
Business process variability modeling

La Rosa, M.; van der Aalst, W.M.P.; Dumas, M.; Milani, F.P.

Published in:
ACM Computing Surveys

DOI:
10.1145/3041957

Published: 01/03/2017

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
La Rosa, M., Van Der Aalst, W. M. P., Dumas, M., & Milani, F. P. (2017). Business process variability modeling:
a survey. ACM Computing Surveys, 50(1), 1-45. [2]. DOI: 10.1145/3041957

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Jan. 2018

http://dx.doi.org/10.1145/3041957
https://pure.tue.nl/en/publications/business-process-variability-modeling(f479e1f4-b8f1-450f-8d90-0773d7a8107f).html

2

Business Process Variability Modeling: A Survey

MARCELLO LA ROSA, Queensland University of Technology, Australia
WIL M. P. VAN DER AALST, Eindhoven University of Technology, The Netherlands
MARLON DUMAS, University of Tartu, Estonia and Queensland University of Technology, Australia
FREDRIK P. MILANI, University of Tartu, Estonia

It is common for organizations to maintain multiple variants of a given business process, such as multiple
sales processes for different products or multiple bookkeeping processes for different countries. Conventional
business process modeling languages do not explicitly support the representation of such families of pro-
cess variants. This gap triggered significant research efforts over the past decade, leading to an array of
approaches to business process variability modeling. In general, each of these approaches extends a conven-
tional process modeling language with constructs to capture customizable process models. A customizable
process model represents a family of process variants in a way that a model of each variant can be derived by
adding or deleting fragments according to customization options or according to a domain model. This survey
draws up a systematic inventory of approaches to customizable process modeling and provides a comparative
evaluation with the aim of identifying common and differentiating modeling features, providing criteria for
selecting among multiple approaches, and identifying gaps in the state of the art. The survey puts into
evidence an abundance of customizable process-modeling languages, which contrasts with a relative scarcity
of available tool support and empirical comparative evaluations.

Categories and Subject Descriptors: H.4.1 [Office Automation]: Workflow Management; A.1 [Introductory
and Survey]

General Terms: Design, Management, Standardization

Additional Key Words and Phrases: Variability modeling, process model, customizable process model

ACM Reference Format:
Marcello La Rosa, Wil M. P. van der Aalst, Marlon Dumas, and Fredrik P. Milani. 2017. Business process
variability modeling: A survey. ACM Comput. Surv. 50, 1, Article 2 (March 2017), 45 pages.
DOI: http://dx.doi.org/10.1145/3041957

1. INTRODUCTION

The coexistence of multiple variants of the same business process is a widespread phe-
nomenon in contemporary organizations. As a concrete example, The Netherlands has
around 430 municipalities, which in principle execute the same or a very similar set
of processes. All municipalities have processes related to building permits, such as the
process for handling applications for permits and the process for handling objections
against such permits. Due to demographics and political choices, though, each munici-
pality executes its processes differently. Variations are justified by different priorities

This research is partly funded by the Australian Research Council (grant DP150103356) and the Estonian
Research Council (grant IUT20-55).
Authors’ addresses: M. La Rosa, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001,
Australia; email: m.larosa@qut.edu.au; W. M. P. van der Aalst, Eindhoven University of Technology, PO Box
513 NL-5600 MB Eindhoven, The Netherlands; email: w.m.p.v.d.aalst@tue.nl; M. Dumas and F. P. Milani,
University of Tartu, J. Liivi 2, Tartu 50409, Estonia; emails: {marlon.dumas, milani}@ut.ee.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0360-0300/2017/03-ART2 $15.00
DOI: http://dx.doi.org/10.1145/3041957

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

http://dx.doi.org/10.1145/3041957
http://dx.doi.org/10.1145/3041957

2:2 M. La Rosa et al.

and customs, often referred to as the “Couleur Locale.” At present, these differences
have come to be accepted and there is no willingness to flatten them out. Still, captur-
ing multiple municipality processes in a consolidated manner is necessary in order to
develop information systems that can support multiple or all municipalities at once.

Similarly, Suncorp Group – the largest insurance group in Australia – offers a range
of insurance products, including home, motor, commercial, and liability insurance.
Each product exists for different brands of the group (e.g., Suncorp, AAMI, APIA, GIO,
and Vero). As a result, there are more than 30 variants of the process for handling
an insurance claim at Suncorp Group. There is a case for modeling and maintaining
these variants in a consolidated manner not only to avoid redundancy but also so that
improvements and automation efforts made on one variant can benefit other variants.

The application of conventional business process modeling approaches [Mili et al.
2010] to families of process variants requires one of two paths to be chosen. Either
each variant is modeled separately, resulting in duplication as the variants have much
in common, or multiple variants are modeled together, leading to highly complex con-
solidated models, which hampers the analysis and maintenance of individual variants.

Motivated by this observation, a number of approaches to model families of business-
process variants have emerged. A common trait of these approaches is that they support
the representation of a family of business-process variants via a single model, from
which each variant can be derived via certain model transformations. We use the term
customizable process model to refer to such a consolidated model of process variants
and the term variation point to indicate an element of the customizable process model
that can be customized via transformations.

A wide array of approaches to customizable process modeling have been proposed
in recent years without it being generally clear what trade-offs they strike relative to
each other and how potential users should select an approach for a given purpose. In
this setting, this survey draws up a systematic inventory of approaches to customizable
process modeling, identifies and classifies major approaches in the field and provides a
comparative evaluation aimed at answering the following questions:

—RQ1. What are the commonalities and distinctive features of approaches to cus-
tomizable process modeling?

—RQ2. What criteria can be used to select between different approaches?
—RQ3. What general limitations or research gaps exist in the literature on customiz-

able process modeling that may require further work?

The rest of the article is organized as follows. Section 2 delimits the scope of the
survey. Section 3 defines and justifies the criteria used to analyze approaches in the
field. Section 4 presents a working example. Sections 5 to 9 illustrate and analyze
major approaches in the field identified from a systematic literature review. Section 10
provides a synthesis of the commonalities and differences between the surveyed ap-
proaches and answers the research questions just framed. Section 11 positions this
survey with respect to related work. Finally, Section 12 exposes common limitations,
leading to an outline of future research directions.

Six appendices complement the survey. Appendix A describes the literature search
procedure and summarizes the results. Appendix B surveys secondary approaches iden-
tified during the search process. Appendices C and D discuss techniques employed by
the surveyed approaches to provide decision support during process customization and
to ensure correctness of the customized process models. Finally, Appendix E provides
a list of all relevant terms and their definitions used in this article, while Appendix F
shows a mapping between the different process-modeling languages used to exemplify
the approaches surveyed.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:3

2. SCOPE

Customizable process models capture a family of process-model variants in a way
that the individual variants can be derived via transformations, for example, adding or
deleting fragments. Accordingly, a customizable process model encapsulates customiza-
tion decisions between process variants that need to be made either at design time or
runtime. Design-time customization decisions lead to a customized process model that
is intended to be executed in a particular organizational setting. Thus, these decisions
affect all instances of the customized process executed in this setting. The time frame
associated with these decisions may be long (e.g., months or years). In contrast, runtime
customization decisions are punctual and affect only one or a few process instances.
Such decisions may be visualized on top of a process model, but they are not intended
to modify the executed process model itself beyond its effects on the process instance(s)
in which the decision is applied.

Processes in which customization decisions are made at runtime are called flexible
processes [Reichert and Weber 2012]. The challenges associated with managing such
processes have been widely studied in the literature [Rinderle et al. 2004; Weber et al.
2008]. The present survey focuses on design-time process variability management as
opposed to runtime flexible process management. In other words, the focus is on captur-
ing a family of processes via a single-process model that is customized at design-time.
Approaches to runtime flexible process management are generally not concerned with
maintaining multiple process models that together form a family of processes. Instead,
these approaches rely on a unitary process model. In some approaches, this unitary
process model is seen as an indicative roadmap with respect to which individual pro-
cess instances may deviate [Reichert and Dadam 1998], while in other approaches –
for example, Declare [Pesic et al. 2007] or Pockets of Flexibility [Sadiq et al. 2001,
2005] – the process model is left underspecified and individual process instances refine
this underspecified model rather than deviating from it. In both cases, there is still a
single-process model that serves as a reference during process execution.

Customization decisions may result in the removal or addition of behavior to a cus-
tomizable process model. In this respect, we distinguish two approaches to variability
management: by restriction and by extension.

Variability by restriction starts with a customizable process model that contains all
behavior of all process variants. Customization is achieved by restricting the behavior
of the customizable process model. For example, activities may be skipped or blocked
during customization. In this setting, one can think of the customizable process model
as the union or Least Common Multiple (LCM) of all process variants. Customizable
process models of this type are sometimes called configurable process models.

Variability by extension takes the opposite starting point. The customizable process
model does not contain all possible behavior; instead, it represents the most common
behavior or the behavior that is shared by most process variants. At customization
time, the model’s behavior needs to be extended to serve a particular situation. For
example, one may need to insert new activities in order to create a dedicated variant.
In this setting, one can think of a customizable process model as the intersection or
Greatest Common Denominator (GCD) of all process variants under consideration.

This survey covers both variability by restriction and by extension. In fact, as dis-
cussed later, it is possible for one same approach to combine both types of variability.

Customizable process models ought to be distinguished from so-called reference pro-
cess models [Fettke and Loos 2003; Rosemann 2003]. Some vendors and consultancy
firms provide reference process models that are intended to capture common knowl-
edge or best practices in a given field (e.g., in supply chain management or IT service
delivery). While a reference process model can be very useful in its own way, it should

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:4 M. La Rosa et al.

be understood that it is in essence a concrete process model intended to be used as
an example. Reference process models do not support customization in a structured
manner. In this survey, we focus on approaches that provide support for customization
rather than serving only as reference.

Having discussed the scope of the survey, we next define a set of criteria to charac-
terize the approaches in the field.

3. EVALUATION CRITERIA

To derive criteria for assessing approaches to business-process variability modeling,
we analyzed the solution space using the six “W questions” (Who, What, Where, When,
Why, and How). We determined that the “who” and “why” questions do not allow us
to distinguish between approaches in the field since all the approaches identified in
the search (see Appendix A) have the same aim, that is, to support process model-
ers (“who”) in the definition of customizable process models and in the customization
thereof (“why”). Similarly, the “where” question is not relevant as there is no spatial
dimension that distinguishes approaches in the field. The “when” question (“when does
customization occur?”) has been discussed in the previous section (design time vs. run-
time) and a choice was made to focus on design time, given that runtime customization
has been studied as a separate topic in the literature (see process flexibility). This leaves
us with the “what” and “how” questions, which we refine into: “What is captured in
the customizable model?” and “How are customized models derived from customizable
ones?”

To answer the “what” question, we reuse a classification of elements of a process
model spelled out in previous surveys, in which the elements of a process model are di-
vided into those concerned with the control-flow perspective (the flow of control between
activities), the resource perspective (organizational aspects), and the object perspective
(physical and data objects manipulated in the process) [Georgakopoulos et al. 1995;
Mili et al. 2010]. Accordingly, we characterize process variability modeling approaches
depending on their support for each of these three perspectives.

Another classification of process models identified in previous work is based on their
purpose [Georgakopoulos et al. 1995]. Along this direction, we distinguish between
conceptual process models, which are intended for communication and analysis, and
executable ones, which are intended for deployment in an execution engine.

Moving to the “how” question, we note that customized process models are derived
from customizable models by applying transformations based on decisions made by a
user. Thus, customization involves decisions and transformations.

The transformations applied during customization can be classified into those that
restrict the process behavior captured by the customizable process model, for exam-
ple, by removing an element (customization by restriction), and those that extend the
process behavior, for example, by adding an element (customization by extension), as
discussed in the previous section. Meanwhile, customization decisions can be expressed
in terms of concepts that refer to the domain of discourse (abstract level) or concepts
related to the process model itself (concrete level). Thus, approaches can be assessed
depending on whether their customization decisions support abstraction to the domain
level or not. Putting aside the concepts used to express decisions, some approaches
guide the user step by step when making these decisions (i.e., by presenting the deci-
sions in a certain order) and prevent inconsistent or irrelevant decisions to be made,
while other approaches leave it up to the user to decide what decisions to perform and
in what order. Accordingly, we can assess approaches depending on the guidance that
they provide during customization.

Transformations applied to derive a customized process model may in some cases
lead to syntactically incorrect models, whether structurally or behaviorally incorrect.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:5

Some approaches guarantee that the customized process models are correct, but others
do not. Accordingly, we can characterize an approach depending on whether or not it
guarantees structural and/or behavioral correctness of the customized process model.

With respect to the “how” question, we considered alternative criteria. Since cus-
tomizable process models generally extend a host modeling language, the latter could
be used as a classification criterion. We did not retain this criterion because we ob-
served that it is not a fundamental characteristic of an approach. An approach that
has been designed for EPCs can be adapted to BPMN and vice-versa. We also consid-
ered the specific abstraction mechanism as a classification criterion. In this respect,
approaches may differ in terms of the mechanism employed to link the elements of the
process model to elements of the domain of discourse. Some approaches rely on simple
“annotations” attached to model elements referring to implicitly defined elements of
the domain of discourse, while others may opt for a more explicit linkage, in which
elements of the process model are linked to concepts in an explicit domain model (or
vice-versa). The latter could be further subdivided depending on the approach em-
ployed to represent the domain model (e.g., feature model vs. questionnaire model).
We opted, however, to simply classify approaches depending on whether they support
abstraction or not, because we found that the choice of the domain modeling approach
and the choice of the mechanism for linking the domain model to the process model are
very approach-specific. In Section 5, we discuss these design choices for each approach
separately.

Having identified assessment criteria based on the “what” and “how” questions, we
moved to the “meta” level, by considering the design of the approach itself. Research
papers that propose customizable process modeling approaches rely, implicitly or ex-
plicitly, on a design science method [Hevner et al. 2004]. According to design science
principles, the conceived artifacts should be specified, implemented where applicable,
and validated to determine if they fulfill the intended requirements. Artifacts in the
field under study can be specified informally or formally. They may or may not be
implemented as a prototype and they may or may not be validated in order to as-
sess their applicability and qualities. Accordingly, we identify three extra-functional
requirements: formalization, implementation, and validation. The criteria resulting
from this analysis are explained here.

