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Abstract—Event correlation is a cornerstone for process dis-
covery over event logs crossing multiple data sources. The
computed correlation rules and process instances will greatly
help us to unleash the power of process mining. However,
exploring all possible event correlations over a log could be
time consuming, especially when the log is large. State-of-the-
art methods based on MapReduce designed to handle this chal-
lenge have offered significant performance improvements over
standalone implementations. However, all existing techniques are
still based on a conventional generating-and-pruning scheme.
Therefore, event partitioning across multiple machines is often
inefficient. In this paper, following the principle of filtering-and-
verification, we propose a new algorithm, called RF-GraP, which
provides a more efficient correlation over distributed systems.
We present the detailed implementation of our approach and
conduct a quantitative evaluation using the Spark platform.
Experimental results demonstrate that the proposed method is
indeed efficient. Compared to the state-of-the-art, we are able
to achieve significant performance speedups with obviously less
network communication.

Keywords-event correlation; process mining; service comput-
ing; data partitioning; big data; data-intensive computing

I. INTRODUCTION

Modern IT systems collect and store large mounts of event

data. For instance, ERP systems log business transaction

events, and high-tech systems such as X-ray machines record

software and hardware events [1]. Such “historical event data”

can be used to extract non-trivial knowledge and interesting

insights using current mining techniques [2], [3]. As one of

the key tasks in such scenarios, event correlation, has received

notable attention from researchers and practitioners in various

domains.

A typical example is the domain of process mining [3],

which includes three main types of analysis. Process discovery
is concerned with automatically extracting a process model

from an event log; conformance checking measures how well

the behaviour recorded in an event log fits a given process

model and vice versa; and process enhancement focuses

improving an existing model using information about the

actual process recorded in an event log [4]. After correlating

events, one is then able to unleash the power of process

mining, i.e., discover process models providing novel insights,

check compliance with respect to some normative model,

and analyze the bottlenecks and other performance hazards

in operational processes.

Event correlation mainly comprises the operation of dis-

covering a set of correlation rules and on that basis to group

process events into process instances [5]. To illustrate this, an

example of a simplified log is shown in Table I, in which there

are four events and each with four attributes1. Assume that we

have worked out a correlation rule ψA1,A1
(i.e., events having

the same value on the attribute A1) from the log already,

then we will be able to get several process instances such

as 〈e1, e2〉, 〈e3〉 and 〈e4〉 very easily. We will give the details

of this processing in Section II.

TABLE I: An example of a simplified log

Event A1 A2 A3 A4 A5

e1 C2 C1 C2 C5 C6

e2 C2 C2 C4 C4 C6

e3 C1 C1 C2 C5 C7

e4 C3 C2 C4 C4 C6

Nowadays, event logs recorded for processes executed in

highly variable and heterogeneous contexts become common

in modern information systems. This makes discovering cor-

relation rules and forming process instances in the context

of an overall business process very hard [5]. The reason is

that events collected from multiple data sources could lack

structures and contexts. In fact, correlating events is also

computationally expensive, as it requires the exploration of

a huge space of possible correlation conditions among the

attributes of different event types [6]. This means that an

efficient execution of event correlations will be challenging

and also desirable in the presence of large logs. In fact, we

can all witness that datasets containing event data are growing

in size [3].

Significant progress has been made to realize high per-

formance event correlation systems. For example, [6] uses

database queries to compute all the correlated event pairs for

all the potential correlation rules and then prunes the non-

interesting ones by applying non-interestingness criteria. The

approach has been shown to be very efficient as demonstrated

by the experimental results reported in [6]. As the amount

of event log data continues to scale, the method will be not

suitable for process entire data sets on a single machine,

due to the hardware limitations (e.g., CPU and memory).

To handle this issue, state-of-the-art work research [5] uses

a MapReduce-based method for event correlations over dis-

tributed platforms. The evaluations presented in [5] have

shown that the approach can offer significant performance

improvements over the implementation of [6]. Nevertheless,

1To simplify our presentation, we do not consider the attribute A5 (gray)
in the log for all of our examples, unless otherwise specified.
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the proposed technique [5] is still based on a conventional

generating-and-pruning scheme. In this case, the number of

generated candidate correlation rules will be large, and as a

result, the partitioning of log events across multiple machines

will be inefficient, in terms of time cost on both computation

and network communication.

In this work, following the filtering-and-verification prin-

ciple, we propose a new approach, called RF-GraP (Rule

Filtering and Graph Partitioning), which aims at a more effi-

cient event correlation using distributed platforms. We provide

the detailed design and conducted a performance evaluation

of our method. The main contributions of this paper can be

summarized as follows:

• We introduce the state-of-the-art event correlation ap-

proach and analyze its possible performance issues in

processing large event logs over distributed systems.

• We adopt the principle of filtering-and-verification for

efficient correlation analytics over large logs, by incorpo-

rating light-weight filter units into candidate correlation

rules, which can be utilized to prune large numbers of

non-interesting rules before verification.

• To further improve our performance, in the verification

phase, we model existing correlation rules as a graph and

introduce a graph partitioning approach to decompose

the potentially correlated events into chunks by exploring

efficient data locality assignment.

• We describe the implementation of our approach and

report on experiments using Spark [7]. The results

demonstrate that we can achieve significant performance

improvements over the state-of-the-art method in [5].

For example, for a log with 1 million events and 38

attributes, our algorithm performs 4.5× faster with 43×
less network traffic.

The remainder of this paper is organized as follows. In

Section II, we introduce preliminaries including the state-of-

the-art techniques on event correlation. We present the detailed

design and implementation of our approach in Section III. We

report on the evaluation of our approach in Section IV. We

discuss related work in Section V and summarize our findings

in Section VI.

II. PRELIMINARIES

In this section, we introduce the preliminaries of event

correlations and also discuss possible performance issues that

current approaches suffer from.

