S′ it is always possible
to reach some state v′ ∈ S′, which is in the relation R
with some state u′ ∈ S.

But it is not guaranteed that a weak bisimulation relation
exists.

Proof Let us prove the existence ofweak simulation relations
R and R′ between TS and TS ′ inductively on pairs of states
u ∈ S, v ∈ S′ such that ∀p ∈ P : u(p) = v(F(p)).

Induction basis.

1. Pairs (sin, s′
in) and (s′

in, sin) belong to R and R′, respec-
tively, by the definition of a weak simulation relation.
Both variants for initial markings of SN and BPMNmodel

are presented in Fig. 21. Tokens in Fig. 21 are repre-
sented by black dots. As can be seen ∀p ∈ P : sin(p) =
s′
in(F(p)). For the proof of condition 3. see the Induction
step.

2. Let us prove that there is no weak bisimulation relation
between TS and TS ′. Suppose there is such a relation R′′
(Fig. 22), then by the definition (s′

in, sin) ∈ R′′.

Fig. 22 Construction of a weak bisimulation relation

For variant b. it holds that exists v ∈ S′, such that s′
in

τ→ v,
and M(t) is enabled in v. The only state in TS, to which
there is a transition from sin labeled by τ , is sin itself, thus
(sin, v) ∈ R′′. State sin has at least one outgoing transition
labeled with l(t ′), such that t ′ �= t . Suppose that l(t) �= l(t ′),
thenwe get a contradiction, since v does not have an outgoing
transition labeled by l(t ′).

Induction step.

1. Now let us consider state u ∈ S (Fig. 23)
By the induction hypothesis, there exists a state v inTS ′ (a
marking of BPMNmodel), such that (u, v) ∈ R (Fig. 24).
Furthermore, by the induction hypothesis the following
condition holds: ∀p ∈ P : u(p) = v(F(p)), i.e., each
place and its corresponding place flow contain the same
number of tokens. Note that more than one token can
appear in a place.
Now let us show that if TS has a transition from state
u, TS ′ has a corresponding sequence of transitions from

state v, i.e., ∃v′′′ : v
l(t)�⇒v′′′ and ∀p ∈ P : u′(p) =

v′′′(F(p)). Thus, (u′, v′′′) will belong to R. State v of
BPMNmodel is presented in Fig. 25.
Note that we consider the most general case, which rep-
resents all the routing elements. The remaining cases can
be treated similarly. The gateway g1 is enabled in mark-
ing v (by the construction, since t is enabled in u) and can
fire, producing a novel marking, in which firing g2 yields
M(t) being enabled. Let us call the marking, in which

Fig. 23 Marking u of a system net

123

Process mining using BPMN: relating event logs and process models

Fig. 24 Current states in transition systems

M(t) is enabled, u′, then u ⇒ u′. After M(t) fires, some

marking v′′ is reached: v′ l(t)→ v′′. Starting from marking
v′′ firings of gateways lead to adding a novel token to
each place flow, which corresponds to some place from

t•, and producing marking v′′′: v′′ ⇒ v′′′, i.e., v l(t)�⇒v′′′.
Note that ∀p ∈ P , holds that:

v′′′(F(p)) =

⎧⎪⎨
⎪⎩

v(F(p)) − 1, if p ∈ •t, p /∈ t•,
v(F(p)) + 1, if p ∈ t•, p /∈ •t,
v(F(p)), otherwise.

Initial conditions u′ = u − •t + t• and ∀p ∈ P :
v(F(p)) = u(p) allow to conclude that ∀p ∈ P :
u′(p) = v′′′(F(p)).

2. Let us consider state v ∈ S′. By the induction hypothesis
∃u ∈ S′ : ((v, u) ∈ R′) ∧ (∀p ∈ P : v(F(p)) =
u(p)). Two variants are possible either v does not have
outgoing transitions and then v ⇒ v and all the theorem
conditions hold. Or there is a set of states V ′, such that
∀v′ ∈ V ′ : v ⇒ v′, i.e., all v′ ∈ V ′ are reachable from v

by τ transitions. In this case, there is a state v′
1, such that

v ⇒ v′
1 and M(t) is enabled in v′

1. Transition t is enabled
in u by the induction hypothesis and by the construction.

Pair (v′′, u′) belongs to R′, where v′
1
l(t)→ v′′ and u l(t)→ u′.

Let us denote the set of states v∗, such that v′′ ⇒ v∗,
as V ∗, and (v∗, u′) belongs to R′ for ∀v∗ ∈ V ∗. The
state v′′′ ∈ TS ′, such that ∀p ∈ P : v′′′(F(p)) = u′(p),
is reachable from any state in V ∗ by the construction.
Thus, the induction hypothesis and the condition 3 are
proven.

Thus, it was shown that there are weak simulation relations
between TS and TS ′, and conditions 1–3. are hold. In the
induction basis, it was shown that there is no weak bisimu-
lation relation between TS and TS ′. ��

This theoremhas an important corollarywithin the process
mining context: The conversion algorithm allows to preserve

Fig. 25 Marking v of a BPMN model

the language of a free-choice system net under some assump-
tion.

Corollary 1 (Language equivalence for free-choice system
net) Suppose there is a free-choice system net SN, where
SN = (PN, Minit, Mfinal), and i is a source place. Sup-
pose also that Mfinal is the only reachable marking, in
which no transition enabled, i.e., if M ∈ R(PN, Minit)

then M �= Mfinal iff ∃t∃M ′ : (PN, M) [t〉 (PN, M ′). Let
BPMNmodel be a result of applying Algorithm 2 to SN, then
LSN = LBPMNmodel .

Proof 1. Let is consider a trace σv , such that (PN, Minit)

[σv � (PN, Mfinal), i.e., σv ∈ LSN. There is a weak sim-
ulation relation R ⊆ (S × S) from TS to TS ′, where TS
and TS ′ are reachability graphs for SN and BPMNmodel,
respectively. Thus, σv can be replayed in BPMNmodel,
and after the replay BPMNmodel will be in a marking M ,
such that (Mfinal, M) ∈ R. If ∃n∃M ′(BPMNmodel, M)

[n〉 (BPMNmodel, M ′), then since ∀p ∈ P : Mfinal(p) =
M(F(p)), ∃M ′′(PN, Mfinal) [t〉 (PN, M ′′), we get a con-
tradiction. Thus, LSN ⊆ LBPMNmodel .

2. Now let us prove that LBPMNmodel do not contain traces,
which do not belong to LSN. Suppose there is a trace
σv ∈ LBPMNmodel , such that (BPMNmodel, M ′

init)[σv

123

A. A. Kalenkova et al.

Fig. 26 Splitting non-free-choice construction

� (BPMNmodel, M), where M ′
init is an initial mark-

ing of BPMNmodel. Theorem 2 states that there exists
BPMNmodel marking M ′, such that (M ⇒ M ′) ∧ (∃M ′′ :
(M ′′, M ′) ∈ R), where M ′′ is a marking of SN. By the
definition of BPMN model language, no node can fire
at the marking M , thus M = M ′, and (M ′′, M) ∈ R.
We get that M ′′ is also a state (SN marking) without
outgoing transitions, otherwise M is not a final mark-
ing of a BPMNmodel, since (M ′′, M) ∈ R. Thus, σv :
(SN, Minit)[σv � (SN, M ′′), and σv ∈ LSN. ��
Now let us compare behavioral properties of non-free-

choice Petri nets and corresponding free-choice Petri nets
constructed by Algorithm 3.