1 Scope. This category refers to the “what” question discussed earlier. It is broken
down into two subcategories: Process Perspective and Process Type.
1.1 Process Perspective. This category refers to the supported process modeling

perspectives.
1.1.1 Control flow. Ability of a customizable model to capture variability along

the control-flow perspective, that is, activities and routing elements such
as gateways can become variation points (e.g., capturing that a credit his-
tory check is not required in some of the variants of a loan origination
process). A language is considered to only partially fulfill this criterion if
routing elements or activities are not customizable or if such elements are
customizable but the corresponding customization options are not graph-
ically represented.

1.1.2 Resources. Ability of a customizable model to capture variability in the
involved human and nonhuman resources, that is, resources can become
variation points (e.g., capturing that a risk assessor is not involved in
some of the variants of a claims handling process). A language partially
fulfills this criterion if resources are customizable but the options are not
graphically represented.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:6 M. La Rosa et al.

1.1.3 Objects. Ability of a customizable model to capture variability in the
physical and data objects produced and consumed by a process, that is,
objects can be become variation points (e.g., capturing that an invoice
is not required in some of the variants of an order-to-cash process). A
language partially fulfills this criterion if objects are customizable but
their customization options are not graphically represented.

1.2 Process Type. This category refers to the purpose of the process models.
1.2.1 Conceptual. An approach meets this criterion if it is designed to support

conceptual process models only, that is, process models that are not meant
to be executed on top of a Business Process Management System (BPMS).

1.2.2 Executable. An approach is considered to fulfill this criterion if the cus-
tomization prevents or resolves inconsistencies in the associations be-
tween activities and data objects, thus making the customized models
executable on top of a concrete BPMS. If the customized models can be
executed on a BPMS but these inconsistencies are not addressed, the ap-
proach is considered to only partially fulfill the criterion. Similarly, the
criterion is partially fulfilled if there is no BPMS that can support the
execution of the customized models even if inconsistencies are prevented
or resolved by the approach.

2 Customization Type. Do the supported transformations restrict/extend the process
behavior?
2.1 Restriction. An approach matches this criterion if a process model is customized

by restricting its behavior.
2.2 Extension. An approach matches this criterion if a process model is customized

by extending its behavior.
An approach could support both criteria in principle, that is, there could be transfor-
mations to restrict some parts and extend others.

3 Supporting Techniques. This category refers to techniques to support the cus-
tomization of process models. The two subcategories are based on common func-
tionality frequently reported in the literature: decision support for the selection
of suitable customization options and ensuring the correctness of the customized
model.
3.1 Decision Support. How are users supported in their customization decisions?

3.1.1 Abstraction. An approach supports process model abstraction if users
can customize a model without directly referring to its model elements
but instead to properties of the application domain (e.g., customizing an
order-to-cash process model based on the available sales channels rather
than based on the activities and gateways that are customizable in the
model).

3.1.2 Guidance. This criterion is met if there is support to (i) guide users when
making customization decisions, for example, in the form of recommen-
dations for selecting one option or another; and (ii) prevent users from
making inconsistent or irrelevant customization decisions from a domain
viewpoint. Approaches that only provide support for one of these two as-
pects partially fulfill this criterion.

3.2 Correctness Support. Is the syntactical correctness of the customized models
guaranteed? Syntactical correctness is divided into correctness of the model
structure and correctness of the model behavior.
3.2.1 Structural correctness. Ability to guarantee the correct structure of the

customized models, for example, by avoiding disconnected nodes.
3.2.2 Behavioral correctness. Ability to guarantee the correct behavior of the

customized models, for example, by avoiding behavioral anomalies such

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:7

as deadlocks and livelocks when the model is instantiated. In other words,
the model must be sound [van der Aalst et al. 2011], that is, it should
always be possible to complete any process instance properly.

4 Extra-Functional. Criteria related to the design of the approach itself.
4.1 Formalization. Some approaches present only ideas and do not provide concrete

algorithms or definitions. Therefore, we include a criterion indicating whether
the approach has been described rigorously in terms of mathematical notations.
In order to fulfill this criterion, the approach has to be formally defined, includ-
ing algorithms used during customization. If such algorithms are missing, the
approach partially fulfills the criterion.

4.2 Implementation. Approaches may only exist on paper. However, the usability
and maturity of an approach heavily depends on tool support to design and
customize customizable process models. If the approach is fully implemented
(including algorithms used during customization), then this criterion is fulfilled.
Approaches with partial implementations, for example, offering only design or
customization support, partially fulfill this criterion.

4.3 Validation. The applicability of some approaches has been validated using real-
life process variants and through discussions with domain experts, but this does
not necessarily apply to all approaches. An approach fulfills this criterion if it
has been tested on models not created by the authors and the results verified by
domain experts. If one of these two aspects is lacking (e.g., an approach that has
been validated without the involvement of domain experts), then this criterion
is only partially fulfilled.

The next section introduces an example of a family of process variants that is used
later to illustrate the approaches retrieved by the search described in Appendix A.

4. ILLUSTRATIVE SCENARIO

The example process family described in this section is the result of a case study in
picture postproduction that we conducted with domain experts from the Australian
Film, Television and Radio School (AFTRS) in Sydney.1

In the film industry, picture postproduction (postproduction hereafter) is the process
that starts after the shooting has been completed, and deals with the creative editing
of the motion picture. Figure 1 shows several variants of the postproduction process.
A process model is a directed graph consisting of nodes of type event, activity, and
gateway and arcs (called sequence flows) linking these elements. Events are triggers
to and signal the results of activities or of the entire process (e.g., a start event triggers
the entire process, while an end event signals its completion). Activities capture work
done in the process. Gateways are used to model alternative and parallel branching
and merging and are divided into splits (with multiple outgoing flows and one incoming
flow) and joins (with multiple incoming flows and one outgoing flow). Splits and joins
have a logical type. They can be of type OR or XOR (for inclusive, resp., exclusive
decision and merging) and AND (for parallelism and synchronization).

The example in Figure 1 is represented in the Event-driven Process Chains (EPCs)
language [Davis and Brabander 2007]. There is a variety of languages in addition
to EPCs to represent process models, for example, BPMN, UML Activity Diagrams,
YAWL, and BPEL. While in this article we will illustrate process model examples
using different languages, depending on the approach being reviewed, for uniformity
we will always use the terminology described earlier, which is borrowed from the BPMN

1See www.aftrs.edu.au.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

file:www.aftrs.edu.au

2:8 M. La Rosa et al.

Fig. 1. Different variants of the picture postproduction process in the EPC language.

standard, and abstract from language-specific terms. Appendix F provides a mapping
between the languages used to exemplify the approaches surveyed.

As depicted in Figure 1, postproduction starts with the receipt, from the shooting
that needs to be prepared for editing. The footage can either be prepared on film
(see for example, variant a of Figure 1, in which activity “Prepare film for editing”
in performed), on tape (e.g., variant b, in which activity “Prepare film for editing” is
performed) or on both media (variant d) depending on whether the motion picture
was shot on a film roll and/or on a tape. Next, the medium is edited offline to achieve
the first rough cut (thus, activity “Edit offline” exists in all variants). However, after
this, online editing is carried out if the footage was shot on tape (variants b and c),
while a negmatching is performed if the footage was shot on film (e.g., variant a).
Online editing is a cheap editing procedure suited for low-budget movies typically shot
on tape. Negmatching offers better-quality results but entails higher costs; thus, it is
more suitable for high-budget productions typically shot on film. The choice between
online editing and negmatching is an important postproduction decision: depending
on drivers such as budget, creativity, and type of project, one option, the other, or
both need to be taken. Thus, each variant in Figure 1 reflects a common practice in
postproduction. For example, variant a is a typical low-budget practice (shooting and
releasing on tape), whereas variant d illustrates a more expensive procedure (shooting
and releasing on both tape and film).

The final step of postproduction is the finishing of the edited picture. This can be
be done on film (see variant a), on tape (variant b) or on both media (variant d). The
finishing may involve further activities based on the combination of editing type and

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:9

Fig. 2. Number of publications on process model variability management via customizable process models.

final medium. For example, if the editing was done online and the final version is
on film, a digital film master is to be recorded from the edited tape (see variant c).
Alternatively, if a negmatching was performed and the final version is on tape, the
edited film is to be transferred onto a tape via a telecine machine (variants d and e).

The process may conclude with an optional release on a new medium (e.g., DVD or
digital stream), which follows the finishing on tape or film (e.g., in variant b, the release
on the new medium follows a tape finish).

5. OVERVIEW OF PROCESS MODEL CUSTOMIZATION APPROACHES

We conducted a literature search using the protocol described in Appendix A. This
search resulted in 66 relevant publications. In many cases, multiple publications per-
tain to the same approach. Also, some approaches are subsumed by other approaches,
that is, the concepts in one approach are contained in another. By grouping the publica-
tions accordingly, we found that the 66 publications cover 23 approaches, out of which
11 main approaches subsume the other 12 approaches.

The 66 publications covered by this survey are listed in a supplemental spreadsheet
available at https://goo.gl/mmxZf3. For each approach, the table identifies a primary
(earliest) publication describing the approach and, when available, additional publica-
tions describing further aspects of the same approach.

A histogram of papers per year of publication is shown in Figure 2. This histogram is
based on the list of publications satisfying the inclusion and exclusion criteria defined
in the search protocol (see Appendix A).2 The histogram shows an increasing trend of
publications on the topic starting in 2005 and reaching a peak in 2010.

We classified the 23 identified approaches by asking the following question for each
approach: “How does the approach capture the relation between an element or set
of elements of a customizable process model and a corresponding element or set of
elements of each of the possible customized process models thereof?”

Answering this question for each approach led us to observe that, in some approaches,
a node of the customizable model can be retained, removed, or its behavior can be
restricted by selecting one of multiple possible customization options. This class of
approaches is hereby called node configuration. In other approaches, an element (i.e.,
a node or a sequence flow) of the customizable process model is linked to a predicate
over a domain model via an annotation. Customization then takes place by evaluating
these predicates with respect to an instantiation of the domain model. We call this class
of approaches element annotation. In a third class of approaches, a given activity in

2The histogram includes papers with less than 10 citations, even if this was an exclusion criterion, since its
intent is to show the volume of research publications in the field over time. Thus, the number of references
covered by the histogram is larger than the 66 publications mentioned earlier.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

https://goo.gl/mmxZf3

2:10 M. La Rosa et al.

Fig. 3. Taxonomy of approaches for process model customization.

the customizable process model can be replaced by one of multiple specialized versions
thereof. These approaches allow specialization only of activities and their attributes
and not of other types of elements. Thus, we call this class activity specialization.
Finally, in a fourth type of approaches, the relation between the customizable process
model and its customized models is specified by means of change operations that can
add, delete, or modify fragments of the customized model. Since the latter approaches
can manipulate entire fragments, we call this class fragment customization.

The taxonomy induced by these observations is given in Figure 3, in which the main
approaches are shown in bold and the subsumed ones are listed under their respective
main approach. In line with previous work on variability modeling [Svahnberg et al.
2005; Bachmann and Clements 2005; Becker et al. 2007], we use the term variability
mechanism to refer to a set of modeling constructs and their corresponding semantics,
used to specify the relations between a customizable process model and its possible
customized models (a list of all terms and their definitions is provided in Appendix E).
The taxonomy presented in Figure 3 effectively classifies the variability mechanisms
underpinning the identified approaches.

In the next four sections, we briefly introduce and evaluate the main approaches
under each of the groups identified earlier using the 14 criteria described in Section 3.
We discuss the subsumed approaches in Appendix B. The results of the assessment
are then summarized in Table XII (Section 10). The evaluation is complemented by
an overview of techniques for customization decision support (Appendix C) and for
correctness support (Appendix D).

The assessment of each approach was performed independently by two authors of
this article. The results were compared in order to resolve inconsistencies with the

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:11

mediation of a third author. Finally, we sought confirmation of our assessment from
the authors of each primary publication.

6. GROUP 1: NODE CONFIGURATION

In the approaches in this group, a variation point is a node (called configurable node)
of the customizable process model that is assigned different customization options.
Activities, events, and gateways, as well as resources and objects associated with ac-
tivities, may be marked as configurable nodes. Customization is achieved by selecting
one customization option per configurable node. Each configurable node has an option
to keep the node as is in the customized model and one or more options to restrict its
behavior.

Configurable activities, events, resources, and objects can be customized by being
kept on (they remain in the customized model) or switched off (they do not appear in
the customized model). The semantics of switching an activity or event off is approach-
specific, that is, the activity or event may be hidden without breaking the path to which
it belonged or be removed altogether. Configurable gateways can be customized to an
equal or more restrictive gateway in such a way that the customized process model
produces the same or fewer execution traces than the customizable process model.

Three main approaches fall into this group: Configurable integrated EPCs (C-iEPCs),
Configurable Workflows, and Application-based Domain Modeling (ADOM). They sup-
port different subsets of the configurable node types and customization options, for
example, C-iEPCs do not support configurable events. In addition to customization by
restriction, ADOM offers a weak form of extension in that extension points are not
identified in the model.

6.1. Configurable Integrated Event-driven Process Chains (C-iEPCs)

Configurable integrated EPCs (C-iEPCs) [Rosemann and van der Aalst 2003; Dreiling
et al. 2005, 2006; La Rosa et al. 2011] are an extension of the EPC language. Essentially,
an iEPC is an EPC with resources and objects assigned to activities. A C-iEPC model is
intended to capture the least common multiple of a family of iEPC variants. Differences
among the process variants are indicated by configurable nodes. Each configurable
node can be assigned a set of customization options, each referring to one or more
process variants. Customization is achieved by restricting the behavior of the C-iEPC
by assigning one customization option to each configurable node. Then, the C-iEPC is
transformed into an iEPC by removing all those options that are no longer relevant.
By doing so, one can derive one of the original variants of the given process family.

