
Workflow Verification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques

W.M.P. van der Aalst

Eindhoven University of Technology, Faculty of Technology and Management, Department of
Information and Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl

Abstract. Workflow management systems facilitate the everyday operation of
business processes by taking care of the logistic control of work. In contrast to
traditional information systems, they attempt to support frequent changes of the
workflows at hand. Therefore, the need for analysis methods to verify the cor-
rectness of workflows is becoming more prominent. In this chapter we present
a method based on Petri nets. This analysis method exploits the structure of the
Petri net to find potential errors in the design of the workflow. Moreover, the
analysis method allows for the compositional verification of workflows.

1 Introduction

Workflow management systems (WFMS) are used for the modeling, analysis, enact-
ment, and coordination of structured business processes by groups of people. Business
processes supported by a WFMS are case-driven, i.e., tasks are executed for specific
cases. Approving loans, processing insurance claims, billing, processing tax decla-
rations, handling traffic violations and mortgaging, are typical case-driven processes
which are often supported by a WFMS. These case-driven processes, also called work-
flows, are marked by three dimensions: (1) the control-flow dimension, (2) the resource
dimension, and (3) the case dimension (see Figure 1). The control-flow dimension is
concerned with the partial ordering of tasks, i.e., the workflow process. The tasks which
need to be executed are identified and the routing of cases along these tasks is de-
termined. Conditional, sequential, parallel and iterative routing are typical structures
specified in the control-flow dimension. Tasks are executed by resources. Resources are
human (e.g., employee) and/or non-human (e.g., device, software, hardware). In the re-
source dimension these resources are classified by identifying roles (resource classes
based on functional characteristics) and organizational units (groups, teams or depart-
ments). Both the control-flow dimension and the resource dimension are generic, i.e.,
they are not tailored towards a specific case. The third dimension of a workflow is con-
cerned with individual cases which are executed according to the process definition
(first dimension) by the proper resources (second dimension).

Managing workflows is not a new idea. Workflow control techniques have existed
for decades and many management concepts originating from production and logis-
tics are also applicable in a workflow context. However, just recently, commercially
available generic WFMS’s have become a reality. Although these systems have been

case dimension

control-flow dimension

resource dimension

task

case
work item

activity

resource

Fig. 1. The three dimensions of workflow.

applied successfully, contemporary WFMS’s have at least two important drawbacks.
First of all, today’s systems do not scale well, have limited fault tolerance and are in-
flexible. Secondly, a solid theoretical foundation is missing. Most of the more than 250
commercially available WFMS’s use a vendor-specific ad-hoc modeling technique to
design workflows. In spite of the efforts of the Workflow Management Coalition [25],
real standards are missing. The absence of formalized standards hinders the develop-
ment of tool-independent analysis techniques. As a result, contemporary WFMS’s do
not facilitate advanced analysis methods to determine the correctness of a workflow.

As many researchers have indicated [11, 18, 26], Petri nets constitute a good start-
ing point for a solid theoretical foundation of workflow management. In this chapter
we focus on the control-flow dimension. We use Petri nets to specify the partial order-
ing of tasks. Based on a Petri-net-based representation of the workflow, we tackle the
problem of verification. We will provide techniques to verify the so-called soundness
property introduced in [2]. A workflow is sound if and only if, for any case, the process
terminates properly, i.e., termination is guaranteed, there are no dangling references,
and deadlock and livelock are absent.

This chapter extends the results presented in [2]. We will show that in most of the
situations encountered in practice, the soundness property can be checked in polyno-
mial time. Moreover, we identify suspicious constructs which may endanger the cor-
rectness of a workflow. We will also show that the approach presented in this chapter
allows for the compositional verification of workflows, i.e., the correctness of a process
can be decided by partitioning it into sound subprocesses. To support the application
of the results presented in this chapter, we have developed a Petri-net-based workflow
analyzer called Woflan [4, 5, 23, 24]. Woflan is a workflow management system inde-
pendent analysis tool which interfaces with some of the leading products at the Dutch
workflow market.

2 Workflow Perspectives

This chapter uses the soundness property as the criterion for correctness. It is clear
that this property does not capture all possible errors because it primarily focuses on

the control flow. Before we focus on techniques to verify soundness, we discuss the
usefulness of a control-flow-based criterion for correctness.

The primary task of a workflow management system is to enact case-driven business
processes by joining several perspectives. The following perspectives are relevant for
workflow modeling and workflow execution: (1) control flow (or process) perspective,
(2) resource (or organization) perspective, (3) data (or information) perspective, (4) task
(or function) perspective, (5) operation (or application) perspective. These perspectives
are similar to the perspectives given in [16] and the control flow and resource perspec-
tives correspond to the first two dimensions shown in Figure 1. The third dimension
reflects the fact that workflows are case-driven.

In the control-flow perspective, workflow process definitions (workflow schemas)
are defined to specify which tasks need to be executed and in what order (i.e., the rout-
ing or control flow). A task is an atomic piece of work. Workflow process definitions
are instantiated for specific cases (i.e., workflow instances). Since a case is an instantia-
tion of a process definition, it corresponds to the execution of concrete work according
to the specified routing. In the resource perspective, the organizational structure and
the population are specified. The organizational structure describes relations between
roles (resource classes based on functional aspects) and groups (resource classes based
on organizational aspects). Thus clarifying organizational issues such as responsibil-
ity, availability, and authorization. Resources, ranging from humans to devices, form
the organizational population and are allocated to roles and groups. The data perspec-
tive deals with control and production data. Control data are data introduced solely
for workflow management purposes, e.g., variables introduced for routing purposes.
Production data are information objects (e.g., documents, forms, and tables) whose ex-
istence does not depend on workflow management. The task perspective describes the
elementary operations performed by resources while executing a task for a specific case.
In the operational perspective the elementary actions are described. These actions are
often executed using applications ranging from a text editor to custom build applications
to perform complex calculations. Typically, these applications create, read, or modify
control and production data in the information perspective.

This chapter addresses the problem of workflow verification. Although each of the
perspectives is relevant, we focus on the control flow perspective. In fact, we focus on
the life cycle of one case in isolation. In the remainder of this section, we will motivate
why it is reasonable to abstract from the other perspectives when verifying a workflow.