Theorem 3 (Non-free-choice Petri nets conversion) Let
PN = (P, T, F, l) be an arbitrary labeled Petri net, and
PN ′ = (P ′, T ′, F ′, l) be a result of applying Algorithm 3 to
PN. Let TS = (S, E, B, sin) and TS ′ = (S′, E, B ′, s′

in) be
reachability graphs of PN and PN ′, respectively. Then there
areweak simulation relations fromTS to TS ′, and fromTS ′ to
TS. But it is not guaranteed that a weak bisimulation relation
exists.

Proof Let us define weak simulation relations R and R′
between TS and TS ′ in such a way that for every two states
s ∈ S and s′ ∈ S′ if ∀p ∈ P : s(p) = s′(p), then (s, s′)
belongs to R and (s′, s) belongs to R′. Let us consider a place
p∗ ∈ P (Fig. 26), such that ∃t, t ′ ∈ T : p∗ ∈ (•t ∩ •t ′) and
∃p′ ∈ P : p′ ∈ •t ′, p′ /∈ •t .

For this place, the output flow will be modified according
to Algorithm 3. Let us consider u - a marking ofPN: u(p∗) ≥
1 and construct fragments of reachability graphs for PN and
PN ′, containing the marking u and a corresponding marking
of PN ′ - v : ∀p ∈ P : v(p) = u(p) (Fig. 27).

Fig. 27 Simulation of non-free-choice net by the corresponding free-
choice net

Suppose that t is enabled in u, and u′ is a state (PNmark-

ing) obtained after firing of transition t : u
l(t)→ u′, then t is also

enabled in v, and v′ is a marking of PN ′, such that v
l(t)→ v′,

then ∀p ∈ P : v′(p) = u′(p), and (u′, v′) ∈ R, (v′, u′) ∈ R.
Now suppose that t ′ is enabled in u and can fire producing a
novelmarking u′′′. For TS ′, there is a corresponding state v′′′,
such that v

τ→ v′′ l(t ′)→ v′′′, and ∀p ∈ P : v′′′(p) = u′′′(p).
Pair (u′′′, v′′′) will belong to R, pairs (v′′′, u′′′), (v′′, u) will
belong to R′. Note that the state u can simulate v′′, since
∀p ∈ P, p �= p∗ : u(p) = v′′(p), and thus, it includes
behavior allowed in v′′. The procedure of defining R and
R′ can be considered for each transformation of PN, and
thus weak simulation relations between TS and TS ′ can be
derived.

There is no bisimulation relation, since there is no state,
which bisimulates v′′. ��
Corollary 2 (Language of non-free-choice system net) Let
SN = (PN, Minit, Mfinal) be an arbitrary system net, where
PN = (P, T, F, l). Let us applyAlgorithm3 toPNandobtain
a free-choice Petri net PN ′ = (P ′, T ′, F ′, l). Let us consider
a system net SN ′ = (PN ′, Minit, Mfinal) with the same initial
and final markings (we can construct such a system net since
P ⊆ P ′). Then LSN = LSN ′ .

Proof Let TS and TS ′ be reachability graphs of SN and SN ′,
respectively. As it follows from Theorem 3 TS ′ simulates TS,
and vice versa, also they have the same final marking Mfinal,
thus LSN = LSN ′ . ��
Corollary 3 (Language inclusion) Let us consider a system
net SN = (PN, Minit, Mfinal), such that PN = (P, T, F, l),
and ∀t�M : (PN, Mfinal) [t〉 (PN, M), i.e, there is no transi-
tion enabled in Mfinal. Then let us apply Algorithm 3 and to
obtain a free-choice system net SN ′ = (PN ′, Minit, Mfinal)

with the same initial and final markings. Suppose that
BPMNmodel is a result of applying Algorithm 2 to SN ′. Then
LSN ⊆ LBPMNmodel .

Proof Let TS, TS ′, TSBPMN be reachability graphs of SN,
SN ′, and BPMNmodel, respectively. LSN = LSN′ by Corol-
lary 2. According to Corollary 1 if SN′ does not contain any
state, in which no transition can be enabled, except Mfinal,
then LSN ′ = LBPMNmodel . But under hypothesis of this corol-
lary TS (and consequently TS ′) may contain states, in which
no transition can be enabled, and which are not final. Also
note that SN ′ may contain additional states (see the proof
of Theorem 3), which represent the reduced behavior of SN;
among them theremay be stateswithout outgoing transitions.
Hence, LBPMNmodel may contain additional traces. ��
Corollary 4 (Language equivalence for empty final mark-
ing) Suppose a BPMN model BPMNmodel was constructed
from a system net SN = (PN, Minit, Mfinal), where PN =

123

Process mining using BPMN: relating event logs and process models

Fig. 28 Relations between languages for system nets and corre-
sponding BPMN models. FC is a class of free-choice system nets.
FNE—a class of system nets, for which no transitions are enabled in
final markings. A system net belongs to the class FE, iff the final mark-
ing is the empty marking. FO is a class of system nets, for which their
final markings are the only markings with no transitions enabled

(P, T, F, l), using Algorithm 2. If ∀p ∈ P : Mfinal(p) = 0,
then VBPMNmodel = LSN. In other words, the set of valid
sequences coincides with the language of the system net.

Proof As it follows from Theorem 2 for every marking M of
a system net SN, there is a marking M ′ in BPMNmodel, such
that for every position p, holds that M(p) = M ′(F(p)) and
vice versa. In a system net, such that for every node of this
net there is a path from the source place to this node, and in
a BPMN model no node can fire in an empty marking, and
hence, the theorem is proven. ��

Fig. 28 summarizes theoretical results presented above: It
shows relations between languages of system nets and cor-
responding BPMN models depending on the type of system
nets.

Note that if the initial system net contains transitions with
no incoming arcs (unconnected transitions), these transitions
will be enabled in any reachable marking of this net. Such
nets do not meet the sufficient condition for the language
inclusion, i.e., some transitions are always enabled in the
final marking.

5 From other process notations to BPMN models

In this section, process modeling formalisms other than Petri
nets but relevant for process mining aremapped onto BPMN.
Basic ideas of conversion algorithms will be given. First we
will present additional BPMN routing constructs, which are
naturally used in these conversions.

(a) (b)

Fig. 29 Additional gateway types a Inclusive gateway, b Exclusive
event-based gateway

5.1 Additional BPMN routing constructs

Let us consider two additional BPMN gateway types spec-
ified in [6]. Inclusive gateways (Fig. 29a) implement mul-
tichoice and synchronized merge control flow patterns [36].
An inclusive gateway is enabled in a current marking if some
of the incoming sequence flows contain tokens, and it is not
possible to reach a marking from the current marking, in
which another (currently empty) incoming sequence flow
will contain tokens, without firing this gateway. Note that
the semantics of inclusive gateways is non-local. An enabled
inclusive gateway may fire, adding one token to one or more
outgoing sequence flows. The gateway presented in Fig. 29a
can produce a token for one of the outgoing sequence flows
or for both of them.

Next, we consider event-based exclusive gateways, which
implement the deferred choice control flow pattern [36].
Like an ordinary exclusive gateway, an event-based exclusive
gateway (Fig. 29b) is enabled if at least one of the incom-
ing sequence flows contains at least one token. An exclusive
event-based gateway produces a token to one of the outgoing
sequence flows depending on the event, which first occurred.
Thus, a gateway presented in Fig. 29b produces a token to
a path marked with a first happened event (a receipt of a
concrete message or a timer event).