A. Event Correlations

In this work, we build on the standard process mining

notations as defined in [5], [6].

Definition 2.1: [6] A process event log is a set of events

L = {e1, e2, ..., el}, where each event e is represented by

a tuple ei ∈ A1 × A2 × ... × Ak, and attributes A1, ..., Ak
represent the union of all the attributes contained in all events.

An event typically contains only a subset of these attributes

and will therefore have many of its attributes undefined, which

will be marked with the value null.

For example, the event log in Table I has four events and

four attributes. For an event e ∈ L, we denote the value of the

attribute Ai in the event e by e.Ai in the following.

Definition 2.2: [5], [6] A defined correlation condition (or
rule), is denoted by ψ(ex.Ai, ey.Aj), over attributes Ai and

Aj of respectively the two events ex and ey . If the condition

ψ(ex.Ai, ey.Aj) returns true then we say that ex and ey are

correlated through the attributes Ai and Aj .

There are two kinds of correlation conditions: atomic cor-

relation and multiple correlation conditions (e.g., conjunctive

conditions and disjunctive conditions). As the former case

is the most basic condition, we will focus on the atomic

correlation conditions in this work.

Definition 2.3: [6] An atomic correlation condition ψAi,Aj
specifies that two events are correlated if they have the same

value on two of their attributes Ai and Aj , namely, there exists

ex.Ai = ey.Aj (or ex.Aj = ey.Ai).

The atomic correlation condition contains two types of

correlations: key-based correlation and reference-based cor-
relation. For the former correlation, a unique value is used in

each event to directly identify a instance to which it belongs.

For the later one, events of an instance are correlated using

a reference with a previous event in the instance. Namely,

ψAi,Aj is a key-based correlation only when i = j, otherwise,

it is a reference-based correlation. For example, the correlation

rule ψA1,A1
as described in Section I is a key-based condition,

and the condition ψA1,A2 is a reference-based correlation rule.

In our presentation, sometimes we will also use Ai = Aj to

replace the condition ψAi,Aj in this paper2.

Definition 2.4: [6] A process instance p is a sequence of

events corresponding to a subset of events of the log L.

For instance, the sequence of 〈e1, e2〉 in Section I is a

process instance.

B. Correlation Discovery

Similar to the approach in [5], [6], we identify the interest-

ing correlation conditions on the basis of our observation that

some are non-interesting [8].

The first observation is based on the distribution of attribu-

tion values over all the events. For a key-based condition, if the

value domain of an attribute Ai is very small (e.g., Boolean),

then the condition Ai = Ai will be not interesting [6]. In the

meantime, for a reference-based case, if most of the values

of an attribute can not be found in another attribute, then

the two attributes will be not correlated. These two cases

can be measured by the properties distinct ratio(Ai) and

shared ratio(ψAi,Aj ), as defined in Equation (1.1) and (1.2)

respectively. Generally, a threshold α is used to prune the non-

interesting conditions. Namely, a correlation condition will be

interesting if its computed property value is greater than α.

distinct ratio(Ai) =
|distinct(Ai)|
|nonNull(Ai)| (1.1)

shared ratio(ψAi,Aj ) =
|distinct(Ai)∩distinct(Aj)|

Max{|distinct(Ai)|,|distinct(Aj)|} (i �= j) (1.2)

2Note that the condition Ai = Aj will be the same as Aj = Ai.
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The second observation is based on the number of discov-

ered process instances. Namely, a correlation condition will

be not interesting if it partitions a log into large number of

short instances or small number of long instances. This can

be measured by the property PI ratio(ψ) as described in

Equation (2). There, |PIψ| means the number of discovered

process instances over the condition ψ, and nonNull(ψ)
denotes the number of events for which attributes Ai and

Aj of the condition ψ are not null. A threshold β is used

to select the interesting conditions which meet the condition

PI ratio(ψ) ≤ β.

PI ratio(ψ) =
|PIψ|

nonNull(ψ) (2)

To efficiently compute the values of above properties for

a given log, a data structure (i.e., a table) named Correlated
Message Buffer (CMB) has been proposed in [5]. For each

potential correlation condition ψ, a CMB can aggregate all the

events into event sets according to the values of their attributes

in ψ. For example, Figure 1 shows two such buffers based on

the correlation conditions ex.A1 = ey.A1 and ex.A1 = ey.A2,

respectively. Using the two tables, we can quickly get that the

value of distinct ratio(A1) is 3/4 and shared ratio(ψ) is

2/3. Moreover, we can also discover the potential interesting

process instances and consequently calculate the value of

PI ratio(ψ). For the key-based condition in Figure 1(a),

the instances are the aggregated event sets, i.e., there are

three instances there. For a reference-based case, process

instances are computed by applying the DFS (Depth-First

Search) algorithm over a bipartite graph [9], in which the two

disjoint vertex sets U and V are represented by the aggregated

event sets in a CMB. For the case in Figure 1(b), we have that

U = {{e3}, {e1, e2}} and V = {{e1, e3}, {e2, e4}}. Using

DFS, we can get a path {e3} → {e1, e3} → {e1, e2} →
{e2, e4} from the graph, thus the discovered process will be

〈e1, e2, e3, e4〉. As there is only one process instance for the

condition A1 = A2, the value of its PI ratio will be 1/4.

If we set α = 0.5 and β = 0.5, then the condition A1 = A2

is an interesting rule and A1 = A1 is not. We will show in

our later evaluation in Section IV-B, correlations over such a

criterion can indeed discover interesting rules from real logs.

C. Current Approaches

Several systems/techniques have been developed to facilitate

correlations over event logs in the past years [10]. In the

following, we mainly focus on two typical approaches with

regard to efficient computation of event correlations. One is

based on relational databases systems [6] and the other uses

the MapReduce framework [5].