We abstract from the resource perspective because, given today’s workflow technol-
ogy, at any time there is only one resource working on a task which is being executed
for a specific case. In today’s workflow management systems it is not possible to specify
that several resources are collaborating in executing a task. Note that even if multiple
persons are executing one task, e.g., writing a report, only one person is allocated to
that task from the perspective of the workflow management system: This is the person
that selected the work item from the in-basket (i.e., the electronic worktray). Since a
person is working on one task at a time and each task is eventually executed by one per-
son (although it may be allocated to a group a people), it is sufficient to check whether
all resources classes have at least one resource. In contrast to many other application
domains such a flexible manufacturing systems, anomalies such as a deadlock resulting

from locking problems are not possible. Therefore, from the viewpoint of verification,
i.e., analyzing the logical correctness of a workflow, it is reasonable to abstract from
resources. However, if in the future collaborative features are explicitly supported by
the workflow management system (i.e., a tight integration of groupware and workflow
technology), then the resource perspective should be taken into account.

We partly abstract from the data perspective. The reason we abstract from produc-
tion data is that these are outside the scope of the workflow management system. These
data can be changed at any time without notifying the workflow management system.
In fact their existence does not even depend upon the workflow application and they
may be shared among different workflows, e.g., the bill-of-material in manufacturing
is shared by production, procurement, sales, and quality control processes. The control
data used by the workflow management system to route cases are managed by the work-
flow management system. However, some of these data are set or updated by humans
or applications. For example, a decision is made by a manager based on intuition or a
case is classified based on a complex calculation involving production data. Clearly, the
behavior of a human or a complex application cannot be modeled completely. There-
fore, some abstraction is needed to incorporate the data perspective when verifying a
given workflow. The abstraction used in this chapter is the following. Since control data
(i.e., workflow attributes such as the age of a customer, the department responsible, or
the registration date) are only used for the routing of a case, we incorporate the routing
decisions but not the actual data. For example, the decision to accept or to reject an in-
surance claim is taken into account, but not the actual data where this decision is based
on. Therefore, we consider each choice to be a non-deterministic one. There are other
reasons for abstracting from the workflow attributes. If we are able to prove soundness
(i.e., the correctness criterion used in this chapter) for the situation without workflow
attributes, it will also hold for the situation with workflow attributes (assuming certain
fairness properties). Last but not least, we abstract from triggers and workflow attributes
because it allows us to use ordinary Petri nets (i.e., P/T nets) rather than high-level Petri
nets. From an analysis point of view, this is preferable because of the availability of
efficient algorithms and powerful analysis tools.

For similar reasons we (partly) abstract from the task and operation perspectives. We
consider tasks to be atomic and abstract from the execution of operations inside tasks.
The workflow management system can only launch applications or trigger people and
monitor the results. It cannot control the actual execution of the task. Therefore, from
the viewpoint of verification, it is reasonable to focus on the control-flow perspective.
In fact, it suffices to consider the life cycle of one case in isolation. The only way cases
interact directly is the competition for resources and the sharing of production data.
(Note that control data are strictly separated.) Therefore, if we abstract from resources
and data, it suffices to consider one case in isolation. The competition between cases
for resources is only relevant for performance analysis.

3 Petri Nets

This section introduces the basic Petri net terminology and notations. Readers familiar
with Petri nets can skip this section.1

The classical Petri net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between two
nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Definition 1 (Petri net). A Petri net is a triple (P; T; F):

- P is a finite set of places,
- T is a finite set of transitions (P \ T = ;),
- F � (P � T) [(T � P) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from
p to t. Place p is called an output place of transition t iff there exists a directed arc
from t to p. We use �t to denote the set of input places for a transition t. The notations
t�, �p and p� have similar meanings, e.g., p� is the set of transitions sharing p as an
input place. Note that we do not consider multiple arcs from one node to another. In
the context of workflow procedures it makes no sense to have other weights, because
places correspond to conditions.

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places, i.e.,M 2 P ! IN.
We will represent a state as follows: 1p1+2p2+1p3+0p4 is the state with one token in
place p1, two tokens in p2, one token in p3 and no tokens in p4. We can also represent
this state as follows: p1 +2p2+ p3. To compare states we define a partial ordering. For
any two states M1 and M2, M1 �M2 iff for all p 2 P : M1(p) �M2(p)

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Given a Petri net (P; T; F) and a state M1, we have the following notations:

- M1

t
!M2: transition t is enabled in state M1 and firing t in M1 results in state M2

- M1 !M2: there is a transition t such that M1

t
!M2

- M1

�
! Mn: the firing sequence � = t1t2t3 : : : tn�1 leads from state M1 to state

Mn via a (possibly empty) set of intermediate states M2; :::Mn�1, i.e., M1

t1
!

M2

t2
! :::

tn�1

! Mn

1 Note that states are represented by weighted sums and note the definition of (elementary)
(conflict-free) paths.

A state Mn is called reachable from M1 (notation M1

�

! Mn) iff there is a firing
sequence � such that M1

�
! Mn. Note that the empty firing sequence is also allowed,

i.e., M1

�

!M1.
We use (PN ;M) to denote a Petri net PN with an initial state M . A state M 0 is a

reachable state of (PN ;M) iff M
�

!M 0.
Let us define some standard properties for Petri nets. First, we define properties

related to the dynamics of a Petri net, then we give some structural properties.

Definition 2 (Live). A Petri net (PN ;M) is live iff, for every reachable state M 0 and
every transition t there is a state M 00 reachable from M 0 which enables t.

A Petri net is structurally live if there exists an initial state such that the net is live.

Definition 3 (Bounded, safe). A Petri net (PN ;M) is bounded iff for each place p

there is a natural number n such that for every reachable state the number of tokens in
p is less than n. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

A Petri net is structurally bounded if the net is bounded for any initially state.

Definition 4 (Well-formed). A Petri net PN is well-formed iff there is a state M such
that (PN ;M) is live and bounded.

Paths connect nodes by a sequence of arcs.

Definition 5 (Path, Elementary, Conflict-free). Let PN be a Petri net. A path C from
a node n1 to a node nk is a sequence hn1; n2; : : : ; nki such that hni; ni+1i 2 F for
1 � i � k � 1. C is elementary iff, for any two nodes ni and nj on C, i 6= j)

ni 6= nj . C is conflict-free iff, for any place nj on C and any transition ni on C,
j 6= i� 1) nj 62 �ni.

For convenience, we introduce the alphabet operator� on paths. IfC = hn 1; n2; : : : ; nki,
then �(C) = fn1; n2; : : : ; nkg.

Definition 6 (Strongly connected). A Petri net is strongly connected iff, for every pair
of nodes (i.e., places and transitions) x and y, there is a path leading from x to y.

Definition 7 (Free-choice). A Petri net is a free-choice Petri net iff, for every two tran-
sitions t1 and t2, �t1 \ �t2 6= ; implies �t1 = �t2.

