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Abstract. Deviating behavior within an organization can lead to unexpected results. The effects of deviations are often neg-
ative, but sometimes also positive. Therefore, it is useful to detect deviations from event logs which record all the behavior
of the organization. However, existing model-based and cluster-based approaches are inaccurate or slow when dealing with
complex event logs, i.e. logs of less structured processes having many activities and many possible paths. This paper proposes
a novel approach that is faster than cluster-based approaches because it creates a so-called profile which is less time-consuming
than creating clusters. Furthermore, the approach is also more accurate than model-based approaches because we use an it-
erative approach to improve the result. Our experiments show that approach outperforms existing techniques in a variety of
circumstances.

Keywords: Process mining, deviation detection, clustering, behavioral profiles

1. Introduction

Process mining is a family of techniques to extract knowledge about business processes from event
logs which record process executions consisting of different business activities [1]. Process mining tech-
niques are widely used, not only in situations where processes are structured and well-defined (e.g.,
procurement, finance, and e-government), but also in environments such as healthcare, customer rela-
tionship management (CRM) and product development where things are less structured [2]. Such envi-
ronments often allow for a higher degree of freedom and this may lead to unexpected deviations, e.g.,
a patient can directly visit a doctor without an appointment in an emergency. Since deviations impact
business processes, it is of the utmost importance to detect them from event logs.

Deviation detection is a significant problem which has been explored within diverse research areas
and application domains [3], such as detecting failure behavior (e.g., bugs) in software systems [4],
detecting fraudulent claims in insurance companies [5] and detecting intrusions in a network [6]. The
lion’s share of deviation detection done in context of process mining focusses on conformance checking.
This requires a normative model and therefore knowledge of what constitutes a deviation. In this paper
we focus on deviation detection without a normative process model and just used the event data to detect
deviations.

Deviation detection techniques can be divided into two categories, i.e., model-based approaches
and cluster-based approaches. Techniques in the first category basically employ conformance check-
ing method on a discovered process model to detect deviations [7,8]. These techniques first mine an
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Fig. 1. A model discovered from BPI Challenge 2012.

appropriate model as a reference model and then classify cases which do not fit the model as devi-
ations. This works well on structured processes, but has problems when dealing with less structured
processes. It is difficult to specify an appropriate model in this setting due to the high variety of be-
havior. Within the second category, techniques use clustering [9–11] to detect deviations based on the
idea of perceiving cases in small clusters as deviations. In this case there is no conformance checking
on a discovered reference model: by grouping similar cases the outliers become visible. Clustering tech-
niques are more suitable for complex processes (i.e., no need to learn a reference model), but they are
more time-consuming compared to techniques in the first category. In summary, although there already
exist techniques such as the ones mentioned above, deviation detection in less structured environments
remains a challenge. As an example, consider a log, recording the behavior for a loan process, extracted
from the BPI Challenge 2012.1 Due to the high variability (13087 cases, 4366 traces and 36 activities),
discovered models look like the model in Fig. 1 and cannot serve as a reference model. Clustering on
the other hand takes to long. For example, the clustering algorithm (cf. Section 6.3) takes 40 minutes on
this moderate sized event log. Later we will show that the approach presented in this paper can uncover
deviations in a fraction of this time while avoiding the creation of a meaningless reference model.

In order to deal with these challenges, we propose a novel approach, whose basic principle is that a
case from a log is a deviation if it is not similar to the collection of mainstream cases in the log.

More precisely, as shown in Fig. 2, (1) we sample the cases (C) from the input log based on a norm
function (cf. Section 4.1) to get a set of “more normal" cases (denoted as CS) as mainstream cases.
(2) Once we have CS , the problem of specifying a deviation has been transformed into computing how
much a case is similar to CS . In order to compute the similarity, one first has to figure out what makes a
case similar to CS . Since the case and CS have different types of characteristics with respect to different
perspectives, we create a so-called profile [19] to characterize them from specific perspectives. (3) Then
we quantify the similarity based on the profile and identify normal cases (CN ) and deviating cases (CD)

1http://www.win.tue.nl/bpi/2012/challenge.
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Fig. 2. The framework of detecting deviations.

according to their similarity. (4) Adjust the norm function to increase (decrease) the likehood that normal
(deviating) cases are sampled. We improve the quality of detected class of deviating cases by iterating
the above steps, and return final deviating cases in the last loop.

In summary, our contribution is based on creating a profile, rather than models or clusters, to detect
deviations and improving the performance iteratively. Our approach is more accurate than model-based
approaches and faster than cluster-based approaches when dealing with complex and less structured
logs.

The remainder of the paper is organized as follows. The next section summarizes existing approaches
for deviation detection. In Section 3, we introduce preliminaries and provide a definition for the profile
notion. Section 4 proposes a framework for detecting deviations and we apply it to the control-flow
perspective in Section 5. The approach has been implemented in ProM and in Section 6 we evaluate the
approach. Finally, Section 7 concludes the paper.

2. Related work

The idea of detecting deviations from event logs is not new and many approaches have been proposed.
In this section, we provide an overview of existing approaches and compare them with our approach.