5.2 Transforming causal nets to BPMN models

Causal nets are known to be suitable for the representa-
tion of discovered process models. They are often used for

Fig. 30 Causal net of a booking process

123

A. A. Kalenkova et al.

Fig. 31 BPMN model constructed from the causal net example
(Fig. 30)

process mining (see e.g., the Heuristic miner [26]), but tend
to be unclear for the majority of process analysts. Although
an algorithm for the conversion of causal nets to Petri nets
was already presented in [10], conversions from causal nets
to BPMN models should take into account the free-choice
nature of BPMN models.

Causal nets are represented by activities and their bind-
ings: Each activity has a set of input and a set of output
bindings (pre- and post-conditions). Let us consider a causal
net of a booking process shown in Fig. 30.

The start activity register has only empty input binding.
There are three possible output bindings for this activ-
ity: {book f light}, {bookhotel} and {book f light, book
hotel}. These bindings imply that activity register is fol-
lowed by activity book f light , or activity book hotel, or
activities book f light and book hotel. The end activity
pay has an empty output binding and three possible input
bindings, i.e., activity pay is preceded by book f light and
book hotel activities, or book f light activity, or book hotel
activity.

While each activity of a causal net is converted to a BPMN
model activity, bindings are represented in terms of gateways.
If someactivity hasmultiple input (output) bindings, a special
exclusive gateway is created, if some binding contains more
than one element, a parallel gateway should be added. In case
causal net hasmany start or end nodes, unique start/end nodes
are added to simplify the conversion to a BPMN model.

The result of the causal net (Fig. 30) conversion is pre-
sented in Fig. 31.

It is important to mention that causal nets provide declar-
ative description of the process behavior, while BPMN
presented in Fig. 31 has a local firing rules semantics. Thus,
potentially “unsound” BPMN models may be obtained as a

Fig. 32 BPMN model with inclusive gateways

result of conversion. Inclusive gateways can be exploited to
obtain simpler models. Fig. 32 shows how the initial causal
net can be represented as a BPMN diagram using inclusive
gateways.

5.3 Converting process trees to BPMN models

Process trees are often obtained as a result of applying
process discovery algorithms (e.g., Inductive miner [25] or
Genetic miner [37]). In this subsection, basic transforma-
tions for constructing a BPMN model from a given process
tree will be proposed. Although process trees can be repre-
sented as system nets, and system nets can be converted to
BPMN models using algorithms introduced above, a direct
conversion algorithm gives an ability to consider additional
perspectives during the conversion. Moreover, the BPMN
standard natively supports such modeling elements as inclu-
sive gateways and exclusive event-based gateways. Hence,
there is no need to convert these constructions to problem-
atic, unreadable process models.

Process trees were proposed in [25] and defined as direct
acyclic graphs with branch and leaf nodes. Each branch node
has outgoing edges and is considered to be an operator node,

Table 2 Process tree to BPMN conversion

123

Process mining using BPMN: relating event logs and process models

Fig. 33 A Petri net discovered by the Inductive miner from the event log

Fig. 34 A BPMN model obtained from the Petri net

and leaf nodes do not have outgoing edges and stand for
atomic activities.

Transformation rules are applied inductively, starting from
the root node. For each branch node, the transformation
depends on a node type and each leaf node is transformed to
an activity or BPMN model event. We consider the follow-
ing basic operators: sequence, exclusive/inclusive/deferred
(event-based) choice, exclusive/deferred (event-based) loop
and parallel execution. Transformation rules for each type of
a branch node are presented in Table 2. Note that for each
exclusive event-based gateway, the types of the following

events are specified by an additional information attached to
the corresponding branch node of the tree.

5.4 Example

In this subsection, we will show how the presented conver-
sion techniques can be applied to discover BPMN models
from real-life event logs. We took an event log generated by
an Incident and Problem Management System from Volvo
IT Belgium as an example. For this log, we have applied the

Fig. 35 A causal net discovered from the event log

123

A. A. Kalenkova et al.

Fig. 36 A BPMN model obtained from the causal net

Inductive miner [25] and have obtained a Petri net presented
in Fig. 33.

This Petri net was converted to a BPMN model presented
in Fig. 34.

This BPMNmodel looksmore compact, since empty tran-
sitions can be omitted, and elements, such as activities, can
be connected with each other directly without using interme-
diate elements. The analysis of cases when the conversions
produce simpler models is presented in Sect. 9. A causal
net constructed from this log by the Heuristic miner [26] is
presented in Fig. 35.

The causal net can be converted to a BPMNmodel as well
(Fig. 36). Note that this BPMN model explicitly represents
all routing constructions by means of inclusive and exclusive
gateways.

In Sects. 4 and 5, we have shown multiple ways to
construct BPMN models from event logs using conversions
(refer to Fig. 3 for the overall picture).

In the remainder,weonly consider processmodelswithout
additional routing constructs (inclusive gateways and event-
based exclusive gateways). The reason is that we need to
convert BPMN models to classical Petri nets for replay.

6 BPMN model simplification

In this subsection, BPMN model transformations are pre-
sented. These transformations allow us to reduce the size of
target BPMN models. Similar Petri nets and YAWL reduc-
tion rules have already been presented in [38–40] and can be
applied to BPMN constructions as well.

1. Removing silent activities. In contrast to Petri nets,
BPMN models allow connecting arbitrary activities and

BPMN node BPMN node

BPMN node BPMN node

Fig. 37 Reducing gateways of the same type

Fig. 38 Removing silent activities

gateways, and thus activities, which are not labeled, may
be removed (Fig. 38).
Note that all the activities constructedduring an execution
of Algorithm 2 have exactly one incoming and exactly
one outgoing sequence flow.

2. Reducing gateways. Sequential gateways of the same
type, serving as join and split routers, can be reduced
(Fig. 37).

3. Merging activities and gateways. According to the
semantics of BPMN, activities can be merged with
preceding and following gateways of the right type
(Fig. 39).

7 Mapping conformance and performance info
onto BPMN models

Processmining is not limited to discovery, but also offers con-
formance checking and enhancement techniques. To apply
existing replay methods, which will allow us to obtain
detailed conformance and performance information, the ini-
tial BPMNmodel should first be converted to a Petri net, and
after that this Petri net can be analyzed using existing tech-
niques for Petri nets. Note that BPMN models presented in
this section are based on the core subset of BPMNmodeling
elements.

Fig. 39 Merging activitieswith preceding exclusive join and following
parallel split gateways

123

Process mining using BPMN: relating event logs and process models

... ...

...

......

... ...

a a

...

Fig. 40 BPMN to Petri net conversion patterns

7.1 Converting BPMN models to Petri nets

BPMN models based on the core subset of BPMN mod-
eling elements and can be considered as workflow graphs.
Every node of a workflow graph can be simply converted to
a corresponding Petri net pattern (Fig. 40) by the algorithms,
presented in [22,23].

Note that according to [23] some preliminary transforma-
tions should be applied to a BPMN model: Each gateway
and activity, containing multiple inputs and outputs, should
be splitted. Also note that this basic conversion preserves
semantics and guarantees bisimilarity between a BPMN
model and a target Petri net due to the correspondence
between BPMN sequence flows and workflow net places:
Map : SF → P , i.e., for each sequence flow of the BPMN
model, there is a corresponding place in the target Petri net.
The proof of bisimulation is straightforward.

