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Summary 
Both ad-hoc changes and evolutionary changes in workflow processes are hardly supported by actual 
workflow management systems. The limitations stem from a rigid separation of design (i.e., the 
construction of predefined workflow models) and enactment (the actual execution of workflows). In 
this project, proposal design and execution of the system are not separated: The actual executions of 
cases are used to create an initial design or to revise an existing design. The term process mining could 
be used to describe the method of distilling a structured process description from a set of real 
executions. To achieve this, we use inductive learning techniques. These learning techniques have to 
employ relations between structured entities as workflow designs. A general investigation of relations 
between workflow representations based on inheritance is an important general foundation for these 
learning techniques. Inheritance is one of the cornerstones of object-oriented programming and object-
oriented design. Traditional inheritance notions are restricted to the structure of a class (i.e., attributes 
and methods). These notions only refer to the static aspects. In our approach we will elaborate the 
inheritance notations to the dynamic aspects of classes. This allows us to relate and compare the 
dynamic behavior of several versions/variants of a given workflow process. 
The project will experiment with several notions of inheritance and learning techniques. The most 
promising learning technique will be integrated into an existing workflow management system to 
enable real experiments. The feedback of these experiments will be used to get insight into the practical 
limitations of the approach and to improve the robustness of the learning technique. 

Problem statement 
Today’s workflow management systems [Jablonski and Bussler, 1996; Koulopoulos, 1995; Lawrence, 
1997] have problems dealing with both ad-hoc changes and evolutionary changes. As a result, the 
workflow management system is not used to support dynamically changing workflow processes or the 
workflow process is supported in a rigid manner, i.e., changes are not allowed or handled outside of the 
workflow management system. At the moment, there are more than 200 workflow products 
commercially available and many organizations are introducing workflow technology to support their 
business processes. A critical challenge for workflow management systems is their ability to respond 
effectively to changes,  cf. [Van der Aalst et al., 1998], [Van der Aalst et al., 1999a], [Van der Aalst et 
al., 1999b], [Agostini and De Michelis, 1998], [Casati et al., 1998], [Ellis et al., 1995], [Ellis et al., 
1998], [Han and Sheth, 1998], [Heinl et al. 1998], [Herbst and Karagiannis, 1999], [Ibrahim and 
Drabble, 1999], [Klein et al., 1998], [Reichert and Dadam, 1998], [Sheth, 1997], [Voorhoeve and Van 
der Aalst, 1996], [Voorhoeve and Van der Aalst, 1997], and [Wolf and Reimer, 1996]. Changes may 
range from ad-hoc modifications of the process for a single customer to a complete restructuring of the 
workflow process to improve efficiency. Today’s workflow management systems are ill suited to 
dealing with change. They typically support a more or less idealized version of the preferred process. 
However, the real run-time process is often much more variable than the process specified at design-
time. The only way to handle changes is to go behind the system’s back. If users are forced to bypass 
the workflow management system quite frequently, the system is more a liability than an asset. 
Therefore, we take up the challenge to find techniques to add flexibility without loosing the support 
provided by today’s systems. 
 
Some of the perspectives relevant for different kinds of changes and their consequences are: 
• process perspective, e.g., tasks are added or deleted or their ordering is changed, 
• resource perspective, e.g., resources are classified in a different way or new classes are introduced, 



• control perspective, e.g., changing the way resources are allocated to processes and tasks,  
• task perspective, e.g., upgrading or downgrading tasks, 
• system perspective, e.g., changes to the infrastructure or the configuration of the engines in the 

enactment service. 
In this proposal, we focus on changes in the process perspective. The process perspective is the most 
dominant perspective for workflow management and entails challenging problems such as the dynamic 
change problem, cf. [Van der Aalst et al., 1999b], [Agostini and De Michelis, 1998], [Ellis et al., 1995], 
and [Ellis et al., 1998]. The other perspectives are also relevant but outside of the scope of this project 
where we focus on process mining.  
 