Model-based Approaches. Bezerra and Wainer [12] propose three similar methods to detect deviating
cases, i.e., threshold ([13] extends it to dynamic thresholds), iterative and sampling algorithms. Among
these methods, the last one gives the best result. It first creates a sample log through sampling a given
log and then considers the cases, which do not perfectly fit the model discovered from the sample log,
as deviations. In [14], authors propose an approach which consists of five steps: (i) scoping, (ii) process
discovery, (iii) filtering of fitting models, (iv) model selection, and (v) splitting of log. The key step in the
approach is to select the most appropriate model which is structurally simple and behavioraly specific
among fitting models. Similarly [15], employs the genetic algorithm [16] to discover an appropriate
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model from a preprocessed log and then classifies the cases which are not instances of the model as
deviations.

The model-based approaches typically discover an appropriate model as a reference model, and then
use the conformance checking technique to classify cases which do not fit the model as deviations.
However, it is a challenging (and often impossible) task to discover and select the appropriate model
from a complex log. In any case this requires domain-specific knowledge. In our approach, a profile is
created to replace the appropriate model to detect deviations, which is much easier and more accurate.

Cluster-based Approaches. Ghionna et al. [17] cluster cases based on frequent patterns extracted from
a log, and then treat cases in clusters whose sizes are below a threshold as deviationss [18] performs
a hierarchical clustering of a log, in which each case is seen as a point of a properly identified space
of features. The method was originally devoted to discovering an expressive process model from each
cluster, but we can also use it to detect deviations by classifying cases in small clusters as deviations.
Song et al. [19] create a profile (which is different from the notion used in this paper) to contain specific
attributes of a case and then map a case to a vector based on the profile. In this way, the whole log is
mapped into a vector space. According to the distances between every two vectors, clusters are generated
and cases in small clusters are considered as deviations.

Cluster-based approaches are more suitable for unstructured processes than model-based approaches.
However, cluster-based approaches are optimized to find clusters rather than deviations. As a conse-
quence, they are time-consuming due to the time it takes to cluster cases. In contrast, our approach is
more efficient since it detects deviations based on the similarity between each case and a sample log.

3. Preliminaries

This paper proposes a novel method based a so-called profile which characterizes “normal cases” from
specific perspectives. In this section, we first define event logs because the definition of a log used in this
paper is quite different from the standard notation [1] and then provide a definition for the profile notion.

Definition 1 (Universes). In the remainder we assume the following universes:
– A is the set of all possible activity names,
– C is the set of all possible case (process instance) identifiers.

Cases (process instances) are represented by a unique identifier. This allows us to refer to a specific
case even if two cases have the same trace.

Definition 2 (Event logs). L = (C,A, ρ) is an event log if and only if:
– C ⊆ C is a set of cases (i.e., process instances),
– A ⊆ A is a set of activities, and
– ρ ∈ C → A∗ maps each case onto a sequence of activities (i.e., a trace).
L is the set of all possible event logs.

Let C = {c1, c2, . . . , cn} denote a set of cases. ρ(C) = [ρ(c1), . . . , ρ(cn)] denotes the multiset of
traces ρ(ci). P(C) is the powerset of C, i.e., C ′ ∈ P(C) if and only if C ′ ⊆ C.

Definition 3 (Profile). Let L = (C,A, ρ) ∈ L be an event log. A profiling function on L is a function
prof L ∈ C × P(C) → [0, 1] that quantifies the similarity between a case and a set of cases (higher is
more similar).
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If a profile is based on some feature f , we write profLf . A profile can be considered as a set of
characteristics extracted from some cases. A profiling function computes the similarity which describes
to what extent the case contains characteristics in the set. A profile is configurable notion and is not
limited to one specific feature. The user can create multiple profile. Next, we combine profiles to quantify
the similarity based on a set of features.

Definition 4 (Combining profiles). Let L = (C,A, ρ) ∈ L be an event log. Let F be a set of features
and w ∈ F → R+ a weight function. prof LF,w ∈ C × P(C)→ [0, 1] takes the weighted average, i.e.,

prof LF,w(c, C
′) =

∑
f∈F w(f)× profLf (c, C ′)∑

f∈F w(f)

The above definitions do not give concrete functions to quantity the similarity. The profile functions
used vary when detecting deviations from different perspectives. In Section 6, we concrete profiles fo-
cusing on the control-flow perspective. In the remainder, we will drop the subscripts and simply assume
a given profile function prof L.

4. A framework for detecting deviations based on profile

In Section 3, we create a profile to quantify the similarity between a case and CS to judge if the
case is deviating. The quality of the judgement depends on CS , i.e., it is better if CS only contains
“more normal” cases. Therefore we exploit the idea of iteratively and incrementally refining CS . By
combining this idea with the profile introduced in the previous section, a novel approach for detecting
deviations is proposed. The approach is a framework since the profile is configurable by selecting or
detecting a suitable profile function, i.e., users can create their own profile to detect deviations from some
perspective. Next, we first illustrate the two main steps of the approach, i.e., sampling and classifying,
and then present the whole framework in Section 4.3.

4.1. Sampling

Basically, we create CS through sampling an event log. In order to make CS contain “more normal”
cases, we need to make these cases more likely to be selected in the sampling step. To this aim, first a
function is created to assign a norm value to each case based on its normality.