Definition 8 (State machine). A Petri net is state machine iff each transition has ex-
actly one input and one output place.

Definition 9 (S-component). A subnet PN s = (Ps; Ts; Fs) is called an S-component
of a Petri net PN = (P; T; F) if Ps � P , Ts � T , Fs � F , PN s is strongly connected,
PN s is a state machine, and for every q 2 Ps and t 2 T : (q; t) 2 F) (q; t) 2 Fs and
(t; q) 2 F) (t; q) 2 Fs.

Definition 10 (S-coverable). A Petri net is S-coverable iff for any node there exist an
S-component which contains this node.

See [10, 20] for a more elaborate introduction to these standard notions.

4 WF-Nets

In Figure 1 we indicated that a workflow has (at least) three dimensions. The control-
flow dimension is the most prominent one, because the core of any workflow system is
formed by the processes it supports. In the control-flow dimension building blocks such
as the AND-split, AND-join, OR-split, and OR-join are used to model sequential, con-
ditional, parallel and iterative routing (WFMC [25]). Clearly, a Petri net can be used to
specify the routing of cases. Tasks are modeled by transitions and causal dependencies
are modeled by places and arcs. In fact, a place corresponds to a condition which can
be used as pre- and/or post-condition for tasks. An AND-split corresponds to a transi-
tion with two or more output places, and an AND-join corresponds to a transition with
two or more input places. OR-splits/OR-joins correspond to places with multiple out-
going/ingoing arcs. Moreover, in [1] it is shown that the Petri net approach also allows
for useful routing constructs absent in many WFMS’s.

A Petri net which models the control-flow dimension of a workflow, is called a
WorkFlow net (WF-net). It should be noted that a WF-net specifies the dynamic behav-
ior of a single case in isolation.

Definition 11 (WF-net). A Petri net PN = (P; T; F) is a WF-net (Workflow net) if
and only if:

(i) There is one source place i 2 P such that �i = ;.
(ii) There is one sink place o 2 P such that o� = ;.

(iii) Every node x 2 P [T is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any case handled
by the procedure represented by the WF-net is created when it enters the WFMS and
is deleted once it is completely handled by the WFMS, i.e., the WF-net specifies the
life-cycle of a case. The third requirement in Definition 11 has been added to avoid
‘dangling tasks and/or conditions’, i.e., tasks and conditions which do not contribute to
the processing of cases.

Given the definition of a WF-net it is easy derive the following properties.

Proposition 1 (Properties of WF-nets). Let PN = (P; T; F) be Petri net.

– If PN is WF-net with source place i, then for any place p 2 P : �p 6= ; or p = i,
i.e., i is the only source place.

– If PN is WF-net with sink place o, then for any place p 2 P : p� 6= ; or p = o, i.e.,
o is the only sink place.

– If PN is a WF-net and we add a transition t� to PN which connects sink place o
with source place i (i.e., �t� = fog and t�� = fig), then the resulting Petri net is
strongly connected.

– If PN has a source place i and a sink place o and adding a transition t � which
connects sink place o with source place i yields a strongly connected net, then
every node x 2 P [T is on a path from i to o in PN and PN is a WF-net.

Figure 2 shows a WF-net which models the processing of complaints. First the com-
plaint is registered (task register), then in parallel a questionnaire is sent to the com-
plainant (task send questionnaire) and the complaint is evaluated (task evaluate). If the

i o

c1 c3

c4 c6

c7 c9

register

archive

evaluate no_processing

check_processing
processing_OK

processing_NOK

processing_required

c5

process_complaint

c2

c8

time_out

send_questionnaire process_questionnaire

Fig. 2. A WF-net for the processing of complaints.

complainant returns the questionnaire within two weeks, the task process questionnaire
is executed. If the questionnaire is not returned within two weeks, the result of the ques-
tionnaire is discarded (task time out). Based on the result of the evaluation, the com-
plaint is processed or not. The actual processing of the complaint (task process compl-
aint) is delayed until condition c5 is satisfied, i.e., the questionnaire is processed or a
time-out has occurred. The processing of the complaint is checked via task check pro-
cessing. Finally, task archive is executed. Note that sequential, conditional, parallel and
iterative routing are present in this example.

The WF-net shown in Figure 2 clearly illustrates that we focus on the control-flow
dimension. We abstract from resources, applications, and technical platforms. More-
over, we also abstract from case variables and triggers. Case variables are used to
resolve choices (OR-split), i.e., the choice between processing required and no pro-
cessing is (partially) based on case variables set during the execution of task evaluate.
The choice between processing OK and processing NOK is resolved by testing case
variables set by check processing. In the WF-net we abstract from case variables by
introducing non-deterministic choices in the Petri-net. If we don’t abstract from this in-
formation, we would have to model the (unknown) behavior of the applications used in
each of the tasks and analysis would become intractable. In Figure 2 we have indicated
that time out and process questionnaire require triggers. The clock symbol denotes a
time trigger and the envelope symbol denotes an external trigger. Task time out requires
a time trigger (‘two weeks have passed’) and process questionnaire requires a message
trigger (‘the questionnaire has been returned’). A trigger can be seen as an additional
condition which needs to be satisfied. In the remainder of this chapter we abstract from
these trigger conditions. We assume that the environment behaves fairly, i.e., the live-
ness of a transition is not hindered by the continuous absence of a specific trigger. As a
result, every trigger condition will be satisfied eventually.

5 Soundness

In this section we summarize some of the basic results for WF-nets presented in [2].
The remainder of this chapter will build on these results.

The three requirements stated in Definition 11 can be verified statically, i.e., they
only relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedure terminates there is a token in place o and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net. These two additional
requirements correspond to the so-called soundness property.

Definition 12 (Sound). A procedure modeled by a WF-net PN = (P; T; F) is sound if
and only if:

(i) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally:2

8M (i
�

!M)) (M
�

! o)

(ii) State o is the only state reachable from state i with at least one token in place o.
Formally:

8M (i
�

!M ^ M � o)) (M = o)

(iii) There are no dead transitions in (PN ; i). Formally:

8t2T 9M;M 0 i
�

!M
t
!M 0

Note that the soundness property relates to the dynamics of a WF-net. The first re-
quirement in Definition 12 states that starting from the initial state (state i), it is always
possible to reach the state with one token in place o (state o). If we assume a strong
notion of fairness, then the first requirement implies that eventually state o is reached.
Strong fairness means in every infinite firing sequence, each transition fires infinitely
often. The fairness assumption is reasonable in the context of workflow management:
All choices are made (implicitly or explicitly) by applications, humans or external ac-
tors. Clearly, they should not introduce an infinite loop. Note that the traditional notions
of fairness (i.e., weaker forms of fairness with just local conditions, e.g., if a transition
is enabled infinitely often, it will fire eventually) are not sufficient. See [3, 17] for more
details. The second requirement states that the moment a token is put in place o, all
the other places should be empty. Sometimes the term proper termination is used to
describe the first two requirements [14]. The last requirement states that there are no
dead transitions (tasks) in the initial state i.