7.2 Mapping conformance and performance info

The bisimulation relation defines a mapping between states
of an initial BPMNmodel and a target Petri net, and gives us
an ability to visualize performance and conformance infor-

book
hotel

book
flight

get
insurance

pay
sf1 sf2

sf3

sf4

sf5

sf6

sf7

sf8

sf9 sf10
register

Fig. 41 A BPMN of a booking procedure

mation, which is attached to some states of the Petri net,
within the initial BPMN model.

To give an example, which shows how a conformance
information can be visualized within a BPMN diagram,
we have to introduce the notion of alignment. Alignment
establishes log and model similarities and discrepancies by
defining correspondence between moves on log and moves
(firings) on model.

Let AL be a set of log events. Let also PN = (P, T, F, l)
be a labeled Petri net, where l : T � AM , and AM is a
set of model events. Let � be a special event, such that
�/∈ (AL ∪ AM).

Alignment step is a pair (x, y):

– (x, y) is a move on log if x ∈ AL , y =�,
– (x, y) is a move on model if x =�, y ∈ AM ,
– (x, y) is a move in both if x ∈ AL , y ∈ AM ,
– (x, y) is an illegal move if x =�, y =�.

An alignment is a sequence of alignment steps that are not
illegal moves.

Now let us consider a BPMNmodel of a booking process
(Fig. 41).

Let us apply the conversion algorithm to obtain a Petri net
with places, corresponding to BPMN sequence flows. The
result is shown in Fig. 42.

To illustrate enhancement of a process model with confor-
mance and performance information, an event log consisting

book hotel

book flight

get insurance

pay

M(sf1)

M(sf2)

M(sf3)

M(sf4)

M(sf5)

M(sf6)

M(sf7)

M(sf8)

M(sf9)

M(sf10)

register

Fig. 42 A Petri net constructed from the BPMN model presented in
Fig. 41

123

A. A. Kalenkova et al.

Table 3 An event log of a booking process with cancelation

Case ID Event name Timestamp

1 Register (r) 2014-12-24 09:30:01:727

1 Book flight (bf) 2014-12-24 09:43:23:353

1 Book hotel (bh) 2014-12-24 09:52:14:252

1 Cancel insurance (ci) 2014-12-24 09:52:20:732

1 Pay (p) 2014-12-24 10:04:24:754

of only one trace, containing insurance cancelation event, is
considered (Table 3).

To construct an alignment, this log should be represented
as a multiset of traces:

L =
[
〈register, book f light, book hotel,

cancel insurance, pay〉1
]
.

The result of application of the algorithm [41], which
finds an optimal (with the minimal number of log only
and model only moves) alignment, is presented below (the
names of events are represented by their first letters, firing
of silent transitions are denoted as τ). The first row rep-
resents log moves, while the second row stands for model
firings:

γ = � r � bf � bh ci � p
τ r τ bf gi bh � τ p

Such alignments can be used to enhance existing BPMN
models with conformance information (Fig. 43).

Note that the relation between states of the models allows
us to attach log move information to sequence flows, which
correspond to a concrete state of theBPMNmodel—the state,
in which log move is performed.

This BPMN model can be enriched with a performance
information (such as activity execution times) obtained as a
result of alignment-based replay (Fig. 44).

Note that different types of performance information, such
as average, minimal, maximal, relative execution times, can
be added to a diagram.

book
hotel

book
flight

get
insurance

pay
sf1 sf2

sf3

sf4

sf5

sf6

sf7

sf8

sf9 sf10
register

Log only move:
cancel insurance

Model only move

Fig. 43 A BPMN model annotated with conformance information

book
hotel

book
flight

get
insurance

pay
sf1 sf2

sf3

sf4

sf5

sf6

sf7

sf8

sf9 sf10
register

13 min, 21 sec

22 min, 13 sec

12 min, 10 sec

Fig. 44 A BPMN model annotated with performance information

8 Tool support

The techniques presented in this paper have all been imple-
mented in ProM, an open source framework for process
mining. Let us consider BPMN packages architecture and
their functionality in ProM (Fig. 45).

The core BPMN package provides basic interfaces for
working with BPMN models, including import and export
of BPMN diagrams in BPMN XML [6] and XPDL 2.2 [42]
formats. The BPMN conversions package depends on the
core BPMN package and provides the ability to convert Petri
nets, causal nets [10] and process trees [11] to BPMN, thus
supporting the discovery of BPMN models. Besides that the
resource and the data flow perspectives can be discovered as
well: Data Petri nets obtained using the data-aware process
mining algorithm [28] can be used to create BPMN models
with data perspective, and process treeswith resources can be

ProM

BPMN
Analysis
package

BPMN
Conversions

package

BPMN
package

«call»
Replay
plugins

«call»

BPMN modeling tool

Import/export of BPMN
diagrams in BPMN XML 2.0

and XPDL 2.2 formats

«import» «import»

Fig. 45 BPMN packages architecture

123

Process mining using BPMN: relating event logs and process models

converted to BPMN model with lanes. The BPMN Analysis
package is constructed on top of the core BPMN, and the
BPMN conversions packages and its plugins can be used
to enhance BPMN models with additional conformance and
performance information.

To illustrate this,we consider twomain use cases forwork-
ing with BPMN in ProM.

Use case 1 (Discovering BPMN processes): The user dis-
covers a BPMN model by applying discovery and BPMN
conversions plugins, and then this model can be exported to
an external BPMN modeling or execution tool (Fig. 46).

Use case 2 (Analyzing BPMN processes): The user loads
a BPMN model from an external BPMN modeling tool, and
then, by applying the BPMN Analysis package, it converts
this model into a Petri net, replays a log to obtain con-
formance and performance information, and enhances the
BPMN diagram with this information (Fig. 47).

More details about the functionality of the BPMN pack-
ages in ProM can be found at [43].

9 Case studies

In this section,we present case studies based on the event logs
produced by information systems from different domains.

Fig. 46 Discovering a BPMN model with data

Fig. 47 Analysis of a BPMN model

Firstwe consider a complex ticket reservation system from
the traveling and transportation domain. This system belongs
to a class ofComputerReservation Systems (CRS) and is used
for booking all types of touristic products such as hotels,
flights, cars, excursions, activities, trains, etc. It integrates
multiple Global Distribution Systems (GDS) for pre-sales
(search, reservation) and sales (book, pay) processes. The
system can be accessed by normal customers through a Web
interface or by expert users, e.g., travel agency or system sup-
port, through a special rich client interface. Independently
of the client interface, calls to the backend of the system
are logged in order to track the system state and perfor-
mance, to gather statistics and to analyze the user behavior
and make estimations and predictions.5 These logs contain
the timestamps, identifiers of the business cases (unique iden-
tifier of the reservation) and also different business attributes
describing user operations (e.g., search, quote, book, pay),
travel directions (e.g., origin, destination, booking code),
traveling time (e.g., start and end date). For our experiments,

5 These logs exclude user and commercial sensible information like
names, credit cards and invoices.

123

A. A. Kalenkova et al.

Table 4 Event log from a CRS
Reservation ID Event name Timestamp Booking code Notification

390234516 T1-HF-H:TES 2013-12-18 08:36:00:570 BER

390234516 M55Type010Rsp-034 2013-12-18 08:36:04:717 998

390234516 T3-HF-H:HH004 2013-12-18 08:36:09:337 BER

390234516 M52Rsp 2013-12-18 08:36:09:337 998

390235717 T1-BA-H:TES 2013-12-18 08:36:12:155 BER45010 DH

390235717 M52Rsp 2013-12-18 08:36:18:397 712

we took a log of the ticket reservation system, which contains
94 cases, 50 event names, and describes the system behavior
during 4h of its work. This event data are perfectly suitable
for applying process mining, since we identify the case by
reservation id, event names by a subset of business attributes
and order of events by a timestamp.