Motahari-Nezhad et al. [6] introduce an approach to perform

standard SQL queries over a standalone database system to re-

trieve the CMB related information. They first generate all the

potential atomic correlation conditions based on the attributes

of an event log, and then they implement each condition as a

self-join over the log table. For example, correlations over the

condition A1 = A2 for the log in Table I are done by joining

the table itself, on its columns A1 and A2. Obviously, this

Val EventSet

C1 → e3
C2 → e1, e2
C3 → e4

(a) condition A1 = A1

Val EventSet1 EventSet2

C1 → e3 e1, e3
C2 → e1, e2 e2, e4

(b) condition A1 = A2

Fig. 1: Two generated CMBs based on applying two correla-

tion conditions over the log in Table I.

key (val, tag, event)

A1 = A1 (C2,1,e1), (C2,1,e1)

A1 = A2 (C2,1,e1), (C1,2,e1)

A1 = A3 (C2,1,e1), (C2,3,e1)

A1 = A4 (C2,1,e1), (C5,4,e1)

A2 = A2 (C1,2,e1),...

A2 = A3 (C1,2,e1),...

A2 = A4 (C1,2,e1),...

A3 = A3 (C2,3,e1),...

A3 = A4 (C2,3,e1),...

A4 = A4 (C5,4,e1),...

(a) message pairs for event e1

key (val, tag, event)

A1 = A2 (C2,1,e2), (C2,2,e2)

(b) A1 = A2 for event e2

key (val, tag, event)

A1 = A2 (C1,1,e3), (C1,2,e3)

(c) A1 = A2 for event e3

key (val, tag, event)

A1 = A2 (C3,1,e4), (C2,2,e4)

(d) A1 = A2 for event e4

Fig. 2: Generated message pairs by applying candidate corre-

lation conditions on each event as listed in Table I.

approach can use all advantages of current database systems

on query/join executions (e.g., using indexes) and thus it could

be very efficient when computing event correlations. However,

join operations are always time-consuming and considered

as the performance bottlenecks of current data processing

systems [11]. When the number of attributes of a log is large,

large number of self-join executions generated by the potential

correlation rules will undoubtedly lead to a poor correlation

performance. Moreover, when the number of events is large,

the intermediate results (e.g., aggregated event sets) generated

by query executions would be huge. This will impact the

performance of subsequet operations, i.e., computing process

instances, due to the associated memory and computing cost.

In such scenarios, the approach presented in [6] will not be an

ideal solution for large event logs processing (e.g., including

millions of events or more).

To handle big event logs, Reguieg et al. [5] have proposed

an algorithm called Hashed Values Centric3 (refereed to as

HVC in the following) over the popular used MapReduce

framework [12]. They focus on how to efficiently partition

events and consequently maximize the correlation performance

by using the advantages of parallel implementations. The main

workflow of HVC can be divided into the following three

phases: (1) based on all the potential correlation rules, message

pairs4 in the form of (rule, (value, tag, event)) are generated

over all the events on each computing node. The value in the

pairs means the attribute value and the tag is the index number

i for the attribute Ai. For example, as illustrated in Figure 2,

for a given rule A1 = A2, two pairs will be generated for each

event; (2) all the generated message pairs are redistributed to

3The authors have also proposed two additional methods in their work.
However, the HVC approach generally performs the best in their experimental
results. Therefore, we only focus on HVC in this work.

4As the term message in some papers means event. To avoid confusion,
throughout this work, when we say message or pair or message pair, we
mean the newly generated data which to be transferred over networks.
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all the nodes based on the hash values of their correlation rules.

For a two-node computing system, assume that the events e1
and e2 are located in node 1, e3 and e4 are in node 2 and

the hash value of A1 = A2 is 1, then all the generated 8

message pairs will be transferred to the node 1; and (3) local

CMBs are built based on the received message pairs and the

entire correlation analytics will be terminated when all the

CMBs have been processed. For instance, the CMB illustrated

by Figure 1(b) will be built by the 8 message pairs received

on node 1 in the second phase. With constructed CMBs on

each node and the criteria described previously, we can then

compute for the interesting conditions and process instances.

Compared to the method [6], the high-level implementa-

tion of [5] is more general, as it can be run on ordinary

clusters and file systems. Moreover, experimental results have

shown that [5] can outperform [6] under various conditions.

As such, we consider the method [5] as the state-of-the-art

technique. Since each phase of HVC as described above can

be parallelized across nodes, the scheme offers the potential

for scalability and thus can be applied on large logs. However,

the HVC algorithm is still within the generating-and-pruning
scheme. Similar as [6], all its operations are based on all the

potential correlation rules. Namely, the number of generated

message pairs in HVC could be very huge, and this will make

the network communication and computing expensive in a

distributed environment.

Figure 2(a) illustrates the problem: we have 10 candidate

correlation rules for the log in Table I, and two message pairs

are generated for each event and for each rule. This means

that for a very small log with only 4 events, 10× 2× 4 = 80
message pairs will be generated by HVC, before subsequent

operations, i.e., data redistribution, event aggregation and pro-

cess instance computation, can be performed. More important,

the number of the generated pairs will increase with increasing

the number of events and number of attributes, which will

degrade the performance of [6] in the presence of large logs.

In the following, we will show how the performance of event

correlations can be further improved by using a more advanced

scheme.

III. OUR APPROACH

In this section, we present the detailed design and im-

plementation of our RF-GraP approach. Moreover, we also

discuss about its performance advantages by the comparison

with the state-of-the-art method.