2 Note that there is an overloading of notation: the symbol i is used to denote both the place i
and the state with only one token in place i (see Section 3).

i
register

c1

c2

time_out_1

time_out_2

processing_2

processing_1

processing_OK

processing_NOKc3

c4

c5

o

Fig. 3. Another WF-net for the processing of complaints.

Figure 3 shows a WF-net which is not sound. There are several deficiencies. If
time out 1 and processing 2 fire or time out 2 and processing 1 fire, the WF-net will
not terminate properly because a token gets stuck in c4 or c5. If time out 1 and time out 2
fire, then the task processing NOK will be executed twice and because of the presence
of two tokens in o the moment of termination is not clear.

Given a WF-net PN = (P; T; F), we want to decide whether PN is sound. In
[2] we have shown that soundness corresponds to liveness and boundedness. To link
soundness to liveness and boundedness, we define an extended net PN = (P ; T ; F).
PN is the Petri net obtained by adding an extra transition t� which connects o and i.
The extended Petri net PN = (P ; T ; F) is defined as follows: P = P , T = T [ft�g,
and F = F [fho; t�i; ht�; iig. In the remainder we will call such an extended net
the short-circuited net of PN . The short-circuited net allows for the formulation of the
following theorem.

Theorem 1. A WF-net PN is sound if and only if (PN ; i) is live and bounded.

Proof. See [2]. ut

This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness.

6 Structural Characterization of Soundness

Theorem 1 gives a useful characterization of the quality of a workflow process defini-
tion. However, there are a number of problems:

– For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF-
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng,
Esparza and Palsberg [8].)

– Soundness is a minimal requirement. Readability and maintainability issues are not
addressed by Theorem 1.

– Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does
not identify constructs which invalidate the soundness property.

These problems stem from the fact that the definition of soundness relates to the dy-
namics of a WF-net while the workflow designer is concerned with the static structure
of the WF-net. Therefore, it is interesting to investigate structural characterizations of
sound WF-nets. For this purpose we introduce three interesting subclasses of WF-nets:
free-choice WF-nets, well-structured WF-nets, and S-coverable WF-nets.

6.1 Free-Choice WF-Nets

Most of the WFMS’s available at the moment, abstract from states between tasks,
i.e., states are not represented explicitly. These WFMS’s use building blocks such as
the AND-split, AND-join, OR-split and OR-join to specify workflow procedures. The
AND-split and the AND-join are used for parallel routing. The OR-split and the OR-
join are used for conditional routing. Because these systems abstract from states, every
choice is made inside an OR-split building block. If we model an OR-split in terms of
a Petri net, the OR-split corresponds to a number of transitions sharing the same set of
input places. This means that for these WFMS’s, a workflow procedure corresponds to
a free-choice Petri net (cf. Definition 7).

It is easy to see that a process definition composed of AND-splits, AND-joins, OR-
splits and OR-joins is free-choice. If two transitions t1 and t2 share an input place
(�t1\�t2 6= ;), then they are part of an OR-split, i.e., a ‘free choice’ between a number
of alternatives. Therefore, the sets of input places of t1 and t2 should match (�t1 = �t2).
Figure 3 shows a free-choice WF-net. The WF-net shown in Figure 2 is not free-choice;
archive and process complaint share an input place but the two corresponding input sets
differ.

We have evaluated many WFMS’s and just one of these systems (COSA [21]) allows
for a construct which is comparable to a non-free choice WF-net. Therefore, it makes
sense to consider free-choice Petri nets in more detail. Clearly, parallelism, sequential
routing, conditional routing and iteration can be modeled without violating the free-
choice property. Another reason for restricting WF-nets to free-choice Petri nets is the
following. If we allow non-free-choice Petri nets, then the choice between conflicting
tasks may be influenced by the order in which the preceding tasks are executed. The
routing of a case should be independent of the order in which tasks are executed. A
situation where the free-choice property is violated is often a mixture of parallelism
and choice. Figure 4 shows such a situation. Firing transition t1 introduces parallelism.
Although there is no real choice between t2 and t5 (t5 is not enabled), the parallel
execution of t2 and t3 results in a situation where t5 is not allowed to occur. However,
if the execution of t2 is delayed until t3 has been executed, then there is a real choice
between t2 and t5. In our opinion parallelism itself should be separated from the choice
between two or more alternatives. Therefore, we consider the non-free-choice construct
shown in Figure 4 to be improper. In literature, the term confusion is often used to refer
to the situation shown in Figure 4.

Free-choice Petri nets have been studied extensively (cf. Best [7], Desel and Esparza
[10, 9, 12], Hack [15]) because they seem to be a good compromise between expressive
power and analyzability. It is a class of Petri nets for which strong theoretical results and
efficient analysis techniques exist. For example, the well-known Rank Theorem (Desel
and Esparza [10]) enables us to formulate the following corollary.

t2

t3
i

t4

t5

t1

o

c1

c2

c3

c4

Fig. 4. A non-free-choice WF-net containing a mixture of parallelism and choice.

Corollary 1. The following problem can be solved in polynomial time.
Given a free-choice WF-net, to decide if it is sound.

Proof. Let PN be a free-choice WF-net. The short-circuited netPN is also free-choice.
Therefore, the problem of deciding whether (PN ; i) is live and bounded can be solved
in polynomial time (Rank Theorem [10]). By Theorem 1, this corresponds to soundness.

ut

Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide
soundness. Moreover, a sound free-choice WF-net is guaranteed to be safe (given an
initial state with just one token in i).

Lemma 1. A sound free-choice WF-net is safe.

Proof. Let PN be a sound free-choice WF-net. PN is the Petri net PN extended with
a transition connecting o and i. PN is free-choice and well-formed. Hence, PN is S-
coverable [10], i.e., each place is part of an embedded strongly connected state-machine
component. Since initially there is just one token (PN ; i) is safe and so is (PN ; i). ut

Safeness is a desirable property, because it makes no sense to have multiple tokens in a
place representing a condition. A condition is either true (1 token) or false (no tokens).