The other system being analyzed is a Tracker System (TS)
used for management of kanban and scrum software devel-
opment processes. The history of the system usage contains
short traces (the average number of events per trace is 3.5).
Each trace can be identified by a unique number, it cor-
responds to a concrete task for developers and represents
a sequence of task states, such as “Open,” “In Progress,”
“Resolved,” “Reopened” and “Closed.” These task states are

considered as event names, and timestamps are used to order
them.

Event logs produced by six different anonymous munic-
ipalities [44,45] within the CoSeLoG project in the Nether-
lands were analyzed as well. These event logs contain
information about executions of a permit application process.
The original event logs were reduced in order to speed up the
discovery techniques applied: The number of traces for these
six logs varies from 17 to 324, and the number of different
event names is 22 for the log, which contains receiving phase
only, and between 69 and 176 for the other event logs. For
the log corresponding to the receiving phase, the mean case
duration time is 3.1days, and for the other logs the mean case
duration time lies between 21.4days and 49.2weeks.

Fig. 48 A Petri net discovered
by the Alpha miner from the
event log

123

Process mining using BPMN: relating event logs and process models

Fig. 49 A BPMN model constructed from the Petri net presented in Fig. 48

9.1 Discovering BPMN models

In this subsection, we show fragments of the CRS log and
describe models discovered from this log.

A short typical fragment of an event log is shown in
Table 4. Every log entry contains fields such as reserva-
tion id, an event name, a timestamp, a booking code and
a notification. An event name is a shortcut built from a user
operation and of a product type, e.g., “T1-HF-H:TES”means
that user does operation “search” for a product type “Hotel.”
The booking code identifies the location, e.g., “BER” means
Berlin, Germany. Thus, in the example in Table 4 we show
two reservations: “390234516” is a search for available hotels
in Berlin and “390235717” is a reservation for a double room
in a concrete hotel in Berlin.

Further in this subsection, we use different discovery
(Heuristic [26], Alpha [12] and Inductive [25] miners) to
construct process models from the event log. As a result of
applying discovering methods, we obtain Petri nets, causal
nets and process trees. All these models are converted to
BPMN using algorithms presented before. The log of the
booking process was filtered: The parts, which contain only
positive or only negative cases (cases with booking error
events), were identified. Moreover, since the booking flight
procedure differs from other bookings, the log was also fil-
tered by containing booking flight event.

Let us consider models constructed from a filtered log
containing only positive traces without flight booking proce-
dure6; Fig. 48 illustrates a Petri net discovered with Alpha
miner[12] for this log.

The BPMN model constructed for the given Petri net
(Fig. 48) by the conversion algorithm is shown in Fig. 49.

Note that in this case the amount of routing elements (gate-
ways) in the BPMN model is comparable with the number
places of the initial Petri net, and the number of activities
coincides with the number of transitions. Also note that
thanks to Algorithm 1 all the activities of the target BPMN
model are on paths from the start event to end events.

Now let us consider a causal net (Fig. 50) discovered using
the Heuristic miner [26]. Note that the start nodes and the end
nodes are highlighted in green and red, respectively.

This causal net can be converted to a BPMN model
(Fig. 51) using the conversion algorithm presented before.

The BPMN model reveals the operational semantics of
the process. Fig. 50 is not explicitly showing the routing
constructions, but the BPMNmodel does. Now we will con-
sider a process tree discovered by the Inductive miner [25]
(Fig. 52).

The corresponding Petri net is presented in Fig. 53.

6 All the models presented in this section are discovered using ProM
framework

123

A. A. Kalenkova et al.

Fig. 50 A causal net discovered by Heuristic miner from the event log

The BPMN model constructed from the process tree by
the conversion algorithmdoes not contain any silent activities
(Fig. 54). Moreover, the number of gateways is significantly
less than the amount of places in the corresponding Petri net
(Fig. 53). Note that the process, discovered by the Inductive
miner, is compactly presented in terms of BPMN.

9.2 Comparative analysis of the models discovered

In this subsection, we make a comparative analysis of
processes models discovered from the event logs and corre-
sponding BPMN models obtained as a result of conversions
using various metrics [16]. We will consider the following

Fig. 51 A BPMN model constructed from the causal net presented in Fig. 50

123

Process mining using BPMN: relating event logs and process models

Fig. 52 A process tree discovered by the Inductive miner

metrics: the number of nodes, the diameter (the maximal
length of a shortest path from a start node to a node of the
graph) and density (ratio of the total number of arcs to the
maximum possible number of arcs of the graph). As stated
in [16], all these metrics have a negative correlation with the
process model understandability.

Different process mining algorithms give process models
with different characteristics. Of course, the set of consid-
ered process mining algorithms is far from complete. But
our aim is to analyze the conversion techniques, thuswise we

have selected algorithms, representing the entire classes of
discovery approaches, which produce process models with
certain properties. TheAlphamining algorithm is not tailored
toward handling noisy real-life logs and discovers unstruc-
tured process models; meanwhile, the Inductive miner deals
with noise and produces structured models. The Heuristic
miner was chosen as a technique, which allows us to con-
struct causal nets from event logs.

Let us consider a free-choice system net SN = (PN, Minit,

Mfinal), where PN = (P, T, F, l) is a labeled Petri net,

Fig. 53 A Petri net constructed from the process tree shown in Fig. 52

123

A. A. Kalenkova et al.

Fig. 54 A BPMN model, which corresponds to the process tree (Fig. 52)

and a BPMN model BPMNmodel = (N , A,GXOR,GAND,

estart, Eend, SF, λ), obtained by the conversion algorithm
from this net. The number of activities equals to the num-
ber of non-silent transitions: |A| = | {t ∈ T : t λ(t) �= τ } |.
In the worst case, the number of gateways |GXOR ∪ GAND| is
comparable to the number of places plus the number of transi-
tions : |P|+|T |, since every place can produce an XOR-join,
and in the worst case, the number of AND-join gateways and
the number of XOR-split gateways are both comparable to
�|T |/2�.Note thatAND-split gatewayswill be deleted during
the simplification of the BPMNmodel. In the best case (for a
sequential control flow), a BPMNmodel will not contain any
gateways. Also note that all the constructions produced dur-
ing the transformation of arbitrary Petri nets to free-choice
nets will contain only silent transitions and related places.

For a BPMN model constructed from a causal net, the
number of activities equals the number of causal net activ-
ities. The number of gateways is determined by input and
output bindings of the activities.

A BPMN model constructed as a result of a process tree
conversion contains activities corresponding to non-silent
process tree leafs, and every branch node of the process tree
will be converted to a routing construction of the BPMN
model, containing zero (in the case of a sequential con-
trol flow), one or more routing nodes. Note that some
routing nodes might be merged during the simplification
procedure.

To estimate the number of nodes of process models dis-
covered from the real-life event logs, let us consider Table 5.
The rows in this and other tables are ordered by the number
of process models nodes.