Activities and gateways can be marked as configurable with a thicker border. Events
cannot be customized. Figure 4 shows the C-iEPC model for the postproduction exam-
ple, which captures all variants of Figure 1.

Configurable gateways can be customized to an equal or more restrictive gateway. A
configurable OR can be left as a regular OR (no restriction), or restricted to an XOR
or to an AND gateway. Moreover, the number of its outgoing flows (if the gateway is a
split) or the number of its incoming flows (if a join) can be restricted to any combination
(e.g., two flows out of three), including being restricted to a single flow, in which case
the gateway disappears.

For example, we can capture the choice of shooting medium by customizing the
first OR-split in Figure 4. We can restrict this gateway to the outgoing flow leading
to the event “Tape shooting” if the choice is tape. As a result, the branch starting
with the event “Film shooting” is removed, and vice versa. Restricting the gateway
to an AND-split ensures that both media are prepared for editing. In the three cases
described, we anticipate the decision of the medium at configuration time. Alternatively,

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:12 M. La Rosa et al.

Fig. 4. The C-iEPC model representing all postproduction variants.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:13

by configuring this gateway to an (X)OR-split, we postpone the decision till runtime,
when the postproduction process is actually enacted (see, e.g., variant f in Figure 1).

Configurable activities can be kept on or switched off . In the latter case, the activity
is simply hidden in the customized model. In addition, they can be customized to
optional. This allows the deferral of the choice of whether to keep the activity or not
until runtime. For example, the function “Release on new medium” is configurable in
Figure 4; thus, we can switch it off for those postproduction projects for which this is
not required.

Resources (called roles in C-iEPCs) and objects can also be made configurable. In
the C-iEPC semantics, when an object is used as input to an activity, it can be marked
as consumed to indicate that it will be destroyed upon use by the activity. Moreover,
resources and objects can be mandatory or optional and can be connected to activities
via logical gateways, called range gateways. Range gateways subsume the three logical
types of OR, XOR, and AND but also allow any combination of the associated resources
(objects), for example, at least 2 and at most 5 resources. Range gateways can also be
optional, in which case they indicate that all connected resources (objects) are optional.

For simplicity, Figure 4 depicts only the resources and objects associated with activity
“Edit offline.” This activity is performed by at least two resources, requires a Temp
picture as input, and produces an Edited picture as output. Editing notes are optional,
since they might not be produced during the offline editing. In our example, three
resources, one object, and one range gateway have been marked as configurable with
a thicker border. This fine-grained mechanism to allocate resources and objects to
activities leads to different customization options. If a resource, object, or range gateway
is optional, it can be customized to mandatory so that is kept in the customized model
or switched off . If it is mandatory, it can only be switched off. Further, resources and
objects can be specialized to a subtype (e.g., a resource Producer can be specialized to
an Executive Producer) according to a hierarchy model that complements the C-iEPC
model (not shown in Figure 4). Configurable input objects that are consumed can be
restricted to used so that they are not destroyed by the activity after use.

C-iEPCs are a conceptual process modeling language – they do not provide any
execution support. C-iEPCs are formally defined in La Rosa et al. [2011], which also
defines an algorithm to derive an iEPC from a C-iEPC. If the C-iEPC is structurally
correct, this algorithm preserves correctness when creating a customized model by
removing all nodes that are no longer connected to the initial and final events via a
path and by reconnecting the remaining nodes. Behavioral correctness is ensured via
constraints inference (see Appendix D.1).

Abstraction and guidance during customization are achieved by means of a question-
naire that captures domain properties and their values (see Appendix C.2) and is linked
to the configurable nodes of a C-iEPC. C-iEPCs and associated questionnaire models
are supported by the Synergia3 and Apromore4 toolsets. Using these toolsets, one can
design C-iEPCs and questionnaire models, link these models, customize C-iEPCs via
questionnaires, and obtain the resulting customized models. The use of C-iEPCs has
been validated via a case study in the film industry [La Rosa et al. 2011].

Table I summarizes the evaluation results for C-iEPCs. Each column indicates to
what extent the approach in question covers each evaluation criterion defined in Sec-
tion 3. We used a “+” on a green background to indicate a criterion that is fulfilled, a
“−” on a red background to indicate a criterion that is not fulfilled, and a “±” on an
orange background to indicate partial fulfilment.

3See www.processconfiguration.com.
4See www.apromore.org.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

file:www.processconfiguration.com
file:www.apromore.org

2:14 M. La Rosa et al.

Table I. Evaluation of C-iEPCs

6.2. Configurable Workflows

The Configurable Workflows approach [van der Aalst et al. 2006; Gottschalk et al.
2007, 2008] was first designed for conceptual models and later applied to executable
languages with the aim to guarantee that the customized models can be executed. This
led to the extension of several executable languages, such as SAP WebFlow, YAWL, and
BPEL. In this survey, we focus on the extension to the YAWL language [Gottschalk
et al. 2008], Configurable YAWL (C-YAWL), since this is the most significant one. The
other extensions work in a similar way.

In YAWL, split and join gateways are graphically attached to activities: a join pre-
cedes an activity and models the activity’s joining behavior; a split follows an activity
and models its splitting behavior. C-YAWL extends YAWL with ports to identify con-
figurable gateways. Configurable gateways are represented graphically with a thicker
border, similar to C-iEPCs [van der Aalst et al. 2012]. A configurable split has an
outflow port for each combination of subsequent flows that can be triggered after ac-
tivity completion, while a configurable join has an inflow port for each combination of
sequence flows through which the activity can be triggered.

Figure 5(a) depicts the postproduction example in C-YAWL in which, for illustration
purposes, we modeled the preparation and editing of tape and film as mutually ex-
clusive activities. To illustrate the concept of port, let us consider the case of the first
XOR-split, that of activity τ1. This XOR-split is used to route the process flow according
to the shooting media. This split can either give control to the top or to the bottom of
its outgoing flows. Thus, given that the combination of outgoing flows is equal to the
number of such flows for an XOR-split, this split has only two outflow ports, one to
trigger the flow to event 0a (leading to the preparation of the film) and the other to
trigger the flow to event 0b (leading to the preparation of the tape).

Similarly, an XOR-join can be activated by each of its incoming flows; thus, it has
one inflow port for each incoming flow. This is the case of the XOR-join of activity “Edit
offline” in our example. In contrast, if the join (or split) is of type AND, it has only
one inflow (or outflow) port. This is because an AND-join can only be activated by all
its incoming flows (due to its synchronizing behavior); similarly, an AND-split gives
control to all its outgoing flows simultaneously (due to its parallel behavior).

Let us now consider the OR-split of activity τ2 in Figure 5(a). An OR-split has one
outflow port for each combination of its outgoing flows, as it can give control to any
combination of these flows. In our example, the OR-split is used to route control to
activity “Record digital film master,” or “Transfer in telecine,” or both. Thus, this OR-
split has three outflow ports: one to trigger the flow to event 4b, another to trigger the
flow to event 4a, and the last to trigger both flows (4a, 4b).

The OR-join, on the other hand, only has one inflow port: this type of join is consid-
ered as an AND-join from a customization perspective due to its synchronizing merge
behavior. This is the case of the OR-join of activity “Release on new medium,” which
has a single inflow port to receive control from both its incoming flows.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:15

Fig. 5. (a) The postproduction example in C-YAWL with a sample customization. (b) The customized model.

Inflow ports have three customization options: allowed, hidden, and blocked. An
inflow port can be blocked to prevent the triggering of its activity or hidden to skip
the activity execution without blocking subsequent activities. Thus, in C-YAWL, both
the semantics of hiding and removing an activity are supported. An inflow port that is
neither blocked nor hidden is allowed, that is, it is kept as is in the customized model.
An outflow port can only be blocked to prevent the triggering of the outgoing flows
or left allowed. For convenience, all the ports can be allowed or blocked by default.
Activities can be customized via their inflow ports. Resources and objects cannot be
customized.

Figure 5(a) also shows a sample port customization for a project shot on tape, edited
online, and finished on film, overlaid on the C-YAWL model. Let us consider the first
XOR-split. The only outflow port allowed by the example customization is the one that
leads to activity “Prepare tape for editing.” The inflow port from event 1a to the XOR-
join of activity “Edit offline” is customized as blocked while the other inflow port for
this join is allowed in order to match the customization of the preceding XOR-split.
Since the project is edited online, the outflow port of activity “Edit offline” triggering
condition 2b is the only one to be allowed. In YAWL, an activity with a single incoming
or outgoing flow has an implicit XOR behavior. This behavior is shown graphically if
the gateway must be made configurable, as in the case of the join of activity “Transfer
in telecine,” since we needed to hide this activity’s inflow port.

The hiding and blocking operations can also be applied to other YAWL elements,
such as cancellation regions, composite activities, and multi-instance activities.

Figure 5(b) shows the YAWL model resulting from the example customization after
applying the transformation algorithm defined in Gottschalk et al. [2008]. This algo-
rithm removes all nodes that after customization are no longer on a path from the
input to the output condition. In this way, the structural correctness of the model is
guaranteed. Moreover, potential conflicts in the data conditions of the outgoing arcs of
(X)OR-splits are taken care of in order for the resulting models to be fully executable.
Two alternative techniques are available for ensuring the behavioral correctness of
the customized models, one based on constraints inference and the other on partner
synthesis, both described in Appendix D. Decision support is offered via the use of
questionnaire models (see Appendix C.2).

This approach has been formalized [Gottschalk et al. 2008] and implemented in
the YAWL Editor.5 This tool allows one to create, customize, and transform C-YAWL

5See www.yawlfoundation.org.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

file:www.yawlfoundation.org

2:16 M. La Rosa et al.

Table II. Evaluation of Configurable Workflows

models into YAWL models; support for customization via questionnaire models is of-
fered by the Synergia toolset. The use of C-YAWL models with questionnaire models
has been validated in the municipality domain [Gottschalk et al. 2009; Lönn et al.
2012] involving domain experts as well as in software development processes for very
small entities [Boucher et al. 2012].

Table II summarizes the evaluation results for Configurable Workflows.

6.3. ADOM: Application-Based Domain Modeling

In ADOM [Reinhartz-Berger and Sturm 2007; Reinhartz-Berger et al. 2009, 2010],
configurable nodes (activities, events, and gateways) have a cardinality attribute of
the form <min,max>. The cardinality specifies how many times a given node can be
instantiated in the customized model. For example, an activity tagged with <0,1> is
optional and as such it can be dropped in the customized model; an activity tagged with
<1,n> is mandatory and can be instantiated up to n times in the customized model;
an activity tagged with <1,1> must be instantiated exactly once, that is, it is kept as
is in the customized model. The default cardinality <0,n> implies no constraints.

The cardinality assigned to gateways of type (X)OR indicates when the decision
captured by the gateway should be made. A cardinality of <0,0> indicates that the
gateway must not appear in the customized model. Thus, at customization time, one
has to decide which outgoing branch(es) to keep in the case of a split or which incoming
branch(es) to keep in the case of a join. If the cardinality is <0,1>, this decision can be
deferred till runtime, that is, the gateway is optional. An OR gateway can be restricted
to become an AND or XOR in the same way as in C-iEPCs and Configurable Workflows.

In ADOM, sequence flows can also be assigned a cardinality, unlike C-iEPCs and
Configurable Workflows, for which sequence flows are not configurable. However, the
customization of these flows is constrained by design by the customization of the con-
figurable nodes in order to avoid disconnections in the customized model. For example,
a flow with cardinality <0,1> between two nodes with cardinality <0,1> cannot be
dropped if the two nodes are kept; otherwise, it would lead to a disconnection.

Figure 6(a) shows the postproduction example in EPCs with ADOM cardinality con-
straints. For example, event “Shooting completed,” activity “Receive footage,” and the
flow in-between are mandatorythus, they can neither be removed nor instantiated
more than once during customization. The OR-split and its matching OR-join are op-
tional, as are the nodes in-between. This is done to allow a choice between either of
the two branches or both. All elements after activity “Edit offline” are mandatory but
have a maximum cardinality greater than 1. By doing so, each of these elements can
be instantiated multiple times to model the various options that exist for editing and
finishing in postproduction, though these options are not represented in the model.

In ADOM, commonalities between variants are thus captured by mandatory ele-
ments while variability is captured by optional elements and by those that can be
instantiated multiple times. Since an ADOM model is meant to be used as a template,

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:17

Fig. 6. (a) Postproduction example in ADOM-EPC. (b) A customized model.

some parts can be left underspecified. During customization, each configurable ele-
ment can be instantiated according to its cardinality constraint. Moreover, application-
specific elements can be added anywhere. These elements only appear in the customized
model without any counterpart in the customizable model. Thus, ADOM supports cus-
tomization by restriction (removing optional elements) and by extension (instantiating
an element multiple times and adding application-specific elements).

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:18 M. La Rosa et al.

Table III. Evaluation of ADOM

In a customized model, each node that has been derived from a configurable node
bears a model classifier (indicated between “<” and “>”), that is, a reference to the orig-
inating node in the customizable model. If the label of the node needs to be changed, e.g.
a more specific one is required, this can be added below the model classifier. Figure 6(b)
shows a possible customization of the postproduction model, in which application-
specific elements are highlighted in gray. For example, the first two gateways have
been obtained by restricting the type of the first two OR gateways to an AND. Event
“Film editing” and activity “Perform negmatching” derive from event “Editing,” (resp.,
activity “Edit”) and each have been given a new name. The second pair of AND gateways
and the flow between activity “Transfer in telecine” and event “Transfer completed”
are application-specific elements added to allow multiple instantiations of event “Fin-
ishing” and function “Finish.”

ADOM has been applied to the control flow of EPCs, UML Activity Diagrams (ADs)
and BPMNs at the conceptual level. For EPCs, specific rules have been defined to bind
the customization of an event to that of an activity in order to maintain the alternation
between events and activities required by EPCs, though disconnected nodes cannot be
avoided. Behavioral correctness of the customized models is not guaranteed.