Figure 1 shows that two kinds of change are identified: 
• Individual (ad-hoc) changes, i.e., ad-hoc adaptation of the workflow process: a single case (or a 

limited set of cases) is affected. A good example is that of admitting a person to a hospital: If 
someone enters the hospital with a cardiac arrest, you are not going to ask him for his ID, although 
the workflow process may prescribe this. Figure 1 distinguishes entry time changes (changes that 
occur when a case is not yet in the system) and on-the-fly changes (while in the system, the 
process definition for a case changes). 

• Structural (evolutionary) changes, i.e., evolution of the workflow process: all new cases benefit 
from the adaptation. A structural change is typically the result of a BPR effort. An example of such 
a change is the change of a 4-year curriculum at a university to a 5-year one. 
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Figure 1. Classification of change. 

 
On the left-hand side in Figure 1, we see the three different ways in which a workflow can be changed: 
• the process definition is extended (e.g., by adding new tasks to cover process extensions), 
• tasks are replaced by other tasks (e.g., a task is refined into a subprocess), and 
• tasks in the process are re-ordered (e.g., two sequential tasks are put in parallel). 
 
Figure 1 gives three possible alternatives for handling existing cases in the system when a process 
definition changes. Dealing with existing cases is only relevant in the case of a structural change 
because individual changes will always be (similar to) exceptions and, as such, will be dealt with by the 
one who initiated the change explicitly.  
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Figure 2. How to handle running cases? 

 
Figure 2 shows the three alternatives: (a) restart: running cases are rolled back and restarted at the 
beginning of the new process, (b) proceed: changes do not affect running cases by allowing for 
multiple versions of the process, and (c) transfer: a case is transferred to the new process. 
 



Based on the classification illustrated by both figures, we describe the capabilities of today’s workflow 
management systems with respect to change. Most of the workflow management systems (e.g., 
Staffware, FlowMark, COSA, etc.) only support highly structured production workflows, i.e., no ad-
hoc changes are possible and a versioning mechanism is used to support evolutionary change. The 
versioning mechanism prevents anomalies such as the dynamic change problem mentioned earlier to 
occur and corresponds to the proceed policy shown in Figure 2. Only a few workflow management 
systems support ad-hoc workflows (e.g., InConcert and Ensemble) and (to our knowledge) no system 
truly supports the transfer of cases because of the dynamic change problem. The workflow 
management systems supporting ad-hoc workflows use a mechanism where each case (i.e., workflow 
instance) has a private workflow process definition. In other words, the case caries its own description. 
This mechanism provides flexibility. However, from a management perspective, it is not really a 
solution. There is no control, i.e., a case can follow an arbitrary route since changes are made local 
outside of the scope of the workflow designer and manager. Moreover, there is no aggregated 
management information because the information is at an instance level rather than the process level. 
 
The limitations of today’s systems stem from a rigid separation of design (i.e., the construction of 
predefined workflow models) and enactment (the actual execution of workflows). The systems 
supporting production workflows do not allow for modifications, i.e., the design is fixed during 
enactment. In systems supporting ad-hoc workflow, there is no interaction between design and 
enactment, i.e., the design (typically some kind of template) can be altered in any way during the actual 
enactment and the enactment service does not provide feedback for the design. 

Approach 
The approach used in this project supports ad-hoc change and avoids the problems related to 
evolutionary change by learning, i.e., the actual executions of cases are used as input for revising the 
design. The workflow engine (i.e., the enactment service) is no longer just a mechanism to route cases: 
It also provides controlled flexibility and captures historical data. This historical data is used to create 
an initial design or to revise an existing design (process mining). Consider for example the processing 
of insurance claims. Assume there is no process description. First, claims are handled by employees in 
an ad-hoc manner. The way these claims are handled is recorded. Then, the information recorded is 
used to distill an appropriate design. This design is used for handling new claims. The design can be 
seen as a template, i.e., ad-hoc modifications are needed (e.g., added or skipping a task). Not every 
modification is acceptable, i.e., the design is parameterized by one or more degrees of freedom. The 
execution of new insurance claims is recorded to detect discrepancies between the initial design and the 
actual processing. If needed, the design is revised based in this information. Compared to existing 
tools/approaches the main difference is the use of actual data to construct/revise workflow process 
definitions, i.e., “design learns from enactment” thus closing the control loop. Clearly such an approach 
improves the support of ad-hoc change. Moreover, evolutionary changes are easier to handle since the 
workflow process definitions are kept up-to-date and the degree of freedom is modeled explicitly, i.e., 
rigorous changes causing all kinds of anomalies can be avoided. 
 