The first column refers to the event logs used: six event
logs, originating from municipal processes, of the CoSeLoG
project (denoted as CSLG1–CSLG6), the logs ofCSR (Com-
puter Reservation System) with various types of filtering
applied7 and the logs of TS (Tracking system). Each of the
other columns mentions the number of nodes of the initial
process model constructed by a discovery algorithm and the
number of nodes of the BPMN model obtained as a result
conversion (for Petri nets and BPMN models the number of
transitions, places and the number of activities, XOR gate-
ways, AND gateways are specified, the values are separated
by a comma).

This table shows that the number of BPMN model nodes
depends on the properties of the initial Petri net: BPMN
models constructed for structured Petri nets are more com-
pact (see the Inductive miner column). This holds due to
the fact that BPMN language allows simplifications, such
as silent nodes deletion (structured models usually contain
silent nodes) and gateways reduction, which is also applica-
ble to structured nets, if some blocks can be merged. For
non-structured Petri nets (see the Alpha miner column), the

7 By CSR1, CSR2, CSR3 and CSR4 we denote event logs of the
Computer Reservation System, containing only positive cases and/or
booking flight event.

123

Process mining using BPMN: relating event logs and process models

Table 5 Number of nodes of process models discovered from the event logs

Log traces Heuristic miner
(C-net/ BPMNa)

Alpha miner (Petri
netb/ BPMNa)

Inductive miner (Proc.
tree/ Petri netb/BPMNa)

CSLG1 176/176,143,128 176,372/176,340,120 261/235,49/176,25,0

CSLG2 134/134,58,56 134,238/134,159,54 273/223,89 /134,42,0

CSLG3 93/93,58,70 93,198/93,153,42 219/173,78/93,35,0

CSLG4 75/75,49,52 75,143/75,101,33 151/120,50/75,21,0

CSLG5 68/68,58,58 68,181/69,159,55 84/77,9/68,3,0

CSR1 30/30,14,4 30,23/30,18,13 130/100,53/ 30,25,0

CSR2 30/30,14,5 30,13/30,5,7 102/81,43/ 30,20,0

CSR3 27/27,10,4 27,28/27,24,13 107/82,52/ 27,24,2

CSLG6 22/22,8,6 22,24/22,14,12 54/41,19/ 22,7,0

CSR4 21/21,6,4 21,23/21,18,11 88/ 67,41/ 21,18,0

TS 5/5,7,0 5,7/5,5,4 15 / 9,5 / 5,3,0

a For BPMN models, the number of activities, XOR gateways and AND gateways are specified, and the values are separated by a comma
b For Petri nets the number of transitions and places are specified and separated by a comma

number of BPMNmodel nodes is comparable or even greater
than the number of nodes of the initial Petri net. Also accord-
ing to the theoretical observations, the number of nodes of a
BPMN model is not always lower than the number of nodes
of the initial causal net, since BPMN models may have rout-
ing nodes.

Similarly let us estimate the density of the models dis-
covered (Table 6). Graph density is defined as D = |E |/
(|V | ∗ (|V | − 1)), where E is a set of edges and V is a set of
nodes. Density shows the relation between the real number
of edges and the maximum possible number of edges in the
graph.

The density of the BPMN models constructed from
unstructured Petri nets is comparable with the density of
these Petri nets (see the Alpha miner column). The density of
structured Petri nets is larger than the density of correspond-

Table 6 Density of the models discovered

Log traces Heuristic miner
(C-net/ BPMN)

Alpha miner
(Petri net/
BPMN)

Inductive miner
(Petri net/
BPMN)

CSLG1 0.01/0.004 0.005/0.004 0.005/0.01

CSLG2 0.01/0.005 0.005/0.005 0.005/0.01

CSLG3 0.02/0.01 0.01/0.01 0.005/0.02

CSLG4 0.02/0.01 0.01/0.01 0.01/0.02

CSLG5 0.02/0.005 0.005/0.005 0.01/ 0.02

CSR1 0.07/0.04 0.05/0.04 0.01/0.04

CSR2 0.07/0.04 0.03/0.05 0.01/0.04

CSR3 0.06/0.04 0.04/0.03 0.01/0.03

CSLG6 0.07/0.05 0.04/0.04 0.03/0.06

CSR4 0.08/0.05 0.05/0.04 0.01/0.04

TS 0.5/0.2 0.19/0.12 0.1 / 0.16

Table 7 Diameter of the processmodels discovered from the event logs

Log traces Heuristic miner
(C-net/ BPMN)

Alpha miner
(Petri net/
BPMN)

Inductive miner
(Petri net/
BPMN)

CSLG1 12/24 17/21 37/14

CSLG2 39/53 49/42 76/23

CSLG3 23/38 37/26 71/23

CSLG4 25/32 39/34 56/16

CSLG5 18/35 13/17 16/5

CSR1 3/7 6/10 20/6

CSR2 3/7 5/7 8/9

CSR3 6/12 11/13 39/14

CSLG6 6/11 13/13 25/7

CSR4 5/8 10/11 41/12

TS 2/5 3/6 5/4

ing BPMN models (see the Inductive miner column) due to
reductions applied in the case of structured processes. The
density of causal nets is certainly greater than the density of
corresponding BPMN models, since novel gateways, which
connect process activities, are added.

Now let us consider the diameter—the maximal length
of a shortest path from a start node to a node of the graph.
The results presented in Table 7 show that the statements
valid for the number of nodes parameter are also true for the
diameter: BPMN models corresponding to structured Petri
nets are more compact than the initial models.

In this subsection, we have evaluated the discovered
process models using metrics, such as the number of nodes,
the density and the diameter. The results show that the com-
pactness of the result BPMN models depends considerably
on characteristics of the initial models.

123

A. A. Kalenkova et al.

Table 8 Characteristics of process models from the Signavio model
collection

Number of nodes Density Diameter

Maximal 58.00 0.87 25

Mean 20.76 0.10 8

Minimal 6.00 0.00 1

Another important issue in the context of our practical
case studies presented in this subsection was the understand-
ability of the process mining output format. The software
architects and designers of the touristic system were espe-
cially interested in getting the results in the BPMN format.
They were familiar with BPMN, and BPMN was also used
in the specification and design phases of the software prod-
uct for documenting the typical touristic business processes.
MoreoverBPMNexchange formats, such asBPMNXML[6]
and XPDL 2.2 [42], give us an ability to integrate with a vari-
ety of BPMNsupporting tools, and thus discovered processes
can be analyzed, improved or even automated using external
environments. In addition BPMN offers great opportunities
to add other perspectives, such as data and resource informa-
tion, results of conformance and performance analysis. This
way the analyst can obtain a holistic view on the processes
discovered.

9.3 Comparing discovered and manually created BPMN
models

To compare the models discovered from the event log with
manually created BPMN models, we analyzed the Signavio
model collection, which contains a variety of BPMNmodels
from different domains. We took only flat models repre-
sented by start and end events, tasks, gateways and sequence
flows. Currently the Signaviomodel collection contains 4900
of such models. For these models, we calculated the struc-
tural characteristics: number of nodes, density and diameter
(Table 8).

Comparing these results with themeasurements presented
in the Tables 5 and 7, one may conclude that models drawn
manually (excluding models discovered from the small TS
log) are usually more compact than those, which were auto-
matically discovered using the well-known discovery and
conversion algorithms presented in this paper.