Customization is performed directly on the model level. There is no means to specify
which combinations of instantiations are unfeasible from a domain viewpoint, and
the addition of application-specific elements cannot be constrained. Reinhartz-Berger
et al. [2009] describe a validation technique for ADOM-BPMN. This technique checks
a posteriori that a customized model is compliant with its customizable model but does
not prevent the user from generating inconsistent or irrelevant customizations in the
first place. As such, decision support is not offered.

A formalization of ADOM is provided in Reinhartz-Berger et al. [2009] for BPMN and
in Reinhartz-Berger et al. [2010] for EPCs. The approach has not been implemented in
a tool. A subset of ADOM-BPMN has been validated in the development of a process-
driven, service-oriented system but without involving domain experts [Reinhartz-
Berger et al. 2009].

Table III summarizes the evaluation results for ADOM.

6.4. Recap

At the core, the approaches in this group allow different types of nodes in a customizable
process model to be tagged as “configurable.” A configurable node can be restricted at
customization time. Activities can be removed, gateways can be restricted (an OR
gateway can be turned into an AND or XOR gateway), and their incident arcs can be
blocked (dropped altogether) or made mandatory. The approaches differ in terms of the
types of nodes that can be made configurable, the configuration options offered, and
supporting techniques and extra-functional criteria.

C-iEPC is the only approach in this group that supports customization of data objects
and resources; C-YAWL is the only one that provides execution support; and ADOM is

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:19

the only one that supports customization by extension in addition to customization by
restriction. C-iEPC and C-YAWL offer decision and correctness support, and fulfill the
extra-functional criteria, whereas ADOM only partially does so.

7. GROUP 2: ELEMENT ANNOTATION

The three main approaches that fall in this group, Configurative Process Modeling, Su-
perimposed Variants, and aEPCs, rely on the graphical annotation of model elements
with properties of the application domain. Model elements that can be annotated in-
clude control-flow nodes (activities, events, and gateways), sequence flows, resources,
and objects. Those model elements that are annotated become variation points. Dif-
ferent approaches support different subsets of model elements. Domain properties are
assigned to model elements via domain conditions, which are Boolean expressions over
domain properties (e.g., “low budget = true”).

Customization is achieved by selecting domain properties. The selection may be
done directly or may be aided by a domain model, such as a feature model or a prod-
uct hierarchy. Based on this selection, the domain conditions are evaluated; those
that are false lead to the corresponding model elements to be removed from the
model. The required model transformation after the removal of the model elements is
approach-specific.

7.1. Configurative Process Modeling

In configurative process modeling [Becker et al. 2004, 2007; Delfmann et al. 2006,
2007; Becker et al. 2006, 2007a, 2007b], customization is achieved by fading out model
elements that are not relevant to a given business scenario. A set of domain properties,
called business characteristics, are used to determine the available scenarios and later
drive the customization.

In the case of the postproduction example, we can define a business characteristic
“Shooting type” (ST) with values “Tape” (T) or “Film” (F) and a characteristic “Budget
Level” (BL) with values “Low” (L), “Medium” (M), or “High” (H). The latter is a high-
level characteristic since a choice on the budget typically affects multiple decisions in
postproduction. These characteristics are linked to the elements of a process model by
means of domain conditions, which are logical expressions over the characteristics. The
link is rendered graphically by encapsulating the model elements into a shaded box to
which the domain condition is attached (see Figure 7 for an example).

Process models are captured in extended EPCs (eEPCs), an extension of EPCs that
incorporates resources and objects, similar to iEPCs. Business characteristics can be
assigned to the following model elements: activities, events, resources and objects.
Gateways cannot be directly configured. Rather, the approach expects the modeler to
include all possible gateway variants in the customizable model.

Figure 7 shows a process model for postproduction in eEPCs (the control flow is
the same as that of the C-iEPC model of Figure 4). Here, some elements have been
associated with a logical expression referring to the project’s budget. For instance,
event “Film editing” and activity “Perform negmatching” are linked to the expression
BL(H), which means that these elements are only suitable for a high-budget project due
to the high costs involved in editing on film. On the other hand, activity “Edit online”
is not associated with any condition, since it is suitable for any type of budget.

The customization of a process model to a specific scenario is done by marking those
elements whose domain conditions evaluate to false as hidden. Then, a transformation
is performed to remove the hidden elements, including those gateways that become ir-
relevant, and reconnect the remaining nodes. For example, by customizing the example
in Figure 7 for a low-budget project, we obtain variant b in Figure 1. The transforma-
tion can fix simple structural issues, for example, the removal of gateways that have

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:20 M. La Rosa et al.

Fig. 7. A process model for postproduction in eEPCs with logical terms for the budget.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:21

Table IV. Evaluation of Configurative Process Modeling

one input and one output flow, as in the example, but cannot ensure the structural
and behavioral correctness of the resulting models. For instance, since both events and
activities can be removed, the algorithm does not work in the presence of cycles or
when an activity between two events is removed. Structural issues that cannot be fixed
are prompted to the modeler, who has to manually correct them.

Business characteristics can also be applied to the meta-model layer (i.e., to the eEPC
meta-model) to remove process modeling perspectives that are not relevant to a specific
scenario. For example, one can hide all resources at once.

Customization is not carried out at the process-model level but rather via the evalua-
tion of a set of business characteristics. However, the approach does not offer guidance
to users when assigning values to the characteristics.

The approach also supports a set of generic adaptation mechanisms that can be
used to refine and extend a process model after customization, for example, by adding
new model fragments. The possible combinations of components can be restricted by
interface definitions. However, the application of these mechanisms is left to the user
without specific support, that is, extension points are not specified in the customized
process model. Thus, this approach provides only a weak form of customization by
extension.

The approach builds on eEPCs, which are a conceptual language. The approach has
not been formalized. The model projection mechanism has been implemented as a
prototype tool [Delfmann et al. 2006] that interacts with the ARIS platform. Business
characteristics can be defined and linked to elements of an eEPC designed in ARIS.
Users select the desired characteristics and the initial eEPC is customized to remove
irrelevant elements. Similar features are also available in the [em] tool.6 This approach
has been applied in the fields of method engineering [Becker et al. 2007b] and change
management [Becker et al. 2007a] and validated in the German public administration
sector [Becker et al. 2006], though without domain expert involvement.

Table IV summarizes the evaluation results for Configurative Process Modeling.

7.2. Superimposed Variants

The idea of annotating model elements to capture variability is also investigated in
Czarnecki and Antkiewicz [2005], Czarnecki et al. [2005], and Czarnecki and Pietroszek
[2006]. In this approach, any control-flow element of UML ADs can be annotated using
presence conditions and meta-expressions. A precedence condition determines if a model
element is retained or removed. A meta-expression allows one to select the value of an
attribute of a model element (e.g., an activity’s label) from among a range of options.
Customization is thus achieved by restriction only.

Both presence conditions and meta-expressions are captured by Boolean formulae
over the features and feature attributes of a feature model (see Appendix C.1) and are

6http://em.uni-muenster.de.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

http://em.uni-muenster.de

2:22 M. La Rosa et al.

Fig. 8. (a) The postproduction example in annotated UML ADs. (b) A customized model.

evaluated against a feature configuration. These formulae are represented in disjunc-
tive normal form, in which the basic terms are features designated by means of UML
stereotypes. For example, the stereotype <<Tape ∨ Film>> indicates the disjunction
between features “Tape” and “Film.” The assignment of stereotypes to modeling ele-
ments is done through rendering mechanisms, such as labels, color schemes, or icons.

Figure 8(a) shows the finishing phase of the postproduction process as an annotated
UML AD. For simplicity, in this example, we have specified only presence conditions.
These annotations, rendered with a color and a number in the example, have been
defined over the features of the feature model of Figure 15 (see Appendix C.1). This
feature model captures the features (i.e., properties) of the postproduction domain,
such as type of finish and type of transfer. For example, activity “Transfer in telecine”
is associated with the subfeature “Telecine” of feature “Transfer” (annotated in blue
with label “1”), while the two outgoing flows of the decision point are associated with the
two subfeatures of “Finish”: “Tape”, respectively, “Film.” All nonlabeled elements (in
black) are associated with the always-true formula. These represent the commonalities
of the model and cannot be removed, for example, the gateways and the end event in
our example.

Customization is achieved by evaluating presence conditions and meta-expressions
against a feature configuration. Model elements whose conditions evaluate to false are
removed, while model attributes that are affected by meta-expressions are modified
accordingly. No guidance is provided for the selection of the features to be kept.

Figure 8(b) shows a possible customized model for the postproduction example in
which only the activities “Record digital film master” and “Finish on film” have been
kept. This model can be obtained via a transformation algorithm that applies patches
to reconnect model elements that have been disconnected during customization and
simplifications to remove splits and joins that have been left with one incoming and
one outgoing flow. Patches can be applied only to those nodes that have exactly one
incoming and one outgoing flow; otherwise, an annotation error is raised. However,
an automated verification procedure [Czarnecki and Pietroszek 2006] can be used to
provide an a priori guarantee that no structurally incorrect customized model can
be generated from a customization. Behavioral correctness is not dealt with, and no
execution support is provided. The approach supports customization of only control-
flow elements. Resources and objects cannot be customized.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:23

Table V. Evaluation of Superimposed Variants

The approach has been formalized and implemented in an Eclipse plug-in7 allowing
users to configure UML ADs via so-called cardinality-based feature models [Czarnecki
et al. 2005] and to check that the feature model and UML AD do not lead to structurally
incorrect customized models. The approach has not been validated in practice.

Table V summarizes the evaluation results for Superimposed Variants.

7.3. aEPCs: Aggregated EPCs

Aggregated EPCs (aEPCs) [Reijers et al. 2009] are an extension of EPCs to capture
a family of process variants. Similar to Configurative Process Modeling and Super-
imposed Variants, the idea is to annotate certain model elements (in this case, EPC
activities and events) with domain properties, which are called products in aEPCs.

Figure 9(a) shows an example aEPC in which products associated with activities and
events refer to the budget levels in postproduction. For example, activity “Transfer in
telecine” occurs only in high-budget projects, while activity “Record digital film master”
can also occur in medium-budget projects. Accordingly, “High budget” and “Medium
budget” are subproducts of a composite product “Budget” in postproduction, that is,
they capture the values of a given domain property. Other possible products include
the shooting formats, picture cut methods, and finishing formats.

An activity or event may be associated with more than one product. In our example,
activity “Record digital film master” is associated with two products (“High budget”
and “Medium budget”). In order to avoid cluttering the model with many product
associations, an aEPC can be accompanied by one or more product hierarchies in which
the various products are organized hierarchically. A product hierarchy is a rooted tree in
which the leaves are products and all other nodes are composite products representing
product generalizations. In this way, a process model element can be associated with
a composite product in place of a set of products. For example, Figure 9(b) shows the
product hierarchy for the budget. The composite product “Budget” in this hierarchy can
be used when an element is present in all budget levels, for example, activity “Receive
footage.”

Instead of capturing implications among model elements or domain properties (e.g.,
“Edit online” can be present only if “Prepare tape for editing” is present) as in other
approaches, in aEPCs, all possible variants have to be resolved beforehand and mapped
to a set of products (i.e., a composite product). Thus, while the use of composite prod-
ucts can reduce the number of products associated with a given element in principle,
there may be a large number of composite products. This, in turn, may lead to clut-
tered aEPCs [Baier et al. 2010]. The choice of not modeling implications explicitly is
motivated by the observation that, in practice, these logical expressions are difficult to
conceive and interpret by domain experts. This was the result of testing C-EPCs (an

7See http://gp.uwaterloo.ca/fmp2rsm.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

http://gp.uwaterloo.ca/fmp2rsm

2:24 M. La Rosa et al.

Fig. 9. (a) Postproduction example in aEPC. (b) Associated product hierarchy for budget.

ancestor of C-iEPCs) with domain experts of ING Investment Europe, with whom the
aEPC approach was later validated [Reijers et al. 2009].

An aEPC is customized by choosing one or more products and removing all ele-
ments that are not associated with the products chosen. Customization is restricted to
activities and events; gateways, objects, and resources are not customizable.

This approach works at the conceptual level only since aEPCs are conceptual models.
The approach is fully formalized, including a transformation algorithm that removes
the unneeded elements and cleans up the customized model in order to keep it struc-
turally correct. In fact, in addition to the requirements of an EPC, there are require-
ments on how products can be associated with elements appearing before or after a
sequence of gateways. Behavioral correctness is not dealt with. The transformation

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:25

Table VI. Evaluation of aEPCs

algorithm has been implemented in a tool that can import EPCs from ARIS and ex-
tend them into aEPCs. An advantage of organizing products into hierarchies is that an
aEPC can be customized by removing products from the associated product hierarchy.
Thus, this approach achieves process abstraction, though guidance is not offered.

Table VI summarizes the evaluation results for aEPCs.

7.4. Recap

Approaches in this group capture variability via annotations attached to elements of
the customizable process model. These elements link an element in the customizable
process model to an element in a domain model. Customization is performed by instan-
tiating the domain model to capture a given set of requirements. Given an instance
of the domain model and the annotations in the customizable process model, a trans-
formation algorithm is applied to derive a customized model. In Configurative Process
Modeling, the domain model consists of business characteristics; in Superimposed Vari-
ants, it takes the form of a feature model; and in aEPCs, it consists of products.

The approaches differ in terms of the model elements that can be customized. All
approaches support the customization of control-flow model elements, although Con-
figurative Process Modeling is limited in its support for customization of gateways.
On the other hand, Configurative Process Modeling is the only one that supports re-
sources and objects. In all three approaches, customization is achieved by restriction,
though Configurative Process Modeling also supports a weak form of extension. All
three approaches provide abstraction support, since the customization is driven by do-
main concepts. However, none provides customization guidance. All three approaches
ensure structural correctness (at least to some extent) but not behavioral correctness.
They all target conceptual process models rather than executable ones.