Definition 5 (Norm Function). Let L = (C,A, ρ) ∈ L be an event log, and norm ∈ C → R+ is a norm
function that assigns a positive value to each case. The higher the value is, the “more normal” the case
is. Cases with lower norm values correspond to deviating cases.

The norm function needs to be initialized by users and we will give more details in Section 4.3. Based
on norm values and a given sample size, we employ a function named sampling to derive CS from a log,
in which cases with higher norm values are more likely to be included.

Definition 6 (Sampling). Let L = (C,A, ρ) ∈ L be an event log, norm ∈ C → R+ a norm function,
and ss ∈ {0 . . . |C|} a sample size. CS = sample(L, norm, ss) is a random set of cases sampled from
C using a relative likelihood based on norm, i.e., |CS | = ss, CS ⊆ C, and c1 ∈ C is k times as likely to
be included as c2 ∈ C if norm(c1) = k × norm(c2).

Note that the same case cannot be included twice in CS . Of course, two cases having the same trace
may be included in CS if this is mainstream behavior.
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4.2. Classifying

After deriving CS from a log, we compute the similarity by means of a profile. Then, based on the
similarity values of all cases and a given number which indicates the amount of deviating cases, we
partition the log into normal cases (CN ) and deviating cases (CD), and update norm based on the
classification, i,e., assign higher (lower) norm values to normal (deviating) cases.

Definition 7 (Classifying). Let L = (C,A, ρ) ∈ L be an event log, prof L ∈ C × P(C) → [0, 1]
a profiling function, CS ⊆ C a subset of sampled cases, norm ∈ C → R+ a norm function, and
nd ∈ {1 . . . |C|} the number of cases to be marked as deviating. classify(L,CS , nd, norm, profL) =
(CN , CD, norm

′) such that
– CN and CD partition C, i.e., C = CN ∪ CD and CN ∩ CD = ∅,
– |CD| = nd,
– for any cN ∈ CN and cD ∈ CD : profL(cN , CS) > profL(cD, CS),
– norm′ ∈ C → R+ such that norm′(cN ) = norm(cN ) × RN for cN ∈ CN and norm′(cD) =
norm(cD)×RD for cD ∈ CD.

where RN > 1 and 0 < RD < 1 are used to adjust the norm values.

Note that prof L refers to a generic profiling function. It can be based on any profile or combining
profiles as users need, which indicates the algorithm proposed in this section is a generic framework for
detecting deviations.

4.3. The algorithm CyclicSC

The classification step detects deviating cases and updates norm based on CS derived in the sampling
step, while the sampling step creates CS based on norm updated in the classifying step. The above steps
are related to each other and may need to be applied repeatedly to converge. As mentioned in Section
3.2, we want to derive CS which contains “more normal” cases. To this aim, we propose an algorithm
cyclicCS which combines and iterates the above two steps to refine CS , and finally returns the deviating
cases.

Definition 8 (Cycling). Let L = (C,A, ρ) ∈ L be an event log, norm1 ∈ C → {1} a special norm
function that assigns value 1 to each case, ss ∈ {0 . . . |C|} a sample size, prof L ∈ C × P(C)→ [0, 1]
a profiling function, lt ∈ N+ a loop threshold, and nd ∈ {1 . . . |C|} the number of cases to be marked
as deviating. cyclicSC(L, ss, lt, nd) = (CN , CD) based on the following procedure:
1. Let i = 0 and norm = norm1,
2. CS := sample(L,norm, ss),
3. (CN ,CD ,norm

′) := classify(L,CS ,nd ,norm, prof
L),

4. norm := norm′, i := i+ 1, and return to step 2 if i 6 lt or output CN and CD if i > lt.

The above definition presents the input, output and steps of the cyclicSC algorithm, which is also
shown in Fig. 3. Initially, we set i = 0 to let norm = norm1. In each loop, according to the given ss
and the new norm (i.e., generated in the previous loop), a set of cases CS is selected from C using the
function sample. Next, based on CS , nd and prof L, we use the function classify to partition C into CN
and CD, and update norm as the input of the function sample in the next loop. We iterate the above steps
until the ending condition is satisfied, i.e., the number of loops exceeds the threshold lt and then output
CN and CD.
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Fig. 3. The flowchart of the algorithm cyclicSC.

At the beginning of the algorithm, we need to configure some input constants and functions. In our
experiments in Section 6, we let ss = |C|×(1−dp) and nd = |C|×dp, where dp is a given value which
specifies what fraction of the cases in L will be detected as deviating cases. Besides, lt also need to be
specified to control the number of loops. The algorithm is designed in such a way that each refinement
leads to a better CS in most cases. However, this is not always the case. Our experiments show that the
approach tends to converge to a “better” Cs. However, we will also discuss its limitations.

If there is no a-priori or domain knowledge, function norm is initialized as norm1 by default, i.e., we
assume all the cases are on the same “normal” level. However, the sampling stage can also benefit from
a-priori or domain information. For instance, if we know some case is “more normal” in advance, we can
assign a “higher” norm value to it, which helps us achieve a better result, since the initial norm decides
the quality of the first CS and has a major influence on the final CS and CD. On the contrary, if we
assign “lower” norm values to “more normal” cases, the detected deviating cases may not be deviating.
Function prof L needs to be created according to the specific application, and in next section, we present
how to create it for detecting deviations from the control-flow perspective.