The following questions need to be answered: 
• How to represent individual cases and workflow designs? 
• How to distill a workflow design from individual cases (process mining)? 
• How to model the degree of freedom? 
• How to decide when and how to revise an existing design based on actual data? 
• How to generate aggregate management information? 
• How to build a run-time environment which integrates design and enactment?  
 
Answering these questions, we will combine tools and techniques out of the domain of workflow 
management and knowledge engineering with great emphasis on learning. In this project, we will use 
Petri nets to represent individual cases and workflow designs, cf. [Van der Aalst, 1998a], [Van der 
Aalst, 1998b], and [Ellis and Nutt, 1993]. The graphical representation and clearly defined semantics of 
Petri nets, allows us to express the concepts in a compact and unambiguous manner. Moreover, 
(extended) Petri nets are close to diagramming techniques used in today's workflow management 
systems and ERP systems, e.g., the EPC's used in ARIS/SAP [Van der Aalst, 1999b]. However, the use 
of a highly structured representation language such as Petri nets is from a learning perspective a 
complicating factor. Standard learning techniques, as developed within machine learning (a sub field of 
knowledge engineering) are for the greater part based on the use of feature vectors as knowledge 



representation language and therefore not straightly applicable on the highly structured representation 
languages such as Perti nets. For this reason, the answering of the question “How to distill a workflow 
design from individual cases?” is from a learning perspective a real challenge.  
 
As stated above, machine learning research is typically restricted to classification using feature value 
vector representations. However, there is a growing interest in developing learning techniques capable 
of dealing with rich representations, i.e. labeled graphs that can be used for describing relationships 
among symbols. The most successful approaches are in the sub fields of Case Based Reasoning (CBR), 
learning based on Genetic Algorithms (GA), and the candidate-elimination algorithm. However, new 
machine learning techniques are under development.  
 
Case Based Reasoning (CBR) is a learning paradigm that classifies new query instances by analyzing 
similar instances stored in a database with old cases. Old instances are mostly represented as real or 
nominal valued feature vectors. However, richer symbolic descriptions can be used, and the methods 
used to retrieve similar instances are correspondingly more elaborate [Mitchell, 1997, pp. 240]. CBR 
has been applied to problems such as conceptual design of mechanical devices based on a stored library 
of previous design [Sycara et al., 1992], process engineering [Surma and Braunschweig, 1996], and 
planning [Veloso, 1994; Veloso, 1997]. There is a close connection between the retrieval of similar 
cases and knowledge about basic relation between instances.  
 
Genetic Algorithms (GA) provide an approach to learning that is based loosely on simulated evolution 
(therefore the use of the synonym evolutionary learning). Learning hypotheses are often described by 
bit strings whose interpretation depends on the application, though hypothesis may also be described by 
symbolic expressions or even computer programs [Koza, 1992].  Starting with a population of initial 
hypotheses, the next generation is developed by applying genetic operations such as crossover and 
random mutation. At each step, the members of the current generation are evaluated relative to a given 
measure of fitness hypotheses; the fittest members are probabilistically selected for producing the next 
generation. Genetic algorithms have been applied successfully to a variety of learning tasks and 
optimization problems. 
The challenge in our project is to reformulate our workflow learning problem into genetic terms. A first 
attempt can be based on the following approach. The members of the initial population are individual 
cases. The crossover operations we are looking for are such that there is a strong tendency to combine 
population members to new more general population elements (i.e. workflow designs). In other words, 
the crossover operations have a strong tendency to combine individual cases to workflow designs and 
workflow designs to more general workflow designs. Finally, the fitness of a population element 
(workflow design) depends of two measurements: 
 
• How well does the workflow design explain the set of individual cases? 
• How general is the workflow design (if two workflow designs explain an equal number of 

individual cases the more general workflow design is fitter)? 
 