8. GROUP 3: ACTIVITY SPECIALIZATION

The main approaches in this group – Process Family Engineering in Service-Oriented
Applications (PESOA), Business Process Family Model (BPFM), and Feature Model
Composition – rely on activity specialization to achieve process model customization.
An abstract activity can be defined as a variation point by assigning one or more
variants to it. A variant is a specialization of an abstract activity, that is, one of its
possible concrete refinements. For example, activities “Prepare tape for editing” and
“Prepare film for editing” are two specializations of “Prepare medium for editing.” A
special type of variation point is the optional activity: an abstract activity that can be
specialized to an empty activity.

Variants can also be assigned to activity attributes, such as objects and resources,
which become variation points. Events and gateways cannot be customized. Accord-
ingly, variability is graphically rendered by marking activities and their attributes as
variation points and connecting variants to variation points via a specialization arc.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:26 M. La Rosa et al.

Customization is achieved by selecting one or more variants per variation point,
while optional activities can be switched off. Customization can be done directly on the
process model or via the use of a domain model, such as a feature model. The routing
behavior to be used when selecting more than one variant for a variation point, as well
as the transformation needed to clean up the model from all unused variants and to
remove optional activities that have been switched off, are approach-specific.

8.1. PESOA: Process Family Engineering in Service-Oriented Applications

The idea of capturing variability in process models has been explored in the PESOA
project [Puhlmann et al. 2005; Schnieders and Puhlmann 2006; Schnieders 2006]. The
aim of this project was not to provide a language for representing and customizing
process models but rather to improve the customization of process-oriented software
systems, that is, systems that are developed from the specification of process models. If
the variability of a software system can be directly represented in a process model that
describes the system’s behavior, it is then possible to generate code stubs for the system
from the customization of the process model itself. Since code generation is outside the
scope of this article, we focus only on the way the authors represent process variability.

According to PESOA, a customizable process model is a conceptual process model in
which certain activities have been marked with stereotypes to accommodate variabil-
ity. Although stereotypes are an extensibility mechanism of UML, in this approach,
they are applied to both UML ADs and BPMN models. The activities of a process
model in which variability can occur are marked as variation points with the stereo-
type <<VarPoint>>. A variation point represents an abstract activity, such as “Prepare
medium for editing,” that needs to be specialized with a concrete variant (<<Variant>>)
among a set of possible ones. For example, “Prepare medium for editing” can be spe-
cialized into “Prepare tape for editing” or “Prepare film for editing,” or both. One can
also mark the default variant for a variation point with the stereotype <<Default>>.
Figure 10(a) shows the process model for postproduction in BPMN, for which some
activities have been marked as variation points with their variants shown below the
activity. For example, “Prepare tape for editing” is marked as the default variant of
“Prepare medium for editing,” as this is the most common choice in postproduction.

If the variants are exclusive, that is, if only one variant can be assigned to a
given variation point, the stereotype <<Abstract>> is used instead of <<VarPoint>>.
In Figure 10(a), we assume that the variants “Edit online” and “Perform
negmatching” are exclusive; thus, the associated variation point “Cut picture” is
marked with the tag <<Abstract>>. As a shortcut, when the variants are exclu-
sive, the default specialization can be depicted directly on the variation point with
the stereotype <<Alternative>>.

A variation point marked with the stereotype <<Null>> indicates an optional activ-
ity. It can only be associated with one variant and its resolution into the variant is not
compulsory, in which case the activity is switched off. This is the case of the variation
point “Transfer tape to film” that may be specialized into the variant “Record digital
film master” or completely dropped from the process model. A shortcut for a <<Null>>
variation point and its variant is to depict the variant directly on the variation point us-
ing the stereotype <<Optional>>, such as task “Transfer in telecine,” which subsumes
the variation point “Transfer film to tape.”

Stereotypes can be assigned to activities and to activity attributes related to objects
(e.g., input and output data). Gateways, events, and resources cannot be customized.
During customization, each variation point is specialized into one or more variants
depending on its type. Figure 10(b) shows a fragment of the BPMN process model for
postproduction configured for a project shot on tape and edited online. The variants
that are not required have been removed from the model. Extension mechanisms are

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:27

Fig. 10. (a) Postproduction example in PESOA-BPMN. (b) A customized model.

Table VII. Evaluation of PESOA

not provided. Abstraction from the process modeling language is achieved by linking
process variants with domain properties, captured as features in a feature model (see
Appendix C.1). Each process variant is tagged with a feature such that when a feature
is disabled in a feature model configuration, the corresponding variant is removed
from the process model. Domain constraints can be defined over feature values, thus
restricting the possible combinations of variants in the process model. However, there
is no guidance for the selection of a suitable set of features.

PESOA does not provide a transformation algorithm to derive customized models.
The removal of certain variation points, such as <<Null>> or <<Optional>>, as well
as the customization of a variation point when multiple variants are selected may lead
to correctness issues that have to be fixed manually. A formalization is provided for
selected concepts only [Puhlmann et al. 2005].

PESOA has been implemented as an Eclipse plug-in. In this implementation, the
customization of a process model is limited to removal of undesired variants. The
approach has been validated in the hotel booking domain in collaboration with ehotel
and Delta Software Technology [Schnieders and Puhlmann 2006]. In this study, a set
of BPMN process models were configured to drive the generation of Web applications
in collaboration with domain experts.

Table VII summarizes the evaluation results for PESOA.

8.2. BPFM: Business Process Family Model

The BPFM [Moon et al. 2008] is a two-level approach to capture customizable pro-
cess models using an extended version of UML ADs. The first level deals with basic

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:28 M. La Rosa et al.

Fig. 11. (a) Postproduction example in BPFM. (b) A customized model.

customization. At this level, an activity can be defined as common if it cannot be cus-
tomized or optional if it can be omitted during customization. The second level enables
finer-grained customization by setting an activity as a variation point and assigning to
it one or more specialized variants. Events, gateways, resources, and objects cannot be
customized.

A variant is a concrete activity; a variation point is an abstract activity of one of the
following types: (i) Boolean, (ii) selection, or (iii) flow. A Boolean variation point can
be specialized into exactly one variant. A selection requires at least one variant to be
selected. In this case, the exact number of variants to be selected can be set with a
cardinality (e.g., 1..2). When selecting more than one variant, in the BPFM, one needs
to specify the control-flow relation between the selected variants (called flow pattern).
This can be a sequence (the selected variants are ordered sequentially), parallel (the
selected variants are executed in parallel using an AND-split and an AND-join), or
decision (they are made mutually exclusive using an XOR-split and an XOR-join). A
flow variation point is assigned a variants region, that is, a set of activities whose
flow relations may be underspecified. At customization time, one needs to restrict
the behavior by adding the required flows. A flow pattern can be specified for the
flow variation point, in which case the activities in the variants region are organized
according to the pattern, though the precise order needs to be decided by the user at
customization time.

Further, the boundary of a variation point can be classified as either closed or open.
A closed boundary restricts the choice of variants to those already identified; an open
boundary allows the introduction of new variants during customization. Thus, in prin-
ciple, this approach supports both customization by restriction and extension. However,
there is no support for plugging in new variants into a variation point.

Figure 11(a) depicts the postproduction example in BPFM. Here, there are three
activities marked with a variation point and one optional activity. Activities “Prepare
medium for editing” and “Cut picture” are of type selection. They have been assigned
two variants each. The first activity prescribes a parallel flow pattern, while the second
prescribes a sequence flow pattern, each with the option of selecting at least one and
at most two variants. Accordingly, Figure 11(b) shows a customized model in which the
first variation point has been customized to the parallel execution of both its variants,
while the second has been customized to the sequence of its variants. Activity “Transfer
& finish” is an open variation point of type flow with a decision pattern between the

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:29

Table VIII. Evaluation of BPFM

activities in the associated variants region. Accordingly, in Figure 11(b), this variation
point has been customized to a decision between two branches, each hosting two of
the four activities present in the variants region. In the case of an open-flow variation
point, the arrangement of activities inside the variants region within a given control-
flow structure is entirely left to the user. Finally, in our example, the optional activity
“Release on new medium” has been dropped in the customized model.

In BPFM, it is also possible to define dependencies (called dependency constraints)
between variation points, between variants, or between variation points and variants.
If, for example, a variant is chosen for a given variation point, this can restrict the
choice of the variants for another variation point.

A tool implementing this approach is available as an Eclipse plug-in. The tool can
prune a customized process model by removing the unused variants but does not offer
a complete transformation algorithm for embedding the selected variants into the
process model. The approach has not been formalized or validated in practice. It does
not provide any correctness, abstraction, or decision support.

Table VIII summarizes the evaluation results for BPFM.

8.3. Feature Model Composition

In Feature Model Composition [Acher et al. 2010a], a process model (called workflow)
is defined as a collection of activities (called services). Activities are implicitly related
via data dependencies. Specifically, each activity has a collection of attributes called
dataports. A dataport captures an input or an output data object of the activity. If an
input dataport of an activity refers to the same object as an output dataport of another
activity, there exists an implicit data dependency between these two activities.

In order to capture variability, an activity is allowed to have any number of varia-
tion points (called concerns). A concern refers to any activity attribute. Examples of
attributes are dataports, functional interfaces, activity behavior, and other low-level
implementation aspects. Each concern is modeled as a separate feature model that
captures the variants that exist for a concern and their relations. Customization of
concerns is achieved by deselecting features from the respective feature models.

Figure 12 shows a customizable process model in the Feature Model Composition
approach using our running example. A feature model has been defined for the con-
cern “Shooting medium” and mapped to the output dataport of “Prepare medium for
editing” in order to capture the fact that this activity can have a film, a tape, or both
media as output. Similarly, the same feature model has been associated with the input
dataport of the subsequent activity “Edit offline.” Furthermore, the concern “Cut” with
variants “Online” and “Negmatching” has been associated with the functional interface
of activity “Perform cut” to indicate that this type of activity can also be configured.

A concern of one activity may be incompatible with that of a subsequent activity;
thus, a consistency check is needed when customizing a model. This check is performed
by analyzing input and output dataports based on dependency rules. Specifically, the

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:30 M. La Rosa et al.

Fig. 12. Postproduction example using Feature Model Composition and a possible customization.

feature models of the relevant concerns are checked for mutual consistency; then, a
merged diagram is created by intersecting the various feature models. In this way,
the consistency of two connected activities is ensured. The merge operator is used
to compose feature models that refer to the same activity dimension. Its syntax and
semantics are defined in Acher et al. [2010b], while the syntax of a customizable process
model is defined in Acher et al. [2010a]. While inconsistencies in data dependencies that
may arise during customization are addressed by this approach, the process modeling
language adopted is abstract and not actually executable.

When producing a customized model, it is necessary to add the control-flow depen-
dencies based on the implicit dependencies of the various activity attributes, such as
data dependencies. Three types of control-flow dependencies are possible: sequential,
concurrent (AND behavior), and conditional (XOR behavior). The dependency rules for
consistency checks between two activities (see Figure 12) are not sufficient when there
is a sequential, concurrent, or conditional ordering of more than two activities. This is
addressed via an extended set of dependency rules that ensures the consistency of the
activities in a process model.

As shown in the example, this approach can be used to customize business objects
and other activity attributes, such as the associated resources. However, concerns are
internal to each activity. As such, the control flow cannot be configured. This is the only
evaluated approach that suffers from this limitation.

In this approach, feature models do not provide abstraction for the customization of
concerns since they refer to low-level aspects, such as different dataports related to a
software service. Moreover, one has to configure one feature model per concern. There
is no overarching feature model to customize the process model using properties of the
application domain, such as, for example, in PESOA. Similarly, no guidance support is
offered.

Since the control flow cannot be configured and data dependencies are preserved
during customization, the approach guarantees that the customized models are both
structurally and behaviorally correct.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:31

Table IX. Evaluation of Feature Model Composition

An implementation is described online,8 though the tool cannot be downloaded and
the authors have not replied to our request for assistance with their tool. The Feature
Model Composition approach is motivated by the need for customizing medical imaging
grid services, though it has not been validated in practice.

Table IX summarizes the evaluation results for Feature Model Composition.

8.4. Recap

A distinctive characteristic of approaches in this group is that they allow customiza-
tion of only individual activities and not of other control-flow elements (events and
gateways). Feature Model Composition does not even support the customization of an
activity itself but rather focuses on the customization of an activity’s inputs and out-
puts. In other words, every activity in the customizable process model will appear in
every customized model thereof. The customized models differ only in terms of the in-
volved resources and data objects. Control-flow relations between activities have to be
specified over the customized process model based on the data dependencies between
activities.

Approaches in this group focus on conceptual process models. Since specialization
is a form of behavior restriction, the approaches support customization by restriction.
The BPFM also supports a weak form of extension. PESOA provides abstraction sup-
port, but none of the approaches provides guidance. The approaches in this group do
not ensure structural or behavioral correctness except for Feature Model Composi-
tion, which trivially achieves correctness support since it does not capture control-flow
dependencies between activities.

9. GROUP 4: FRAGMENT CUSTOMIZATION

Approaches in this group are based on the application of change operations to restrict
or extend the customizable process model. Two atomic change operations can be used to
customize the control flow: delete, to remove a fragment from the model, and insert, to
add a fragment into the model. More complex operations, such as move or replace, can be
provided by combining delete and insert. The fragment to be deleted or inserted must be
single-entry, single-exit. Accordingly, each operation requires two sequence flows of the
process model to delimit the portion of the base model to be deleted or inserted (the two
flows may coincide). These variation points (called adjustment points) may be explicitly
represented by marking selected flows of the model; otherwise, each flow is assumed
to be an adjustment point. The required model transformation after the application of
the change operations is approach-specific. A third change operation, modify, is used
to modify the resources or objects associated with an activity, for example, replacing a
resource with another or assigning a new resource to an activity.

8See http://modalis.polytech.unice.fr/softwares/manvarwor.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

http://modalis.polytech.unice.fr/softwares/manvarwor

2:32 M. La Rosa et al.

Operations can be organized in an operation sequence so that multiple operations
can be performed in a given order on the customizable process model. Moreover, these
sequences can be associated with domain conditions, that is, predicates over domain
properties, to determine when the sequence of operations in question should be applied.

This group counts two main approaches: Provop and Template and Rules.