5. Detecting deviations using the control-flow perspective: An application of the framework

Using the framework proposed in Section 4, we can detect deviations from different perspectives
through creating different profiles. In this section, we present an application of the framework to detect
deviations from the control-flow perspective. Specifically, we create a combined profile profL{df,de},w1

based on the directly follows relation (df, cf. Section 5.1) and the dependency relation (de, cf. Sec-
tion 5.2) using weight function w1 ∈ F → {1}, i.e., w1(df) = w1(de) = 1. The results are discussed in
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next section. Next to the above two relations, we can use many other relations (e.g., for detecting devi-
ations from other perspectives) where the basic idea of the algorithm still holds. Next, we demonstrate
how to create profiles based on the above two relations, respectively.

5.1. Creating a profile based on the directly follows relation

The directly follows relation is a key relation in process mining used in many model discovery meth-
ods, such as the α-algorithm. It extracts the characteristics of successive relations between events.

The definition of the directly follows relation in this paper is different from the one in [1], where the
relation is in the context of a log and the frequency is not taken into consideration. Here the directly
follows relation is in the context of a case (rather than a log) and the frequency is used to quantify the
directly follows relation. Specifically, given a set of cases C ′, we use, for instance, #C′(a, b) to count
the frequency that a is directly followed by b in the multiset of traces ρ(C ′). Note that a directly follows
relation can occur multiple times in the same trace. Next, we create a profile based on the frequency to
compute the similarity between a case c and a set of cases C ′. The idea is that the similarity is higher if
the directly follows relations in ρ(c) have a higher frequency in ρ(C ′).

Definition 9 (Profile Based On Directly Follows Relation). Let L = (C,A, ρ) ∈ L be an event
log. prof Ldf ∈ C × P(C) → [0, 1] is the profiling function based on the directly follows relation.
With #C′(a, b) =

∑
c′∈C′ |{1 6 i < |ρ(c′)| | (ρ(c′)i, ρ(c

′)i+1) = (a, b)}| and maxfreq(C ′) =
maxa,b∈A#C′(a, b),

prof Ldf (c, C
′) =


∑

16i<|ρ(c)|#C′(ρ(c)i, ρ(c)i+1)

(|ρ(c)| − 1)×maxfreq(C ′)
, if |ρ(c)| > 2

0 , otherwise

In order to better understand the above definition, we use a small example. Consider the set of cases is
C1 with ρ(C1) = [〈a, c, d, f〉10, 〈a, b, d, f〉5, 〈a, c, d, e, b, d, f〉5], and an example case is c1 with ρ(c1) =
〈a, b, d, f〉. Now: #C1

(a, b) = 5, #C1
(b, d) = 10, #C1

(d, f) = 20 and maxfreq(C1) = 20. The
similarity value can be computed as follows: profLdf (c1, C1) = (5 + 10 + 20)/(3× 20) = 0.58.

5.2. Creating a profile based on the dependency relation

The profile based on the directly follow relation only abstracts characteristics between two successive
events. Therefore, it is not enough to adequately represent the control-flow perspective. In order to derive
more features, we create another profile based on a so-called dependency relation to abstract features
between two disconnected events.

Definition 10 (Co-Occurrence Relation). Let A ⊆ A be a set of activities. σ = 〈t1, t2, t3, . . . , tn〉 ∈ A∗
is a trace. a vσ b if and only if there are i, j ∈ {1, . . . , n} and i 6= j such that ti = a and tj = b.

The co-occurrence relation is commutative. For instance, a vσ b is the same as b vσ a which means
both a and b occur in the trace σ. For an example trace σ1 = 〈a, b, d, f〉, the following trace-based
co-occurrence relations can be found:

vσ1
= {(a, b), (b, a), (a, d), (d, a), (a, f), (f, a), (b, d), (d, b), (b, f), (f, b), (d, f), (f, d)}.

Based on the co-occurrence relation, we define the dependency relation to reflect the non-local depen-
dency between events.
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Definition 11 (Dependency Relation). Let L = (C,A, ρ) ∈ L be an event log and C ′ ∈ P(C). minConf
and minSupp are two threshold values. a ⇒C′ b if and only if freq(a, b)/freq(a) > minConf and
freq(a, b)/|C ′| > minSupp with freq(a) = |{c|c ∈ C ′ ∧ a ∈ ρ(c)}| and freq(a, b) = |{c|c ∈
C ′ ∧ a vρ(c) b}|.

For a dependency relation a ⇒C b, a and b are called antecedent and consequent, respectively. Note
that the arrow does not mean b occurs after a in a trace. It states that if we see a, then likely b occurs
in the same trace as well. The arrow means the dependency relation is directional, i.e., the reverse of a
dependency relation does not always hold. For instance, a⇒C b does not imply b⇒C a.