Also these observations show that BPMN models created
manually have higher density than automatically discovered
BPMN models. The results obtained for the Signavio model
collection are a consequence of the fact that business process
analysts and engineers are used to work with more struc-
tured models, so an algorithm for subprocesses discovery
is needed. An algorithm for the construction of BPMN sub-
processes basedon a log clustering andfilteringwas proposed

in [24]. However, more research is needed to compare hand-
made and discovered models.

10 Conclusions and future work

This paper provides a solid basis for using BPMN in process
mining. The results presented in the paper concentrate on the
control flow perspective, as it is usually considered to be the
main perspective. It is the starting point for extending with
additional perspectives during an enhancement of the process
model discovered from an event log.

In this paper, we used various control flow discovery algo-
rithms. These produce Petri nets, causal nets, process trees,
etc. Few algorithms produce directly a BPMNmodel. Hence,
we developed various conversion algorithms tomine BPMN.
Petri nets, process trees and causal nets discovered from a
real-life event log were compared with the corresponding
BPMN models on the basis of three process metrics. More-
over, these metrics were applied to measure the difference
between BPMN models, which were created by analysts,
and BPMN models retrieved as a result of process discov-
ery algorithms. An approach for enhancing a BPMN model
with additional conformance and performance information
was proposed as well.

The results presented in the paper can be used to retrieve
BPMNmodels out of event logs and verify themagainst event
logs. This work can be considered as a first step toward the
development of more advanced process discovery methods,
including novel perspectives.

As was shown in Sect. 9.3, more structured process mod-
els are needed, and thus methods for subprocesses discovery
should be introduced. In comparison with the approach pre-
sented in [24], we plan to build a method on top of the
decomposition techniques [46–48] to obtain structural mod-
els, preserving behavior recorded in an event log.

References

1. van der Aalst, W.M.P.: Process Mining—Discovery, Conformance
and Enhancement of Business Processes. Springer, Berlin (2011)

2. Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P.,
Bakker, P.J.M.: Application of process mining in healthcare: a case
study in a Dutch hospital. In: Biomedical engineering systems and
technologies. communications in computer and information sci-
ence, vol. 25, pp. 425–438. Springer, Berlin (2009)

3. Mitsyuk, A.A., Kalenkova, A.A., Shershakov, S.A., van der Aalst,
W.M.P.: Using processmining for the analysis of an e-trade system:
a case study. Bus. Informatics 3, 15–23 (2014)

4. Trcka, N., Pechenizkiy, M.: From local patterns to global models:
towards domain driven educational process mining. In: 9th Inter-
national conference on intelligent systems design and applications
(ISDA), pp. 1114–1119. IEEE Computer Society (2009)

5. IEEE task force on process mining: process mining manifesto. In:
Business Process Management Workshops, Lecture Notes in Busi-
ness Information Processing, vol. 99, pp. 169–194. Springer (2012)

123

Process mining using BPMN: relating event logs and process models

6. OMG: Business Process Model and Notation (BPMN), Version
2.0. http://www.omg.org/spec/BPMN/2.0 (2011)

7. Muehlen, M.Z., Ho, D.T.: Service process innovation: a case study
of bpmn in practice. In: Proceedings of the proceedings of the 41st
annualHawaii international conference on system sciences, HICSS
’08, p. 372. IEEE Computer Society, Washington (2008)

8. Muehlen, M.Z., Recker, J.: How much language is enough?
Theoretical and practical use of the business process modeling
notation. In: Proceedings of the 20th international conference on
advanced information systems engineering. CAiSE ’08, pp. 465–
479. Springer, Berlin, Heidelberg (2008)

9. Recker, J.: Opportunities and constraints: the current struggle with
BPMN. Business Process Manag. J. 16(1), 181–201 (2010)

10. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Causal
nets: a modeling language tailored towards process discovery.
In: CONCUR, Lecture Notes in Computer Science, pp. 28–42.
Springer (2011)

11. van der Aalst,W.M.P., Buijs, J.C.A.M., van Dongen, B.F.: Towards
improving the representational bias of process mining. In: IFIP
international symposium on data-driven process discovery and
analysis (SIMPDA 2011). Lecture Notes in Business Information
Processing, vol. 116, pp. 39–54. Springer, Berlin (2012)

12. van der Aalst,W.M.P.,Weijters, A.J.M.M.,Maruster, L.:Workflow
mining: discovering process models from event logs. IEEE Trans.
Knowl. Data Eng. 16(9), 1128–1142 (2004)

13. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse
on complexity of processmodels. In: Proceedings of the 2006 inter-
national conference on business process management workshops.
BPM’06, pp. 117–128. Springer, Berlin (2006)

14. Latva-Koivisto, A.: Finding a complexity measure for business
process models Tech. rep, Helsinki University of Technology,
Espoo, Helsinki (2001)

15. Laue, R., Gruhn, V.: Complexity metrics for business process mod-
els. In: Business Information Systems, 9th international conference
on business information systems, BIS 2006, pp. 1–12 (2006)

16. Sánchez-González, L., García, F., Mendling, J., Ruiz, F., Piattini,
M.: Prediction of business process model quality based on struc-
tural metrics. In: ER, Lecture Notes in Computer Science. vol.
6412, pp. 458–463. Springer (2010)

17. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replay-
ing history on process models for conformance checking and
performance analysis. Wiley Interdiscp. Rev. Data Min. Knowl.
Discov. 2(2), 182–192 (2012)

18. van der Aalst, W.M.P.: The application of Petri nets to workflow
management. J. Circuits Syst. Comput. 8(1), 21–66 (1998)

19. OMG: OMG Unified Modeling Language 2.5. OMG. http://www.
omg.org/spec/UML/2.5/ (2013)

20. Kindler, E.: On the semantics of EPCs: a framework for resolving
the vicious circle. In: International Conference onBusiness Process
Management (BPM 2004), Lecture Notes in Computer Science,
vol. 3080, pp. 82–97. Springer (2004)

21. Mendling, J., van der Aalst,W.M.P.: Towards EPC semantics based
on state and context. In: Proceedings of fifth workshop on event-
driven process chains (WI-EPK 2006), pp. 25–48. Gesellschaft für
Informatik, Bonn, Vienna (2006)

22. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An alter-
native way to analyze workflow graphs. In: Proceedings of the
14th international conference on advanced information systems
engineering (CAiSE’02), vol. 2348, pp. 535–552 (2002)

23. Favre, C., Fahland, D., Völzer, H.: The relationship between work-
flow graphs and free-choice workflow nets. Inf. Syst. 47, 197–219
(2015)

24. Conforti, R., Dumas, M., Garcia-Baneulos, L., La Rosa, M.:
Beyond tasks and gateways: discovering BPMN models with sub-
processes, boundary events and activity markers. In: International

conference in business process management (BPM), pp. 101–117.
Springer, Haifa (2014)

25. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering
block-structured process models from event logs: a constructive
approach. In: Application and Theory of Petri Nets and Concur-
rency, Lecture Notes in Computer Science. vol. 7927, pp. 311–329.
Springer (2013)

26. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner
(FHM). In: IEEE symposium on computational intelligence and
data mining (CIDM 2011), pp. 310–317. IEEE, Paris, France
(2011)