9.1. Provop: Process Variants by Options

In Provop [Hallerbach et al. 2008, 2009a, 2009b, 2010], customization is achieved by
applying change operations to a base model marked with adjustment points. The base
model can be a standard process (e.g., a reference model for a particular domain), the
most frequently used process variant, a generic model, the superset of all variants, or
their intersection. For example, in Figure 13, we identified variant a from the set of
postproduction variants in Figure 1 as the base model, since this is one of the simplest
variants for postproduction, and defined eight adjustment points on this model.

In addition to the two atomic change operations for the control flow (DELETE and
INSERT) and the MODIFY operation to customize objects and resources, Provop
supports a fourth operation, MOVE, to relocate a fragment delimited by two adjust-
ment points in the base model to another part of the model delimited by two different
adjustment points. Operation sequences are called options in Provop.

For example, the DELETE operation in Option 1 of our example will delete the
content between adjustment points “w” and “z.” As a shorthand notation, it is possible
to delete a single node simply by providing its identifier. A fragment is inserted in
parallel to the portion of the base model delimited by two given adjustment points if this
portion contains some node. For example, in the case of the first INSERT of Option 4,
an AND-split and an AND-join are used to link the fragment to the adjustment points.
If the portion contains a sequence flow only or is empty (e.g., as a result of a previous
DELETE), the fragment is inserted in place of the flow or between the two adjustment
points, respectively. An example of this is the second INSERT of Option 2, in which
the sequence “Record digital film master”–“Recording completed” is inserted in place
of the flow between “y” and “n.”

Since adjustment points can be defined only on the control flow, in Provop it is not
possible to represent variability in the resource and object perspectives.

We organized the change operations in our example in four options. The application
of Options 1 and 2 on the base model yields variant b of postproduction, Option 3 yields
variant c, while Option 4 yields variant d (see Figure 1). The use of certain combinations
of options can be restricted by defining option constraints, such as mutual exclusion,
implication, and n-out-of-m choices. For example, Options 1 and 3 of our example are
set as mutually exclusive, since Option 1 removes the adjustment point “x” required
by Option 3. The rationale behind the use of these constraints is to avoid creating
situations that may prevent the application of an option or that may introduce errors
in the resulting variants.

A five-step method can be used to drive the customization of process models via
properties of the application domain [Hallerbach et al. 2009a, 2010]. In Step 1, the user
determines all the possible contexts in the application domain. A context is a domain
property represented as a variable, such as “budget,” with all its possible values, for
example, “high,” “medium,” and “low.” One can also specify domain constraints (called
context constraints) in the form of Boolean expressions to limit the interplay among
contexts, for example, “budget = low ⇒ finish = tape.” Each option is then assigned
a domain condition (context rule) in the form of a Boolean expression over the values
of context variables to limit the applicability of that option to a particular business
scenario. For instance, Option 1 can only be applied if shooting and finish are done on
tape and editing is done online. In Step 2, for each context, the set of relevant options is

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:33

Fig. 13. Postproduction example in Provop.

automatically determined. In Step 3, the consistency of the retrieved options for each
context is checked against the option constraints. If inconsistencies are found, these
are prompted to the user, for example, an option constraint may contradict a context
constraint. In Step 4, all valid sets of options are applied to the base model for each
context, and the resulting variant is checked for correctness in Step 5. Those models
that are incorrect are discarded. Contexts and context rules offer abstraction for the
customization of the base model, though guidance in the selection of the various options
is not provided.

Provop can be applied to any modeling language with the only structural restriction
that the fragments to be customized must be single-entry, single-exit. The base model
is not required to be correct. This, however, cannot guarantee the correctness of the
customized model a priori. For example, the model may have disconnections or splits
and joins of different types in a given single-entry, single exit fragment, leading to
behavioral anomalies. Instead, correctness is checked a posteriori (in Step 5) using
existing correctness-checking techniques. In fact, the number of valid combinations

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:34 M. La Rosa et al.

Table X. Evaluation of Provop

of context variables into contexts may be very large, making an a priori check of all
derivable customized models unfeasible in such cases.

The approach addresses customization of only conceptual process models. The basic
concepts are formalized, though the semantics of the change operations is not specified.
Provop has been implemented on top of ARIS [Hallerbach et al. 2010]. This tool allows
users to define change operations and organize them in options and to apply them to
BPMN models enhanced with adjustment points in order to derive customized models.
The tool is not publicly available. Provop’s design requirements have been derived from
various case studies in the automotive and health care industries [Hallerbach et al.
2010], and Provop models have been created by the authors in these domains. However,
these models have not been validated with domain experts.

Table X summarizes the evaluation results for Provop.

9.2. Template and Rules

Template and Rules [Kumar and Yao 2009, 2012] captures the variability of a process
family by processing a set of business rules associated with a process template. The
process template is the customizable process model: a simple, block-structured process
model that should be chosen in order to have the shortest structural distance from
all process variants of the family. The rules are sequences of change operations used
to customize the template by restricting or extending its behavior. Change operations
affect the control flow (by deleting, inserting, moving, or replacing a fragment), the
resources (by assigning a resource to an activity or changing the value of a resource
property), and the data objects (by assigning a value to a data attribute or changing
the value of an activity’s input/output data). The operations on resources and objects
are “modify” operations, while those on the control flow are (a combination of) delete
and insert. Unlike Provop, gateways cannot be directly customized and adjustment
points are not explicitly represented, meaning that change operations can be applied
to virtually any process model fragment. As a result, though, in Template and Rules,
variability is not graphically represented in any process model perspective and can
only be inferred from the rules accompanying the template.

Rules are assigned domain conditions (e.g., “process.budget = high”), which, if satis-
fied, allow the corresponding change operations to be applied to the process template.
The use of such conditions provides abstraction from the customizable process model,
though there is no guidance support.

Figure 14 shows the application of this approach to our running example, using the
BPMN language. Here, the template describes a simple variant for editing and finishing
on tape and releasing on new medium. This template is accompanied by three rules
(R1, R2, and R3) embracing control-flow and resource aspects. For example, R1 is used
to customize the template for a high-budget production process. Accordingly, we need
to insert the activities required for editing and finishing also on film, such as “Prepare
film for editing,” to be inserted in parallel to “Prepare tape for editing,” and “Transfer in

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:35

Fig. 14. (a) Postproduction example in Template & Rules. (b) Customized model.

telecine,” which goes before “Finish on tape,” and so on (where insert(t1, P, t2) in a rule
indicates to insert activity t1 in parallel to t2 while insert(t1, Sb, t2) indicates to insert
t1 before t2). R3 is an example of a rule to configure resource aspects: if the budget is
high, multiple resources (e.g., “Director,” “Editor,” “Supervisor”) will perform activity
“Edit offline.” Predicate role(t, r) indicates that resource r is assigned to activity t.

Change operations are applied to a tree representation of the template and, similar
to Provop, affect only single-entry, single-exit fragments of the template. Moreover, the
application of each change operation triggers some cleaning operations to avoid discon-
nected model elements and remove trivial gateways and sequence flows. For example,
after deleting activity “Release on new medium” from the template in Figure 14 via the
application of rule R2, activity “Finish on tape” and event “Finish completed” will be
reconnected. Similarly, if there remains one branch only between two AND gateways,
the two gateways will be removed altogether. Thus, change operations cannot cause
any structural or behavioral issues in the process template.

Change operations are described in detail in terms of changes to the tree represen-
tation of the template and an algorithm is provided to customize the tree. However, a
formalization of all notions is missing. Also, an algorithm to transform a process model
into a tree representation and vice versa is missing, while rule-conflict resolution is
only exemplified by a matrix that disallows certain combinations of rules.

The approach has been implemented using BPEL as the base language, though the
tool is not publicly available. Given a template and a set of rules, the tool uses the
Drools-expert rule engine to check for conflicts between the available rules. If conflicts
exist (e.g., one rule deletes an activity that another rule is trying to insert), the user
is notified to either resolve them or assign a priority to each rule. The applicability of
each rule is checked (e.g., it is not possible to delete a nonexistent node) and errors
are triggered for those rules that are not applicable. Finally, a customized process
model is obtained from the template by using only those rules that are nonconflicting
and applicable. This model is checked for dataflow inconsistencies, for example, a task
whose data input is no longer available, in order to guarantee the executability of the

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:36 M. La Rosa et al.

Table XI. Evaluation of Template and Rules

customized model. This check is done a posteriori; as a result, a customized model may
be unfeasible altogether. The approach has not been validated in practice.

Table XI summarizes the evaluation results for Template and Rules.

9.3. Recap

The approaches in this group capture variability by means of (sequences of) change
operations applied to the customizable process model. These change operations can
add, delete, or modify. Hence, the approaches in this group naturally support both
customization by restriction and by extension. Unlike Provop, Templates and Rules
supports both conceptual and executable models and supports abstraction as well as
structural and behavioral correctness (at the expense of structural restrictions on the
types of fragments that can be deleted or added). The combination of these character-
istics makes Templates and Rules stand out in terms of its comprehensive coverage of
the evaluation criteria.

10. DISCUSSION

This section compares the surveyed approaches (including the subsumed ones) in terms
of the criteria introduced in Section 3. This comparison is followed by a discussion on
the research questions introduced in Section 1.

10.1. Comparative Analysis

The comparative analysis of approaches is summarized in Table XII. The first column
lists the eleven main approaches and the twelve subsumed approaches. The next three
columns indicate the year of the primary publication, the total number of citations (in-
cluding all papers related to a given approach), and the modeling language(s) employed
by the approach. The remaining columns indicate the coverage of each criterion.

Regarding the modeling scope, all approaches (except Feature Model Composition)
provide customization mechanisms along the control-flow perspective, but only a hand-
ful support the customization of resources and objects. Approaches based on BPMN and
UML ADs do not support the customization of resources, except for Santos et al. [2010].
This is probably because these two languages provide limited support for capturing re-
sources beyond the ability to associate a lane or a pool with each activity in the process.
Accordingly, it is mainly in the context of EPCs or other languages that the question
of customization of resources is posed. Customization of objects, on the other hand, is
available in different languages, but only one (Templates and Rules) addresses cus-
tomization of data objects in the context of executable process models.

In a similar vein, most approaches are based on conceptual modeling languages (UML
ADs, EPCs, BPMN) and are thus focused on the customization of conceptual rather than
executable process models. BPMN version 2.0 supports the specification of executable
processes, but no customization approach so far covers the executable features of BPMN
(e.g., customization of data variables). Configurable Workflows and Template and Rules

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:37

Table XII. Evaluation Results at a Glance, Ordered by Year of Primary Publication

are the only approaches that fully support customization of executable models (in
YAWL, BPEL, and SAP WebFlow) down to the level of producing models that can be
deployed in a BPMS. One can hypothesize that the observed emphasis on conceptual
process modeling stems from the fact that variability in executable process models
is usually tackled via runtime customization [Reichert and Weber 2012] rather than
design-time customization (see Section 2).

All but one approach (vBPMN) support customization by restriction, while only a
minority of approaches support customization by extension (eight out of 23). There
appears to be a trade-off between supporting customization by extension and preserving
correctness. Indeed, approaches that support customization by extension do not support
correctness, except for Template and Rules and vBPMN, which support correctness at
the expense of imposing constraints on the structure of the customizable model and
allowed extensions, namely, that they both must be block-structured.9 This observation
highlights the fact that, in order to reconcile customization by extension and correctness
support, it is necessary to constrain the allowed extensions and the places in the
customizable process model where these extensions can be inserted.

CoSeNet also achieves correctness support at the expense of structural constraints on
the customizable process models (block-structured). On the other hand, C-iEPCs and
Configurable Workflows achieve both structural and behavioral correctness without
imposing structural constraints. This is achieved via incremental checks that detect
combinations of customization options leading to incorrect models. However, these
approaches allow customization only by restriction in line with the earlier observation.

The majority of approaches support customization based on domain models (i.e.,
abstraction), which may take the form of predicates over domain properties (as in

9Configurative Process Modeling partially supports structural correctness only when customizing the model
by restriction. Customization by extension in this approach does not guarantee correctness.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:38 M. La Rosa et al.

Configurative Process Modeling and Provop), feature models, questionnaire models, or
decision tables, as discussed in Appendix C. On the other hand, only two approaches
(C-iEPCs and Configurable Workflows) provide step-by-step guidance to make cus-
tomization decisions while avoiding inconsistent or irrelevant decisions. The approach
by Gröner et al. [2013] does not provide step-by-step guidance, but prevents inconsis-
tencies between decisions made during customization.

It can be observed that the majority of approaches have tool implementations, at least
partially, and about half, of the approaches are fully or partly formalized. Also, about
half of the approaches have been validated at least partially using real-life scenarios,
although, in many cases, the validation has not involved domain experts. Overall, these
observations highlight the relative maturity of the field.

C-iEPCs and Templates and Rules come close to supporting all the criteria. C-iEPCs
focus on customization by restriction in conceptual process models. Templates and
Rules covers both conceptual and executable models but leaves aside the issue of
providing customization guidance. These approaches demonstrate that the identified
criteria are rather orthogonal, meaning that it is possible to support all of them. The
only partial trade-off is the one between supporting customization by extension and
supporting correctness preservation. This trade-off, however, is not necessarily un-
surmountable. One can conceive of approaches that achieve correctness preservation
while supporting customization by extension by setting boundaries on the way that the
customizable process model can be extended; for example, only certain predefined tem-
plates can be employed and these templates are defined in a way such that behavioral
correctness is preserved.

10.2. Discussion on Research Questions

This comparative analysis provides a basis to answer the research questions formulated
in Section 1. With respect to RQ1, the previous discussion puts into evidence a number
of core elements shared across all approaches. All approaches take as the starting
point a host process modeling language—usually a conceptual one rather than an
executable one—on top of which a notion of variation point is added. Variation points
are associated with specific model elements, which usually are control-flow elements
(activities or gateways) but in some approaches can also be resources and objects.