A. Overview of Design

Similar to the approach in [5], we utilize a distributed

method to discover interesting rules and process instances over

an input log. Nevertheless, to achieve a higher performance,

we mainly focus on how to efficiently reduce the number
of transferred message pairs over networks rather than how

to parallelize correlation workloads. The reason is that the

metric gives the insight into cost on computation and network

communication. For example, the larger the number of mes-

sage pairs a node receives, the greater the associated workload

could be. To achieve our target, we introduce a new approach,

RF-GraP, following the filtering-and-verification scheme. In

the filter phase, we incorporate a light-weight filter unit into

all possible correlation rules to prune large number of non-

interesting rules without significantly increasing processing

time. For the rest candidate rules, in the verification phase, we

use a graph partitioning approach to decompose the potentially

correlated events into chunks by exploring data partitioning

and locality assignment. In general, we divide our approach

into the following six steps:

• Step 1. Model all the possible correlation conditions of a

log as a correlation graph.

• Step 2. Simplify the correlation graph by filtering out

potential interesting rules.

• Step 3. Partition the simplified correlation graph by

exploring data locality.

• Step 4. Generate message pairs based on the partitioned

result and then transfer them to the responsible nodes.

• Step 5. Build local data structures (e.g., CMBs) based on

the allocated message pairs at each node.

• Step 6. Compute the process instances and calculate the

values of PI ratio(ψ) to get the final outputs.

The graph modeling process in Step 1 is relatively simple,

and the methods to compute process instances in Step 6 have

been extensively described in [5], [6] as well as our Section II.

Therefore, in the following, we will focus on the details of

rule filtering, data partitioning and placement as described in

Steps 2-4. Moreover, we will also propose a more efficient

data structure rather than the CMB [5] for process instance

computing as mentioned in Step 5.

B. Implementation of RF-GraP

The detailed implementation of our approach is shown in

Algorithm 1. Again, log L1 in Table I is used as an example.

We assume that there are two nodes5, the first two events e1
and e2 are located in node 1 and the other two are in node 2.

1) Rule Filtering: Instead of handling each correlation rule

independently like in current approaches, before our filtering

process, we treat the set of rules as a graph. We model all the

potential correlation rules as a correlation graph Gc = (V, E),
where the vertexes V are the attributes in a log L, i.e., V =
{A1, ...An}, and E = {(Ai, Aj) ∈ V × V|i ≤ j} is the set

of edges. Intuitively, each edge between two vertexes in Gc
indicates a potential correlation condition, and the graph Gc
shows all the possible conditions of L. For example, the graph

in Figure 3(a) is the correlation graph of L1.

We apply the first criterion as introduced in Section II-B

as a filter in our approach. For each attribute Ai in log L, it

is easy to get the frequency information of its values (lines

4-5 in the algorithm). Specially, in a distributed environment,

we can get such information very quickly using an approach

similar as the WordCount implementation. For example, for

5Note that, we focus on explaining the high-level implementation in a
distributed environment here. In this context, a node here refers to a computing
unit (e.g., an execution core in Spark).
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A1

A2

A3

A4

A5

(a) a correlation graph Gc

filtering

Gk

Gr A1

A2

A3

A4

A5

(b) the simplified graph Gs

vertex Paritioning

A1

A2

A3 A3

A4

(c) partitioning result of graph

post-processing

A1

A2

A3 A3

A4

A5

(d) solution for data assignment

Fig. 3: The filtering and graph partitioning as well as the assignment solution of message pairs in our approach.

the attribute A1 in L1, the value C2 appears 2 times on node

1 and 0 times on node 2, therefore we know that it appears

2 times in attribute A1. With such statistic information for all

the attribute values, we can then examine whether the value of

distinct ratio(Ai) or shared ratio(ψ) for each correlation

rule meets the threshold α (lines 6-18). Consequently, we can

easily prune part of correlation rules (i.e., the non-interesting

ones) and filter out the potentially interested ones ψf before we

generate any message pairs. This way, the original correlation

graph Gc can be transformed to a simplified graph Gs, by

removing the edges not meeting the threshold. For L1, if

α = 0.7, then we will get its simplified correlation graph

as Figure 3(b).

2) Graph Partitioning: Similar as [5], we create message

pairs based on correlation rules and then partition them to

facilitate the parallel execution. Nevertheless, we only generate

pairs for the filtered rules. Moreover, to achieve better perfor-

mance, we adopt graph partitioning in our approach rather

than the hash partitioning in [5]. The reason is the hash-based

partitioning could bring in redundant message pairs that need

to be transferred over networks. For example, the hash values

of the rules A1 = A2 and A1 = A3 in Figure 2(a) are different,

therefore the tuple (C2, 1, e1) will be transferred two times

rather than one.

The simplified graph Gs is composed of two parts, the

subgraph Gr from the reference-based conditions ψr, and

Gk from the key-based ψk. We divide our graph partitioning

method into two steps, while considering both the network

communication and load balancing. (1) We divide vertexes in

Gr into disjoint partitions using the most popular used vertex

partitioning, and assign the vertexes to partitions without

destructing their connections in Gr (lines 19-20). As shown

in Figure 3(c), we could get into the situation where the

vertexes A1, A2 and A3 reside in one partition and A4 is

in another partition for our input graph Gr. Since there is a

connection between A3 and A4, A3 needs to be replicated.