Although most WFMS’s only allow for free-choice workflows, free-choice WF-nets
are not a completely satisfactory structural characterization of ‘good’ workflows. On the
one hand, there are non-free-choice WF-nets which correspond to sensible workflows
(cf. Figure 2). On the other hand there are sound free-choice WF-nets which make no
sense. Nevertheless, the free-choice property is a desirable property. If a workflow can
be modeled as a free-choice WF-net, one should do so. A workflow specification based
on a free-choice WF-net can be enacted by most workflow systems. Moreover, a free-
choice WF-net allows for efficient analysis techniques and is easier to understand. Non-
free-choice constructs such as the construct shown in Figure 4 are a potential source of
anomalous behavior (e.g., deadlock) which is difficult to trace.

6.2 Well-Structured WF-Nets

Another approach to obtain a structural characterization of ‘good’ workflows, is to bal-
ance AND/OR-splits and AND/OR-joins. Clearly, two parallel flows initiated by an
AND-split, should not be joined by an OR-join. Two alternative flows created via an
OR-split, should not be synchronized by an AND-join. As shown in Figure 5, an AND-
split should be complemented by an AND-join and an OR-split should be comple-
mented by an OR-join.

AND-split AND-join AND-split

AND-joinOR-split OR-join

OR-join

OR-split

Fig. 5. Good and bad constructions.

One of the deficiencies of the WF-net shown in Figure 3 is the fact that the AND-
split register is complemented by the OR-join c3 or the OR-join o. To formalize the
concept illustrated in Figure 5 we give the following definition.

Definition 13 (Well-handled). A Petri netPN is well-handled iff, for any pair of nodes
x and y such that one of the nodes is a place and the other a transition and for any pair
of elementary paths C1 and C2 leading from x to y, �(C1)\�(C2) = fx; yg) C1 =
C2.

Note that the WF-net shown in Figure 3 is not well-handled. Well-handledness can be
decided in polynomial time by applying a modified version of the max-flow min-cut
technique described in [5]. A Petri net which is well-handled has a number of nice
properties, e.g., strong connectedness and well-formedness coincide.

Lemma 2. A strongly connected well-handled Petri net is well-formed.

Proof. Let PN be a strongly connected well-handled Petri net. Clearly, there are no
circuits that have PT-handles nor TP-handles [13]. Therefore, the net is structurally
bounded (See Theorem 3.1 in [13]) and structurally live (See Theorem 3.2 in [13]).
Hence, PN is well-formed. ut

Clearly, well-handledness is a desirable property for any WF-net PN . Moreover, we
also require the short-circuited PN to be well-handled. We impose this additional re-
quirement for the following reason. Suppose we want to use PN as a part of a larger
WF-net PN 0. PN 0 is the original WF-net extended with an ‘undo-task’. See Figure 6.
Transition undo corresponds to the undo-task, transitions t1 and t2 have been added to
makePN 0 a WF-net. It is undesirable that transition undo violates the well-handledness
property of the original net. However, PN 0 is well-handled iff PN is well-handled.
Therefore, we require PN to be well-handled. We use the term well-structured to refer
to WF-nets whose extension is well-handled.

Definition 14 (Well-structured). A WF-net PN is well-structured iff PN is well-han-
dled.

i o

t2t1

undo

PN

PN’:

Fig. 6. The WF-net PN 0 is well-handled iff PN is well-handled.

Well-structured WF-nets have a number of desirable properties. Soundness can be ver-
ified in polynomial time and a sound well-structured WF-net is safe. To prove these
properties we use some of the results obtained for elementary extended non-self con-
trolling nets.

Definition 15 (Elementary extended non-self controlling). A Petri net PN is ele-
mentary extended non-self controlling (ENSC) iff, for every pair of transitions t1 and t2
such that �t1 \ �t2 6= ;, there does not exist an elementary path C leading from t1 to
t2 such that �t1 \ �(C) = ;.

Theorem 2. Let PN be a WF-net. If PN is well-structured, then PN is elementary
extended non-self controlling.

Proof. Assume that PN is not elementary extended non-self controlling. This means
that there is a pair of transitions t1 and tk such that �t1 \ �tk 6= ; and there exist an
elementary path C = ht1; p2; t2; : : : ; pk; tki leading from t1 to tk and �t1 \ �(C) = ;.
Let p1 2 �t1 \ �tk. C1 = hp1; tki and C2 = hp1; t1; p2; t2; : : : ; pk; tki are paths
leading from p1 to tk. (Note that C2 is the concatenation of hp1i and C.) Clearly, C1 is
elementary. We will also show that C2 is elementary. C is elementary, and p1 62 �(C)
because p1 2 �t1. Hence, C2 is also elementary. Since C1 and C2 are both elementary
paths, C1 6= C2 and �(C1) \ �(C2) = fp1; tkg, we conclude that PN is not well-
handled. ut

t3 t5t1

t2 t4

oi c2

c1

c3

c4

Fig. 7. A well-structured WF-net.

Consider for example the WF-net shown in Figure 7. The WF-net is well-structured
and, therefore, also elementary extended non-self controlling. However, the net is not
free-choice. Nevertheless, it is possible to verify soundness for such a WF-net very
efficiently.

Corollary 2. The following problem can be solved in polynomial time.
Given a well-structured WF-net, to decide if it is sound.

Proof. Let PN be a well-structured WF-net. The short-circuited net PN is elemen-
tary extended non-self controlling (Theorem 2) and structurally bounded (see proof of
Lemma 2). For bounded elementary extended non-self controlling nets the problem of
deciding whether a given marking is live, can be solved in polynomial time (See [6]).
Therefore, the problem of deciding whether (PN ; i) is live and bounded can be solved
in polynomial time. By Theorem 1, this corresponds to soundness. ut

Lemma 3. A sound well-structured WF-net is safe.

Proof. Let PN be the net PN extended with a transition connecting o and i. PN is
extended non-self controlling. PN is covered by state-machines (S-components), see
Corollary 5.3 in [6]. Hence, PN is safe and so is PN (see proof of Lemma 1). ut

Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases
soundness can be verified very efficiently and soundness implies safeness. In spite of
these similarities, there are sound well-structured WF-nets which are not free-choice
(Figure 7) and there are sound free-choice WF-nets which are not well-structured.
In fact, it is possible to have a sound WF-net which is neither free-choice nor well-
structured (Figures 2 and 4).