Next, we create a profile based on the dependency relation to compute the similarity between a case
c and a set of cases C ′. The idea is that, for all dependency relations which are derived from C ′ and
whose antecedents occur in ρ(c), we map the similarity to 1 if all their consequents also occur in ρ(c).
Otherwise, we map the similarity to 0. For convenience, we use {x ∈ ρ(c)} to represent the set of all the
activities in ρ(c). For instance, {x ∈ 〈a, b, a, f〉} = {a, b, f}.
Definition 12 (Profile Based On Dependency Relation). Let L = (C,A, ρ) ∈ L be an event log.
profLde ∈ C × P(C)→ {0, 1} is the profiling function based on the dependency relation, i.e.,

profLde(c, C
′) =

{
1, if {x ∈ ρ(c)} ⊇ {b ∈ A|∃a ∈ ρ(c) a⇒C′ b}
0, otherwise

In order to better understand the above definition, we use the same set of cases C1 with ρ(C1) =
[〈a, c, d, f〉10, 〈a, b, d, f〉5, 〈a, c, d, e, b, d, f〉5], and the same case c1 with ρ(c1) = 〈a, b, d, f〉 to explain
it. When both minConf and minSupp are configured as 1, the set of dependency relations derived from
C1 is {a⇒C1

d, a⇒C1
f, d⇒C1

a, d⇒C1
f, f ⇒C1

a, f ⇒C1
d}. Hence {a, b, d, f} ⊇ {a, d, f} and

profLde(c1, C1) = 1.

6. Experiments and evaluation

The cyclicSC algorithm has been implemented as a plugin in the ProM.2 In this section, we test how
parameters of the cyclicSC algorithm influence its performance, and then compare it with other state-of-
the-art techniques both on synthetic and real-life logs.

6.1. Creating synthetic logs and evaluation metrics

First we use synthetic data in order to do a controlled experiments where the ground-truth is known.
The basic process of evaluation on synthetic logs is: (i) creating normal logs, (ii) adding artificial devi-
ations into the logs, (iii) detecting deviations, and (iv) checking whether the detected deviations are real
deviations, i.e., artificial deviations.

In order to get convincing evaluation, it is necessary to test the algorithm on a wide variety of logs.
In this paper, we employ the method in [20] for the random generation of business processes and their
execution logs.

Log Generation. The method has four key parameters AND (A), XOR (X), loop (L) and deep (D)
to control the collection of randomly generated processes as shown in Fig. 4 (e.g., A = 100, X =

2https://svn.win.tue.nl/repos/prom/Packages/LiGuangming/Trunk/.



768 G. Li and W.M.P. van der Aalst / A framework for detecting deviations in complex event logs

Table 1
Created deviating cases using different deviation types

Normal case A C K O N L D B
Add A C D K O N L D B
Remove A C K O L D B
Replace A C K A N L D B
Add, remove & replace A B K N O N D B

Fig. 4. Processes with different parameters.

0, L = 0 and D = 1 indicate there only exist AND split-join patterns in the corresponding process
and the complexity of the process is at level 1). In order to achieve different processes with various
patterns, we set the first three parameters to either 100 or 0, which means the processes contain or do not
contain the corresponding patters. Besides, we vary deep from 1 to 2 to create processes having different
levels of complexity. For the same parameter setting, generated processes may be different. Therefore,
we generate five models for each parameter setting, and then create 10 execution logs for each model.
Eventually, 80 models and 800 logs are created, which cover a wide and representative set of logs. The
800 logs are considered as “normal logs” without deviants.

Once we have synthetic logs, as shown in Table 1, we inject artificial deviations using the following
three deviation types (dt) :

– add an event at a random place in a case;
– remove an event at a random place from a case;
– replace an event at a random place in a case.
In order to control how many normal cases are transformed into deviation, we introduce a parameter

deviation percentage (dp) which describes what fraction of the cases in the log are deviating after we
import deviations. With different deviation types (add, remove and replace) and percentages (0.1, 0.2
and 0.3), we create 9 deviating logs for each normal log, i.e., there are 9×800 logs for next experiments.
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Evaluation Metrics. In a sense, the deviation detection problem can be regarded as a classification
problem with two classes of objects: deviating cases and normal cases. Therefore we can create a con-
fusion matrix [1] to compute accuracy, precision and recall to show the performance of an algorithm to
detect deviations. Since the experiments are on a broad collection of logs (9 × 800 logs), we take the
average value as the final result.

In experiments, the cyclicSC algorithm will always detect the same number of deviations as we create,
which is the reason that the precision and recall are always the same. However, for the naive and clus-
tering algorithms (cf. Section 6.3), these numbers may be different. Sometimes the deviating clusters or
variants may not only contain the right number of cases as we hope. In this case, we find out the closest
number of deviations, i.e., closest to the number of real deviations.

6.2. Controlled parameter settings

Among the parameters of the cyclicSC algorithm, the profiling function profL and the loop threshold
lt have great influence on the performance. In this part, we experiment on 9 × 800 logs always using
ss = |C| × (1− dp), nd = |C| × dp (cf. Section 6.1 for dp) and the initial norm = norm1, to test the
influence and discuss limitations in some situations.

6.2.1. Experiments with psrofiling functions
In Section 5, we create profLdf and profLde based on the directly follows relation and dependency re-

lation, respectively, and then employ the combined profiling function profL{df,de},w1 to detect deviations
from the control-flow perspective. In the following experiments, with lt = 1, we present the performance
of single and combined profiling functions on various logs with different patterns and different deviation
types. For convenience, the three functions are denoted as df, de and {df, de}, respectively.