(2) For a vertex partitioning, it is very possible that large

number of vertexes closed to each other will be located to

a same partition, and consequently results in load balancing

problems. To improve this, we assign the element in Gk to

all the partitioned subgraphs to balance the workloads. As

shown in Algorithm 1 lines 21-23, if a vertex in Gk has not

been assigned in (1), then it will be assigned to a subgraph

with the minimal edges (i.e., workloads for computing process

Algorithm 1 Implementation of RF-GraP

Input: input log L and parameters α, β
Output: interesting rules ψI and process instances PI

Main procedure:
1: ψf = filtering(L, α)
2: {ψI , PI} = verification(L, β, ψf )
3: return {ψI , PI}

Procedure filtering(L, α):
4: Compute the statistic information (Ai, val, freq) for sublogs on

each node and redistribute the tuples based Ai

5: Construct K = list(Ai,map(val, freq)) at each node, by
aggregating the values of Ai and val respectively

6: for each Ki ∈ K do // key-based conditions
7: dis rat(i) = Si.map.size/

∑
Si.map.freq

8: if dis rat(i) ≥ α then
9: add a rule ψk Ai = Ai in ψf

10: end if
11: end for
12: Collect K from each node to construct R = list(Ai, set(val))
13: for each pair (Ri, Rj) ∈ R do // reference-based conditions
14: sh rat(i, j) = |Ri.set ∩Rj .set|/max{|Ri.set|, |Rj .set|}
15: if sh rat(i, j) ≥ α then
16: add a rule ψr Ai = Aj in ψf

17: end if
18: end for

Procedure verification(L, β, ψf ):
19: Build correlation graph Gr based on all ψr in ψf

20: Partition graph Gr into disjoint parts, and copy a vertex Vx ∈ Gri

to Grj , if there exist x < y, Vy ∈ Grj and Vx × Vy �= ∅
21: for each ψ ∈ ψk, if (ψ.A /∈ Gri, ∀i) do
22: Assign ψ to a subgraph Grj , ∃j to balance the edges
23: end for
24: for e ∈ Li, Aj ∈ L on each node i do
25: if Aj ∈ Grk then
26: Generate message pairs (k, (e.Aj , j, e))
27: end if
28: end for
29: Redistribute message pairs based on the value of k to all nodes
30: Build a C2MB with received tuples on each node
31: for E ∈ Gri on each node i do
32: Compute {ψI , PI} with C2MB, β and the rule from E
33: end for

instances). For example, the vertex A5 as shown in Figure 3

will be assigned to the second partition rather than the first

one.

Following the previous example with the rules A1 = A2
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key (val, tag, event)

A1 (C2,1,e1)

A2 (C1,2,e1)

A3 (C3,3,e1)

... ...

(a) generated pairs for e1

Val EventSet1 E-Set2 E-Set3

C1 → e3 e1, e3 ∅
C2 → e1, e2 e2, e4 e1, e3
C3 → e4 ∅ ∅
C4 → ∅ ∅ e2, e4

(b) the proposed C2MB data structure

Fig. 4: The form of the generated message pairs, and the data

structure used for event correlations in our approach.

and A1 = A3: these two rules are assigned the same node

within our approach, therefore the tuple (C2, 1, e1) will be

transferred only one time rather than two then. This means

that using a graph-based partitioning, we can efficiently reduce

the redundant message paris to be transferred over networks.

In fact, vertex partitioning of graphs is a well-studied problem

in computer science, therefore we can leverage existing code

to do the partitioning for us. In our first step, we use the

most popular used METIS partitioner [13] for this purpose.

We input the correlation graph Gr as an undirected graph

to METIS, specify the desired number of partitions, and

METIS outputs partitions of vertexes that are pairwise disjoint.

Normally, we set the number of computing nodes as the input

parameter to METIS. However, when Gr is very small, e.g.,

the number of edges is smaller than the underlying nodes, then

unloaded cases will happen when using METIS. To remedy

this problem, we simply partition the whole graph Gs, with a

method similar as the second step of our partitioning scheme,

to balance the workloads on each node.

3) Message Pair Generating: After the partitioning of the

simplified graph Gs, we can then generate message pairs

and transfer them to remote nodes according to the graph

partitioning results. Different from [5], we generate message

pairs based on attributes rather than rules in our approach

(lines 24-28). Namely, an attribute is used as the key in each

pair, and its responsible value is in the form of (val, tag, event).
Therefore, for a given event and attribute, only one message

will be generated. An example of such processing over the

event e1 is demonstrated as Figure 4(a). After redistributing

all the message pairs, we can then rebuild the responsible

correlation rules at each node if required. For example, the

pairs with the keys A1 and A2 received at a node can be used

to build the CMB with the correlation rule A1 = A2.

4) Efficient Data Structure: As mentioned above, we can

build CMBs based on the received message pairs and the

assigned correlation rules on each node. However, such inde-

pendent buffers could lead to additional cost on memory con-

sumption due to redundancies. For example, the event set {e1,

e2} in Figure 1 appears in both the CMBs based on A1 = A1

and A1 = A2. It should be noted that when the number of

events is large, such kind of redundancy would greatly impact

the correlation performance or even break the analytics. To

improve this problem, we propose a new data structure called

Comprehensive Correlation Message Buffer (C2MB) as shown

as Figure 4(b). We store all the received message pairs in a

single buffer on each node, and on this basis to compute all

the required values in the event correlations (lines 30-33). For

key (val, tag, event)

A1 = A1 (C2,1,e1), (C2,1,e1)

A1 = A2 (C2,1,e1), (C1,2,e1)

A1 = A3 (C2,1,e1), (C3,3,e1)

A1 = A4 (C2,1,e1), (C4,4,e1)

A2 = A2 (C1,2,e1),...

A2 = A3 (C1,2,e1),...

A2 = A4 (C1,2,e1),...

A3 = A3 (C3,3,e1),...

A3 = A4 (C3,3,e1),...

A4 = A4 (C4,4,e1),...

pruned with filtering

pruned with graph partitioning

Fig. 5: The reduction process of generated message pairs for

event e1 compared with the state-of-the-art.

instance, when computing the shared ratio(ψ) of A1 = A2,

the value of |distinct(A1)∩ distinct(A2)| will be number of

rows, in each of which both the sets in the first and second

columns are not empty. All these operations can be done in

parallel at each node, and the whole correlation process will

be terminated until all the nodes have finish their jobs.

C. Comparison with Current Approaches

Compared to current approaches [5], [6], in general, our

design follows the filtering-and-verification principle rather

than the conventional one based on generating-and-pruning.