6.3 S-Coverable WF-Nets

What about the sound WF-nets shown in Figure 2 and Figure 4? The WF-net shown
in Figure 4 can be transformed into a free-choice well-structured WF-net by separating
choice and parallelism. The WF-net shown in Figure 2 cannot be transformed into a
free-choice or well-structured WF-net without yielding a much more complex WF-net.
Place c5 acts as some kind of milestone which is tested by the task process complaint.
Traditional workflow management systems which do not make the state of the case
explicit, are not able to handle the workflow specified by Figure 2. Only workflow
management systems such as COSA [21] have the capability to enact such a state-based
workflow. Nevertheless, it is interesting to consider generalizations of free-choice and
well-structured WF-nets: S-coverable WF-nets can be seen as such a generalization.

Definition 16 (S-coverable). A WF-net PN is S-coverable if the short-circuited net
PN is S-coverable.

The WF-nets shown in Figure 2 and Figure 4 are S-coverable. The WF-net shown in
Figure 3 is not S-coverable. The following two corollaries show that S-coverability is a
generalization of the free-choice property and well-structuredness.

Corollary 3. A sound free-choice WF-net is S-coverable.

Proof. The short-circuited net PN is free-choice and well-formed. Hence, PN is S-
coverable (cf. [10]). ut

Corollary 4. A sound well-structured WF-net is S-coverable.

Proof. PN is extended non-self controlling (Theorem 2). Hence, PN is S-coverable
(cf. Corollary 5.3 in [6]). ut

All the sound WF-nets presented in this chapter are S-coverable. Every S-coverable
WF-net is safe. The only WF-net which is not sound, i.e., the WF-net shown in Figure 3,
is not S-coverable. These and other examples indicate that there is a high correlation
between S-coverability and soundness. It seems that S-coverability is one of the basic
requirements any workflow process definition should satisfy. From a formal point of
view, it is possible to construct WF-nets which are sound but not S-coverable. Typically,
these nets contain places which do not restrict the firing of a transition, but which are
not in any S-component. (See for example Figure 65 in [19].) From a practical point of
view, these WF-nets are to be avoided. WF-nets which are not S-coverable are difficult
to interpret because the structural and dynamical properties do not match. For example,
these nets can be live and bounded but not structurally bounded. There seems to be no
practical need for using constructs which violate the S-coverability property. Therefore,
we consider S-coverability to be a basic requirement any WF-net should satisfy.

Another way of looking at S-coverability is the following interpretation: S-com-
ponents corresponds to document flows. To handle a workflow several pieces of infor-
mation are created, used, and updated. One can think of these pieces of information
as physical documents, i.e., at any point in time the document is in one place in the
WF-net. Naturally, the information in one document can be copied to another docu-
ment while executing a task (i.e., transition) processing both documents. Initially, all
documents are present but a document can be empty (i.e., corresponds to a blank piece
paper). It is easy to see that the flow of one such document corresponds a state machine
(assuming the existence of a transition t�). These document flows synchronize via joint
tasks. Therefore, the composition of these flows yields an S-coverable WF-net. One can
think of the document flows as threads. Consider for example the short-circuited net of
the WF-net shown in Figure 2. This net can be composed out of the following two
threads: (1) a thread corresponding to the processing of the form (places i, c1, c3, c5
and o) and (2) a thread corresponding to the actual processing of the complaint (places
i, c2, c4, c5, c6, c7, c8, and c9). Note that the tasks register and archive are used in both
threads.

Although a WF-net can, in principle, have exponentially many S-components, they
are quite easy to compute for workflows encountered in practice (see also the above
interpretation of S-component as document flows or threads). Note that S-coverability
only depends on the structure and the degree of connectedness is generally low (i.e.,
the incidence matrix of a WF-net typically has few non-zero entries [5]). Unfortunately,
in general, it is not possible to verify soundness of an S-coverable WF-net in polyno-
mial time. The problem of deciding soundness for an S-coverable WF-net is PSPACE-
complete. For most applications this is not a real problem. In most cases the number

of tasks in one workflow process definition is less than 100 and the number of states
is less than 200,000. Tools using standard techniques such as the construction of the
coverability graph have no problems in coping with these workflow process definitions.

6.4 Summary

The three structural characterizations (free-choice, well-structured and S-coverable)
turn out to be very useful for the analysis of workflow process definitions. Based on
our experience, we have good reasons to believe that S-coverability is a desirable prop-
erty any workflow definition should satisfy. Constructs violating S-coverability can be
detected easily and tools can be build to help the designer to construct an S-coverable
WF-net. S-coverability is a generalization of well-structuredness and the free-choice
property (Corollary 3 and 4). Both well-structuredness and the free-choice property
also correspond to desirable properties of a workflow. A WF-net satisfying at least one
one of these two properties can be analyzed very efficiently. However, we have shown
that there are workflows that are not free-choice and not well-structured. Consider for
example Figure 2. The fact that task process complaint tests whether there is a token in
c5, prevents the WF-net from being free-choice or well-structured. Although this is a
very sensible workflow, most workflow management systems do not support such an ad-
vanced routing construct. Even if one is able to use state-based workflows (e.g., COSA)
allowing for constructs which violate well-structuredness and the free-choice property,
then the structural characterizations are still useful. If a WF-net is not free-choice or not
well-structured, one should locate the source which violates one of these properties and
check whether it is really necessary to use a non-free-choice or a non-well-structured
construct. If the non-free-choice or non-well-structured construct is really necessary,
then the correctness of the construct should be double-checked, because it is a potential
source of errors. This way the readability and maintainability of a workflow process
definition can be improved.

7 Composition of WF-Nets

The WF-nets in this chapter are very simple compared to the workflows encountered
in practise. For example, in the Dutch Customs Department there are workflows con-
sisting of more than 80 tasks with a very complex interaction structure (cf. [1]). For
the designer of such a workflow the complexity is overwhelming and communica-
tion with end-users using one huge diagram is difficult. In most cases hierarchical
(de)composition is used to tackle this problem. A complex workflow is decomposed into
subflows and each of the subflows is decomposed into smaller subflows until the desired
level of detail is reached. Many WFMS’s allow for such a hierarchical decomposition.
In addition, this mechanism can be utilized for the reuse of existing workflows. Consider
for example multiple workflows sharing a generic subflow. Some WFMS-vendors also
supply reference models which correspond to typical workflows in insurance, banking,
finance, marketing, purchase, procurement, logistics, and manufacturing.