First we test profiling functions on logs with different patterns (e.g., A=100, X=0 and L=0 indicate
there only exist AND split-join patterns in logs). The first three bar charts in Fig. 5 indicate the perfor-
mance on logs which only contain one type of behavior (e.g., only concurrency). In comparison, profLdf
works better for logs with XOR split-join or loop patterns while profLde performs well for logs with
AND split-join patterns. The last four charts reveal how different profiling functions work on logs with
multiple patterns. Logically, when a new kind of patterns is added into logs, the performance will be
better (worse) if the profiling function can (cannot) manage the patterns. For instance, if we import XOR
patterns into logs which do not contain XOR split-join patterns (Fig. 5(a)), the performance of profLdf
on new logs (Fig. 5(d)) improves as profLdf can well deal with XOR split-join patterns.

Next we test the algorithm on logs with different deviations, i.e., different deviation types (dt) and
percentages (dp). As shown in Fig. 6, in contrast, profLdf suits the add deviation type while profLde fits
the remove deviation type. They perform almost the same for the replace deviation type. For the first
three charts, the deviating cases only contain one corresponding deviation. If we allow for different
types of deviations in a deviating case, e.g., always three types (Fig. 6(d)), performance improves. If
there exist more deviations in a case, the deviating case is easier to detect.

As we can see in the last three charts, along with the increase of the deviation percentage, the per-
formance of profLde drops apparently while the accuracy of profLdf declines slightly. In contrast, profLdf
outperforms profLde and can achieve good recall and precision on logs with high deviation percentages.

In summary: the above experiments show that, profLdf and profLde benefit from particular settings,
while the combined profiling function can achieve the same or a better result than each individual pro-
filing function. This suggests that we can improve performance through extracting more useful features
from a log.
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Fig. 5. The performance of the cyclicSC algorithm configured with different profiling functions for logs with different patterns.

6.2.2. Experiments with loop thresholds
In the algorithm, we try to get a log containing “more normal” cases by integrating the sampling and

classifying steps. However, the actual identification from “normal” cases may fail. Therefore, we test the
algorithm on various logs to reveal this limitation in particular situations.

Since we know which cases are real deviating ones, we filter them to create a normal log. Then, we
replace the sample log with the normal log to detect deviations. In this case, the performance should
be the best and we call it “perfect performance”. In the experiments profL = profL{df,de},w1 and we
compare the performance of the cyclicSC algorithm at different loops with the perfect performance.
If the former performance can approach the latter one, it means the algorithm succeeds in getting a
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Fig. 6. The performance of the cyclicSC algorithm for logs with different deviations.

“normal” log. More precisely, we compare the former performance at the 1st loop (T1), the 6th loop
(T6), and the 15th loop (T15) with the perfect performance.

Among all the logs, we choose four typical logs, Log1 (dp = 10%, dt = add, deep = 1, A = 0, X =
0, L = 0), Log2 (dp = 20%, dt = add, deep = 1, A = 0, X = 100, L = 0), Log3 (dp = 20%, dt =
add, deep = 1, A = 0, X = 0, L = 0) and Log4 (dp = 10%, dt = add, deep = 1, A = 0, X =
100, L = 0) to show performance with respect to the number of loops under different circumstances. As
shown in Fig. 7, the performance of the algorithm for Log1 reaches “perfect performance” after iterating
while the performance for Log2 rises along with loops, but does not reach “perfect performance”. In
contrast, the performance for Log3 and Log4 remains the same when the number of loops increases.
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Fig. 7. Performance of the cyclicSC algorithm with respect to the number of loops.

To sum up, iteration does not refine the result when the performance at the first loop is too bad or as
good as “perfect performance”. Otherwise, through iteration, we can make the performance approaching
“perfect performance”, but cannot guarantee it can reach “perfect performance”.

6.3. Comparison with existing methods

In the following, we compare the cyclicSC algorithm with two other algorithms, i.e., the sampling
algorithm [12] which is a representative model-based method and the clustering algorithm [21] which is
a leading cluster-based method. Besides, we import a baseline method, the naive method which considers
the low frequent variants created by Disco as deviations (Disco3 is a famous software in process mining
field and has a function to abstract variants from a given log).

Except for the naive method, the other three algorithms have parameters to set for good performance.
We have discussed the parameters of the cyclicSC algorithm in previous experiments. For the sampling
algorithm, one needs to choose the mining algorithm (HM, IM or ILP) and the sampling size (0v1.0).
The clustering algorithm needs us to configure the target fitness (0v1.0) and the maximal cluster amount
(1v100). Actually, there are more parameters than what is mentioned above. Here we only consider the
most significant parameters for each algorithm, i.e., the parameters which have a significant influence on
the results. For each parameter setting, we compute the average performance over all the logs created in
Section 5.1. Then we take accuracy, precision, recall and time into consideration and select the best result

3http://www.fluxicon.com/products/.
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Fig. 8. The best performance of four algorithms with their parameter settings.

for each algorithm. By selecting the parameter setting which performs best, we avoid unfair comparisons
due to poor settings. The accuracy, precision, recall and the corresponding parameter setting are shown
in Fig. 8 while the average time is shown in Table 2.

Overall, as shown in Fig. 8, the naive algorithm performs worst while the other three have their own
advantages. The cyclicSC algorithm provides results with better accuracy than others, while the cluster-
ing algorithm has high accuracy and precision, but low recall. The sampling algorithm has the best recall
but the accuracy is not good.