The key idea in the candidate-elimination algorithm [Mitchell, 1979] is to output a description of a set 
of all hypotheses (in our case workflow designs) consistent with the individual cases. Surprisingly, the 
candidate elimination algorithm computes the description of this set without explicitly enumerating all 
of the members. This is accomplished by using the more_general_than partial ordering, to maintain a 
compact representation of the set of consistent hypotheses and to incrementally refine this 
representation as each new individual case is encountered. The candidate-elimination algorithm has 
been applied to problems such as learning regularities in chemical mass spectroscopy [Mitchell, 1979] 
and learning control rules for heuristic search [Mitchell et al., 1983]. The practical application of the 
candidate-elimination algorithm is limited by the fact that it performs poorly when given noisy training 
data. We have to investigate if this is a real limitation in our workflow design domain or if we can 
overcome this limitation [Hirsh, 1994].     
 
A common property of the mentioned learning techniques is the use of functions on and relations 
between workflow designs. Examples are the similarity measure in CBR, the fitness function in GA, 
and the more_general_than in the candidate-elimination algorithm. For a more general investigation of 
functions on and relations between workflow representations we propose an approach based on 
inheritance. Inheritance is one of the cornerstones of object-oriented programming and object-oriented 
design. The basic idea of inheritance is to provide mechanisms which allow for constructing subclasses 
that inherit certain properties of a given superclass. In most object-oriented methods a class is 



characterized by a set of attributes and a set of methods. Attributes are used to describe properties of an 
object (i.e., an instance of the class). Methods symbolize operations on objects (e.g., create, destroy, 
and change attribute). The structure of a class is specified by the attributes and methods of that class.  
The traditional notions of inheritance are applicable to the information and operation perspective. 
However, for the process perspective the traditional notions of inheritance fall short. For this 
perspective, a class corresponds to a workflow process definition (i.e., a workflow schema) and objects 
(i.e., instances of the class) correspond to cases. Traditional inheritance notions are restricted to the 
structure of a class (i.e., attributes and methods). These notions only refer to the static aspects of the 
interface. The dynamic behavior of a class is either hidden inside the methods or modeled explicitly (in 
UML the life-cycle of a class is modeled in terms of state machines). Although the dynamic behavior is 
an intrinsic part of the class description (either explicit or implicit), inheritance of dynamic behavior is 
not well-understood. (See [] for an elaborate discussion on this topic and pointers to related work.) 
Given the widespread use of inheritance concepts/mechanisms for the static aspect, this is remarkable. 
Moreover, the dynamic behavior is the essence of the process perspective. In fact, dynamic behavior is 
the essence of workflow management. To our knowledge, the work presented in [Basten, 1998] is the 
only work which deals with inheritance of dynamic behavior in a comprehensive manner. This work is 
based on a particular class of Petri nets: the so-called sound workflow nets (cf. [Van der Aalst, 1998b]) 
mentioned earlier. This class of Petri nets corresponds to workflow processes without deadlocks, 
livelocks, and other anomalies. Other inheritance-based approaches abstract from the causal relations 
between tasks/methods.  
Defining inheritance notions for workflow processes (i.e., processes defined by routing diagrams) is far 
from trivial. Consider two workflow processes x and y. When is x a subclass of y? x is a subclass of 
superclass y if x inherits certain features of y. Intuitively, one could say that x is a subclass of y if and 
only if x can do what y can do. Clearly, all tasks present in y should also be present in x. Moreover, x 
will typically add new tasks. Therefore, it is reasonable to demand that x can do what y can do with 
respect to the tasks present in y. In fact, the behavior with respect to the existing tasks should be 
identical. For distinguishing x and y we only consider the old tasks (i.e., the tasks already present in y). 
All other tasks are renamed to τ. One can think of these tasks as silent, internal, or not observable. 
Since branching bisimulation is used as an equivalence notion, we abstract from transitions with a τ 
label, i.e., for deciding whether x is a subclass of y only the tasks with a label different from τ are 
considered. The behavior with respect to these tasks is called the observable behavior. With respect to 
new tasks (i.e., tasks present in x but not in y) there are basically two mechanisms which can be used. 
The first mechanism simply blocks all new tasks and then compares the observable behavior. This 
mechanism leads to the following notion of inheritance. 