This way we are able to prune a lot potential correlation rules

and reduce large number of generated message pairs, as not

all the possible correlation rules will contribute to the final

outputs. Moreover, since correlation rules have overlaps on log

attributes, message pairs generated on that basis would bring in

redundant cost on data transferring and computing. Instead of a

hash partitioning in [5], we have used a more advanced graph

partitioning to refine this. Namely, our approach focuses on

using the strategies of Rule Filtering and Graph Partitioning

to improve the correlation performance. That is also the reason

why we call our approach as RF-GraP.

Our method is designed specifically for distributed plat-

forms, therefore, we will be able to handle large event logs. In

comparison, the standalone implementation [6] will meet great

challenges in this aspect as we mentioned previously. Though

the state-of-the-art [5] is also able to process large logs, as the

differences mentioned above, our approach can highly reduce

the network communication cost, which is always critical for

the performance of a distributed application [14]. To highlight

this advantage, we use an example as shown in Figure 5. It can

be observed that, in our approach, many generated message

pairs can be discarded before being transferred over networks.

Moreover, as we have described, the proposed C2MB data

structure can also save a lot of memory.

Compared with the workflow in [5], our method has ad-

ditional operations like filtering and graph partitioning, we

believe that all these operations will be light weight. There

are two reasons for this: (1) filtering can be done by a very

simple statistic-based job; and (2) the METIS partitioner [13]
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is able to partition large graph in a short time, and actually

the correlation graph of an event log is typically small. As

we will show in the next section, our approach is indeed very

efficient, and outperforms the state-of-the-art [5].

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of our

approach and compare it with the state-of-the-art [5].

A. Experimental Framework

As described in Section II, our approach is built based on

the event correlation as defined in [5], [6]. Since the results

reported in [5], [6] do not provide any information about the

quality of discovered correlation conditions, we first conduct

a qualitative evaluation looking at the acutal results. Namely,

in the context of process mining [3], we check whether the

cases of a log can be rediscovered by hiding its actually case

identifiers.

In terms of detailed performance evaluation, since the work

in [5] does not provide any source code information, in the

interest of a fair comparison, we have implemented both the

RF-GraP and the HVC approach using Scala over the Spark

platform [7]. The source code we used for the performance

comparison in this section are available at https://github.com/

longcheng11/ECA

1) Platform: We evaluate our approach over a cluster.

Each node we used has 4 CPU cores running at 2.80 GHz

with 32GB of RAM and nodes are connected by Infiniband.

The operating system is Linux kernel version 2.6.32-279 and

the software stack consists of Spark version 2.0.0, Hadoop

version 2.7.3, Scala version 2.11.4 and Java version 1.7.0 25.

Moreover, we use Metis version 5.1.0 to partition a correlation

graph as we have described.

2) Datasets: We measure the quality of discovered rules

over a real log we collected from a commercial corporation.

As shown as in Figure 6(a), the pre-possessed log (referred

to as X) we used has 16 attributes. The 8-th attribute (i.e.,

DCN) is used as the case id in our real process mining

analytics. Therefore, the rule ex.A8 = ey.A8 should be the

ideal condition in our event correlations. As an example of

the log, the third column of table in Figure 6(a) shows the

detailed values of the first event in our test data.

We run our performance tests over different datasets based

on an event log extracted from the SCM business service [6].

This log has been used as a benchmark dataset for performance

evaluations in the work [5], [6] as well. The original event log

has 19 attributes and 4,050 events. To evaluate our approach in

large-scale cases, we use a same approach as [5] to increase

both the number of events and attributes while maintaining

the data behavior and distribution of the log. As a default, we

increased the number of events and attributes by a factor of

250 and 2, respectively. Namely, there are around 1 million

events and 38 attributes in the default dataset.

0 Event ID 0

1 Start End start

2 ITE ID 40842566

3 TAS ID 3

4 TAS NAME OCRFlowValve

5 STACKNAME STACK 9 201510300837

6 BATCHNAME BATCH 4 15103003596

7 BATCHNAME 2 BATCH 4

8 DCN 151030808370

9 ITS STATUS 2

10 STATUS A

11 ITS DTSTART 2015-11-01 21:15:09.040

12 IMAGECOUNT 12

13 PAGECOUNT 12

14 PROCESSDATE 2015-10-30 00:00:00

15 USE LOGIN MrAuto

16 KEYLOCATION Cebu

(a) attribute names and example values

correlated e1 e2 e3 e4
e1 1 1 0 0

e2 1 1 0 0

e3 0 0 1 1

e4 0 0 1 1

(b) matrix for the ideal condition

correlated e1 e2 e3 e4
e1 1 1 1 1

e2 1 1 1 1

e3 1 1 1 1

e4 1 1 1 1

(c) matrix for the rule A1 = A2

Fig. 6: The attribute names of log X we used in our quality

validation, and example correlation matrices.

3) Setup: We set the following system parameters for

Spark: spark worker memory and spark executor memory
are set to 30GB and spark worker cores is to 4. Recall

that there are two application parameters: (1) α, namely the

threshold for distinct ratio(Ai) and shared ratio(ψ); and

(2) β, namely the threshold of PI ratio(ψ). Because the

power of our filtering operation will rely on the value the

first parameter, to examine the performance difference with

different α, we will vary its value in our tests, from 1% to 10%.

In contrast, the value of β only impacts final output and not the

correlation cost on computing and network communication.

Therefore, we just fix its value in all performance tests. Like

in [5], we set its value to 0.5. In all our experiments, the

operations of input file reading and final result output are

both on the HDFS system. We measure runtime as the elapsed

time from job submission to the job being reported as finished.

Because we want to focus on the runtime performance of each

correlation implementation, we only record the number of the

final outputs, rather than materializing them. As a default, we

implement our tests using 9 nodes, composed one master node

and 8 worker nodes (i.e., 32 cores).