Besides the overall performance, we also look into how each algorithm performs in different situations.
First we see how each algorithm works on logs of different complexity. More precisely, we classify the
logs into two categories in terms of the parameter deep (deep indicates the complexity of the models
which generate the synthetic logs), and the performance is shown separately in Figs 9(a) and (b).

As shown in Fig. 9(a), when the underlying model (i.e., the model to generate logs) is easy, the sam-
pling algorithm performs best since it can discover a model which is almost the same as the underlying
model. The cyclicSC and naive algorithms also work well, while the clustering algorithm achieves bad
performance since it often classifies normal and deviating cases into one cluster. When the underlying
model is complex, the sampling algorithm tends to obtain an easy model and considers normal cases
as deviating ones by mistake, which leads to high recall and low accuracy as shown in Fig. 9(b). The
naive algorithm achieves bad performance since in this case, there exist many normal unique traces such
that cases having these traces may be classified as deviating cases. In contrast, the clustering algorithm
performs best while the cyclicSC algorithm achieves a medium performance.

Next, we compare the performance of four algorithms on logs based on processes employing different
patterns. Similarly, we split logs into two categories in terms of parameter A,X and L, respectively. For
instance, Fig. 9(c) shows the performance on half of all the logs, i.e., on logs which do not contain AND
split-join patterns.

In comparison, the cyclicSC algorithm performs better than others on logs with AND patterns and logs
without XOR or loop patterns, while the clustering algorithm has very different characteristics, i.e., logs
with XOR and loop patterns are handled well, but does not perform well on logs with AND patterns. The
naive approach works well when L = 0, but performs poorly in other situations. The sampling algorithm
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Fig. 9. The performance of four algorithms on logs with different structure.

is impacted greatly by the AND patterns, i.e., it achieves the best performance among the algorithms on
logs without AND patterns, but the other way around on logs with AND patterns. Relatively, the XOR
and loop patterns have little influence on the sampling algorithm.

Figure 9 shows the comparison among four algorithms for logs with different structures. We also
tested how sensitive the four algorithms are with respect to different deviation percentages and devia-
tion types. As shown in the top three charts in Fig. 10, along with the increase of deviation percentage,
the performance of clustering and sampling algorithms degrades while the performance of the cyclicSC
algorithm remains stable. The naive algorithm has bad precision and recall when the deviation percent-
age is low. In comparison, the cyclicSC algorithm is more suitable for high deviation percentage. For
different deviation types as shown in the bottom three charts, the clustering and sampling algorithms
perform poorly for the remove deviation type while the other two algorithms are hardly influenced by
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Fig. 10. The performance of four algorithms for different deviations.

the different deviation types. When we mix the three different deviation types together, the cyclicSC
algorithm and the clustering algorithm outperform the other ones. Overall, the cyclicSC algorithm has
better performance and stability than the others considering a range of different situations. This does
not imply that our approach always works best, however, it is more robust for the 9 × 800 event logs
considered.

Next, we compare the running time of four algorithms over various logs as shown in Table 2. More
specifically, we classify all logs into two or three categories based on each parameter and then compute
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Table 2
The running time of four algorithms over various logs

Log settings Time(ms)
CyclicSC Naive Clustering Sampling

X = 0 346 (± 309) 141 (± 233) 2,917 (± 7,021) 698 (± 1,035)
X = 100 408 (± 337) 198 (± 326) 5,451 (± 12,475) 836 (± 833)
A = 0 404 (± 370) 154 (± 238) 1,004 (± 1,517) 722 (± 696)
A = 100 350 (± 269) 185 (± 324) 7,364 (± 13,620) 812 (± 1135)
L = 0 219 (± 127) 56 (± 158) 2,126 (± 6,794) 514 (± 849)
L = 100 535 (± 381) 284 (± 334) 6,242 (± 12,388) 1020 (± 962)
dp = 10% 382 (± 333) 161 (± 277) 3,729 (± 10,121) 787 (± 853)
dp = 20% 376 (± 328) 170 (± 286) 4,217 (± 10,234) 778 (± 1128)
dp = 30% 374 (± 315) 178 (± 293) 4,607 (± 10,285) 736 (± 819)
dt = add 380 (± 328) 173 (± 289) 4,365 (± 10,214) 772 (± 815)
dt = remove 376 (± 328) 165 (± 279) 3,834 (± 10,186) 713 (± 802)
dt = replace 375 (± 320) 169 (± 285) 4,348 (± 10,234) 813 (± 1165)
D = 1 195 (± 54) 17 (± 12) 282 (± 218) 272 (± 117)
D = 2 559 (± 376) 324 (± 339) 8087 (± 13321) 1262 (± 1288)
average 377 (± 324) 170 (± 285) 4185 (± 10184) 767 (± 941)

the average time on logs of each category for each algorithm. For instance, we separate all logs into
two parts based on parameter X (0 or 100) and the first row in Table 2 shows the average time on logs
of the part whose parameter X = 0. As we can imagine, the naive algorithm takes the least time in
all situations. On average, the cyclicSC algorithm is faster than the sampling and clustering algorithms.
Specifically, the running time of the clustering algorithm rises dramatically when the complexity of logs
increases fromD = 1 toD = 2. In summary, the clustering algorithm takes far more time than the other
three algorithms, especially for complex logs, while the naive and cyclicSC algorithms use less time in
all situations.