If it is not possible to distinguish x and y when only tasks of x that are also present in y are 
executed, then x is a subclass of y. 

Intuitively, this definition conforms to blocking or encapsulating tasks new in x. The resulting 
inheritance concept is called protocol inheritance; x inherits the protocol of y, i.e., the old routing 
patterns are contained in the new process. In other words, if the new tasks are not executed (i.e., 
blocked), one cannot distinguish any differences. Another mechanism would be to allow for the 
execution of new tasks but consider only the old ones.  

If it is not possible to distinguish x and y when arbitrary tasks of x are executed, but when only 
the effects of tasks that are also present in y are considered, then x is a subclass of y. 

This inheritance notion is called projection inheritance; x inherits the projection of the workflow 
process y onto the old tasks. Projection inheritance conforms to hiding or abstracting from tasks new in 
x. In other words, one can still enact the old routing patterns as long as one is willing to execute the 
appropriate new tasks. 
The two mechanisms (i.e., blocking and hiding) result in two orthogonal inheritance notions. 
Therefore, we also consider combinations of the two mechanisms. A workflow process is a subclass of 
another workflow process under protocol/projection inheritance if by both hiding and blocking one 
cannot detect any differences, i.e., it is a subclass under both protocol and projection inheritance. The 
two mechanisms can also be used to obtain a weaker form of inheritance. A workflow process is a 
subclass of another workflow process under life-cycle inheritance if by blocking some newly added 
tasks and hiding others one cannot distinguish between them.  
In [Van der Aalst and Basten, 1997; Basten, 1998] several inheritance preserving transformation 
rules have been defined. The rules correspond to design constructs that are often used in practice, 
namely iteration, sequential composition, and parallel composition. If the designer sticks to these 
rules, inheritance is guaranteed! 



These inheritance notions and transformation rules can be used to compare processes. Based on these 
notions we can define the so-called  ‘Greatest Common Divisor’ (GCD) or the ‘Least Common 
Multiple’ (LCM) of a set of workflow process definitions [Van der Aalst and Basten, 1999]. Suppose 
we have a set of ad-hoc workflows. The GCD of these ad-hoc workflows is the part they all agree on. 
The LCM captures all possible behaviors. Clearly, such notions are useful to distill a workflow design 
from individual cases. Moreover, inheritance can also be used to define specific degrees of freedom 
and to generate aggregate management information [Van der Aalst and Basten, 1999]. 

Scientific relevance 
The scientific relevance of the project is fourfold: 
 
1. Improving the scientific insight into flexible workflow management systems. Common workflow 

management systems have problems dealing with ad-hoc changes and evolutionary changes. The 
limitations stem from a rigid separation of design (i.e., the construction of predefined workflow 
models) and enactment (the actual execution of workflows). In this project proposal design and 
execution of the system are not separated: the actual executions of cases are used to create an 
initial design or to revise an existing design. 

2. Improving the scientific insight into the use of machine learning techniques in highly structured 
domains. In this project, we will use Petri nets to represent individual cases and workflow designs. 
The use of the highly structured Petri-net language of is from a learning perspective a challenge. 
Standard learning techniques as developed within machine learning are for the greater part based 
on the use of feature vectors as knowledge representation language and therefore not 
straightforwardly applicable to highly structured representation languages such as Petri nets. 
Structured representations are ubiquitous in different fields such as knowledge representation, 
language modeling, and pattern recognition. There is a growing interest in developing learning 
techniques that can be used for describing complex relationships among symbols.  

3. Insight in the practical usefulness of new inductive learning techniques in the context of workflow 
management systems. The implementation of the most promising learning technique into an 
existing workflow management system is important for insight into the practical limitations of the 
approach. The practical feedback can be used to improve the robustness of the new learning 
technique. 

4. The development of new notions for comparing the dynamics of different processes. The learning 
techniques used in this project are based on inheritance relations between workflow designs. 
Traditional inheritance notions are restricted to the structure of a class (i.e., attributes and 
methods). These notions only refer to the static aspects. The inheritance notations deployed in this 
project focus on the dynamic aspects of a class. Many notions are possible, four of which have 
been mentioned earlier, and further research is needed to select the best one. Moreover, the 
inheritance notions also lead to intriguing concepts such as the GCD and LCM for processes. 