B. Quality of Event Correlations

We use accuracy over correlation matrices to measure the

quality of discovered rules6. An example of a correlation

matrix is shown in Figure 6(b). There, for the log L1 in Table I,

we can build a 4 × 4 matrix. If we know that, for an ideal

condition (i.e., a known case id for a business process [3]), the

events e1 and e2 are correlated, and e3 and e4 are correlated,

then we can mark the correlated events with 1, otherwise 0, in

the matrix. The accuracy of a discovered rule is the fraction

of marked values in its correlation matrix that are correct,

compared to the ideal one. For example, with the correlation

rule A1 = A2 over L1, we discover the process instance

〈e1, e2, e3, e4〉. Note that all the four events are correlated

to each other, and we have its correlation matrix shown as

Figure 6(c). By comparing it with the ideal one we can derive

that its accuracy is 0.5. We calculate the accuracy for all

discovered rules and then sort their values. In such scenarios,

the higher a value is, the better the rule will be.

6We only conduct an initial evalution here, intead of detailed analysis on
the real quality of process mining results.

77



condition score

(8,8) 1.0

(6,6) 0.9995673

(2,2) 0.9995673

(a) α = 0.01 and β = 0.5

condition score

(8,8) 1.0

(6,6) 0.9995673

(2,2) 0.9995673

(b) α = 0.001 and β = 0.5
condition score

(8,8) 1.0

(6,6) 0.9995673

(2,2) 0.9995673

(c) α = 0.01 and β = 0.8

condition score

(8,8) 1.0

(6,6) 0.9995673

(2,2) 0.9995673

(d) α = 0.001 and β = 0.8

Fig. 7: Correlation accuracy over the log X .

We choose the first 10000 events from the collected X
log for the quality evaluation. The reason we did not choose

more events, is that the correlation matrices would consume

excessive amount of memory. For example, for 1 million

events and each event id is an integer, a correlation matrix

will consume 4TB memory (i.e., 4Byte×106 × 106). We vary

the values of α and β, and the results are shown in Figure 7. It

can be seen that the results for the discovered rules and their

scores are the same for all the cases, even with a very small

α = 0.001 and a big β = 0.8. Moreover, for each condition,

the score of the rule (8,8) is 1, which is consistent with

our expectation that the correlation over the attribute DCN is

actually the ideal condition. Moreover, we see that accuracy of

the rules (6,6) and (2,2) is very close to 1, which means

that the 6-th and 2-th attribute of the log can be treated as

case identifiers in the condition of missing the attribute DCN.

Consider the hierarchy of the log, this is reasonable, since

the ITE_ID and BATCHNAME are the upper level attributes

of events. It is likely that events correlated on DCN will be

correlated based on their values in ITE_ID and BATCHNAME.

These initial results suggest that the correlation approach we

adopted in this work is also applicable in real-life settings.

C. Performance Results

Next, we present our performance results including runtime,

network communication as well as scalability as below.

1) Efficiency: We evaluate the efficiency of our approach by

comparing its runtime with the HVC approach [5]. Moreover,

to better compare the two algorithms, we also measure the

number of generated message pairs in their implementations.

As described previously, this metric represents the potential

cost on network communication and computing in a correla-

tion execution.

We execute each approach with varying the values of the

application parameter α, from 1% up to 10%, over the default

data. The results for the runtime and the number of generated

message pairs (referred to as gmp) are presented in Figure 8.

Figure 8(a) shows that our algorithm performs much faster

then the HVC algorithm in all the cases, and is able to achieve

a speedup of 4.5− 10.7×. When varying the value of α, the

runtime of the HVC method is generally the same. In our

approach, it decreases when increasing the value of α. This

is reasonable, as HVC always generates message pairs for all

the possible correlation rules, i.e., the number of gmp is a

fixed value, making its cost on network communication and
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Fig. 8: The efficiency of each algorithm over the default

dataset, with varying the values α (using 32 cores).

α 1% 10%

Scale 0.5 1 2 0.5 1 2

Speedup 5.1 4.5 > 6.6 8.0 10.7 > 44.7

(a) varying the scale factor of number of events

α 1% 10%

Scale 0.5 1 2 0.5 1 2

Speedup 1.6 4.5 > 50.7 5.2 10.7 > 61.3

(b) varying the scale factor of number of attributes

Fig. 9: Speedup achieved by RF-GraP over HVC with varying

the scale factors over the default data (with 32 cores).

computation constant. In comparison, our approach only needs

to process message pairs over the filtered rules, and the power

of the filtering is more effective when increasing the value of

α. This can also be observed in Figure 8(b). There, the results

demonstrate that the number of gmp of our approach is much

less than Hash, and this number decreases obviously with the

increase of α.

2) Cardinality Experiments: To see how the performance

changes with increasing the number of events and attributes

in a log, we have done the following two tests based on the

default dataset: (1) We fix the attributes of the log, to 38, and

vary the number of events from 0.5 million to 2 million; and

(2) We fix the number of events to 1 millions, and vary the

number of attributes from 19 to 76. We also vary the threshold

α for each case. As the trends of the results are very similar

to each other, we only report the conditions with α = 1% and

10% here.

In our tests, several runs of the HVC approach aborted

unexpectedly while raising the exception job aborted due
to stage failure in Spark. Upon further analysis, we think

the possible reason for this is that the number of generated

message pairs is too large in HVC. This results in out-of-

memory problems or the size of a partition of a RDD [7]

exceeding its maximum value. For this condition, we just

record the runtime of HVC from a job submission until the

job is aborted, and mark the achieved speedup with a symbol

“>” in our results. The results are presented in Figure 9(a) and
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Fig. 10: The network communication of each algorithm when

using 8 workers (log-scale).