27. Weerdt, J.D., vanden Broucke, S.K.L.M., Caron, F.: Bidimen-
sional process discovery for mining bpmn models. In: Fournier,
F., Mendling, J. (eds.) Business Process Management Workshops,
Lecture Notes in Business Information Processing, vol. 202, pp.
529–540. Springer, (2014)

28. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining:
discovering decisions in processes using alignments. In:ACMsym-
posium on applied computing (SAC 2013), pp. 1454–1461. ACM
Press (2013)

29. Burattin, A., Sperduti, A., Veluscek,M.: Businessmodels enhance-
ment through discovery of roles. In: IEEE symposium on compu-
tational intelligence and data mining, CIDM 2013, Singapore, pp.
103–110 (2013)

30. Song, M., van der Aalst, W.M.P.: Towards comprehensive support
for organizational mining. Decis. Support Syst. 46(1), 300–317
(2008)

31. de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and
resource-aware conformance checking of business processes. In:
BIS, Lecture Notes in Business Information Processing. vol. 117,
pp. 48–59. Springer (2012)

32. van der Aalst, W.M.P., Rubin, V.A., Verbeek, H.M.W., van Don-
gen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step
approach to balance between underfitting and overfitting. Softw.
Syst. Model. 9(1), 87–111 (2010)

33. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process min-
ing based on regions of languages. In: International conference
on business process management (BPM 2007), Lecture Notes in
Computer Science. vol. 4714, pp. 375–383. Springer (2007)

34. Carmona, J., Cortadella, J.: Processminingmeets abstract interpre-
tation. In: ECML/PKDD 210, Lecture Notes in Computer Science,
vol. 6321, pp. 184–199. Springer (2010)

35. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining: adaptive
process simplification based onmulti-perspectivemetrics. In: Inter-
national conference on business processmanagement (BPM2007),
Lecture Notes in Computer Science, vol. 4714, pp. 328–343.
Springer (2007)

36. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mul-
yar, N.: Workflow control-flow patterns: a revised view. Tech.
Rep. BPM-06-22, BPM Center. http://bpmcenter.org/wp-content/
uploads/reports/2006/BPM-06-22.pdf (2006)

37. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A
Genetic algorithm for discovering process trees. In: IEEECongress
on evolutionary computation (CEC2012), pp. 1–8. IEEEComputer
Society (2012)

38. Desel, J., Esparza, J.: FreeChoice PetriNets. CambridgeUniversity
Press, New York (1995)

39. Murata, T.: Petri nets: properties, analysis and applications. Proc.
IEEE 77(4), 541–580 (1989)

40. Wynn, M., Verbeek, H., van der Aalst, W.M.P., Hofstede, A.,
Edmond, D.: Reduction rules for YAWL workflows with cancella-
tion regions and OR-join. Inf. Softw. Technol. 51(6), 1010–1020
(2009)

41. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Confor-
mance checking using cost-based fitness analysis. In: EDOC, pp.
55–64. IEEE Computer Society (2011)

123

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://bpmcenter.org/wp-content/uploads/reports/2006/BPM-06-22.pdf
http://bpmcenter.org/wp-content/uploads/reports/2006/BPM-06-22.pdf

A. A. Kalenkova et al.

42. WFMC: XML Process Definition Language Version 2.2. In: Tech-
nical Report WFMC-TC-1025, Workflow Management Coalition,
Lighthouse Point, Florida, USA (2012)

43. Kalenkova,A.A., deLeoni,M., vanderAalst,W.M.P.:Discovering,
analyzing and enhancing BPMNmodels using ProM. In: Business
ProcessManagement—12th International Conference, BPM2014,
Haifa, Israel, September 7–11, 2014. Proceedings (2014). In press

44. Buijs, J.C.A.M.: Environmental Permit Application Process.
CoSeLoG project (2014)

45. Buijs, J.C.A.M.: Receipt phase of an environmental permit appli-
cation process. CoSeLoG project (2014)

46. van der Aalst, W.M.P.: A general divide and conquer approach for
process mining. In: Federated conference on computer science and
information systems (FedCSIS 2013), pp. 1–10 (2013)

47. Kalenkova, A.A., Lomazova, I.A.: Discovery of cancellation
regionswithin processmining techniques. Fundam. Inform.133(2–
3), 197–209 (2014)

48. Kalenkova, A.A., Lomazova, I.A., van der Aalst, W.M.P.: Process
model discovery: A method based on transition system decompo-
sition. In: Application and Theory of Petri Nets and Concurrency,
Lecture Notes in Computer Science, pp. 71–90. Springer (2014)

AnnaA. Kalenkova was gradu-
ated in appliedmathematics from
the Lomonosov Moscow State
University; in 2011 she com-
pleted her PhD in the Com-
puting Center of Russian Acad-
emy of Sciences. Currently she
is working in the Laboratory
of Process Information Systems
Higher School of Economics,
Moscow, Russian Federation as
a senior researcher. Her main
topics of interest are Petri nets,
workflow nets, business process
modeling languages, business

process management systems and process mining.

WilM. P. van der Aalst is a full
professor of Information Sys-
tems at the Technische Univer-
siteit Eindhoven (TU/e) where
he is also scientific director of
the Data Science Center Eind-
hoven (DSC/e). His personal
research interests include work-
flow management, process min-
ing, Petri nets, business process
management, process modeling,
and process analysis.Wil van der
Aalst has published more than
180 journal papers, 18 books (as
author or editor), 400 refereed

conference/workshop publications, and 60 book chapters. He is a mem-
ber of the Royal Netherlands Academy of Arts and Sciences, Royal
Holland Society of Sciences and Humanities, and Academia European.

Irina A. Lomazova is a Profes-
sor at the Faculty of Computer
Science, National Research Uni-
versity Higher School of Eco-
nomics (Moscow,Russia), where
she also heads the Laboratory
for Process-Aware Information
Systems. Her research interests
include process modeling and
analysis, formal models of con-
currency, Petri nets, and process
mining.

Vladimir A. Rubin During
more than 14 years he has been
working and researching in the
area of software engineering in
a variety of projects in differ-
ent consulting and technology
companies (msg systems AG,
Capgemini, sd&m, NetCracker)
and scientific institutions in Ger-
many, Russia, USA, Holland,
and Switzerland. He graduated
in computer science from the
MoscowStateUniversity ofRail-
way Transport and completed his
PhD in a graduate school of

dynamic intelligent systems in Paderborn, Germany. Currently he is
working as an independent Lead IT Architect and Consultant in Frank-
furt am Main, Germany.

123

	Process mining using BPMN: relating event logs and process models
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Event logs and Petri nets
	3.2 BPMN semantics
	3.3 Transition systems, reachability graphs and simulation relations

	4 Converting process models into BPMN
	4.1 Adding a source place to an arbitrary system net with a safe initial marking
	4.2 Free-choice system nets to BPMN conversion
	4.3 Non-free-choice system nets to BPMN
	4.4 System nets conversions justification

	5 From other process notations to BPMN models
	5.1 Additional BPMN routing constructs
	5.2 Transforming causal nets to BPMN models
	5.3 Converting process trees to BPMN models
	5.4 Example

	6 BPMN model simplification
	7 Mapping conformance and performance info onto BPMN models
	7.1 Converting BPMN models to Petri nets
	7.2 Mapping conformance and performance info

	8 Tool support
	9 Case studies
	9.1 Discovering BPMN models
	9.2 Comparative analysis of the models discovered
	9.3 Comparing discovered and manually created BPMN models

	10 Conclusions and future work
	References