On top of this common core, shared by all customizable process modeling approaches,
we observe three key differentiating features. First, some approaches allow variation
points in a customizable model to be linked to elements in a domain model in order
to assist the user during the customization of the model. Second, some approaches en-
sure that the customized models are structurally and behaviorally correct, disallowing
combinations of customization options that would lead to an incorrect model. In three
of the surveyed approaches, correctness is ensured at the expense of constraints on the
structure of the models (block-structuredness), but in other cases, it is ensured for mod-
els with arbitrary topology. A third differentiating feature is given by the dichotomy
between customization by restriction versus extension. While support for the former is
widespread, the latter is only supported by a handful of approaches.

These distinguishing features constitute possible criteria for selecting an approach
for a given purpose (see RQ2). If the set of variants of a given process is expected to grow
incrementally after initial creation of a customizable process model, customization by
extension is more convenient from a maintenance perspective. In this case, one starts
with a customizable process model capturing the known variants. When a new variant
is identified, its additional behavior with respect to the existing customizable model
can be added as an extension point if it is well confined. In approaches that only support
customization by restriction, each new variant requires one to update the customizable

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:39

process model because the customizable model captures the union of all variants. In
contrast, when configuration by extension is used, the customizable process model may
capture only a core subset of the behavior of the variants. Variant-specific behavior can
be captured in the extension points.

Meanwhile, if the decisions required for customization are complex and inter-
dependent, approaches that link the customizable process model to a domain model
and that provide customization guidance are preferable. If, in addition, the customiz-
able process model is large and complex, approaches that support correctness checking
during configuration may prove most useful. In this respect, it is not surprising that
approaches based on customization by restriction tend to put emphasis on correctness-
checking and guidance. Indeed, as the customizable model becomes larger, updates to
it become more error-prone, and approaches based on customization by restriction lead
to larger models since these models need to capture the union of all variants.

With reference to RQ3, we note that only a handful of approaches offer guidance
and iterative feedback to the user in the selection of customization options. The few
approaches that offer such guidance focus on ensuring that each selected customiza-
tion option satisfies the domain constraints or that the customized process model is
correct. However, they do not address the question of which option (among those that
are feasible) can lead to a customized process model with better performance with re-
spect to relevant process performance measures. In other words, the relation between
customization and business process performance has been neglected so far.

Second, while it can be observed that about half of the approaches have been im-
plemented and at least partially validated in one way or another, there is a relative
scarcity of comparative empirical evaluations. Barring two comparative studies [Torres
et al. 2013; Döhring et al. 2014] focusing on a couple of approaches, there is a lack of
evidence to back any statement that one customizable process modeling approach is
more usable than others in a particular setting. This lack of comparative evaluations
is arguably a major gap in the state of the art.

Third, we observe a lack of discussion on the question of how to construct a cus-
tomizable process model in the first place and how to maintain this artifact over time.
It is generally assumed that a modeler will manually design the customizable process
model using techniques similar to those employed to design classical (noncustomizable)
process models. Yet, given that a customizable process model represents an entire fam-
ily of processes, the amount of information required to design such a model is usually
an order of magnitude larger than that required to design a model of one singular pro-
cess. This observation calls for the development of methods to assist process modelers
during the design and update of customizable models.

Initial research on the design of customizable process models has led to algorithms
for constructing a customizable process model from a collection of separate models
of process variants [La Rosa et al. 2013; Assy et al. 2014] as well as algorithms for
constructing a customizable process model from event logs extracted from enterprise
systems [Buijs et al. 2013; Ekanayake et al. 2013]. Another approach is to extract a
“common” (reference) process model out of a collection of models of process variants [Li
et al. 2009]. This reference model may be particularly suited as a starting point for “cus-
tomization by extension” approaches, since the reference model captures the “greatest
common denominator” between existing variants and the variant-specific behavior can
then be added via extension points.

11. RELATED WORK

Ayora et al. [2015] conducted a systematic literature review to evaluate existing vari-
ability support across all stages of the business process life cycle. The authors con-
sidered 63 primary studies based on eight research questions (such as underlying

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:40 M. La Rosa et al.

business process modeling language used, tools available for enabling process variabil-
ity, and validation of methods proposed). Based on their findings, they developed the
VIVACE framework to enable process engineers to evaluate existing process variabil-
ity approaches. They then evaluated three approaches in depth using their framework:
C-EPCs, Provop, and PESOA. Our survey differs, as we focus on the customization
(configuration) of process models rather than approaches dealing with one or several
phases of the life cycle. Also, our comparison covers a superset of these approaches.

Valenca et al. [2013] presented a literature mapping study in the field of business
process variability covering 80 publications. Their objectives were to identify character-
istics of business process variability (including design-time and runtime variability),
to identify available approaches for business process variability management, and to
identify challenges in this field. In line with the nature of literature mapping studies,
their study lists and categorizes a wide range of approaches but without analyzing
and comparing them in detail. In contrast, the present survey describes each main
approach in detail, applies it to an example, and includes a comparative analysis. Fur-
ther, our search returned a superset of the publications in Valenca et al. [2013]. The
latter remark also applies to a shorter and less systematic survey by Mechrez and
Reinhartz-Berger [2014].

A number of systematic reviews within the related domain of Software Product Line
Engineering (SPLE) have been conducted. For instance, Chen et al. [2009] conducted a
systematic review of variability management in SPLE that included 33 papers. Their
purpose was to provide an overview of different aspects of variability management
approaches, such as scalability and product derivation. Another is by dos Santos Rocha
and Fantinato [2013]. They conducted a systematic literature review to assess Software
Product Line (SPL) approaches for BPM. Having reviewed 63 papers, they conclude
that SPL approaches for BPM, while gaining maturity, are still at an inadequate level.
Benavides et al. [2010] conducted a comprehensive literature review covering 53 pa-
pers to investigate existing proposals of automated analysis of feature models (within
the context of SPLE). Finally, Chen and Babar [2011] performed a systematic litera-
ture review that resulted in 97 papers being closely examined for assessing the status
of evaluation of variability management approaches within SPLE. These reviews had
a different objective; as such, they cover other aspects of variability management as
compared to our survey, namely, understandability and maturity of evaluation. While
they all contribute valuable insights, they share the commonality of being focused on
the domain of SPLE. Furthermore, Chen et al. [2009] and Chen and Babar [2011]
considered variability management within SPLE but dos Santos Rocha and Fantinato
[2013] and Benavides et al. [2010] did not focus on variability management in particu-
lar. Our survey distinguishes itself from these surveys in that it focuses on variability
management and it focuses on business processes as the artifact for which variability is
captured and exploited. The distinctness of our survey with respect to these surveys is
confirmed by the fact that the overlap of primary study papers is limited to a maximum
of five papers – the overlap between dos Santos Rocha and Fantinato [2013] and ours is
5, the overlap between Chen et al. [2009] and ours is 2, and for Benavides et al. [2010],
the overlap is 1.

Finally, Torres et al. [2013] and Döhring et al. [2014] compared a subset of the ap-
proaches reviewed in the present survey using different evaluation lenses. Torres et al.
[2013] compared C-EPCs and Provop in terms of understandability based on a cognitive
psychology framework. Döhring et al. [2014] conducted an empirical evaluation to as-
sess the maintainability of process model variants in C-YAWL versus vBPMN in terms
of modularization support and customization type (i.e., restriction vs. restriction + ex-
tension). These papers examine nonfunctional aspects not considered in our survey
and, as such, they are complementary.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:41

Mili et al. [2010] survey, categorize, and summarize different modeling languages
used to describe business processes, covering in particular the languages figuring in
the “Process modeling language” column of Table XII (e.g., BPMN, UML ADs). Their
survey, however, does not touch on the question of how to capture process variability
in general and design-time variability in particular. As such, the scope of the present
survey is disjoint and complementary to the one by Mili et al. [2010].

12. CONCLUSION

This survey has put into evidence a wide heterogeneity of features and levels of sophis-
tication across existing approaches to customizable process models. Still, the survey
has highlighted a common core shared by all of them and key differentiating features.

All approaches take as a starting point a host process modeling language and add
to it a notion of variation point. A variation point may be a modeling element that
appears, does not appear, or appears in one of multiple possible forms (customization by
restriction) or a point in the process when additional behavior is allowed (configuration
by extension). While virtually all approaches support customization by restriction, only
a handful support customization by extension. Support for the latter constitutes one
of the key differentiating features across the surveyed approaches and gives rise to a
fundamental trade-off that potential users need to consider when selecting an approach
for a given scenario.

On the one hand, customization by extension is more suitable from a maintenance
perspective. It allows one to start with a model capturing a core set of variants of the
process. The behavior of additional variants can then be added via extension points,
especially if the additional behavior of these variants can be confined to specific points
in the customizable process model. The price to pay, however, is that the customizable
process model itself captures only a subset of the behavior of the variants – additional
behavior remains somehow hidden behind the extension points.

On the other hand, customization by restriction is more suitable when the set of vari-
ants is stable since every new variant or every change to an existing variant requires an
update to the customizable process model. Additionally, this approach leads to larger
models since the customizable model has to capture the union of all variants. The lat-
ter hinders maintainability. Still, the models used in customization by restriction give
a full picture of all variants and their dependencies. Also, because the behavior of all
variants is captured in the customizable model, customization by restriction lends itself
better to correctness checking, something that can only be achieved in customization
by extension at the price of constraining the set of allowed extensions and the places
in the customizable process model where these extensions can be inserted.

Despite the breadth of literature in the field of customizable process modeling, we
have noted two areas that remain underdeveloped. First, there is a lack of effective
methods and tool support to assist users in the creation, use (in particular, customiza-
tion), and maintenance of these models. Surprisingly, there has been little research
on these questions. A handful of automated approaches to constructing a customizable
process model from a collection of variants have been proposed [Li et al. 2009; La Rosa
et al. 2013; Assy et al. 2014]. However, the user is then left with the task of fine-tuning
these models, linking them with domain models and subsequently maintaining them.
In a similar vein, little attention has been given to the question of how to guide users
during the customization of customizable process models. The lack of methods and tools
to support the full life cycle of customizable process models (creation, use, and main-
tenance) might explain the very limited adoption of customizable process modeling
languages in practice.10

10To the best of our knowledge, only the aEPCs approach is currently used in practice by NN Investment
Partners to manage their process model collection, which counts some 500 models.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

2:42 M. La Rosa et al.

Second, while about half of reviewed approaches have been validated (typically, via
case studies), there is a lack of comparative empirical evaluations with end users that
would provide evidence to back any statement that one customizable process modeling
approach is more usable than others in a particular setting. There is a case for shifting
the focus in this field from the design of modeling approaches to the evaluation of
existing ones [Torres et al. 2013; Döhring et al. 2014].

Looking forward, the widespread adoption of multitenant enterprise systems has
opened the possibility of using customizable process models to drive the configuration
of such systems. At present, the configuration of multitenant systems is manual and
resource-intensive due to the large number of configuration points offered by such
systems. Initial visions for multitenant system configuration based on customizable
process models have been put forward [Fehling et al. 2011; van der Aalst 2011]. How-
ever, the realization and validation of these visions remain avenues for future research.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We thank Arthur ter Hofstede for his valuable comments on early versions of this manuscript.

REFERENCES

Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2010b. Composing Feature Models. In
Proceedings of SLE 2009, M. van den Brand, D. Gašević, and J. Gray (Eds.), Lecture Notes in Computer
Science, Vol. 5969. Springer, 62–81.

Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2010a. Managing Variability in Work-
flow: Managing Variability in Workflow with Feature Model Composition Operators. In 9th International
Conference on Software Composition (SC’10), Malaga, Spain. Springer, 17–33.

Nour Assy, Walid Gaaloul, and Bruno Defude. 2014. Mining Configurable Process Fragments for Business
Process Design. In Proceedings of DESRIST, Lecture Notes in Computer Science, Vol. 8463. Springer,
209–224.

C. Ayora, V. Torres, B. Weber, M. Reichert, and V. Palechano. 2015. VIVACE: A framework for the system-
atic evaluation of variability support in process-aware information systems. Information and Software
Technology 57, 248–276.

Felix Bachmann and Paul C. Clements. 2005. Variability in Software Product Lines. Technical report
CMU/SEI-2005-TR-012. Carnegie Mellon University, U.S.A.

T. Baier, E. Pascalau, and J. Mendling. 2010. On the Suitability of Aggregated and Configurable Business
Process Models. In Enterprise, Business-Process and Information Systems Modeling—11th International
Workshop, (BPMDS’10), and 15th International Conference, EMMSAD 2010, held at CAiSE 2010, Ham-
mamet, Tunisia, Proceedings, Lecture Notes in Business Information Processing, Terry A. Halpin, John
Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt, and Roland Ukor (Eds.), Vol. 50. 108–119.

J. Becker, L. Algermissen, P. Delfmann, and B. Niehaves. 2006. Configurable Reference Process Models for
Public Administrations. In Encyclopedia of Digital Government. 220–223.

J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka. 2004. Configurative Process Modeling–
Outlining an Approach to Increased Business Process Model Usability. In Proceedings of the 14th In-
formation Resources Management Association International Conference, M. Khosrow-Pour (Ed.). IRM
Press.

J. Becker, P. Delfmann, and R. Knackstedt. 2007. Adaptive Reference Modeling: Integrating Configurative
and Generic Adaptation Techniques for Information Models. In Proceedings of the Reference Modeling
Conference (RM’06), J. Becker and P. Delfmann (Eds.). Springer, 27–58.

J. Becker, C. Janiesch, R. Knackstedt, and T. Rieke. 2007a. Facilitating Change Management with Configu-
rative Reference Modelling. International Journal for Information Systems and Change Management 2,
1 (2007), 81–99.

J. Becker, R. Knackstedt, D. Pfeiffer, and C. Janiesch. 2007b. Configurative Method Engineering—On the
Applicability of Reference Modeling Mechanisms in Method Engineering. In Proceedings of the 13th
Americas Conference on Information Systems (AMCIS’07). 1–12.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:43

D. Benavides, S. Segura, and A. Ruiz-Corts. 2010. Automated analysis of feature models 20 years later: A
literature review. Information Systems 35, 6, 616–636.