Reference models, reuse and the structuring of complex workflows require a hierar-
chy concept. The most common hierarchy concept supported by many WFMS’s is task

t+

i

o

i

o

i

o

PN1 PN2 PN3

Fig. 8. Task refinement: WF-net PN 3 is composed of PN 1 and PN 2.

refinement, i.e., a task can be refined into a subflow. This concept is illustrated in Fig-
ure 8. The WF-net PN 1 contains a task t+ which is refined by another WF-net PN 2,
i.e., t+ is no longer a task but a reference to a subflow. A WF-net which represents a
subflow should satisfy the same requirements as an ordinary WF-net (see Definition 11).
The semantics of the hierarchy concept are straightforward; simply replace the refined
transition by the corresponding subnet. Figure 8 shows that the refinement of t+ in PN 1

by PN 2 yields a WF-net PN 3.
The hierarchy concept can be exploited to establish the correctness of a workflow.

Given a complex hierarchical workflow model, it is possible to verify soundness by
analyzing each of the subflows separately. The following observation is important for
compositionality.

Lemma 4. Let PN = (P; T; F) be a sound WF-net. For any t 2 T , (i) if t 2 i�, then
�t = fig, and (ii) if t 2 �o, then t� = fog.

Proof. We prove (i) by contradiction. If t 2 i� and �t 6= fig, then there exists a p 2

(�t) n fig. Clearly, t is dead because i and p cannot be marked at the same time. The
proof of (ii) is similar. ut

The following theorem shows that the soundness property defined in this chapter allows
for modular analysis.

Theorem 3 (Compositionality). Let PN 1 = (P1; T1; F1) and PN 2 = (P2; T2; F2) be
two WF-nets such that T1\T2 = ;, P1\P2 = fi; og and t+ 2 T1. PN 3 = (P3; T3; F3)
is the WF-net obtained by replacing transition t+ in PN 1 by PN 2, i.e., P3 = P1 [P2,
T3 = (T1 n ft

+g) [T2 and

F3 = f(x; y) 2 F1 j x 6= t+ ^ y 6= t+g [f(x; y) 2 F2 j fx; yg \ fi; og = ;g [

f(x; y) 2 P1 � T2 j (x; t
+) 2 F1 ^ (i; y) 2 F2g [

f(x; y) 2 T2 � P1 j (t
+; y) 2 F1 ^ (x; o) 2 F2g:

For PN 1, PN 2 and PN 3 the following statements hold:

1. If PN 3 is free-choice, then PN 1 and PN 2 are free-choice.
2. If PN 3 is well-structured, then PN 1 and PN 2 are well-structured.
3. If (PN 1; i) is safe and PN 1 and PN 2 are sound, then PN 3 is sound.
4. (PN 1; i) and (PN 2; i) are safe and sound iff (PN 3; i) is safe and sound.
5. PN 1 and PN 2 are free-choice and sound iff PN 3 is free-choice and sound.
6. If PN 3 is well-structured and sound, then PN 1 and PN 2 are well-structured and

sound.
7. If �t+ and t+� are both singletons, then PN 1 and PN 2 are well-structured and

sound iff PN 3 is well-structured and sound.

Proof.

1. The only transitions that may violate the free-choice property are t+ (in PN 1) and
ft 2 T2 j (i; t) 2 F2g (in PN 2). Transition t+ has the same input set as any of the
transitions ft 2 T2 j (i; t) 2 F2g in PN 3 if we only consider the places in P3 \P1.
Hence, t+ does not violate the free-choice property in PN 1. All transitions t in
PN 2 such that (i; t) 2 F2 respect the free-choice property; the input places in
P3 n P2 are replaced by i.

2. PN 1 (PN 2) is well-handled because any elementary path in PN 1 (PN 2) corre-
sponds to a path in PN 3.

3. Let (PN 1; i) be safe and let PN 1 and PN 2 be sound. We need to prove that
(PN 3; i) is live and bounded. The subnet in PN 3 which corresponds to t+ be-
haves like a transition which may postpone the production of tokens for t+�. It is
essential that the input places of t+ in (PN 3; i) are safe. This way it is guaranteed
that the states of the subnet correspond to the states of (PN 2; i). Hence, the transi-
tions in T3\T2 are live (t+ is live) and the places in P3 nP1 are bounded. Since the
subnet behaves like t+, the transitions in T3 \ (T1 n ft

+g) are live and the places
in P3 \ P1 are bounded. Hence, PN 3 is sound.

4. Let (PN 1; i) and (PN 2; i) be safe and sound. Clearly, PN 3 is sound (see proof of
3.). (PN 3; i) is also safe because every reachable state corresponds to a combina-
tion of a safe state of (PN 1; i) and a safe state of (PN 2; i).
Let (PN 3; i) be safe and sound. Consider the subnet in PN 3 which corresponds to
t+. X is the set of transitions in T3 \ T2 consuming from �t+ and Y is the set of
transitions in T3 \ T2 producing tokens for t+�. If a transition in X fires, then it
should be possible to fire a transition in Y because of the liveness of the original
net. If a transition in Y fires, the subnet should become empty. If the subnet is not
empty after firing a transition in Y , then there are two possibilities: (1) it is possible
to move the subnet to a state such that a transition in Y can fire (without firing tran-
sitions in T3 \ T1) or (2) it is not possible to move to such a state. In the first case,
the places t+� in PN 3 are not safe. In the second case, a token is trapped in the
subnet or the subnet is not safe the moment a transition in X fires. (PN 2; i) corre-
sponds to the subnet bordered by X and Y and is, as we have just shown, sound and
safe. It remains to prove that (PN 1; i) is safe and sound. Since the subnet which
corresponds to t+ behaves like a transition which may postpone the production of
tokens, we can replace the subnet by t+ without changing dynamic properties such
as safeness and soundness.

c3

time_out

send_questionnaire process_questionnaire

c7 c9

check_processing

processing_NOK

process_complaint

c8
processing_OK

processing_required

i o

c1

register

archive

evaluate no_processing

c2

c5

c6c4

handle_questionnaire

processing

Fig. 9. A hierarchical WF-net for the processing of complaints.

5. LetPN 1 andPN 2 be free-choice and sound. Since (PN 1; i) is safe (see Lemma 1),
PN 3 is sound (see proof of 3.). It remains to prove that PN 3 is free-choice. The
only transitions in PN 3 which may violate the free-choice property are the transi-
tions in T3 \ T2 consuming tokens from �t+. Because PN 2 is sound, these transi-
tions need to have an input set identical to �t+ in PN 1 (cf. Lemma 4). Since PN 1

is free-choice, PN 3 is also free-choice.
Let PN 3 be free-choice and sound. PN 1 and PN 2 are also free-choice (see proof
of 1.). Since (PN 3; i) is safe (see Lemma 1), PN 1 and PN 2 are sound (see proof
of 4.).