Figure 9(b) respectively. It can be seen that our approach can

always achieve a significant speedup over the HVC method,

and the speedup is becoming more obviously with increasing

either the number of events and attributes, highlighting its

advantages on processing large event logs.

3) Network Communication: Performance regarding com-

munication cost is evaluated by recording the metric Shuffle
Read, as provided by Spark. It records the data in bytes read

from remote executors (machines) but not the data read locally.

This means that this metric indicates the data transferred

around the underlying networks during the correlation imple-

mentations. The results by varying threshold α over the default

dataset with 8 workers (32 cores) are shown in Figure 10(a).

It can be seen that our approach transfers about 43−74 times

less data than HVC. Moreover, to analyze the load balancing

properties of each algorithm, we also measure the Shuffle Read
at each executor. As shown in Figure 10(b), the transferred

data is generally evenly redistributed over all the executors,

implying that there are no hot spot in both the algorithms.

4) Scalability: We test the scalability (scale-out) of our

approach by varying number of slaves (workers) over the

default dataset, from 8 cores (2 nodes) to 64 cores. The test

results for our algorithm and the HVC approach are shown

in Figure 11. There, for simplicity, we also only report the

cases with α = 1% and 10%. As the submitted jobs of HVC

are aborted when using 2 and 4 worker nodes, we just add an

artificial dashed line to demonstrate its potential scalability.

We can see that the runtime of both the algorithms decreases

with increasing the number of cores under different α. This

means that both RF-GraP and HVC generally scale well with

the number of workers. Moreover, we can see that the benefit

of adding more workers (i.e., the scaled speedup) decreases

for our approach, though the runtime becomes lower. We

attribute this to the overhead caused by underlying platform

and statistic-based operations in our approach. Upon closer

inspection of the results, we can observe the achieved runtime

speedups under small α is higher than that under large α. The

reason is that the transferred data is very small for the case

with a large α and this results in the network and computing

workloads are comparably small for the underlying platform in

our approach. In general, our algorithm always performs much
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Fig. 11: Scalability of our algorithms by varying the number

of executors.

faster than HVC, even when using a small number of cores.

All of these indicate that our method will be more suitable for

large event log processing than the HVC approach.

V. RELATED WORK

Correlating events is a challenging problem in both the

fields of process mining and service mining [15]. Up to now,

various approaches have been proposed on identifying process-

related events and discovering event correlations [6], [10],

[16], [17], [18], [19], [20], [21]. For example, Pourmirza et

al. [10] propose a linear programming based method for min-

ing process models over a log that contains no case identifiers.

Poggi et al. [16] introduce a methodology to classify and

transform clicked URLs into events and consequently extract

business models from web logs. Moreover, Georgakopoulos

et al. [21] analyze how events in business processes could be

grouped into instances of the execution of business processes,

and Motahari-Nezhad et al. [6] investigate the problem of

correlation condition discovery. We have shown that these

approaches (e.g., [6]) are truly efficient in our quality experi-

ments. However, most of these approaches focus on high-level

methods for event correlations, and few of them have ever

considered the detailed performance or scalability issues in the

presence of big data. In comparison, our approach provides a

much better scalable way to deal with huge event logs.

In fact, quantity of available event data from current in-

formation systems is increasing in an unprecedented pace,

and this has posed new challenges for current mining tech-

niques [22]. To efficient identify and discover event correlation

conditions for the purpose of process instance discovery over

large event logs, the state-of-the-art approach [5] uses MapRe-

duce leveraging distributed environments. One of its main

targets is to investigate how data and computations should

be partitioned and distributed over underlying nodes, so that

the correlation tasks can be efficiently computed in parallel.

Although the approach in [5] has achieved obvious perfor-

mance improvements over the standalone implementation [6],

we have shown in our experimental results that our approach

can perform much faster in various situations.

To support parallel and distributed applications, various

parallel programming languages and paradigms have been
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developed by the high performance computing community

(e.g., MPI [23]) and large scale data-analytics community

(e.g., MapReduce [12] and Spark [7]). It is obvious that imple-

menting an application using different languages and systems

mentioned above would lead to different application execution

times. Regardless, the technique used for parallel execution

is actually more important than the language/paradigm used

for implementations [24]. For example, the generating-and-

pruning based correlations [5] would always generate huge

number of message pairs and lead to heavy network com-

munication, in the presence of large event logs, irrespective

of the underlying implementation systems. In contrast to this,

our filtering-and-verification based approach is able to highly

reduce the responsible cost, as it can prune large numbers of

noninteresting rules before actually generating message pairs.

It should be noticed again that network communication is

critical for high-level applications in terms of performance im-

provements, since data transfers could account for more than

50% of job completion time in large data applications [14].

We have adopted a graph-based method for data partitioning

to facilitate the parallel implementation of event correlations,

which is motivated by studies on graph query answering in the

data management domain. Usually, with an efficient graph par-

titioning, graph queries are able to be answered by subgraph

isomorphism [25]. Different from this, we focus on reducing

generated message pairs based on the correlation graph gen-

erated by the potentially interesting correlation conditions. In

our prototype, we adopt the commonly used vertex partitioning

and then manually balance the workloads on each node. In

fact, we can use more advanced techniques, such as balanced

graph partitioning [26], to further improve the robustness of

our approach in different distributed environments.

VI. CONCLUSION

In this paper, we discussed the importance of event cor-

relation and revealed possible performance issues of current

approaches in the presence of large event logs. Based on

this analysis, we have introduced a new approach, called RF-

GraP, which aims a much more efficient event correlation

while leveraging state-of-the-art distributed systems. We have

described the detailed design and implementation of our

approach, and conducted an experimental evaluation which

included a comparison with a competing approach using the

Spark platform [7]. Our experimental results have shown that

the proposed algorithm is highly efficient and can achieve

significant speedups over the state-of-the-art, and with much

less network communication.
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