 
The need for more flexibility has been recognized by the users and vendors of today's workflow 
management systems and has attracted the interest of many researchers. Several workshops in the past 
have focused on this issue, cf., [Wolf and Reimer, 1996], [Van der Aalst et al., 1998], [Klein et al., 
1998], [Van der Aalst et al., 1999a], and [Ibrahim and Drabble, 1999]. Recently, the issue of "adaptive 
workflow" has also attracted the attention of several AI researchers. In the near future there will be 
several workshops focussing on the combination of AI and workflow. Despite this interest in adaptive 
workflow there are still many open problems. Existing work can be classified as follows: 
− There are many survey papers describing the problems related to change, frameworks and 

architectures, e.g., [Van der Aalst et al., 1999b], [Casati et al., 1998], [Han and Sheth, 1998], 
[Heinl et al. 1998], and [Sheth, 1997]. 

− Some papers address specific problems such as the dynamic change problem, e.g., [Van der Aalst 
and Basten, 1999], [Agostini and De Michelis, 1998], [Ellis et al., 1995], [Ellis et al., 1998], and 
[Reichert and Dadam, 1998]. 

− Only a few papers discuss the concept of process mining, e.g., [Agrawal et al., 1998] and [Herbst 
and Karagiannis, 1999]. 

The project will build on existing work. It should be noted that the papers focusing on data mining have 
problems dealing with concurrency. Moreover, none of the above papers above deals with the learning 
perspective in any detail. Therefore, the project is very relevant from both a practical and scientific 
perspective. 



Goal and planning 
The project target is, in the form of a Ph.D. thesis and several papers, to answer the research questions 
posed before: 
 
• How to represent individual cases and workflow designs? 
• How to distill a workflow design from individual cases? 
• How to model the degree of freedom? 
• How to decide when and how to revise an existing design based on actual data? 
• How to generate aggregate management information? 
• How to build a run-time environment which integrates design and enactment?  
 
The project starts with a search for appropriate machine learning techniques useful (after adaptation) in 
the workflow domain. During this search and possible adaptations of existing techniques, performance 
experiments play a key role.   
 
The next project target is the practical implementation of the more theoretical results in an existing 
workflow management system. An interesting candidate platform for such an implementation is the ad-
hoc workflow management system InConcert [InConcert, 1998]. InConcert has unique features such as 
the on-the-fly construction of a workflow process definition, which are required for an approach based 
on learning. The implementation can borrow parts of the software package Woflan developed at EUT 
[Van der Aalst, 1999a]. Woflan has been developed for the verification of workflow process 
definitions. However, it can also be used test some of the more complex requirements for the 
inheritance preserving transformation rules mentioned earlier. 
 
The duration of the project is four years. The following activities are planned: 
 
Year 1 
• Participating in the BETA educational program (760 hours workload). 
• Reading of the key publication in the domain of workflow management, machine learning and the 

combination of these two domains. 
• Obtaining hands-on experience in using workflow management systems and designing workflows. 
• Writing of a definitive research proposal and presentation of this proposal.  
 
Year 2 
• Participating in the BETA educational program (200 hours workload). 
• Searching for (and adapting of) existing representation languages and machine learning 

techniques. Preparing the data for the first experiments with selected machine learning techniques. 
Definition of a methodological sound experimental setup. 

• Preparing one or two conference papers.  
 
Year 3 
• Carrying out supplementary experiments to get more insight into the first four research questions: 

1. How to represent individual cases and workflow designs? 
2. How to distill a workflow design from individual cases? 
3. How to model the degree of freedom? 
4. How to decide when and how to revise an existing design based on actual data? 

• Implementing of the most successful experimental learning module into an existing workflow 
management system.  

• Preparing one or two conference/journal publications. 
 
Year 4 
• Continuation of the implementation of the learning module into a workflow management system.  
• Carrying out practical experiments with the new workflow management system. 
• Writing of the Ph.D. thesis. 
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