Quentin Boucher, Gilles Perrouin, Jean-Christophe Deprez, and Patrick Heymans. 2012. Towards Config-
urable ISO/IEC 29110-Compliant Software Development Processes for Very Small Entities. In Pro-
ceedings of the 19th European Conference “Systems, Software and Services Process Improvement” (Eu-
roSPI’12), Communications in Computer and Information Science, Dietmar Winkler, Rory V. O’Connor,
and Richard Messnarz (Eds.), Vol. 301. Springer, 169–180.

Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2013. Mining Configurable
Process Models from Collections of Event Logs. In BPM, Lecture Notes in Computer Science, Vol. 8094.
Springer-Verlag, Berlin, 33–48.

L. Chen and M. A. Babar. 2011. A systematic review of evaluation of variability management approaches in
software product lines. Information and Software Technology 53, 4, 344–362.

L. Chen, M. A. Babar, and N. Alio. 2009. Variability management in software product lines: a systematic
review. 7328, 190–205.

K. Czarnecki and M. Antkiewicz. 2005. Mapping Features to Models: A Template Approach Based on Super-
imposed Variants. In Proceedings of the 4th International Conference on Generative Programming and
Component Engineering, Robert Glück and Michael R. Lowry (Eds.). Springer, 422–437.

K. Czarnecki, S. Helsen, and U. W. Eisenecker. 2005. Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and Practice 10, 1, 7–29.

K. Czarnecki and K. Pietroszek. 2006. Verifying feature-based model templates against well-formedness OCL
constraints. In Proceedings of Generative Programming and Component Engineering. ACM, 211–220.
DOI:http://dx.doi.org/10.1145/1173706.1173738

R. B. Davis and E. Brabander. 2007. ARIS Design Platform: Getting Started with BPM. Springer, New York,
NY.

P. Delfmann, C. Janiesch, R. Knackstedt, T. Rieke, and S. Seidel. 2006. Towards Tool Support for Configurative
Reference Modeling – Experiences from a Meta Modeling Teaching Case. In Proceedings of the 2nd
International Workshop on Meta-Modelling (WoMM’06) (LNI), S. Brockmans, J. Jung, and Y. Sure (Eds.),
Vol. 96. GI, 61–83.

P. Delfmann, T. Rieke, and C. Seel. 2007. Supporting Enterprise Systems Introduction by Controlling Enabled
Configurative Reference Modelling. In Proceedings of the Reference Modeling Conference (RM’06), J.
Becker and P. Delfmann (Eds.). Springer, 79–102.

M. Döhring, H. A. Reijers, and S. Smirnov. 2014. Configuration vs. adaptation for business process variant
maintenance: an empirical study. Information Systems 39, 108–133.

R. dos Santos Rocha and M. Fantinato. 2013. The use of software product lines for business process manage-
ment: A systematic literature review. Information and Software Technology 55, 8, 1355–1373.

A. Dreiling, M. Rosemann, W. M. P. van der Aalst, L. Heuser, and K. Schulz. 2006. Model-Based Software
Configuration: Patterns and Languages. European Journal of Information Systems 15, 6, 583–600.

A. Dreiling, M. Rosemann, W. M. P. van der Aalst, W. Sadiq, and S. Khan. 2005. Model-Driven Process
Configuration of Enterprise Systems. In Wirtschaftsinformatik 2005: eEconomy, eGovernment, eSociety,
O. K. Ferstl, E. J. Sinz, S. Eckert, and T. Isselhorst (Eds.). Physica–Verlag, 687–706.

C. C. Ekanayake, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa. 2013. Slice, Mine and Dice: Complexity-
Aware Automated Discovery of Business Process Models. In Business Process Management, Lecture
Notes in Computer Science, Lecture Notes in Computer Science, Vol. 8094. Springer, 49–64.

Christoph Fehling, Frank Leymann, David Schumm, Ralf Konrad, Ralph Mietzner, and Michael Pauly.
2011. Flexible Process-Based Applications in Hybrid Clouds. In Proceedings of the IEEE International
Conference on Cloud Computing (CLOUD’11). IEEE, 81–88.

P. Fettke and P. Loos. 2003. Classification of Reference Models—A Methodology and its Application. Infor-
mation Systems and e-Business Management 1, 1, 35–53.

D. Georgakopoulos, M. Hornick, and A. Sheth. 1995. An Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure. Distributed and Parallel Databases 3, 119–153.

F. Gottschalk, W. M. P. van der Aalst, and M. H. Jansen-Vullers. 2007. SAP WebFlow Made Configurable:
Unifying Workflow Templates into a Configurable Model. In International Conference on Business Pro-
cess Management (BPM’07), Lecture Notes in Computer Science, G. Alonso, P. Dadam, and M. Rosemann
(Eds.), Vol. 4714. Springer, Berlin, 262–270.

F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, and M. La Rosa. 2008. Configurable Workflow
Models. International Journal of Cooperative Information Systems 17, 2, 177–221.

F. Gottschalk, T. Wagemakers, M. H. Jansen-Vullers, W. M. P. van der Aalst, and M. La Rosa. 2009. Config-
urable Process Models: Experiences From a Municipality Case Study. In Proceedings of CAiSE, Lecture

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

http://dx.doi.org/10.1145/1173706.1173738

2:44 M. La Rosa et al.

Notes in Computer Science, P. van Eck, J. Gordijn, and R. Wieringa (Eds.), Vol. 5565. Springer, Berlin,
486–500.

A. Hallerbach, T. Bauer, and M. Reichert. 2008. Managing Process Variants in the Process Life Cycle. In 10th
International Conference on Enterprise Information Systems (ICEIS’08), Vol. 22. 154–161.

A. Hallerbach, T. Bauer, and M. Reichert. 2009a. Guaranteeing Soundness of Configurable Process Variants
in Provop. In CEC. IEEE, 98–105.

A. Hallerbach, T. Bauer, and M. Reichert. 2009b. Issues in Modeling Process Variants with Provop. In
Business Process Management 2008 Workshops, Lecture Notes in Business Information Processing, D.
Ardagna, M. Mecella, and J. Yang (Eds.), Vol. 17. Springer, Berlin.

A. Hallerbach, T. Bauer, and M. Reichert. 2010. Capturing Variability in Business Process Models: The Provop
Approach. Journal of Software Maintenance and Evolution: Research and Practice 22, 6–7, 519–546.

A. R. Hevner, S. T. March, J. Park, and S. Ram. 2004. Design Science in Information Systems Research. MIS
Quarterly 28, 1, 75–105.

A. Kumar and W. Yao. 2009. Process Materialization Using Templates and Rules to Design Flexible Process
Models. In RuleML, Lecture Notes in Computer Science, G. Governatori, J. Hall, and A. Paschke (Eds.),
Vol. 5858. Springer, Berlin, 122–136.

A. Kumar and W. Yao. 2012. Design and management of flexible process variants using templates and rules.
Computers in Industry 63, 2, 112–130.

M. La Rosa, M. Dumas, A. H. M. ter Hofstede, and J. Mendling. 2011. Configurable Multi-Perspective
Business Process Models. Information Systems 36, 2, 313–340.

Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco M. Dijkman. 2013. Business Process Model
Merging: An Approach to Business Process Consolidation. ACM Transactions on Software Engineering
Methodology 22, 2, 11.

C. Li, M. Reichert, and A. Wombacher. 2009. Discovering Reference Models by Mining Process Variants Using
a Heuristic Approach. In Business Process Management (BPM’09), Lecture Notes in Computer Science,
U. Dayal, J. Eder, J. Koehler, and H. Reijers (Eds.), Vol. 5701. Springer, Berlin, 344–362.

Carl-Mikael Lönn, Elin Uppström, Petia Wohed, and Gustaf Juell-Skielse. 2012. Configurable Process Mod-
els for the Swedish Public Sector. In Proceedings of the 24h International Conference on Advanced
Information Systems Engineering (CAiSE’12), Lecture Notes in Computer Science, Jolita Ralyté, Xavier
Franch, Sjaak Brinkkemper, and Stanislaw Wrycza (Eds.), Vol. 7328. Springer, 190–205.

I. Mechrez and I. Reinhartz-Berger. 2014. Modeling Design-Time Variability in Business Processes: Existing
Support and Deficiencies. In Proceedings of BPMDS’14 and EMMSAD’14. Springer, 378–392.

Hafedh Mili, Guy Tremblay, Guitta Bou Jaoude, Eric Lefebvre, Lamia Elabed, and Ghizlane El-Boussaidi.
2010. Business process modeling languages: Sorting through the alphabet soup. Computing Surveys 43,
1, Article 4.

Mikyeong Moon, Minwoo Hong, and Keunhyuk Yeom. 2008. Two-Level Variability Analysis for Business
Process with Reusability and Extensibility. In Proceedings of the 32nd Annual IEEE International Com-
puter Software and Applications Conference (COMPSAC’08), Turku, Finland. IEEE Computer Society,
263–270.

M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. 2007. DECLARE: Full Support for Loosely-Structured
Processes. In Proceedings of the 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC’07), M. Spies and M. B. Blake (Eds.). IEEE Computer Society, 287–298.

F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske. 2005. Variability Mechanisms for Process Models.
PESOA-Report TR 17/2005. Process Family Engineering in Service-Oriented Applications (PESOA).
BMBF-Project.

M. Reichert and P. Dadam. 1998. ADEPT f lex : Supporting Dynamic Changes of Workflow without Loosing
Control. Journal of Intelligent Information Systems 10, 2, 93–129.

M. Reichert and B. Weber. 2012. Enabling Flexibility in Process-Aware Information Systems: Challenges,
Methods, Technologies. Springer-Verlag, Berlin.

H. A. Reijers, R. S. Mans, and R. A. van der Toorn. 2009. Improved Model Management with Aggregated
Business Process Models. Data and Knowledge Engineering 68, 2, 221–243.

I. Reinhartz-Berger, P. Soffer, and A. Sturm. 2009. Organizational Reference Models: Supporting an Ade-
quate Design of Local Business Processes. International Journal of Business Process Integration and
Management 4, 2 (2009), 134–149.

I. Reinhartz-Berger, P. Soffer, and A. Sturm. 2010. Extending the Adaptability of Reference Models. IEEE
Transactions on Systems, Man and Cybernetics Part A 40, 5, 1045–1056.

I. Reinhartz-Berger and A. Sturm. 2007. Enhancing UML Models: A Domain Analysis Approach. Journal on
Database Management (special issue on UML Topics) 19, 1, 74–94.

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

Business Process Variability Modeling: A Survey 2:45

S. Rinderle, M. Reichert, and P. Dadam. 2004. Correctness Criteria For Dynamic Changes in Workflow
Systems: A Survey. Data and Knowledge Engineering 50, 1, 9–34.

M. Rosemann. 2003. Application Reference Models and Building Blocks for Management and Control (ERP
Systems). In Handbook on Enterprise Architecture, P. Bernus, L. Nemes, and G. Schmidt (Eds.). Springer,
596–616.

M. Rosemann and W. M. P. van der Aalst. 2003. A Configurable Reference Modelling Language. BPM Center
Report BPM-03-08, BPMcenter.org. (Later published as M. Rosemann and W. Aalst. 2007. A Configurable
Reference Modelling Language. Information Systems, Vol. 32(1), 1-23).

S. Sadiq, M. E. Orlowska, and W. Sadiq. 2005. Specification and validation of process constraints for flexible
workflows. Information Systems 30, 5, 349–378.

S. Sadiq, W. Sadiq, and M. Orlowska. 2001. Pockets of Flexibility in Workflow Specification. In Proceedings of
the 20th International Conference on Conceptual Modeling (ER’01), Lecture Notes in Computer Science,
Vol. 2224. Springer, Berlin, 513–526.

A. Schnieders. 2006. Variability Mechanism Centric Process Family Architectures. In Proceedings of the 13th
IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06),
M. Riebisch, P. Tabeling, and W. Zorn (Eds.). IEEE Computer Society, 289–298.

A. Schnieders and F. Puhlmann. 2006. Variability Mechanisms in E-Business Process Families. In Proceed-
ings of the 9th International Conference on Business Information Systems (BIS’06) (LNI), W. Abramowicz
and H.C. Mayr (Eds.), Vol. 85. GI, 583–601.

Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. 2005. A taxonomy of variability realization techniques.
Software Practice and Experience 35, 8, 705–754. DOI:http://dx.doi.org/10.1002/spe.652

V. Torres, S. Zugal, B. Weber, M. Reichert, C. Ayora, and V. Pelechano. 2013. A Qualitative Comparison
of Approaches Supporting Business Process Variability. In Business Process Management Workshops,
Lecture Notes in Business Information Processing, Vol. 132. Springer, Berlin, 560–572.

G. Valenca, C. Alves, V. Alves, and N. Niu. 2013. A Systematic Mapping Study on Business Process Variability.
International Journal of Computer Science & Information Technology 5, 1, 1–21.

W. M. P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M. H. Jansen-Vullers. 2006. Configurable
Process Models as a Basis for Reference Modeling. In Proceedings of the Business Process Management
2005 Workshops, E. Kindler and M. Nüttgens (Eds.). Springer, 76–82.

W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede, N. Sidorova, H. M. W. Verbeek, M. Voorhoeve,
and M. T. Wynn. 2011. Soundness of Workflow Nets: Classification, Decidability, and Analysis. Formal
Aspects of Computing 23, 3, 333–363.

W. M. P. van der Aalst, N. Lohmann, and M. La Rosa. 2012. Correctness Ensuring Process Configuration:
An Approach Based on Partner Synthesis. Information Systems 37, 6, 574–592.

Wil M. P. van der Aalst. 2011. Business Process Configuration in the Cloud: How to Support and Ana-
lyze Multi-tenant Processes? In Proceedings of the 9th IEEE European Conference on Web Services
(ECOWS’11). IEEE, 3–10.

B. Weber, M. Reichert, and S. Rinderle-Ma. 2008. Change Patterns and Change Support Features: Enhancing
Flexibility in Process-Aware Information Systems. Data and Knowledge Engineering 66, 3, 438–466.

Received October 2015; revised November 2016; accepted December 2016

ACM Computing Surveys, Vol. 50, No. 1, Article 2, Publication date: March 2017.

http://dx.doi.org/10.1002/spe.652