6.4. Example with a real-life log

The final part of the experimental evaluation comprises the application of four algorithms to a real
life-log which we mentioned in Section 1. The log is derived from BPI Challenge 2012 and it contains
262,200 events in 13,087 cases which record the loans in a bank for a period of five months. For the
deviation detection based on such a real-life log, it is impossible to verify the accuracy, precision and
recall, since we do not know which cases are real deviations. Therefore, we find out one deviating case
from the log with each algorithm and compare the four cases on the activity frequency and running time
perspectives.

As shown in Fig. 11, the cyclicSC algorithm achieves a deviating case (case ID: 197216) which mainly
contains an infrequent activitiy, “W_Beoordelen fraude” which means a fraudulent activity and occurs
very little (there are just 0.25% of all events in the log having this activity). The naive algorithm finds
an approved loan (case ID: 173736) as a deviation. However, the detected deviating case is not a real
deviation, but a unique trace which has some frequent activities, e.g., “W_Nabellen incomplete dossiers”
(8.7%). The sampling algorithm detects an unfinished loan (case ID: 211182) while the clustering algo-
rithm takes quite a long time to get a cancelled loan (case ID: 176894). The deviations detected by the
above two approaches contain a frequent activity “W_Completeren aanvraag” (18%).

On the running time perspective, the naive algorithm spends the least time (44 seconds) among the four
algorithms. The sampling algorithm uses 65 seconds to finish the detecting process (i.e., conformance
checking). However, if we take the process to create and find an appropriate model into consideration,
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Fig. 11. Detected deviations from a real-life log.

the practical time is much more than 65 seconds. The clustering algorithm takes much longer time (40
minutes) than the others. In comparison, our approach uncovers deviations in a fraction of the time used
by clustering (140 seconds) while avoiding the creation of a reference model.

Through analyzing the activity frequency and running time perspectives, we figure out the cyclicSC
algorithm can achieve a meaningful result and take limited time when applied to a real-life log.

7. Conclusion and future work

Traditional deviation detection approaches have problems in situations where event logs contain a
variety of process behavior. In this paper, we propose a novel algorithm named cyclicSC which is faster
than cluster-based approaches and more accurate than model-based approaches. Besides, experiments
based on 80 models and 9 × 800 logs suggest that the cyclicSC algorithm is more robust than others.
The framework is configurable and we used it to create a concrete approach for detecting deviations
from control-flow perspective. One can edit the profiling function to detect deviations from specific
perspectives. We compared the cyclicSC algorithm with existing methods on synthetic and real-life logs
to illustrate its properties.

The cyclicSC algorithm also has some limitations (cf. Section 6.2.2). For instance, in some situations,
the loops are not handled properly, yet overall the approach is more robust than others. In future work we
would like to address these limitations and apply the approach to more real-life event logs for which we
engage with end-users to establish the ground truth (as we did for the synthetic data). We would also like
to test the approach in a streaming setting with concept drift. In this setting the process may gradually
change and including what constitute its mainstream behavior. The iterative nature of the approach seems
particulary suitable to handle this scenario.
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Appendix: The algorithm cyclicSC

In the paper, we describe the CyclicSC algorithm by providing definitions and illustrating the main
ideas using the flowchart in Fig. 3. In this appendix, we give the pseudo code of the algorithm to better
explain the algorithm.

Algorithm 1 CyclicSC: discover deviating cases in an event log
Input:

An event log L = (C,A, ρ), a sample size ss, a number lt, a profiling function ProfL, a norm function norm1, a number
nd;

Output:
A set of deviating cases CD;

1: norm = norm1

# norm is a function which assigns a value to each case based on its normality; it is initialized as norm1 to assign a value
1 to each case

2: for i = 1 to lt do
3: C′ = C
4: CS = ∅
5: CD = ∅

Phase 1: Sampling
6: for i = 1 to ss do
7: c = rouletteWheelSelection(norm,C′)

# rouletteWheelSelection is a function which randomly selects a case c from C′ using a relative likelihood based
on norm, i.e., c1 ∈ C′ is k times as likely to be selected as c2 ∈ C′ if norm(c1) = k × norm(c2)

8: C′ = C′\{c}
9: CS = CS ∪ {c}

10: end for
Phase 2: Classifying

11: for each c ∈ C do
12: similarity(c) = ProfL(c, CS)

# similarity is a function which assigns a value to each case to indicate how much it is similar to CS

13: end for
14: similarityList = ranking(similarity, C)

# ranking is a function which returns a list in which all cases of C are ranked based on their similarity values (from
small to large), i.e., c1 ∈ C is before c2 ∈ C in similarityList if similarity(c1) 6 similarity(c2)

15: for each c ∈ C do
16: if similarityList.IndexOf(c) > nd then
17: norm(c) = norm(c)×RN

18: else
19: norm(c) = norm(c)×RD

20: CD = CD ∪ {c}
21: end if

# similarityList.IndexOf(c) indicates the index of c in similarityList; RN > 1 and 0 < RD < 1 are used
to adjust the norm values.

22: end for
23: end for