6. Let PN 3 be well-structured and sound.PN 1 and PN 2 are also well-structured (see
proof of 2.). Since (PN 3; i) is safe (see Lemma 3), PN 1 and PN 2 are sound (see
proof of 4.).

7. It remains to prove that if PN 1 and PN 2 are well-structured, then PN 3 is also
well-structured. Suppose that PN 3 is not well-structured. In this case, there is a
pair of nodes x and y such that one of the nodes is a place and the other a transition
and such that there are two disjoint elementary paths leading from x to y in PN 3

(cf. Definitions 13 and 14). Since PN 1 is well-structured, at least one of these paths
runs via the refinement of t+. However, because t+ has precisely one input and one
output place and PN 2 is also well-structured, this is not possible.

ut

Theorem 3 is a generalization of Theorem 3 in [22]. It extends the concept of a block
with multiple entry and exit transitions and gives stronger results for specific subclasses.

Figure 9 shows a hierarchical WF-net. Both of the subflows (handle questionnaire
and processing) and the main flow are safe and sound. Therefore, the overall workflow
represented by the hierarchical WF-net is also safe and sound. Moreover, the free-choice
property and well-structuredness are also preserved by the hierarchical composition.
Theorem 3 is of particular importance for the reuse of subflows. For the analysis of a
complex workflow, every safe and sound subflow can be considered to be a single task.
This allows for an efficient modular analysis of the soundness property. Moreover, the
statements embedded in Theorem 3 can help a workflow designer to construct correct
workflow process definitions.

8 Conclusion

In this chapter we have investigated a basic property that any workflow process defini-
tion should satisfy: the soundness property. For WF-nets, this property coincides with
liveness and boundedness. In our quest for a structural characterization of WF-nets
satisfying the soundness property, we have identified three important subclasses: free-
choice, well-structured, and S-coverable WF-nets. The identification of these subclasses
is useful for the detection of design errors.

If a workflow is specified by a hierarchical WF-net, then modular analysis of the
soundness property is often possible. A workflow composed of correct subflows can be
verified without incorporating the specification of each subflow.

The results presented in this chapter give workflow designers a handle to construct
correct workflows. Although it is possible to use standard Petri-net-based analysis tools,
we have developed a workflow analyzer which can be used by people not familiar with
Petri-net theory [4, 5, 23, 24]. This workflow analyzer interfaces with existing workflow
products such as Staffware, COSA, METEOR, and Protos.

Acknowledgements
The author would like to thank Marc Voorhoeve and Twan Basten for their valuable
suggestions and all the other people involved in the development of Woflan, in particular
Eric Verbeek and Dirk Hauschildt.

References

1. W.M.P. van der Aalst. Three Good Reasons for Using a Petri-net-based Workflow Man-
agement System. In S. Navathe and T. Wakayama, editors, Proceedings of the International
Working Conference on Information and Process Integration in Enterprises (IPIC’96), pages
179–201, Camebridge, Massachusetts, Nov 1996.

2. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer
Science, pages 407–426. Springer-Verlag, Berlin, 1997.

3. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

4. W.M.P. van der Aalst. Woflan: A Petri-net-based Workflow Analyzer. Systems Analysis -
Modelling - Simulation, 35(3):345–357, 1999.

5. W.M.P. van der Aalst, D. Hauschildt, and H.M.W. Verbeek. A Petri-net-based Tool to An-
alyze Workflows. In B. Farwer, D. Moldt, and M.O. Stehr, editors, Proceedings of Petri
Nets in System Engineering (PNSE’97), pages 78–90, Hamburg, Germany, September 1997.
University of Hamburg (FBI-HH-B-205/97).

6. K. Barkaoui, J.M. Couvreur, and C. Dutheillet. On liveness in Extended Non Self-
Controlling Nets. In G. De Michelis and M. Diaz, editors, Application and Theory of Petri
Nets 1995, volume 935 of Lecture Notes in Computer Science, pages 25–44. Springer-Verlag,
Berlin, 1995.

7. E. Best. Structure Theory of Petri Nets: the Free Choice Hiatus. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri Nets, central models
and their properties, volume 254 of Lecture Notes in Computer Science, pages 168–206.
Springer-Verlag, Berlin, 1987.

8. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. In R.K. Shyama-
sundar, editor, Foundations of software technology and theoretical computer science, volume
761 of Lecture Notes in Computer Science, pages 326–337. Springer-Verlag, Berlin, 1993.

9. J. Desel. A proof of the Rank theorem for extended free-choice nets. In K. Jensen, edi-
tor, Application and Theory of Petri Nets 1992, volume 616 of Lecture Notes in Computer
Science, pages 134–153. Springer-Verlag, Berlin, 1992.

10. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

11. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, Berlin, 1993.

12. J. Esparza. Synthesis rules for Petri nets, and how they can lead to new results. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings of CONCUR 1990, volume 458 of Lecture Notes
in Computer Science, pages 182–198. Springer-Verlag, Berlin, 1990.

13. J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In G. Rozenberg, editor,
Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages 210–
242. Springer-Verlag, Berlin, 1990.

14. K. Gostellow, V. Cerf, G. Estrin, and S. Volansky. Proper Termination of Flow-of-control in
Programs Involving Concurrent Processes. ACM Sigplan, 7(11):15–27, 1972.

15. M.H.T. Hack. Analysis production schemata by Petri nets. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, Mass., 1972.

16. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

17. E. Kindler and W.M.P. van der Aalst. Liveness, Fairness, and Recurrence. Information
Processing Letters, 1999 (to appear).

18. G. De Michelis, C. Ellis, and G. Memmi, editors. Proceedings of the second Workshop on
Computer-Supported Cooperative Work, Petri nets and related formalisms, Zaragoza, Spain,
June 1994.

19. W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in Theoretical
Computer Science. Springer-Verlag, Berlin, 1985.

20. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

21. Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1998.
22. R. Valette. Analysis of Petri Nets by Stepwise Refinements. Journal of Computer and System

Sciences, 18:35–46, 1979.
23. E. Verbeek and W.M.P. van der Aalst. Woflan Home Page. http://www.win.tue.nl/ ˜woflan.

24. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes us-
ing Woflan. Computing Science Report 99/02, Eindhoven University of Technology, Eind-
hoven, 1999.

25. WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011).
Technical report, Workflow Management Coalition, Brussels, 1996.

26. M. Wolf and U. Reimer, editors. Proceedings of the International Conference on Practical
Aspects of Knowledge Management (PAKM’96), Workshop on Adaptive Workflow, Basel,
Switzerland, Oct 1996.

